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1 Abstract

This report is the final technical report for the project “PCA RAW Fabric: Architectural

Prototyping, Demonstration, and Evaluation.”

In this project, we successfully built and demonstrated a Raw fabric system contain-
ing 4 Raw chips, with 3 streaming fabric boards. The system is shown in the figure below.
In addition to the Raw fabric hardware, we also developed and demonstrated Streamlt: a
language and compiler specifically designed for embedded, high performance stream com-
puting on PCA architectures such as Raw. Our project also implemented, analyzed and
distributed a new PCA benchmark suite called Versabench and a PCA performance metric

called Versatility (see http://cag.csail.mit.edu/versabench).

Raw Fabric Board

Figure 1: Photo of the Raw fabric and 1/O boards.

The Raw fabric is a universal computational substrate suitable for signal processing and

embedded applications. The key innovation behind Raw fabrics is the ability for software



to customize chip-level communication channels in an application-specific manner, thereby
enabling the construction of mission-specific embedded systems cost-effectively. Raw fabrics
offer the promise of orders of magnitude improvements for embedded applications when com-
pared to microprocessor-based systems. These improvements are in performance, power, and
size, and will allow system customization to be measured in hours instead of years. Raw
Fabrics comprise single Raw chips with on-chip customizable interconnect, and board-level
systems containing many Raw chips. Our project previously built a Raw chip prototype
and a handheld computer system based on Raw. We have also designed and built a Raw
fabric processor and I/O boards that make larger fabric systems easily realizable. We have
built a 4 Raw chip fabric system, which is scalable to a 64 chip system that offers a one
thousand processor system. Our results demonstrate that Raw performs at or close to the
level of the best specialized machine for many application classes. When compared to a
Pentium-111 implemented in the same technology, Raw displays one to two orders of magni-
tude more performance for stream applications, while performing within a factor of two for

sequential-desktop applications.

In addition to the Raw fabric hardware, we have also developed Streamlt: a language
and compiler specifically designed for high performance, high productive stream comput-
ing. Streamlt raises the abstraction level in the streaming domain and provides a natural,
high-level syntax that conceals architectural details without sacrificing performance. The
Streamlt compiler is geared toward the application of novel stream-specific optimizations
that achieve performance-levels comparable to expert programmers. We have publicly re-
leased the Streamlt compiler infrastructure to accelerate the Streamlt language adoption
and application development. The release also includes a source-code distribution to pro-
mote compiler optimizations and innovations in the user community. The Streamlt compiler
includes a wide array of optimizations for parallel architecture targets. The optimizations
include load balancing, application layout, routing, and communication scheduling, as well
as several automated domain-specific optimizations (e.g., translation of linear computation

to the frequency domain) that are traditionally applied by domain-experts. We continue to



innovate our compilation technology with a focus on scalable and massively parallel PCA

computing systems exemplified by the Raw fabric.

2 Overview of the Project

The Raw fabric [1] is a universal computational substrate that is suitable for signal process-
ing and embedded applications. The key innovation behind raw fabrics is the ability for
software to customize chip-level communication channels in an application-specific manner.
Raw Fabrics comprise single chip Raw systems with on-chip customizable interconnect, and

board-level systems that comprise one to many Raw chips.

Raw Fabrics address a major problem both with extant special purpose hardware sys-
tems and general purpose machines. First, modern supercomputers, built from state-of-the-
art COTS microprocessors, have failed to eliminate the need for specialized hardware in the
signal processing and embedded domains. Although supercomputing systems have the high-
est computational power, their inability to cost- effectively utilize this power for solving signal
processing problems have led to the proliferation of ASICs, FPGAs, DSPs and full-custom
hardware. Second, the need for special purpose hardware is even more acute in the embedded
application domain, where efficient utilization of area, weight, and power is paramount. Un-
fortunately, the enormous cost and lengthy time-to-deployment of special-purpose hardware

systems significantly reduces their appeal.

The Raw fabric draws its design motivation from both the strengths and weaknesses
of using custom hardware for signal processing and embedded applications. There are three
main benefits to developing custom hardware. First, when processing a stream of data, the
ability to customize pipeline stages provides an order-of-magnitude performance improvement
over a fixed pipeline when the energy budget is fixed. Second, custom hardware is able to
efficiently orchestrate direct data movement between pipeline stages. In contrast, using a
fixed memory hierarchy with caches is very inefficient in handling certain access patterns,

such as stream data. Third, a custom design can tailor its resources to match both the level



and the granularity of the available parallelism in the application. This approach is more
efficient than using a processor supporting a fixed amount of parallelism. A fourth, and
minor advantage of custom hardware, is the ability to efficiently meet the granularity of data

required by the application by customizing the size of registers, data paths, and ALUs.

Despite these advantages, custom hardware has a series of shortcomings. One of the
biggest drawbacks in using custom hardware is its inflexibility. The inability to change
the applications that run on a given hardware platform dramatically reduces their cost-
effectiveness. Although FPGAs were partially successful in addressing this problem, seamless
reconfiguration during continuous operation is yet to be achieved. More importantly, the
inability of these devices to present an abstraction of unlimited resources renders the task
of mapping programs to these devices incredibly difficult. Because ASICs are application-
specific and cannot be applied to multiple problems, designing a custom ASIC for an algorithm
can only afford a fraction of the development cost of designing a microprocessor. Therefore,
it is not feasible to produce an ASIC with the same clock speed as a microprocessor of
the same generation. Furthermore, it becomes prohibitively expensive to design a custom
ASIC for each new process generation, while porting an application to a later version of a

microprocessor is relatively simple.

Our project consisted of four major components that together provide a complete poly-
morphous computing environment. The four components are the Raw Processor, the Raw
Fabric, the Raw Compiler, and the Raw Operating System. As described shortly, in each of

the components, we resolved many open research issues and technical challenges.

In summary, this project designed and built a flexible and scalable computation fabric
that can be morphed into solving many embedded applications in an energy, area, and time-
efficient manner. A major component of this research was the Raw processor. The Raw
processor is a simple tiled architecture with an innovative communication subsystem and is
an ideal building block for larger computation fabrics. As such, the Raw fabric is an early

proof-of-concept prototype of the general polymorphous computing architecture concept.



The project also completed the design of a multi-Raw-chip fabric. We have designed a 4
Raw chip fabric board along with an I/O board to demonstrate the ease of scalability of our
design and philosophy. The boards can be tiled to build larger fabrics, and we have designed
a methodology to massively scale the fabric, with a one thousand processor system planned

in the future.

We also demonstrated in this project that stream computing presents unique opportu-
nities to improve programmer productivity without sacrificing performance. We developed
the Streamlt programming language and showed that many application with streaming data
patterns are naturally expressed in the language. We also showed the Streamlt language fea-
tures allow for novel optimizations that automate high-impact domain specific optimizations
as well as machine specific optimizations. The Streamlt compiler which was developed during
this project performs automatic discovery of concurrency, load balancing, communication and
synchronization optimizations, leading to scalable performance on the Raw fabric system for
many applications drawn from DSP (digital signal processing), well known and widely used
Matlab codes, and the MIT Lincoln Laboratory benchmarks.

The project also investigated many novel microarchitectural features, language issues,
compiler algorithms, and operating system components. Fach of these is central to a suc-
cessful polymorphous computing environment. The project developed several prototype Raw
systems that are now in use at two DARPA sites including ISI and ATL at Lockheed Martin.

Additional boards are in the process of being tested and they will go to several more of our

DARPA collaborators.

3 Summary of Accomplishments and Systems Built
The following are the major components of our system that were implemented in our project.

1. We designed and successfully built a functional single-board Raw system. This was a

key milestone of the project. The Raw processor has 16 processing tiles organized in



a 4x4 2-D mesh. We implemented the prototype Raw microprocessor in the SA-27E
ASIC flow, which uses IBM’s CMOS 7SF, a 180nm, 6-layer copper process. After a
huge effort in the design and implementation using the IBM ASIC tools, as well has
hand placement to achieve better clock speed and a huge effort on validation including
multiple simulators, RTL level emulator, and countless tests, the fist silicon worked
without a single bug! Although the IBM tools only projected the processor frequency
to be 225 MHz, processor core ran at the frequency of 425MHz at 1.8V and 500 MHz
at 2.2V. A 16-tile Raw processor has a throughput of 6.8GFLOPs.

. We designed and implemented the Raw fabric board and the Raw fabric 1/O board as
well (along with our collaborators at ISI). The fabric board contains 4 Raw chips and
can be connected in a mesh along with other fabric boards. The 1/O board plugs into
the periphery of the fabric board mesh and provides I/O, memory and other expansion
functions. The boards provide a straightforward approach to building large scale fabrics,

such as the planned 1K-processor fabric.

. We developed an analytical framework that calculates the communication energy for
point-to-point interconnection networks assuming various traffic/communication pat-
terns. Using our model we compared the energy dissipation of operand communication
for point-to-point networks against bus-based systems and presented a thorough anal-

ysis of the energy savings and advantages of point-to-point interconnection networks.

. We investigated the class of streaming algorithms that can asymptotically reach the
peak performance of the Raw processor. We demonstrated scalability of stream al-
gorithms by running stream algorithms on simulated Raw fabrics of up to 1024 tiles.
Our performance on the 1024 tile Raw fabric ranged from 414 GFLOPS for Matrix
Multiplication to 294 GFLOPS for QR Factorization.

. We built a complete steaming compiler and language called Streamlt. The language
syntax is natural to most programmers of streaming systems, and allows the user to

express stream programs effectively. Streamlt and the compiler are available to the
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user community.

. We engineered a wide array of Streamlt compiler optimizations for parallel architecture

targets. The optimizations include load balancing, application layout, routing, and
communication scheduling, as well as several automated domain-specific optimizations
including translation of linear computation to the frequency domain, and a new class

of state-space optimizations.

We extended the Streamlt compile to support a novel concept of compiler orchestrated
space-time multiplexing of streams. This allows for the efficient execution of dynamic

streams.

. We developed a new unified and automatic methodology for extracting task-level, data-

level, and pipeline parallelism from stream computations.

. We showed that coarse-grained parallelism in stream programs provides robust and

scalable performance for tiled architectures. Compared to baseline techniques for task
and data level parallelization, we showed that our new techniques leads to 11x speedup

for a 16-tile Raw processor for our benchmark suite.

We have designed and implemented the Streamlt Development Tool (SDT). We have
fully integrated it with the Eclipse Universal Tools Platform. The Streamlt Debugger
is a central component of the graphical SDT as it affords a practical methodology
for reasoning about the correctness of largely parallel applications. The SDT also
includes features that enable the editing and compilation of Streamlt programs using
Eclipse. The SDT remains under active development, with a focus on scalability and

visualization.

We have implemented, analyzed and distributed a new PCA benchmark suite called

Versabench, and a new PCA performance metric called Versatility.

We have revised the Streamlt language to broaden the class of applications that can

be naturally expressed. New applications domains include security codes, network
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processing, video codecs, and multimedia.

We have designed and implemented an MPEG-2 codec in Streamlt. We also imple-
mented a Streamlt version of the MIT Lincoln Labs Scalable Synthetic Compact Ap-
plications benchmark no. 3: Synthetic Aperture Radar, and showed that the benchmark

has a straightforward translation from its Matlab equivalent.

We completed the implementation of the latest version of rMPI, and extensively tested
its functionality, thereby allowing programmers to run large MPI applications on the

Raw hardware. We have partially conducted a performance analysis of rMPI.

We designed, implemented, and optimized a software instruction cache. The scheme
allows large programs to run on the Raw system. The overhead versus a traditional

hardware cache is less than 30% on average and less than 10% on many benchmarks.

We developed Reptile, a port of the Trimaran ILP compiler to support the Raw ar-
chitecture. Reptile extends the suite of available ILP optimization to include profile

guided optimizations to improve the performance of irregular sequential code.

We built RawCC, which takes sequential C or FORTRAN programs and compiles them
on to the Raw fabric. We developed the analysis necessary to extract ILP (instruction-
level parallelism) out of sequential programs. Thus, programs written FORTRAN and

C are able to use our compiler.

We conducted an educational workshop of the Raw system. About 20 researchers,
current and potential users, attended the workshop. All the material and the video of

the workshop are available from the Raw webpage.

We extended the Raw simulator to explore architectural extensions for future genera-
tions. The simulator supports different network configurations, an in order superscalar
tile processor and different memory systems. Our simulator is calibrated against the

real hardware.
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We designed and implemented an MPEG-2 encoder for the Raw board and investigated
performance bottlenecks. We implemented several optimizations for motion estimation
and bit-rate control. We also developed a live-demo for an on-the-fly MPEG-2 encoder

on Raw that runs on the Raw handheld board.

We designed and implemented an embedded wireless processor using a 2-pass system.
The optimized multi-pass system achieved performance on par with equivalent non-

multi-pass system implementations.
We designed and implemented an embedded networking fabric and control plane.

We designed and implemented a 32-node acoustic beamformer which was then extended
to a record setting 1K nodes. This accomplishment was documented in the Guinness

World Book of Records.

We designed and implemented the SUDS system as a hybrid compiler and runtime sys-
tem that attempts to extract performance out of integer and sparse matrix applications
where there is little parallelism and no compile time information. SUDS uses a part of
the processor to implement a transaction memory system, this is able to speculatively
parallelize and execute the program. SUDS is able to extract dynamic parallelism from

applications and get comparable performance to a modern superscalar.

We developed a prototype host-based operating system for the Raw fabric. Our initial
fabric operating system includes features needed to support 1/O devices and OS services
expected by applications. We developed and deployed a nano-kernel for each tile. A
set of POSIX commands have been implemented using a few dedicated OS tiles and

cooperating nano-kernels.

4 Accomplishments and Progress

We built a working prototype of a Polymorphous Computing Architecture platform based

on the Raw infrastructure. The following sections summarize our findings and discuss the



components in detail.

4.1 Findings

We have shown that a complex processor with more than 100 million transistors can be
designed, developed and validated at a university resulting in a chip without a single fault
and that exceeds the expected clock speed. Our design produced the tightest coupling between
two different pipelines in a chip multiprocessor. The operand can be moved from one pipeline
to the next within three clock cycles. For the first time, we showed that exposing the wires
to the compiler can drastically increase the processor utilization for applications that are

statically analyzable.

We also demonstrated that the Raw tile abstraction is power efficient, and that using
software functionality for functions traditionally relegated to hardware is not only practical
but also contributes to the power savings. Specifically, our software instruction caching
system is competitive against hardware instruction caches in terms of performance, while

affording greater energy efficiency.

We showed that a class of algorithms called Stream algorithms, can be mapped on to
scalable Raw processors where as the number of tiles of the processor is increased the algo-
rithm reaches near peak processor utilization. We also showed that Streamlt applications
benefit from Raw’s exploitation of parallel resources and management of wires. The abun-
dant parallelism and regular communication patterns in stream programs are an ideal match
for the parallelism and tightly orchestrated communication on Raw. As stream programs
often require high bandwidth, register-mapped communication serves to avoid costly mem-
ory accesses. Also, autonomous streaming components can manage their local state in Raw’s
distributed data caches and register banks, thereby improving locality. These aspects are key

to the scalability demonstrated in the Streamlt benchmarks.

We demonstrated that we can automate tedious manual DSP optimizations using novel

program analysis and optimizations that include linear dataflow analysis, linear combination,

10



frequency translation and automated optimization selection. These improve the performance

of DSP programs written in the Streamlt language by an average factor of 8.

4.2 The Multi-Chip Raw Fabric

We designed and implemented the Raw Fabric system containing an array of Raw chips and
I/O boards (along with our collaborators at ISI). The Raw Fabric system comprises the Raw
fabric array board and the Raw fabric I/O board as well. The fabric board contains 4 Raw
chips and can be connected in a mesh along with other fabric boards. The 1/O board plugs
into the periphery of the fabric board mesh and provides /0O, memory and other expansion

functions. Figure 2 shows our processor board in the center, surrounded by three /0O boards.

We have tested and revised these boards.

4.3 The Raw Chip

The Raw processor was a major system that we built in the first phase of our project. We
implemented the prototype Raw microprocessor in the SA-27E ASIC flow, which uses IBM’s
CMOS 7SF, a 180nm, 6-layer copper process. We received 120 chips from IBM in October

of 2002. We are pleased to report that there were no bugs in first silicon.

Figure 3 shows a micro-photograph of the Raw die. The 16-tile geometry of the chip

can be clearly made out.

4.4 The Raw Handheld Board

We validated the Raw processor on a prototype mother board called the Raw handheld board.
We built several such boards along with our collaborators at ISI. Boards are in use at ISI and
ATL (Lockheed Martin). Each board contains the Raw chip, SDRAM chips, 1/O interfaces
and interface FPGAs.

Figure 4 shows a photograph of the Raw motherboard.

11



Raw Fabric Board

Figure 2: Photo of the Raw fabric and 1/O boards.
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Figure 3: Photo of the Raw chip.
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Figure 4: Photo of the Raw prototype motherboard. The board is 13 inches by 13 inches.
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We have also designed an embedded wireless processor, an embedded networking fabric
and control plane, and a 32-node acoustic beamformer (to be extended to 1K nodes in the

following year).

We also implemented a high-speed USB interface for the motherboard. This allows the

board to be connected to any laptop of PC with a USB2 interface.

We are nearing completion of the PCI interface, which will allow the Raw motherboard

to function as a standalone system and provide even higher speed 1/0.

4.5 The Streamlt Language

The Streamlt programming model allows the programmer to build an application by connect-
ing components together into a stream graph, where the nodes represent filters that transform
the data communicated along the edges. In Streamlt, the programmer is relieved of the bur-
den of explicit buffer management and complex index expressions for multi-dimensional data.
Streamlt also exposes the inherent parallelism and communication topology of the applica-
tion, thereby empowering the compiler to perform many stream-aware optimizations that

elude other languages. The end result is a clean, malleable, portable, and efficient code.

We used Streamlt to implement representative DSP, multimedia, and MATLAB ap-
plications. We compared our Streamlt code to other language such as C (commonly used
for DSP and multimedia codes) and MATLAB (commonly used for mathematical codes).
We showed that Streamlt is superior to C in exposing parallelism, and further more that
the parallelism is exposed in very naturally ways to the programmers. We also showed that
Streamlt code is far more malleable, and is more amenable to scalable parallelism than C and
similar imperative languages. In Streamlt, the natural data (stream) flow is not obscured,
and there is often a direct correlation between the block level diagram describing the flow of

data between computation elements and the application syntax in Streamlt.

We also introduced a novel concept of teleport messaging. It allows for out-of-band com-

munication of control parameters, allows programs to decouple the regular flow of data from

15



the irregular communication of parameters. This in turns leads to a cleaner implementation

that is easier to maintain and evolve with changing software specifications.

As computer architectures change from the traditional monolithic processors, to scalable
wire-exposed architecture like Raw, there will be a greater need for portable code implemen-
tations that expose parallelism and communication to enable efficient and high performance
executions—while also boosting programmer productivity. Streamlt represents a step toward
this end by providing a language that features hierarchical, modular, malleable, and portable

streams.

4.6 The Streamlt Streamlt Compiler

We also built a complete steaming compiler for the Streamlt language. As noted above,
Streamlt is a high-level, architecture-independent language for high-performance streaming
applications. Streamlt contains language constructs that improve programmer productivity
for streaming, including hierarchical structured streams, graph parameterization, and circular
buffer management; these constructs also expose information to the compiler and enable novel
optimizations. We developed a Raw backend for the Streamlt compiler, which includes fully
automatic load balancing, graph layout, communication scheduling, and routing. Streamlt

has been distributed to the DARPA community and the public via our website.

4.7 The RawCC Compiler

We built RawCC, which takes sequential C or FORTRAN programs and compiles them on
to the Raw fabric. We developed the analysis necessary to extract ILP (instruction-level
parallelism) out of sequential programs. Thus, programs written in the SUIF (Stanford
University Intermediate Form) supported languages of FORTRAN, C, are able to use our

compiler.
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4.8 The Raw OS

We developed a prototype host-based operating system for the Raw fabric. Our initial fabric
operating system includes features needed to support 1/0 devices and OS services expected
by applications. We developed and deployed a nano-kernel for each tile. A set of POSIX
commands have been implemented using a few dedicated OS tiles and cooperating nano-

kernels. We have distributed this OS to the DARPA community.

We also developed RawGDB a debugger for Raw. RawGDB has also been released to

external users.

We also implemented the compiler and runtime system needed for the software supported

instruction cache and SUDS [2] (software undo system) systems.

4.9 Applications, Experimentation and Evaluation

We performed a substantial amount of experimentation of applications using the real Raw
system. We also validated our simulator against the real hardware and conducted more
experiments. We used our working RawCC compiler, the stream compiler and Raw OS for

this task. ISI and Lincoln Labs have also developed several PCA applications on Raw.

Specifically, here are some highlights. The domains we examined include ILP computa-
tion, and stream and embedded computation. The performance of Raw in these individual
areas are presented as comparison to a reference 600 MHz Pentium I11, because the Pentium
11T was manufactured using the same 180 nim technology as Raw. We used a pair of 600 MHz
Dell Precision 410 to run our reference benchmarks. These machines were outfitted with
identical 100 MHz 2-2-2 PC100 256 MB DRAMSs, and several microbenchmarks were used to

verify that the memory system timings matched.

To compare the Raw and Dell systems more equally, the Raw simulator implemented
a cycle-matched PC100 DRAM model and a chipset. This model has the same wall-clock

latency and bandwidth as the Dell 410. However, since Raw runs at a slower frequency than

17



the P3, the latency, measured in cycles, is less. The term RawPC is used to describe a
simulation which uses 8 PC100 DRAMS, occupying 4 ports on the left hand side of the chip,

and 4 on the right hand side.

Because Raw is designed for streaming applications, we measured applications that use
the full pin bandwidth of the chip. In this case, a simulation of CL2 PC 3500 DDR DRAM,
which provides enough bandwidth to saturate both directions of a Raw port, was used. This is
achieved by attaching 16 PC 3500 DRAMSs to all 16 logical ports on the chip, in conjunction
with a memory controller, implemented in the chipset, that supports a number of stream
requests. A Raw tile can send a message over the general dynamic network to the chipset
to initiate large bulk transfers from the DRAMs into and out of the static network. Simple
interleaving and striding is supported, subject to the underlying access and timing constraints

of the DRAM. This configuration is called RawStreams.

We note that Raw achieves greater than 16x speedup (versus a single tile) for several

applications (listed in 6). Table 1 discusses the various factors that helped Raw.

Factor responsible Maximum Speedup
Tile parallelism (Exploitation of Gates) 16x
Load/store elimination (Management of Wires) 3x
Streaming mode vs cache thrashing (Management of Wires) 60x
Streaming 1/O bandwidth (Management of Pins) 60x
Increased cache/register size (Exploitation of Gates) ~2x
Bit Manipulation Instructions (Specialization) 3x

Table 1: Sources of speedup for Raw over P3 (as configured in Table 3).

Tables 2 and 3 show functional unit timings and memory system characteristics for both
systems, respectively. Table 4 shows Raw’s measured power consumption. Table 5 lists a

breakdown of the end-to-end message latency on Raw’s scalar operand network. The low 3-
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cycle inter-tile ALU-to-ALU latency and zero cycle send and receive occupancies are critical

for obtaining good performance for ILP.

Latency Throughput
Operation Raw Tile | P3 | Raw P3
ALU 1 1 1 1
Load (hit) 3 3 1 1
Store (hit) - - 1 1
FP Add 4 3 1 1
FP Mul 4 5 1 1/2
Mul 2 4 1 1
Div 42 26 1 1
FP Div 10 18 | 1/10 | 1/18
SSE FP 4-Add - 4 - 1/2
SSE FP 4-Mul - 5 - 1/2
SSE FP 4-Div - 36 - 1/36

Table 2: Functional unit timings on a single Raw tile and on a P3. Commonly executed

instructions appear first. FP operations are single precision.
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1 Raw Tile P3
CPU Frequency 425 MHz 600 MHz
Sustained Issue Width 1 in-order | 3 out-of-order
Mispredict Penalty 3 10-15
DRAM Freq (RawPC) 100 MHz 100 MHz
DRAM Freq (RawStreams) 425 MHz 100 MHz
DRAM Access Width 8 bytes 8 bytes
L1 D cache size 32K 16K
LL1 T cache size 32K 16K
L1 miss latency 54 cycles 7 cycles
L1 fill width 4 bytes 32 bytes
L1 line sizes 32 bytes 32 bytes
LL1 associativities 2-way 4-way
L2 size - 256K
L2 associativity - 8-way
L2 miss latency - 79 cycles
L2 fill width - 8 bytes

Table 3: Memory system data for Raw tile and P3.
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Core Pins

Idle - Full Chip 9.6 W | 0.02 W

Average - Per Active Tile | 0.54 W -

Average - Per Active Port -1 02W

Average - Full Chip 182 W | 28W

Table 4: Raw power consumption at 425 MHz, 25° C

Latency
Sending Processor Occupancy 0
Latency to Network Input 1
Latency per hop 1
Latency from Network Output to ALU 1
Receiving Processor Occupancy 0

Table 5: Breakdown of the end-to-end latency (in cycles) for a one-word message on Raw’s

static network.

Much like a VLIW (very long instruction word) architecture, Raw relies on the compiler
to find and exploit ILP. We now examine how well Raw is able to support ILP. For this
evaluation, we select a range of benchmarks that encompasses a wide spectrum of program
types and degree of ILP. For some of the irregular integer benchmarks that RawCC is not
mature enough to orchestrate, we compile and execute them on one tile to get a conservative
worst case bound on their performance on Raw. Table 6 presents the performance of these

benchmarks on RawPC and on the P3.

Of the benchmarks in our study, Raw is able to outperform the P3 for all the scientific
benchmarks and several irregular applications. Of these, about half have speedups in the
2-3 range, but the other half have more promising speedups in the 4-7 range. At the other

end of the spectrum for the integer applications run on a single Raw tile, our sampling of
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applications showed that a Raw tile is roughly a factor of 2 slower.

# Raw | Cycles Speedup vs P3

Benchmark Source Tiles on Raw | by Cycles | by Time
Dense-Matriz Scientific Applications

Swim Spec9b 16 58M 4.0 2.8
Tomcatv Spec92 16 3.2M 1.9 1.4
Btrix NasaT7:Spec92 16 4.6M 5.5 3.9
Cholesky NasaT7:Spec92 16 5.0M 2.9 2.5
Mxm NasaT7:Spec92 16 2.0M 3.5 2.5
Vpenta NasaT7:Spec92 16 2.56M 10.3 7.3
Jacobi Raw benchmark suite 16 150K 6.4 4.5
Life Raw benchmark suite 16 4.0M 7.4 5.2
Sparse-Matriz/Integer Applications

Fpppp-kernel Spec92 16 150K 11.2 7.9
SHA Perl Oasis 16 920K 1.9 1.3
Unstructured CHAOS 16 15M 1.1 0.75
Adpcm Mediabench 1 20M 0.85 0.60
GSM Mediabench 1 310M 0.57 0.40
175.vpr Spec 2000 1 2.9B 0.71 0.51
300.twolf Spec 2000 1 2.3B 0.56 0.40

Table 6: Performance of sequential programs on Raw and on a P3.
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Table 7 shows the speedups achieved by RawCC as the number of tiles varies from
two to 16. The speedups are compared to performance of a single Raw tile. Overall, the
source of speedups comes primarily from tile parallelism (see Table 1), but several of the
dense matrix benchmarks benefit from increased cache capacity with parallel access as well
(which explains the super-linear speedups). In addition, Fpppp-kernel benefits from increased

register capacity, which leads to fewer spills.

Number of tiles

Benchmark 2 4 8 16

Dense-Matriz Scientific Applications

Swim 14122 43| 7.9
Tomcatv 1.6 | 3.0 42| 4.8
Btrix 1.6 | 4.5 | 10.3 | 21.8
Cholesky 1.9 37| 62| 6.1
Mxm 13|37 57| 7.0
Vpenta 1.6 | 49| 11.3 | 22.0
Jacobi 1.7 42| 821 16.5
Life 08120 49| 10.5

Sparse-Matriz/Irregular Applications

SHA 1.1 118 19| 23

Fpppp-kernel | 1.4 | 3.3 | 6.5 | 7.4

Unstructured | 1.2 | 2.0 2.1 2.0

Table 7: Speedup of the ILP benchmarks relative to the single-tile Raw, from two to 16 tiles.

Next, we present performance of stream computations for Raw. Stream computations
arise naturally out of real-time I/O applications as well as from embedded applications. The
data sets for these applications are often large and may even be a continuous stream in

real-time, which makes them unsuitable for traditional cache based memory systems. Raw
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provides a more natural support for stream based computation by allowing data to be fetched

efficiently through a register mapped, software orchestrated network.

The following results are for programs written in Streamlt, a high level stream lan-
guage, and automatically compiled to Raw. We evaluate the performance of RawPC on
several Streamlt benchmarks, which represent large and pervasive DSP applications. Table 8
summarizes the performance of 16 Raw tiles vs. a P3. For both architectures, we use Streamlt
versions of the benchmarks; we do not compare to hand-coded C on the P3 because Streamlt
performs at least 1-2X better for 5 of the 7 applications (this is due to aggressive unrolling
and constant propagation in the Streamlt compiler). The comparison reflects two distinct
influences: 1) the scaling of Raw performance as the number of tiles increases, and 2) the
performance of a Raw tile vs. a P3 for the same Streamlt code. To distinguish between these

influences, Table 9 shows detailed speedups relative to Streamlt code running on a 1-tile Raw

configuration.
Cycles Per Output Speedup vs P3
Benchmark on Raw by Cycles | by Time
Beamformer 2675 6.6 4.6
Bitonic Sort 11 5.7 4.0
FFT 22 2.7 1.9
Filterbank 305 9.5 6.7
FIR 59 7.7 5.4
FMRadio 2610 9.6 6.8
Matrix Mult 183 5.4 3.8

Table 8: Streamlt performance results.
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Streamlt | Streamlt on n Raw tiles
Benchmark on P3 1 2 4 8 16
Beamformer 2.6 1.0 3.71]4.0]|8.1 17
Bitonic Sort 1.2 1.0] 1.9 34|53 6.9
FFT 1.0(10| 13|17 24 2.7
Filterbank 0.72 11013 | 13|34 6.9
FIR 341102356 12 26
FMRadio 1.211.0]1.0| 1.1 | 4.4 12
Matrix Mult 1.1 1.0]20] 29|28 5.7

Table 9: Speedup (in cycles) of Streamlt benchmarks relative to a 1-tile Raw configuration.
From left, the columns indicate the Streamlt version on a P3, and on Raw configurations

with one to 16 tiles.
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The primary result illustrated by Table 9 is that Streamlt applications scale effectively
for increasing sizes of the Raw configuration. For FIR, FFT, and Bitonic, the scaling is
approximately linear across all tile sizes (FIR is actually super-linear due to decreasing register
pressure in larger configurations). For other applications, the scaling is slightly inhibited for
small configurations. This is because 1) IMEM constraints prevent an unrolling optimization
for small tile sizes (Beamformer, FM, Matrix Mult) and 2) there is some constant overhead

that is amortized in larger configurations.

The second influence is the performance of a P3 vs. a single Raw tile on the same
Streamlt code, as illustrated by the second column in Table 9. In most cases, performance is
comparable. The P3 performs better in two cases because it can exploit ILP: Beamformer has
independent real/imaginary updates in the inner loop, and FIR is a fully unrolled multiply-
accumulate operation. In other cases, ILP is obscured by circular buffer accesses and control

dependences.

In all, Streamlt applications benefit from Raw’s exploitation of parallel resources and
management of wires. The abundant parallelism and regular communication patterns in
stream programs are an ideal match for the parallelism and tightly orchestrated communi-
cation on Raw. As stream programs often require high bandwidth, register-mapped commu-
nication serves to avoid costly memory accesses. Also, autonomous streaming components
can manage their local state in Raw’s distributed data caches and register banks, thereby
improving locality. These aspects are key to the scalability demonstrated in the Streamlt

benchmarks.

4.10 Support in Standardizing a Morphware Stable Interface

Our project has played an active role in the Morphware Forum.

Specifically, we have taken a leadership role in specifying the Streaming Virtual Machine
(SVM) which will provide a common interface for high-level compilation tools to target all

PCA architectures. In order to achieve high performance for streaming applications, the SVM
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embraces a separation of control and data-intensive code, explicit communication via streams,
and explicit memory management for streaming data. It also adopts a novel two-stage com-
pilation strategy whereby high-level tools input a description of the target architecture (using
the PCA Machine Model) and compile to a version of the SVM that is parameterized for that
architecture. Reaching consensus on this interface has involved detailed design discussions
with many of the PCA teams, including Stanford, Raytheon, Georgia Tech, USC and the

University of Texas.

Along with Reservoir Labs, we have coordinated the design process and have produced
a stable specification that is serving as a cornerstone of the Morphware toolchain. We have
also expressed the Raw architecture in terms of the Machine Model, and are actively engaged

with the evaluation of the Reservoir High-Level Compiler that targets the SVM.

We also implemented a compiler that translates Streamlt code to the Reservoir streaming
language, and provided the Morphware forum with the most comprehensive results that
compare native compilation of streaming code to Raw versus the two stage compilation
approach adopted by the forum. Our results which were gathered in collaboration with ISI

serve to identify inefficiencies with the current two-stage compilation methodology.

5 Conclusions and Recommendations for Future Work

This report described the architecture and implementation of the Raw prototype. We have
shown that a complex processor with more than 100 million transistors can be designed,
developed, and validated at a university resulting in a chip without a single fault and that
exceeds the expected clock speed. The Raw processor has 16 processing tiles organized in a

4x4 2-D mesh, and a throughput of 6.8GFLOPs at 425MHz.

Our work has demonstrated that Raw’s exposed ISA (instruction set architecture) allows
parallel applications to exploit all of the chip resources, including gates, wires and pins.

Raw supports ILP by scheduling operands over a scalar operand network that offers very

27



low latency for scalar data transport. Raw’s compiler manages the effect of wire delays by
orchestrating both scalar and stream data transport. The Raw processor demonstrates that
existing architectural abstractions like interrupts, caches, and context-switching can continue
to be supported in this environment, even as applications take advantage of the low-latency

scalar operand network and the large number of ALUs.

Our results demonstrate that the Raw processor performs at or close to the level of
the best specialized machine for each application class. When compared to a Pentium 111,
Raw displays one to two orders of magnitude more performance for stream applications,
while performing within a factor of two for low-ILP applications. It is our hope that the
Raw research will provide insight for architects who are looking for ways to build versatile
processors that leverage the vast silicon resources while mitigating the considerable wire

delays that loom on the horizon.

Our effort has pointed to several future directions that are worth exploring: (1) eval-
uating the performance for much larger numbers of tiles and a wider set of programs, (2)
generalizing on-chip operand networks so that they support other forms of parallelism ex-
ploited by microprocessors such as stream parallelism and thread parallelism, (3) complete
designs and evaluation of both dynamic and compile-time schemes for operation/operand as-
signment and scheduling, (4) mechanisms for fast exception handling and context switching,
(5) a thorough analysis of the tradeoffs between commit point, exception handling capability,
and network latency, (6) low energy tiled processors and scalar operand networks, and (7)

tiled architectures with support for bit-level processing.

We introduced Streamlt as a language and compiler specifically designed for modern
stream programming. Streamlt raises the abstraction level in the streaming domain and
provides a natural, high-level syntax that conceals architectural details without sacrificing
performance. We publicly released the Streamlt compiler infrastructure to accelerate the
Streamlt language adoption and application development. The release also includes a source-

code distribution to promote compiler optimizations and innovations in the user community.
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We demonstrated that automating the design process of a DSP engineer by introducing
novel compiler analysis and optimizations, linear dataflow analysis, linear combination, fre-
quency translation and automated optimization selection, we can improve the performance
of DSP programs written in Streamlt by an average factor of 8. We released our collection of
streaming applications as part of the Streamlt Benchmarks Suite. The benchmarks serve as

a standardized mechanism for the evaluation of streaming optimizations and architectures.

6 Key Publications

The following references list our major publications: [3], [1], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26].
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