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ABSTRACT

The current textbook image of biological processes is that of a static model of loosely linked, highly detailed,
molecular devices. However, every biologist knows that dynamic processes drive biology. Systems biology
is defined for the purpose of this study as the understanding of biological network behaviors, and in
particular their dynamic aspects, which requires the utilization of mathematical modeling tightly linked to
experiment. This involves a variety of approaches, such as the identification and validation of networks, the
creation of appropriate datasets, the development of tools for data acquisition and software development, and
the use of modeling and simulation software in close linkage with experiment. All of these are discussed in
this report. Of course, the definition becomes ambiguous at the margins. But at the core is the focus on
networks, which makes it clear that the goal is to understand the operation of the systems, rather than the
component parts. The panel concluded that the U.S. is currently ahead of the rest of the world in systems
biology, largely because of earlier investment over the past five to seven years by funding organizations and
research institutions. This is reflected in a large number of active research groups, and educational programs,
and a diverse and growing funding base. However, there is evidence of rapid development outside the U.S.,
much of it begun in the last two to three years. It must be stressed that the attempt to incorporate the details
of molecular events obtained over the past half century into a dynamic picture of network behavior in
biological systems is only just beginning, in the U.S. and elsewhere. In particular, progress in the core
activity of systems biology—modeling tied to experiment—is still limited. Progress would be facilitated by
strong international collaborations in training, research, and infrastructure. Overall, however, the picture is of
an active field in the early stages of explosive growth.
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FOREWORD

We have come to know that our ability to survive and grow as a nation to a very large
degree depends upon our scientific progress. Moreover, it is not enough simply to keep
abreast of the rest of the world in scientific matters. We must maintain our leadership.

President Harry Truman spoke those words in 1950, in the aftermath of World War Il and in the midst of the
Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth
century played key roles in the successful outcomes of both World War Il and the Cold War, sparing the
world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that
followed. Today, as the United States and its allies once again find themselves at war, President Truman’s
words ring as true as they did a half-century ago. The goal set out in the Truman Administration of
maintaining leadership in science has remained the policy of the U.S. Government to this day: Dr. John
Marburger, the Director of the Office of Science and Technology (OSTP) in the Executive Office of the
President made remarks to that effect during his confirmation hearings in October 2001.>

The United States needs metrics for measuring its success in meeting this goal of maintaining leadership in
science and technology. That is one of the reasons that the National Science Foundation (NSF) and many
other agencies of the U.S. Government have supported the World Technology Evaluation Center (WTEC)
and its predecessor programs for the past 20 years. While other programs have attempted to measure the
international competitiveness of U.S. research by comparing funding amounts, publication statistics, or
patent activity, WTEC has been the most significant public domain effort in the U.S. Government to use peer
review to evaluate the status of U.S. efforts in comparison to those abroad. Since 1983, WTEC has conducted
over 50 such assessments in a wide variety of fields, from advanced computing, to nanoscience and
technology, to biotechnology.

The results have been extremely useful to NSF and other agencies in evaluating ongoing research programs,
and in setting objectives for the future. WTEC studies also have been important in establishing new lines of
communication and identifying opportunities for cooperation between U.S. researchers and their colleagues
abroad, thus helping to accelerate the progress of science and technology generally within the international
community. WTEC is an excellent example of cooperation and coordination among the many agencies of the
U.S. Government that are involved in funding research and development: almost every WTEC study has
been supported by a coalition of agencies with interests related to the particular subject at hand.

As President Truman said over 50 years ago, our very survival depends upon continued leadership in science
and technology. WTEC plays a key role in determining whether the United States is meeting that challenge,
and in promoting that leadership.

Michael Reischman
Deputy Assistant Director for Engineering
National Science Foundation

! Remarks by the President on May 10, 1950, on the occasion of the signing of the law that created the National Science
Foundation. Public Papers of the Presidents 120: p. 338.

2 http://www.ostp.gov/html/01_1012.html.
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CHAPTER 1

EXECUTIVE SUMMARY AND INTRODUCTION

Marvin Cassman

BACKGROUND

Systems biology has become a major force in the past five to seven years. As with all new developments in
science, the emergence of new approaches is a result of limitations in the existing model, in this case the
limitations of molecular biology. For the past 40 years the paradigm for predicting phenotype has focused on
single gene defects. This extraordinarily powerful approach has been the major contributor to an
understanding of the function of individual genes and proteins. It seems less likely that it will yield an
understanding of complex biological behavior, from individual cellular activities such as motility to the
operation and integration of organ systems.

The current textbook image of biological processes is that of a static model of loosely linked, highly detailed,
molecular devices. However, every biologist knows that dynamic processes drive biology. The physiologist
Walter Cannon provided a clear statement of this concept in 1932 when he coined the term “homeostasis.”
One contemporary definition of a homeostatic system is “... an open system that maintains its structure and
functions by means of a multiplicity of dynamic equilibriums rigorously controlled by interdependent
regulation mechanisms.” This description neatly encapsulates several of the key issues in systems biology—
dynamic processes, interdependent regulatory controls, and the operation of multiple interacting components.
The inability of most of modern biology to take these behaviors into account is certainly a major reason why
the function and malfunction of complex biological processes is still poorly understood, despite biologists’
increasingly detailed knowledge of the components of these processes. Systems biology brings the promise,
if not yet the reality, of offering a more complete understanding of health and disease. (It is striking that at
about the same time as Cannon was developing the concept of homeostasis, H. S. Black was refining the
concept of negative feedback control at Bell Labs. The current active involvement of engineers in systems
biology can be considered to be a convergence of these two threads of thought.)

All this interest has emerged despite the inability to arrive at a consensus definition of systems biology.
Elements that appear in virtually all definitions are “networks,” “computation,” “modeling” and often,
“dynamic properties.” For the purposes of this study the objective of systems biology has been defined as the
understanding of network behavior, and in particular their dynamic aspects, which requires the utilization of
mathematical modeling tightly linked to experiment. This involves a variety of approaches, such as the
identification and validation of networks, the creation of appropriate datasets, the development of tools for
data acquisition and software development, and the use of modeling and simulation software in close linkage
with experiment, often done to understand dynamic processes. Of course, the definition becomes ambiguous
at the margins. But at the core is the focus on networks, which makes it clear that the goal is to understand
the operation of the systems, rather than the component parts. It also tries to distinguish between systems
biology and what the WTEC study panel defined as systematic biology. Systematic biology can be
considered the large-scale, high-throughput collection of specific data sets and their organization and
interpretation, usually through the application of advanced bioinformatics tools. Clearly, this is at one
boundary of systems biology, since the data sets may be used for systems analysis. Although these two very
recent approaches to understanding biology are closely linked and have developed over more or less the same
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time frame, they are quite distinct. Systematic biology is a consequence of the enormous success of the
genome program, together with the development of new technologies for the high-throughput collection and
analysis of data on individual molecular events. In this respect it is a lineal descendent of the primary driver
for biology in the second half of the 20th century, molecular biology/genetics. In contrast, systems biology
has a much older lineage, and can be considered a variant of computational physiology, one example of
which is the Hodgkins-Huxley equation of 1952. More recent approaches include the development of
metabolic control analysis in the 1970s (Kacser, Burns, 1973; Heinrich, Rapoport, Rapoport, 1977) and
detailed anatomic- and molecularly based models of cardiac function (Kohl, Noble, Winslow, Hunter, 2000).
These approaches, as well as systems biology, are distinguished from earlier attempts at systems modeling in
that they incorporate the detailed molecular knowledge that has been and continues to be generated.
However, they all assume that an understanding of physiological functions (phenotype) requires knowledge
of the behavior of systems or networks.

At the heart of systems biology is the need to couple advanced modeling and simulation with experiment.
This thrusts biology into a new era. For the past century the tools and concepts of chemistry have driven
biology. This is so much a part of the landscape of modern biology that it will be shocking to many when, in
the next century, biology becomes largely driven by engineering and physics. This is a consequence of the
fact that understanding the dynamics of even the simplest biological networks requires the application of
mathematical approaches and the generation of models and simulations. These mathematical tools are not
now part of the average biologists’ training. Indeed, biology has almost become the province of those who
want to do science without learning mathematics. Consequently, two major issues in the evolving field of
systems biology are needed to create functional collaborations between engineers, physicists, and biologists,
and to produce a new generation of scientists that will be conversant with both the mathematical tools and the
biological systems. Both of these issues were a major concern of the study.

Having said all this, it must be stressed that systems biology is still a very new field. Although individual
investigators have for some years been studying the properties of biological networks using quantitative
approaches, until recently they were few, relatively isolated and, to a significant extent, ignored. In part, this
was due to a long-standing bias against modeling and simulation, particularly in cell biology. This bias was
not completely irrational, since many modeling approaches had very little connection to experiment and
consequently rarely told biologists anything they wanted to know. In contrast, the close ties of computation
and modeling with experiment distinguish modern systems biology. This will be repeated often in the
following chapters. It is also worth repeating Michael Faraday’s comment, “All this is a dream. Still,
examine it by a few experiments. Nothing is too wonderful to be true, if it be consistent with the laws of
nature, and in such things as these, experiment is the best test of such consistency” (Hamilton, 2005).

The investment by government agencies of millions of dollars of federal funding since 1998 demonstrates the
increasing interest in systems biology. In addition, the major journals have devoted special issues to the
subject. A new journal of systems biology, called IEE Systems Biology, and most recently an online journal
entitled “Molecular Systems Biology” published jointly by EMBO and Nature Publishing Group, have
recently been established. Institutes have sprung up, numerous meetings are held, and increased funding can
be observed both in the U.S. and abroad. Yet core issues affecting the progress of the field remain to be
resolved, and some of these will be addressed in this volume. If systems biology is not quite yet a discipline,
it is clearly more than a fad.

A final caveat is that limitations of time and resources prevented us from visiting many important research
sites around the world. For example, we regret that we were not able to see the work underway in the
Scandinavian countries and Israel, as well as Asian nations such as Singapore and Korea. Additionally, we
missed numerous laboratories even in the countries we visited, and consequently some important research
areas were surely neglected.

OBJECTIVES OF THE WTEC STUDY

The recent growth in interest in systems biology has not been accompanied by a systematic evaluation of
activities in the U.S. and abroad. Led by the National Science Foundation, a number of U.S. governmental
agencies involved in the support of research asked the World Technology Evaluation Center (WTEC) to
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conduct a study of systems biology activities in the U.S. and abroad to support important policy and funding
initiatives. The goals are:

» Tounderstand the state of current research

e Todetermine what is needed to support future research

e Tounderstand the opportunities for international collaboration

The United States needs knowledge of and access to the latest international developments in this field in
order to proceed expeditiously with promising applications in this rapidly developing field. The number and
diversity of its sponsors reflect the breadth of interest in this study. These include the National Science
Foundation, the Department of Energy (DOE); the Defense Advanced Research Projects Agency (DARPA)
of the Department of Defense; the National Aeronautics and Space Administration (NASA); the National
Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the
National Institutes of Health; the National Institute of Standards and Technology (NIST); and the
Environmental Protection Agency (EPA).

PANEL MEMBERS

e Marvin Cassman, San Francisco, CA (Chair)

e Adam Arkin, University of California, Berkeley

» Frank Doyle, University of California, Santa Barbara
»  Fumiaki Katagiri, University of Minnesota

e Douglas Lauffenburger, MIT

e Cynthia Stokes, Entelos Corp.

STUDY SCOPE
Broadly, the scope of the study included:

e Organization and regulation of biological networks

e Tools for analyzing the spatial and temporal behavior of networks

»  Approaches to the education of graduates and undergraduates in systems and computational biology
e Trends in government interest and support of systems biology programs

The report follows an outline that was first presented at a meeting with sponsors on February 23, 2004,
further defined at a workshop with prominent U.S. researchers on June 4, 2004, and refined over the months
of discussion and visits carried out by the panel. It reflects not only activities observed during the site visits
but also research directions which, in the opinion of the panelists, were often underrepresented but require
more emphasis to ensure the progress of the field. The format for this volume is:

Introduction and Executive Summary (Marvin Cassman)

Data Generation and Analysis (Fumiaki Katagiri and Adam Arkin)

Systems Inference (Frank Doyle and Douglas Lauffenburger)

Network Organization and Modeling (Cynthia Stokes and Adam Arkin)

Education, Infrastructure, and National Programs (Marvin Cassman, Frank Doyle, Douglas
Lauffenburger)

6. Plant Science (Fumiaki Katagiri)

g koo

PLAN OF THE STUDY

The first formal discussion of the study occurred at a workshop at NSF on February 23, 2004. In addition to
most of the panelists and WTEC staff, there were representatives from all of the organizations sponsoring the
study. On top of a broad discussion of the goals of the study, an outline was generated for a workshop to
provide baseline information on U.S. activities in systems biology. This workshop was held on June 4, 2004,
at NSF.
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Site visits were made to Europe and Great Britain on July 5-9, 2004, and to Japan on December 13-17, 2004.

Team members visited 16 sites in the EU and Switzerland and 12 in Japan. The site reports are appended to

this report.

At all the sites that were visited (see Table 1.1), the hosts treated us with the utmost consideration. The study

sponsors (in particular Fred Heineken and Semahat Demir of NSF who traveled with the panel) and

participants thank them for their hospitality with the hope that this volume and anything that emerges from it

will prove of value to them.

Table 1.1
Sites visited in Europe and Japan
Europe
Site Panelists Date
Cambridge University, Department of Anatomy Katagiri, Lauffenburger, Stokes 9 July 2004
European Bioinformatics Institute Katagiri, Lauffenburger, Stokes 9 July 2004
European Commission Office Ali, Arkin, Cassman, Doyle, Heineken 8 July 2004
German Cancer Research Center (DKFZ) Heidelberg Arkin, Cassman, Doyle, Heineken 7 July 2004
Humboldt University Arkin, Cassman, Doyle, Heineken 6 July 2004
Max Planck Institute for Molecular Genetics Cassman, Doyle, Heineken, Katagiri 5 July 2004
Max Planck Institute for Molecular Plant Physiology Arkin, Cassman, Heineken, Katagiri 5 July 2004
Oxford Brookes University, School of Biological and Lauffenburger, Stokes 6 July 2004
Molecular Sciences
Oxford University, Centre for Mathematical Ali, Lauffenburger, Stokes 5 July 2004
Biology/Mathematical Institute
Oxford University, Department of Physiology Ali, Lauffenburger, Stokes 6 July 2004
Sheffield University, Computational Biology Research Group | Katagiri, Lauffenburger, Stokes 8 July 2004
SystemsX Cassman 29-30 June 2004
University College London Ali, Lauffenburger, Stokes 5 July 2004
Université Libre (Free University) De Bruxelles Ali, Arkin, Cassman, Doyle, Heineken 8 July 2004
University of Warwick, Mathematics Institute Katagiri, Lauffenburger, Stokes 7 July 2004
Vrije Universiteit (Free University) Amsterdam Ali, Arkin, Cassman, Doyle, Heineken 9 July 2004
apan
Computational Biology Research Center (CBRC) Arkin, Cassman, Demir, Doyle, Horning, 14 Dec 2004
Katagiri, Stokes
Japan Biological Information Research Center (JBIRC) Arkin, Cassman, Demir, Doyle, Horning, 14 Dec 2004
Katagiri, Stokes
Kazusa DNA Research Institute Cassman, Horning, Katagiri 15 Dec 2004
Keio University, Institute for Advanced Biosciences (IAB) Arkin, Cassman, Horning, Katagiri 17 Dec 2004
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PRINCIPAL FINDINGS
General Conclusions

Over the past decade numerous individual laboratories around the world have been engaged in systems
biology. Some of these investigators include Lauffenburger (Lauffenburger, Forsten, Wiley HS (1995), Arkin
(Arkin, Ross, McAdams (1998), McAdams (McAdams, Shapiro, 1995), Leibler (Barkai, Leibler, 1997), and
Savageau (Hlavecek and Savageau, 1997) in the U.S.; Bray (Levin, Morton-Firth, Abouhamad, Bourret,
Bray, 1998) and Noble (McCulloch, Bassingthwaighte, Hunter, Noble, 1998) in the U.K.; Heinrich (Wolf,
Heinrich, 1997), Westerhoff (Westerhof, 1995), and Goldbeter (Goldbeter, 2002) in Europe; and Kitano
(Kitano, 2002), Tomita (Tomita, Hashimoto, Takahashi, Shimizu, Matsuzaki, Miyoshi, Saito, Tanida, Yugi,
Venter, Hutchison, 1999), and Kanehisa (Kanehisa, 2000) in Japan. However, few of these efforts were
matched by either significant national funding or institutional interest. This changed as the profusion of data
and the complexity of regulatory processes mounted. The interest generated by the need to integrate
molecular data into a systems approach in turn stimulated events over the last five to seven years in the U.S,,
and more recently elsewhere, when large investments in systems biology began to be made by national
entities and research institutions.

Largely because of its head start, the WTEC panel rates the U.S. as currently ahead of the rest of the world in
systems biology. The lead is reflected in the larger number of active groups, greater number of educational
programs underway, and the more diverse and growing funding base. However, there is evidence of rapid
development outside the U.S., much of it begun in the last two to three years. It must be stressed that the
attempt to incorporate the details of molecular events obtained over the past half-century into a dynamic
picture of network behavior in biological systems is only just beginning, in the U.S. and elsewhere. In
particular, progress in the core activity of systems biology—maodeling tied to experiment—is still limited.
Successes, however defined, remain few and controversies abound. Training, research, and infrastructure all
would benefit from strong international collaborations that could provide examples of novel approaches. For
example, Japan and Germany have developed large-scale organizations that can address specific research
issues, e.g. the Max Planck Institutes in Germany and RIKEN in Japan. The U.S. has a limited capability to
create such structures and needs to develop inter-agency collaborations that will identify and support
activities of this kind. Overall, the picture is of an active field in the early stages of explosive growth.

Databases and Data

The production of data and the construction of databases are visible at a roughly similar scale in the U.K,,
EU, and Japan, although the development of large databases in Japan was particularly striking. However, the
databases examined, in the U.S. and abroad, were not always valuable to investigators developing and testing
models of biological processes.

Two opposite trends exist in database organizations: large inclusive databases and small specialty databases.
Both approaches have advantages and disadvantages. Large-scale databases, which primarily collect
information that is not closely tied to the state of a cell, have become quite common, and their value is well
understood. (How useful these data are for systems biology is less clear. In general, the degree of quantitation
is too limited to be used by investigators developing and testing models of biological processes.)
Standardization, although not complete, is progressing. This is not the case for many other kinds of data,
particularly those tied to biological processes that are strongly conditioned by the state of the cell. It is not
even clear how much “meta-data” is needed. Gene expression, protein expression, molecular localization,
interactions, and post-translational modification are highly conditional. Indeed, the strain of cell used, the
media, and other measurement conditions can appreciably affect the measured outcomes. There are a number
of related issues, such as the amount of raw data needed, and the availability of statistical analysis and
software packages used. These issues are not unique to data used for systems biology, but their absence is
even more critical than in the analysis of state-independent data.

Models for data production and data storage in systems biology are highly variable, ranging from large
centers with massive accumulations of high-throughput data, to small, manually curated databases.
Whichever model is used, the absence of data standards that permit groups other than the producer to use,
analyze, and evaluate the results is clearly a significant barrier to progress. This is an international issue, and
must be solved by broad collaborative interactions.
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System Inference

One finds numerous network inference studies in all of the regions described with the U.S. and Japanese (and
Israeli) groups leading in the development of methodologies. All regions showed exciting application studies,
with significant potential for “success stories” to emerge in the coming years.

The encouraging trends that were observed included: (i) multiple, complementary approaches to the
regression of models for network inference, (ii) the incorporation of motifs and modules into network
inference methods, (iii) the emergence of a nice interplay between the classical static network databases and
the formats for dynamic systems biology models (e.g., SBML), and (iv) the initiation of a considerable
amount of curricular development in this area (notably in bioinformatics).

Of concern was the fact that the issues of: (i) explicit incorporation of dynamics, (ii) identifiability and
(in)validation of models, and (iii) model iterations with design of experiment, were receiving only modest
attention in the regions, with noteworthy efforts in the U.S. and Europe (particularly Germany). There were
many reported examples of researchers identifying large numbers of parameters from relatively small data
sets. However, there appear to be a number of groups working towards solutions to these challenges, and
considerable progress can be expected in the next two to three years.

Modeling and Network Organization

Modeling and network organization analysis efforts are utilized in many areas of biological study and in all
countries visited, but are definitely not ubiquitous throughout biological and biomedical research. The panel
found that research efforts that closely integrated modeling with experimental work were the most productive
in terms of driving new understanding of a biological system. Related to this, substantially more effort using
model-based experimental design is needed to attain the data that most efficiently leads to maximally useful
models. In addition, better tools for model-experiment comparison would be helpful. Significant resources
are being invested in the development of modeling and simulation software worldwide, and at least some
duplication of effort is apparent. Sharing of models between researchers remains a challenge but is being
addressed by the development of several markup languages. Finally, the involvement and interest of industry
in use of modeling in biology is significant although, again, not ubiquitous.

Plant Systems Biology

Progress of systems biology research in the plant field has been slow. However, some advanced studies shed
light on unique aspects of plants. Several actions are needed to promote systems biology of plants.

To make the most out of limited funding:

»  Focus on model plant species. It is clear that the majority of advanced studies have been performed with
model plant species, such as Arabidopsis.

»  Cooperate rather than compete at the global level.

To compensate for the bias against promotion of systems biology in the research community:
» Implement a sustaining, targeted funding program in plant systems biology.

To raise the next generation of researchers:

« Train biology-major students in quantitative science.
» Recruit students oriented to mathematics, engineering, physics, and chemistry into plant biology.

Education, National Programs, and Infrastructure

The future of systems biology will depend on three critical elements: education of a new generation of
scientists who have both biological and mathematical training; the availability of funding that operates
outside of disciplinary boundaries; and the availability of a supportive infrastructure that can accommodate
the needs of an intrinsically interdisciplinary research area.

Education

The general impression is that most of the formal teaching programs, in the U.S. and abroad, are in
bioinformatics rather than systems biology. Relatively few examples exist of training in modeling focused on
biological systems, and where they do exist they tend to be isolated courses rather than fully integrated
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programs in systems biology. Most of the programs are somewhat ad hoc ““menu selection” curricula. The
difficulty of training quantitative students in biology and vice versa is clearly well understood and no real
solution has yet been provided, although a number of experiments are underway. It is much too early to tell
which, if any, of these are successful in producing qualified researchers in systems biology. Given the
importance of this issue and its embryonic state, some mechanisms for exchanging information
internationally and locally on best practices is essential.

National Programs

The U.S. remains one of the few countries that offers a significant targeted investment in systems biology. A
clear exception is Germany, which has developed a new initiative in the systems biology of hepatocytes,
beginning in January 2004. In the last few years, national programs have also been initiated in Switzerland
and the U.K., and international programs at the EU level. Additionally, activities in systems biology are
underway in many locations, as part of ongoing “traditional” governmental support programs. This is
particularly noticeable in Japan. However, it is hard to avoid the conclusion that both the breadth and the
scale of systems biology support from governmental entities are significantly greater in the U.S. than
elsewhere in the world.

A possible caveat to this conclusion depends on the definition of systems biology. As noted earlier, there is a
distinction between “systems biology” and “systematic biology.” Systematic biology, the high-throughput
collection of targeted data sets, is a booming business everywhere, fuelled by the success of the genome
project. Systems biology, the computational analysis of biological networks, is much more sparsely
represented. Although this is also true in the U.S., encouragement of these activities through federal funding
programs is significant and growing. It was slightly discouraging to see how frequently systems and
systematic biology were conflated. Although data collection is clearly critical, it was not often the case that
there was a connection between the data collected and its potential use in modeling and simulation of
biological systems. In general, the future of systems biology worldwide depends on the support of programs
that consider experimental and data-driven approaches together with the computational methods needed to
model specific biological problems. Relatively few funding programs focus explicitly on this.

Infrastructure

The infrastructure to be discussed in this study is limited to large-scale resources, specifically databases,
software repositories, and centers. In order to ensure both standardization and access, it is strongly
recommended that centralized resources be developed for both software and data. The third issue is the value
of centers for systems biology. The creation of specialized centers is much more common in Europe and
Japan than in the U.S., although the development of high-throughput centers for DNA sequencing and
structural biology have proven their value. It is suggested that centers targeted to specific research problems,
and specific experimental systems, could benefit systems biology in the U.S. The need for consistent and
reproducible data and the need for close collaboration between theorists and experimentalists are both
arguments for co-located groups that can interact easily and often. It is also far easier to enforce standards at
such centers. At this point in time, systems biology can benefit from stronger centralized approaches that will
allow the testing of model systems in an optimum environment.
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CHAPTER 2

DATA AND DATABASES

Fumiaki Katagiri and Adam Arkin

INTRODUCTION

Data does not appear to be in short supply in contemporary biology. The development of high-throughput
technologies, in particular, has generated massive amounts of information. While these technologies produce
information about the chemistry of a system, as with the sequence and structure databases, the biological
status of the organism is often of little importance. However, when the goal is describing a process, such as
signal transduction or gene expression, the information gathered will be highly conditioned by cell type,
experimental conditions, and other variables. Since the modeling of dynamic biological processes is a central
aspect of systems biology, the nature of the data available to create and test models is of great importance.
This chapter will examine some aspects of data generation and data storage and access, as it applies to
systems biology. It will not focus on the technologies themselves. Systems biology relies on a wide variety of
data types. Some of these have become fairly standard, such as sequence and structure information, mass
spectrometry, and microarrays. Others are still in the process of development, such as single cell
measurements using multicolored fluorescent assays, fluorescent antibodies and covalent conjugates, and
quantum dots using high-resolution microscopy and flow cytometry. The diversity of tools used precludes a
detailed discussion in this chapter. Additionally, although broad access of all tools to investigators is an issue,
there do not appear to be systematic differences between countries in the availability of technologies.

Biological

Figure 2.1. Hypothesis-driven research in systems biology (Kitano, 2002).

The interaction of experiment and models requires accurate datasets to infer network structures, to create the
models, and to test and distinguish the predictions from multiple models. Successive iterations of model
building, prediction, experiment, and subsequent refinements of the models are the result. This repeating
cycle of experimentation and theoretical work is the engine that pushes the progress of systems biology
research (Kitano, 2002). Consequently, while the concept of systems biology is not all that new, one reason
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that it has displayed renewed vigor is the impressive advance of experimental technologies. The development
and spread of various approaches to high-throughput measurements have been contributing to generation of a
large amount of systematic data from a wide variety of biological systems. These data have fueled high-
throughput discovery research based on reductionist approaches. Furthermore, rapid generation of such data
has given people a sense of hope that we may now be able to collect sufficient information to understand
biological phenomena as behaviors of dynamic systems. Is this hope built on a solid foundation?

Roughly speaking, we can distinguish two stages in systems biology research. The type of experimentations
useful in each stage is also distinct. When the network structure of interest is not well-defined, systematic and
broad-spectrum characterizations, such as global profiling, provide the necessary information. When the
network structure is well defined and quantitative models are built based on the network structure, the
experimental information demanded is very specific to the network of interest, the proposed models, and the
questions asked about the network. In such a case, the data collection is model-driven and experiments need
to be designed according to the specific demands. In addition, the techniques used must, in most cases,
provide quantitative results.

Experimental Computational/
Theoretical

Relatively little instructed
global profiling and/or
systematic approaches

Other pre-existing
data [ e
Validation, Refinement, Parameters, ...

Highly instructed, .
Later [ focused experim ents] { Modeling ]

stage

Prediction, Demand, ...

Figure 2.2. The two different stages in systems biology study and the types of useful
experimental approaches for each stage.

Network inference

Early
stage

In both types of experimentation, it is crucial to use a combination of methods to perturb the network and to
measure the effects of the perturbations. When no model is available, there is little a priori information about
the network to limit the set of targets for measurement. Consequently, the ideal is to densely cover the space
of all the possibilities in both perturbation and measurement. The ideal perturbation method thus enables
perturbation of every node or edge in the network specifically and quantitatively, and the ideal measurement
methods measure all the parameters that define the state of the network. Practically, systematic genetic
perturbation is often used as a perturbation method. Ideally, for the initial phase of determining overall
regulatory organization and inferring what should be in the model, four criteria are important. First, the data
should be exhaustive within each category of measurements, such as the measurement of messenger
ribonucleic acid (MRNA) levels, measurement of protein levels, measurement of cell sizes, etc. For example,
when mRNA levels are measured, the mRNA levels of all the genes in the organism should be measured. If
the measurement must be limited to a subset of the genes, we should have a good idea that the subset likely
contains all the genes that are important for the network of interest. Second, many different categories,
ideally all the possible categories, of data should be collected in a correlated manner. Correlative
measurements in different categories are crucial for integration of various measured events into a single
network because such data are context-dependent. For example, if a protein-protein interaction measurement
is performed under one condition, the measurement may not be useful under a different condition. Third, the
data should have sufficient resolution in time and space. If a measurement does not have sufficiently dense
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time points, information about the dynamics of the system is limited. Considering an example of spatial
resolution, if a measurement is performed with a mixture of different cell types that behave differently, the
resulting averaged measurement fails to detect distinct cell-type modules. Fourth, the measurement should be
quantitative. Whereas binary Boolean models have their own utility in many cases, they are often not
sufficient to capture important network dynamics.

One major trend that is initiated by genomics research is the development of various highly parallel
measurement (broad profiling) technologies. RNA profiling methods allow reasonably complete
measurements in many organisms in which the genome sequences are known. The use of microarrays and
reverse transcription-polymerase chain reaction (RT-PCR) results in good sensitivity and accuracy. Protein
and metabolite profiling methods are improving quickly by combining chromatographic or electrophoretic
separation methods with mass spectrometry-based methods. Although our study did not cover them,
microfluidics and other micro-manufacturing technologies are expected to dramatically improve the cost,
speed, and labor-intensiveness of highly parallel measurements. However, we are still missing good profiling
methods for many categories of data. For example, if we want to know the amount of a particular modified
form of a particular protein in a particular subcellular location, we still need to perform focused research.
And these data types are often the most useful for mechanistic modeling of pathways. Another issue with
broad profiling technologies is that they do not provide sufficient accuracy in many cases. In addition to
technical challenges, practical issues, such as limitations in budget, time, and human resources, could limit
the kinds of data obtainable by broad profiling methods.

The discussion in this chapter will be on both large-scale data collection and profiling technologies as well as
smaller, model-focused data. However, the more global databases, which are largely independent of the
biological state of the systems, clearly predominate. It must be noted that there are remarkably few examples
of the melding of modeling and measurement technology in the U.S. or Japan, and the large-scale databases
are rarely useful for systems biology studies. In Europe, this melding is an essential feature of EU-funded
research consortium projects (COMBIO, COSBICS, DIAMONDS, EMI-CD). A new initiative has been
started (ENFIN) to apply the large databases to systems biology research. Incompleteness of information,
e.g., limitations in quantitation, accuracy, resolution, and the categories of data, is the major reason that data
generated by broad profiling technologies are underutilized in systems biology research. A large number of
data points with limited measurement accuracy also present challenges in having sufficient statistical power
in analysis. Applications of detailed systems biology modeling are so far often limited to relatively small,
well-isolated networks in which it is practical to perform targeted, intensive experimentation to obtain key
information to answer specific questions.

A B
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Figure 2.3. The importance of standardization and virtual consolldatlon of databases.

Exhaustive, quantitative measurements with high resolution in many categories necessarily generate a large
amount of data. To effectively integrate such data into models of biological systems, powerful database
platforms are essential. Archiving quickly growing, context-dependent data in a usable manner is a serious
challenge. Curating a large amount of diverse information for many different systems requires a wide range
of knowledge. These situations tend to drive the generation of many, relatively small, highly focused
databases. However, having many small databases presents a funding challenge for maintaining and updating
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such databases as well as creating a standardization issue. Standardization is crucial in not only maintaining
the integrity of the entire body of related databases but also in making them usable to general users. It is also
an issue in the peer review of results and methods.

We will compare activities in producing and archiving data of importance to systems biology in the U.S.,
Europe, and Japan. This includes not only scientific aspects but also social background and funding situations
that may have had significant influence in shaping the research activities in these regions. We will also
consider general database issues apart from regional considerations, since the main issue is standardization at
the global level. In the end, we will point out specific needs and recommend some possible directions for the
experimental part of systems biology research.

RESEARCH ACTIVITIES IN THE U.S.
Databases

Large-scale technologies began with the sequencing programs directed to the understanding of the human
genome. Following on their successes there emerged a variety of genome-wide measurements of cellular
function. These include whole genome gene expression microarrays, large-scale deletion libraries, structure,
and the application of mass spectrometry to assess, for example, protein-protein interactions. These in turn
have led to the creation of databases containing a variety of data types, including organism-specific databases
supported by federal funding, usually from the National Institutes of Health (NIH), such as Saccharomyces
cerevisae (http://www.yeastgenome.org); WormBase (http://www.wormbase.org/) for C.elegans and other
nematodes; FlyBase (http://flybase.bio.indiana.edu/) for Drosophila melanogaster; and The Arabidopsis
Information Resource (http://arabidopsis.org/) for Arabidopsis thaliana. These databases include a diverse
array of data types, such as fitness of deletion mutants (the yeast database) and anatomy and spatial
expression data (FlyBase and WormBase). They represent significant ongoing investments in the United
States in centralizing and standardizing data necessary for systems biology. The co-evolving efforts
associated with this are the somewhat spotty and erratic investments in data standards such as the microarray
data standards outlined at the Microarray Gene Expression Data Society (MGED) (http://www.mged.org/);
ontologies for describing gene function or structure with a controlled vocabulary (http://www.geneontology.
org/); and pathway information (http://www.biopax.org/) and biological model (http://sbml.org/index.psp)
storage and transport.

At the next level from these comprehensive databases are national investments in smaller, more focused, but
still relatively large-scale projects. These include support from the National Institute of General Medical
Sciences of the NIH for so-called “Glue Grants” which require coordination of multi-site activities around
specific targeted goals, in many of which systems biology plays a role. These include the Cell Matility
Consortium (http://www.cellmigration.org) dedicated to developing reagents, measurements, and models of
cell migration; the lipid MAPS Consortium (http://www.lipidmaps.org/), to identify, quantitate, and define
the interactions of cellular lipids; the Consortium for Functional Glycomics (www.functionalglycomics.org/),
to understand the role of carbohydrates in cell-cell communication; and the Alliance for Cellular Signaling
(http://www.signaling-gateway.org/), to examine signal transduction pathways. Other such tightly focused
efforts include the Alpha Project (http://www.molsci.org/), supported by the National Human Genome
Research Institute, to look at the pheromone response in yeast and the Department of Energy’s Genome to
Life (GTL) projects that seek to understand the mechanisms by which microbes function in the environment.

Data Analysis

Much of the technology that was at one time thought to be too expensive for individual investigators (and
thus needed to be centralized) has, in fact, found its way into many laboratories. The most prevalent of these
are microarrayers, but there are also improved fluorescent microscopes, small flow cytometers, and even
mass-spectrometers that have come down in price far enough such that a single lab can own one. In many
cases, the experiments for any particular system need to be optimized such that even a university central
facility would be inappropriate (unlike sequencing, which can be easily outsourced). Thus, the rate of data
generation (and the diversity of experimental protocols and reporting formats) has exploded and driven a
large boom in the academic (and industrial) data analysis efforts. These include the development of statistical
methods and experimental designs specialized in ferreting out sources of systematic and random error in
microarray experiments, typified by the statistically grounded methods of Trevor Hastie and Robert
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Tibshirani at Stanford (Hastie and Tibshirani, 2004), and Terry Speed at the University of California
Berkeley (Bolstad et al., 2003). It extends to sophisticated methods for correlation and fusion of data across
experimental conditions and different measurement types to derive the “modules” of co-regulation and their
relationships, typified by the developments in statistical graph modeling approaches championed by Daphne
Koller (Stanford) (Segal et al., 2003), David Gifford (MIT) (Bar-Joseph et al., 2003), and Michael Jordan
(U.C. Berkeley) (Lanckriet et al., 2004). With these analytical methods as a foundation, together with data on
the upstream sequence of co-expressed genes, and knowledge of protein structural domain interactions, these
correlative methods are being applied to the network inference problems described in the third chapter.
Additionally, John Doyle at Caltech (Carlson and Doyle, 2002), Frank Doyle at University of California,
Santa Barbara (UCSB) (Gunawan et al., 2005), and Michael Frenklach (Rao et al., 2004) and Andrew
Packard at U.C. Berkeley are all beginning to employ statistically and physically grounded data analyses for
full dynamic model parameterization, model validation and model discrimination. These methods are
expected to become more important as more quantitative data and models are developed and need to be
formally compared.

Modeling and Data Collection

The Alpha Project and the Alliance for Cell Signaling represent two attempts to systematically collect data in
well-defined systems together with efforts to create models to predict system behavior. There are a relatively
small number of laboratories that are engaged in developing models and concomitantly testing them
experimentally. The systems studied are quite diverse, ranging from bacterial chemotaxis (Alon et al., 1999)
to the epidermal growth factor (EGF) receptor in fibroblasts (Wiley et al., 2003) to the Wnt signaling
pathway in Xenopus (Lee et al., 2003). Since each of these represent a different biological system, a
centralized database is not easy to justify for this kind of data collection. However, this does not mean that
standardization and easy access to the data and computational methods is not required. Indeed, it is essential
to effectively review manuscripts and develop statistics and algorithms to analyze and cross-compare
experiments from a variety of laboratories. In whatever form, databases need to be established that conform
to common standards of data collection and ontology, and that contain enough meta-data defining conditions
of measurement to allow such evaluation and comparisons. This will be discussed in more detail later.

RESEARCH ACTIVITIES IN EUROPE

The panel saw a variety of styles of organizations in data and database aspects of systems biology research in
Europe in July 2004. They include large institutes that are directed toward common goals, large consortiums,
and small groups. The driving forces of different organizations are also often different. In some cases, the
leadership of particular individuals was the key. In other cases, funding initiatives were the major factors.

Databases

Large-scale databases of sequence and structure are as common in Europe and the U.K. as in the U.S. One
example is the European Bioinformatics Institute (EBI) located in Cambridge (http://www.ebi.ac.uk/). The
Institute’s focus used to be database technologies that handle and facilitate use of a large amount of data
generated by genomics research. The focus has been shifting toward studies aimed at biological functions
while taking advantage of the Institute’s strength in computer technology. The Institute now includes
research groups conducting biological experimentation. This shift from a purely computational institute to an
institute with capabilities in both computation and experimentation reflects the recognition by computer
scientists of the importance of close integration between experimental and theoretical work.

A large, focused operation is generally best conducted at a single site. Typically, this type of operation is led
by a strong leader with a clear vision of the goals to be achieved. For example, the Max Planck Institute for
Molecular Plant Physiology (http://www.mpimp-golm.mpg.de/) is focused on collecting correlated data, such
as expression and metabolite profiles, from a large collection of genetically perturbed Arabidopsis plants.
Usually, each department in a single Max Planck Institute operates independently. However, with the strong
leadership of Dr. Willmitzer, this Max Planck Institute has been shaped toward a common goal of
understanding plant metabolism. Two major departments led by Drs. Willmitzer and Stitt, together with other
departments, cooperatively conduct these large data generation and analysis operations.

A large consortium can also be organized with geographically dispersed laboratories. The Hepatocyte
Alliance in Germany was driven by the Federal Ministry of Education and Research (BMBF) funding
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initiative “Systems for Life-Systems Biology.” The alliance has 25 total participating groups. Funding of €14
million is provided over the three years beginning in 2004. Standardization of biological materials within the
alliance was rigorously implemented. The alliance works on a number of sub-projects, including
detoxification/dedifferentiation and regeneration. In the regeneration sub-project, experiments in different
groups are organized according to different signaling pathways. The approach of segmenting the project into
smaller, defined subnetworks allows the groups working on different projects to be moderately independent
while still effectively interactive despite geographic separation among the consortium members. The
effectiveness of such an operation in coordinating the production and maintaining the quality of data is still
unclear, since it was only a few months underway at the time of our visit. The benefits of this approach are
the inclusion of a number of high-quality groups with specialized expertise that may not be available at a
single site. However, dividing this type of work among multiple sites makes quality control of resources and
data more difficult and increases the chances of mistakes/accidents in tracking them. The overall cost- and
time-efficiency in production is also lower.

Modeling and Data Collection

As in the U.S., there are relatively few groups with closely linked efforts in modeling and experimentation
where we could identify systematic data collection efforts. However, one prominent example is the group
headed by Denis Noble at Oxford. They have a long history of studying the heart using experimental and
modeling approaches at multiple scales from molecular to physiological aspects. While his laboratory has
generated a large amount of data, specific demands of the model often call for different expertise. Therefore,
various collaborations were developed at different stages of the research (http://www.physiome.org/), notably
including the anatomic studies of Peter Hunter in New Zealand (http://www.bioeng.auckland.ac.nz/home/
home.php). The data collections have been specifically linked to the needs of the model.

RESEARCH ACTIVITIES IN JAPAN

Funding for basic research by the Japanese government has dramatically increased in the last decade.
Research in genomics, related high-throughput discovery research, and the bioinformatics supporting them
has benefited from the increased financial support. Japan is particularly strong in the development of large
databases.

Databases

The panel visited several large research institutes with strong database components during our visit in
December 2004. They include the RIKEN Yokohama Institute (http://www.yokohama.riken.jp/
indexE.html), which represents an effort under the Ministry of Education, Culture, Sports, Science, and
Technology (MEXT). Among the databases supported by RIKEN is the Mouse Genome Encyclopedia
(http://genome.gsc.riken.go.jp/), which collects the sequences, physical clones, gene expression profiles, and
protein-interaction data generated by members of the FANTOM (Functional Annotation of Mouse
complementary deoxyribonucleic acid (cDNA)) consortium. RIKEN also has the Arabidopsis Genome
Encyclopedia (http://rarge.gsc.riken.go.jp/), which includes collections of mutants and full-length cDNA
clones, microarrays, and shape phenotypes of the mutants. In the next phase the Arabidopsis project will
integrate genome to phenome and metabolome. In 2004 RIKEN initiated the Genome Network Project
(http://www.mext-life.jp/genome/english/index.html) to identify transcriptional regulatory networks in the
human genome. This is a national project, where the biological projects and technology development is
performed by 12 groups of independent investigators while RIKEN provides the core data and resource
production capability.

Dr. Shibata’s group at the Kazusa DNA Institute, which is mainly funded by Chiba prefecture, leads a
collaborative effort to investigate metabolic networks in plants (Hirai et al., 2005). This project is also
supported by NEDO (New Energy and Industrial Technology Development Organization), which is operated
by the Ministry of Economy, Trade, and Industry (METI) and focuses on Arabidopsis. A particularly
interesting database developed by Dr. Kanaya (Nara Institute of Science and Technology) is directed to
candidate compound identification, and includes 20,000 microbial compounds and 100,000 plant compounds,
and contains a variety of compound information as well as the species in which a particular compound has
been detected.
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The Japan Biological Information Research Center (JBIRC) is part of the National Institutes of Advanced
Industrial Science and Technology (AIST), which operates under METI. It includes an integrated human
genome annotation database (H-Invitational DB, http://www.h-invitational.jp/), containing information on
41,118 full-length cDNA clones including gene structures, functions, domains, expression (in some cases),
diversity, and evolution.

Finally, mention must be made of the KEGG (Kyoto Encyclopedia of Genes and Genomes) database
(http://www.genome.jp/kegg/) of metabolic networks developed and maintained by Dr. Kanehisa’s group at
Kyoto University, which is widely used throughout the world.

The infrastructure to support these efforts is uniformly outstanding and frequently astonishingly good.

MODELING AND DATA COLLECTION

Most of the data development efforts come from high-throughput discovery research and technology
development, and, once again, the number of groups that focus on the interaction of models and experiments
in systems biology is still small in Japan as elsewhere. However, there are a number of examples of this kind
of activity. Under the strong leadership of Dr. Kodama, the Laboratory of Systems Biology and Medicine at
the University of Tokyo (http://www.lsbm.org/site_e/univ/) is streamlined for discovery and production of
diagnostic and therapeutic antibodies. As part of this Dr. lhara’s group developed a protein interaction
database through text mining to help understand mechanisms and select protein targets against which to raise
antibodies. The Symbiotic Systems Project (http://www.symbio.jst.go.jp/symbio2/index.html) headed by Dr.
Kitano has a number of programs that closely tie experiment and models. He is also working with a
consortium that involves developing a database of automated recording of cell lineage in C. elegans mutants.
The Institute for Advanced Biosciences (1AB, http://www.iab.keio.ac.jp/) at Keio University in Tsuruoka was
built to fulfill Dr. Tomita’s vision of the experimental needs of systems biology, so large-scale
experimentation in the Institute is closely connected with theoretical work in the study of E. coli metabolism.
In this project, Dr. Mori’s collection of systematic mutants of E. coli is an outstanding resource (Mori, 2004).
Dr. Ueda at the RIKEN Center for Developmental Biology (CDB) is a young Pl building a research program
for study of circadian rhythms in mammalian cells that involves high-throughput measurements and
theoretical work (Ueda et al., 2005).

Many of our Japanese hosts acknowledged that much of their research does not fit our definition of systems
biology. However, this situation may be changing. Dr. Yao, who is a consultant for the RIKEN Yokohama
Institute, JBIRC, and CBRC, reported in our final workshop the MEXT plan for support focused on systems
biology research. MEXT clearly considers systems biology as a next step after the establishment of high-
throughput research infrastructure, which has been heavily funded in the past decade. If the program is well
implemented, especially by facilitating involvement of more modeling-type researchers, Japan, with a high
level of infrastructure, has great potential to make rapid progress in systems biology research.

Conclusions

There are two opposite trends in database organizations: large inclusive databases and small specialty
databases. Both approaches have advantages and disadvantages. Large-scale databases, which primarily
collect information that is not closely tied to the state of a cell, have become quite common, and their value is
well understood (How useful these data are for systems biology is less clear. In general, the degree of
quantitation is too limited to be used by investigators developing and testing models of biological processes).
Standardization, although not complete, is progressing. This is not the case for many other kinds of data,
particularly those tied to biological processes that are strongly conditioned by the state of the cell. It is not
even clear how much “meta-data” is needed. Gene expression, protein expression, molecular localization,
interactions, and post-translational modification are highly conditional. Indeed, the strain of cell used, the
media, and other measurement conditions can appreciably affect the measured outcomes. There are a number
of related issues, such as the amount of raw data needed, and the availability of statistical analysis and
software packages used. These issues are not unique to data used for systems biology, but their absence is
even more critical than in the analysis of state-independent data.

As noted in the introduction to this chapter, the variety of biological systems used for modeling in systems
biology tends to drive the creation of many small, highly focused databases. The size of a database and the
level of manual curation are inter-dependent. One researcher cannot be an expert in many different biological
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systems, and thus intensively and manually curated databases tend to be small, with good quality control of
the data. However, small databases are often independently developed and have substantial overlaps with
other databases, and they are not well standardized. The absence of standardization severely limits the utility
of these databases. For researchers who are not very familiar with a particular biological system, it may not
be very easy to find the most appropriate database for their purposes. Furthermore, it is difficult for a small
database project to be continuously funded for maintenance and updates.

The major reason that manual curation is valuable in databases is that some types of data are not easily
formatted according to fixed rules. This is evident when a primary source of data is not designed for
transferring the data to databases. Descriptive data from literature is a typical example. Some efforts must be
made to deal with this issue. First, multiple different terms can be used to describe the same thing, or, even
worse, the same terms can be used to describe different things, depending on the context. Efforts to impose a
controlled vocabulary, i.e. ontology projects, were initiated to make data stored in databases self-consistent.
If a controlled vocabulary is imposed at the stage of generating primary data sources (e.g. literature), the
difficulties of manual curation in collecting data will be eased. Second, the relationships among terms and the
context in which terms are used are very difficult to automatically capture while they are crucial in collecting
accurate data from literature. One option would be to have authors of a paper submit a formatted, database-
friendly summary of the work at the submission of the manuscript. Third, the data needs to be in a form that
will allow critical evaluation of its reliability. This function of expert curation is becoming more important as
more data are becoming available which are not carefully quality-controlled.

For convenience to users of databases, it is desirable to have small databases virtually consolidated in a large
database framework using the same standards. In other words, accessing multiple databases through a central
database should seem almost seamless to users. In this way, it could be possible to maintain small databases
after termination of their funding although updating them could still remain a challenge. A high level of
integration could be difficult with already highly developed databases due to the difference in underlying
database schemes. However, if we set general standards, it could be achieved with newer, small databases. It
would be helpful if such hierarchical relationships of standardized databases were organized in a research
community for each particular biological system and research field.

In summary, progress in systems biology requires a balance between bottom-up efforts, which are based on
creativity and competition/collaboration of individual researchers and/or laboratories, and top-down
organization efforts, which are necessary for standardization and efficient use of limited resources. Generally
speaking, the current success of U.S. research is largely owed to emphasis on bottom-up efforts. However, in
many aspects of experimental/data technology for systems biology, we need to develop more centralized
resources.

The importance of correlating multiple kinds of data favors sample preparation performed at a single facility.
Ideally, single identifiable samples should be used for measurements in many different categories. In
addition, the same person at the same facility should perform a single category of measurement with different
samples. These criteria lead to two organizational models for experimentation. In one model, sample
preparation and all the measurements are to be performed at a single large experimentation center. The Max
Planck Institute for Molecular Plant Physiology in Germany, RIKEN Yokohama Institute in Japan, and the
Institute for Advanced Biosciences in Japan are examples of such large centers. The other model is a
consortium of several facilities, each of which is exclusively specialized, e.g., one site for all the sample
preparation and other sites for each category of measurement. This second example is not common and the
panel saw few examples, except perhaps for the Hepatocyte Project in Germany and the Alliance for Cell
Signaling in the U.S. The large center model has advantages in better communication among the involved
members, a lower chance of mistake/accident in experiment/data tracking, and higher cost-efficiency in
operation. The large center model can also offer an opportunity for better communication between
researchers in experimental and theoretical work by having such people at the same site. As emphasized in
the beginning of the chapter, close interactions between experimental and theoretical work is crucial in
success of systems biology research. The large center model has a disadvantage in requiring larger initial
investment and with less flexibility as an organization in the long term. It can, however, accommodate
focused research efforts by having programs for ad hoc experimentation teams. The consortium model can
do this easily by adding appropriate laboratories as consortium members. In either model, operations at each
site need to be tightly controlled for high-quality data generation. This is where top-down organizations work
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better. Such a center or consortium would be a major data generation site for a biological system, and,
therefore, it is reasonable for it to take a lead in organizing “the” database for the particular biological
system.

Even if we do not choose as extreme an option as a large center or consortium, top-down organizational
efforts will become more important in data generation and management because of the need for
standardization and easy access to investigators. This will impact research communities from a social
viewpoint. In top-down organizations, the role of an individual becomes more team-oriented, and it will be
more difficult to single out accomplishments made by the individual. This situation is not very compatible
with current academic evaluation criteria for merit. We will need to establish a different set of criteria or a
different career path, so that team-oriented researchers can develop their careers. In top-down organizations,
leaders also need to have strong management skills, which are usually not taught during typical scientific
training. Furthermore, to make the situation fair to researchers not involved in the center/consortium, rapid
dissemination of data generated by the center/consortium should be enforced. Although rapid data
dissemination in genome sequencing projects has been the norm, rapid data dissemination in large
experiments that involve sophistication in designing and performing experiments is not yet very common. To
ensure that this and other functions are optimally developed for the benefit of science, research communities
will need to be involved in governance.

The future of data and database aspects in systems biology research lies more on cooperation than
competition. This is necessary to effectively utilize limited funding and human resources. Cooperation
among funding agencies at inter-program, inter-agency, and international levels will also be important to
facilitate cooperation among researchers. The spirit of cooperation should be extended beyond academia and
governments to industry. The panel saw much more involvement of industry in systems biology research in
Japan and Europe (particularly in Japan) than in the U.S. The impression the panel got was that legal
situations around intellectual properties may be different in Japan and Europe. Although the panel did not
have a chance to closely study such legal issues, they are crucial in increasing the involvement of industry in
the U.S.
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CHAPTER 3

NETWORK INFERENCE

Frank Doyle and Douglas Lauffenburger

INTRODUCTION

As systems biology emerges in the post-genomic era, the emphasis is shifting from annotation of individual
genes and gene products to ascertaining how DNA-protein and protein-protein interactions occur within a
complex network of structural, metabolic, and regulatory pathways in cells. This goal is, of course, aligned
with that pursued in “reductionist” molecular cell biology for the past two decades, in which efforts to
identify and characterize pathways typically have proceeded in a component-centric manner, beginning with
an initial gene or protein of particular interest and attempting to ascertain other genes and/or proteins
involved in the same pathway. However, although component-centric approaches have been successful in
assembling most of the available knowledge about pathways to date, they have several inherent difficulties.
First is the time required: accurate models of pathway function emerge only after evidence is accumulated
over many years, with the work of many researchers at many laboratories. Second, these approaches do not
directly reveal how multiple pathways influence each other or reveal this crosstalk only accidentally. Third,
the vast amount of information on the various intracellular pathways remains fairly decentralized, buried
across primary literature or within narrowly defined reviews.

Systems biology can offer an accelerated approach to this goal of identifying networks by which genes and
proteins interact to carry out cellular operational and regulatory functions, using computational mining
methods on high-throughput experimental data. The resulting high-level models are finding increasing
utilization as tools for drug discovery, both by small companies as well as large pharmaceutical companies
such as Eli Lilly and Novartis (Henry, 2005). In general, the resulting “high-level,” topological models can
then serve as a foundational prelude, if one wishes, for more familiar (to engineers, physicists, and applied
mathematicians, at least) “low-level,” mechanistic models. This categorization has previously been laid out
(Ideker & Lauffenburger 2003), and the summary and Fig. 3.1 below are largely taken from their discussion
by a common co-author of this chapter and that article.

Abstracted Specified

High-level models (L1) Low-level models (L2)
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and connections nformation flow structure)

Figure 3.1. A diverse spectrum of high-to-low modeling approaches (Ideker and Lauffenburger, 2003).
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Signaling and regulatory pathways consist of some number of components—such as genes, proteins and
small molecules—wired together in a complex network of intermolecular interactions. Recent technological
developments are enabling us to define and interrogate these pathways more directly and systematically than
ever before, using two complementary approaches. First, it is now possible to systematically measure the
molecular interactions themselves, by screening for protein-protein, protein-DNA and small molecular
interactions. Several methods are available for measuring protein-protein interactions on a large scale—two
of the most popular being the yeast two-hybrid system and protein co-immunoprecipitation (colP) in
conjunction with tandem mass spectrometry. Although the vast majority of protein interactions have been
generated for the budding yeast Saccharomyces cerevisiae, protein interactions are becoming available for a
variety of other species including Helicobacter pylori and Caenorhabditis elegans and are catalogued in
public databases such as BIND and DIP™. A current drawback of these high-throughput measurements is an
associated high error rate. One approach for addressing this problem may be to integrate several
complementary data sets together (e.g., two-hybrid interactions with colP data or gene expression profiles) to
reinforce the common signal.

Protein-DNA interactions, as commonly occur between transcription factors and their DNA binding sites,
constitute another interaction type that can now be measured at high throughput. The relatively new
technique of chromatin immunoprecipitation microarraying (so-called “ChIP-chip”) has been used to
characterize the complete set of promoter regions bound under nominal conditions for each of the >100
transcription factors in yeast, yielding >5,000 novel protein-DNA interactions in that organism. Additional
types of pathway interactions, such as those between proteins and small molecules (carbohydrates, lipids,
drugs, hormones and other metabolites), are difficult to measure on a large scale, although protein array
technology might enable high-throughput measurement of protein-small molecule interactions in the near
future.

In addition to characterizing molecular interactions, a second major approach for interrogating pathways is to
systematically measure the molecular and cellular states induced by the interaction wiring. For example,
global changes in gene expression are measured with DNA microarrays, whereas changes in protein
abundance, protein phosphorylation state, and metabolite concentrations can be quantified with mass
spectrometry, Nuclear magnetic resonance (NMR) and other advanced techniques. Of these approaches,
measurements made by DNA microarrays are currently the most comprehensive (every mRNA species is
detected); high-throughput (a single technician can assay multiple conditions per week); well characterized
(experimental error is appreciable, but understood); and cost-effective (whole-genome microarrays are
purchased commercially for US $50 to $1000, depending on the organism). However, continued advances in
protein labeling and separation technology are making the measurement of protein abundance and
phosphorylation state almost as feasible, with the primary barrier being the expense and expertise required to
set up and manage a mass spectrometry facility. Measurement of metabolite concentrations, an endeavor
otherwise known as metabonomics, is currently limited not by detection (thousands of peaks, each
representing a different molecular species, are found in a typical NMR spectrum) but by identification
(matching each peak with a chemical structure is difficult). Clearly, measuring changes in cellular state at the
protein and metabolic levels will be crucial if researchers are to gain insight into not only regulatory
pathways, but also those pertaining to the cell’s signaling and metabolic circuitry.

To arrive at a high-level topological model of a cellular network of interest, data on molecular interactions
and states can be integrated in a multi-tiered strategy. First, the global molecular interaction scaffold is
constructed from systematic measurements of protein-protein interactions, protein-DNA interactions and/or
metabolic reactions (as detailed in the previous section). In the case of budding yeast, a minimal set might
include 14,941 protein-protein interactions catalogued in the DIP™ database; 5,631 protein-DNA
interactions from a combination of TRANSFAC® and ChIP-chip; and 599 enzymatic reactions in MetaCyc.
Second, this scaffold is filtered against changes in mRNA expression, protein expression and/or post-
translational modifications recorded in response to different cellular perturbations. Networks within the
interaction scaffold with mRNA or protein states that are significantly activated by perturbation are identified
and mapped according to a computational search engine. The interaction pathways and complexes
comprising the scaffold constitute topological models, which are then prime candidates for further
verification and modeling as important signaling and compensatory mechanisms controlling the cellular
perturbation response. The key advance of these searches is that by integrating two complementary global
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data sets, it is possible to condense and partition the enormous quantity of data into a small number of
relevant pieces suitable for lower level modeling.

Examples of this general scheme have been reported in recent literature. Several groups have applied “co-
clustering” approaches to identify groups of proteins that are both differentially expressed under similar sets
of conditions and closely connected by the same network of interactions in the scaffold. In many cases, these
“expression-activated networks” correspond to well known protein complexes, regulatory pathways or
metabolic reaction pathways. Other groups have used probabilistic approaches to match changes in gene
expression with the transcription factors that are most likely to regulate them directly. These methods start
with a cluster of differentially expressed genes and incrementally choose a small set of transcription factors
that, by virtue of their levels and/or interactions in the scaffold, can maximally predict the observed levels of
differential expression in the cluster. New transcription factors are added only if they lead to a sufficient
increase in predictive power over the transcription factors already in the model.

Several software tools are now available for visualizing interaction scaffolds [Osprey,
http://biodata.mshri.on.ca; PIMRider®, http://pim.hybrigenics.com; GenoMax™, http://www.informaxinc.
com; Cytoscape, http://www.cytoscape.org; Pathway Tools, http://bioinformatics.ai.sri.com/ptools/]. For
instance, the Cytoscape framework provides network visualization, layout and annotation, as well as
clustering of the network against expression data to generate topological network models. The PathwayTools
component of the MetaCyc metabolic pathway database can superimpose enzyme expression levels on the
map of biochemical reactions for a species, giving a good indication of which reaction pathways are most
affected over a panel of growth conditions profiled by microarray.

Because DNA microarray technology is currently much more widespread than technologies for protein or
metabolite profiling, the vast majority of these approaches have used gene expression profiling as the
primary state measurement. Of course, pathway mapping methods based on mRNA profiling alone capture
just one facet of a much larger and complex cellular response. As it becomes possible to measure cellular
state at the protein and small-molecule level, researchers expect that algorithms similar to those described
above will emerge. Currently, omitting this information from the analysis means that regulatory networks not
purely transcriptional in nature remained to be elucidated in this high-throughput computation-aided manner.
Indeed, the next obvious challenge beckoning is to push forward from the current focus on transcriptional
regulation to regulation occurring in the post-transcriptional and post-translational arenas, and especially
arising from extracellular cues.

NETWORK INFERENCE AND MODEL STRUCTURE

In the area of network inference, the models are primarily static interconnection descriptions of collections of
proteins, metabolites, and/or genes. The “inference” problem involves the estimation of the interactions of
elements in the network, given (possibly time series) data of activities of different nodes (e.g., gene
interactions from gene expression data). The goals of the inference problem are multiple, and include: (i)
hypothesis generation, (ii) design of experiment, (iii) understanding of cellular function, and (iv) unraveling
design principles, among others. The sources of information for these inference problems include large-scale
deletion projects, and vast numbers of microarray experiments. In the early years of bioinformatics studies,
the structural localization properties were inferred (e.g., which transcription factors regulate the transcription
of which genes), although experimental methods now exist for identifying protein-DNA interactions on a
genomic scale, such as ChiP assays, that yield structural knowledge.

Given the wide variety of modeling objectives, as well as the heterogeneous sources of data, it is not
surprising that the WTEC study team observed many approaches to modeling for network inference in Japan,
Europe, and the U.S. For the case of microbial systems biology, the review paper by Stelling (2005) provides
a good summary of the spectrum of modeling approaches. He classifies the modeling efforts in two respects:
network complexity and level of detail. This chapter of the report focuses on the problems associated with
the more complex, less detailed models, while a separate chapter examines the issues associated with more
detailed (mechanistic) models.
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Figure 3.2. Approaches to the mathematical modeling of cellular networks (Stelling, 2005).

The mathematical structures invoked to capture network interactions are numerous, and include:

» Boolean Networks—in which the network is represented as a graph of nodes, with directed edges
between nodes and a function for each node (e.g., Ideker et al., 2000)

»  Petri Nets—another graph theoretic structure in which nodes (or places) are connected by arcs and
activities are modeled by transitions (e.g., Nagasaki et al., 2004)

e Bayesian Nets—combine directed acyclic graphs with a conditional distribution for each random
variable (vertices in graph) (e.g., Pe’er et al., 2001)

» Signed Directed Graphs—another graph theoretic structure in which a signed directed edge is used to
represent activation versus inhibition (depending on sign) (e.g., Kyoda et al., 2004)

»  S-systems—notably a dynamic approach in which polynomial nonlinear dynamic nodes are used to
capture network behavior (e.g., Kimura et al., 2005)

A significant challenge in constructing these network models from data, particularly for gene network
models, is the fact that the node dimension (number of genes) can be on the order of 10,000—Ieading to a
computationally untenable problem for inference (i.e., determination of 10° coefficients of interaction!). In
reality the network is tremendously sparse and highly structured, such that there are orders of magnitude
fewer “interactions” that must be captured with coefficients. The knowledge that not every gene regulates
every other gene, and the fact that not every transcription factor regulates every gene can be exploited to
prune significantly the number of coefficients for network identification.

A related concept that can be exploited is the knowledge that the low dimensional connection structures in
these networks obey regular hierarchies, which create opportunities for structured model identification. Many
biophysical networks can be decomposed into modular components that recur across and within given
organisms. One hierarchical classification is to label the top level as a network, which is comprised of
interacting regulatory motifs consisting of groups of 2—4 genes (Lee et al., 2002; Shen-Orr et al., 2002; Zak et
al., 2003). At the lowest level in this hierarchy is the module that describes transcriptional regulation, of
which a nice example is given in Barkai and Leibler, 2000. At the motif level, one can use pattern searching
techniques to determine the frequency of occurrence of these simple motifs (Shen-Orr et al., 2002), leading to
the postulation that these are basic building blocks in biological networks. Many of these components have
direct analogs in system engineering architectures. Consider the three dominant network motifs found in E.
coli (Shen-Orr et al., 2002): (i) feed-forward loop, (ii) single input module, and (iii) densely overlapping
regulon. Similar studies in a completely different organism, S. cerevisiae, yielded six related or overlapping
network motifs (Lee et al., 2002): (i) autoregulatory motif, (ii) feed-forward loop, (iii) multi-component loop,
(iv) regulator chain, (v) single input module, and (vi) multi-input module.
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Figure 3.3. Network motifs found in the E.Coli transcriptional regulation network.

Beyond structural classification, one can analyze these motifs for their functional character, as shown by
Wolf and Arkin, 2003, and again, one finds the recurring dynamic functional motifs in circuits and signal
processing: (i) switches, (ii) oscillators, (iii) amplitude filters, (iv) bandpass filters, (v) memory, (vi) noise
filters, and (viii) noise amplifiers.

In effect, these studies demonstrate that, in both eukaryotic and prokaryotic systems, cell function is
controlled by sophisticated networks of control loops that are cascading onto, and interconnected with, other
(transcriptional) control loops. The noteworthy insight here is that the complex networks that underlie
biological regulation appear to be constructed of elementary systems components, not unlike a digital circuit.
This creates opportunity for the network inference methods that incorporate such knowledge via constrained
search methods, or exploiting prior knowledge in Bayesian frameworks.

In addition to the two classes of models mentioned previously (based on complexity and detail), there is an
intermediate class consisting of optimization-based models. In many respects, this class has a hybrid
character of empiricism and fundamental details. The underlying assumption is that cells have been
organized over evolutionary time scales to optimize their operations in a manner consistent with
mathematical principles of optimality. The cybernetic approach developed by Ramkrishna and co-workers
(\Varner and Ramkrishna, 1998) is founded on a simple principle; evolution has programmed or conditioned
biological systems to optimally achieve physiological objectives. This straightforward concept can be
translated into a set of optimal resource allocation problems that are solved at every time step in parallel with
the model mass balances (basic metabolic network model). Thus, at every instant in time, gene expression
and enzyme activity is rationalized as choice between sets of competing alternatives each with a relative cost
and benefit for the organism. Mathematically, this can be translated into an instantaneous objective function.
The potential shortcoming is a limited handling of more flexible objective functions that are commonly
observed in biological systems. An alternative approach is the Flux Balance Analysis (FBA) (Watson, 1986),
in which a suitable linear programming problem is posed and solved (Edwards et al., 1999). The resulting
model is not a dynamic model, and does not yield an analytical formulation, but the computational solution
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time is modest, and the approach has yielded success for a number of biological examples. Essential to the
development of the model are the formulation of the system constraints, consisting of: (i) stoichiometric
constraints that represent flux balances; (ii) thermodynamic constraints to restrict the directional flow through
enzymatic reactions; and (iii) physicochemical capacity constraints to account for maximum flux through
individual reactions. Recent extensions have addressed the problem of regulation by including additional
time-dependent constraints in the formulation. The incorporation of transcriptional regulatory events in the
FBA framework has extended the validity of the methodology for a number of complex dynamic system
responses (Covert et al., 2001). In an alternate formulation, dynamic mechanistic details are incorporated as
constraints leading to a dynamic FBA extension (Mahadevan et al., 2002).

As noted several times in this report, dynamic behavior is an essential property of complex biophysical
networks that must be captured in models of those networks. There are some preliminary ideas in capturing
network behavior in the form of dynamic models—both discrete time (Hartemink et al., 2002) and
continuous (Zak et al., 2004). Many challenges exist in developing dynamic models from the type of data
that is typically generated in the corresponding experiments, including: (i) sampling rate is rarely uniform
and (ii) data is often the combined with other labs, introducing a number of biases. The previously noted
problems of the curse of dimensionality are more pronounced in the case of dynamic models, if one
augments the network interconnection dimensionality with a large number of possible dynamic states
(activated, repressed, silenced, etc.), let alone the full continuum of dynamic response.

VALIDATION, ITERATION, DISCRIMINATION, AND IDENTIFIABILITY

One of the major issues in the reverse engineering of a genetic regulatory network is the challenge of
uniquely identifying the gene interactions (i.e., model parameters) from experimental data, such as gene
expression profiling. This issue, known as identifiability in control theory (Ljung, 1999), deals with the
information content of the data; the quantity and quality of the measurements with respect to the model
parameters. Recent work in the U.S. and in Europe on the identifiability of gene networks revealed that full
knowledge of gene interconnections and perfect measurements still could not guarantee full identifiability of
gene interactions (Zak et al., 2003), and, furthermore, that improved experimental protocol was far more
effective than increased measurements (J. Stelling, unpublished data, 2005). The latter study points to the fact
that perturbations should be designed strategically. Typical knockouts involve so-called “direct effects” in
which the expression level of various genes is altered in a network arrangement that involves direct
connectivity to cis-regulatory elements of downstream genes (possible multiple cascades). An “indirect
effect” can also be used in which a mediating component (e.g., mRNA) is introduced to correct an
intermediate element in the direct action cascade described previously.

Coupled to this, noise in the measurements and the inherent stochastic nature of gene expression make
practical identification of genetic regulatory networks difficult. In practice, the reverse engineering of a gene
network should involve a careful design of the experiments using prior knowledge of the system, to obtain
the most informative measurements. Further, this process should be iterative in which the result from each
trial is used to better design the next experiment. Here, a measure of informativeness of data, such as the
Fisher Information Matrix (FIM), can lead to a formal procedure for the optimal design of the experiment.
Aside from the aspect of the quality of data, another practical limitation in most (if not all) of the reverse-
engineering of a gene network is the limited quantity of data, in terms of sampling frequency and number of
independent measurements. For example, although gene expression profiling can provide high-throughput
data to estimate interactions among thousand of genes, this method still does not depict the protein-mediated
regulatory effects. In many cases, parameter estimation from limited measurements suffers from stringent
computational requirement and degeneracy, where many parameter combinations give similar agreement to
the observed behavior. Here, measurement selection procedures can help identify the combination of
measurements that give the best identifiability.

Given the iterative nature of this framework for model development and refinement of experimental
protocols, a termination criterion must be established. In the application domain of systems engineering, it is
understood that for certain experimental data, it is not possible to confirm whether the model is really valid,;
however, one can conclude whether the model is not contradicted by the given data (Poolla et al., 1994).
Such model (in)validation tests can be formulated for the network inference problems described in this
chapter, and are usually based on the difference between the simulated and measured output and some
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statistics about these differences. Typical statistics for the model errors include maximum absolute value,
mean value and variance. These methods are slowly migrating from the engineering domain and are likely to
find greater application in systems biology as experimental methods are refined, and closer collaborations are
developed between modelers and experimentalists.

REGRESSION

As described above, most of the network inference work undertaken to date has been aimed at elucidating
relationships among components in a network. However, the operation of a network is generally important
only within the context of a physiological function it carries out or regulates at the level of individual cells or
cell populations (e.g., tissues). Thus, it is essential to consider efforts to elucidate relationships between
network components (or, more appropriately, network component properties such as levels, states, locations,
and/or activities) and downstream cellular behavioral functions. Computational models for these kinds of
“signal-response” relationships are much more difficult to formulate than for the more commonly-studied
“cue-signal” relationships by which network component properties are governed by extracellular (or
intracellular) stimuli, because the biochemical and biophysical processes involved in the former are much
less well understood as well as less proximal. Nonetheless, several research efforts are underway that take as
their objective the development of inferring “signal-response” relationships for network component
regulation of cell functions. One class of methods which appear to be useful for inferring dependence of cell
functions on network component properties are those founded on principal components analysis (Janes,
2004), including a variant termed network components analysis (Kao, 2004). This class of methods permits
determination of the most critical combinations of network component properties for correlation, and even
prediction, of functional responses. A second class of methods also being employed for this purpose is
decision tree analysis (Hautaniemi, 2005). An advantage of decision tree analysis is that the combinations of
network component properties associated with functional responses are explicitly delineated in direct
manner, permitting the “logic” of how the network component properties combine to govern functional
behavior to be viewed and interpreted easily. Finally, Bayesian network analysis has been used for a similar
purpose (Woolf, 2005). Here, the “logic” connecting network component properties to one another and to the
functional behavioral response is more complex to interpret, but is nonetheless available.

COMPARISON OF EFFORTS IN EUROPE, JAPAN, AND THE U.S.

Implicit in the preceding sections was a comparative analysis of efforts in the U.S., Japan, and Europe (as
well as other regions such as Israel) by virtue of the cited references. For the purposes of the study, we
outline from additional specific highlights in this area of network inference. It is worth noting that many of
the ideas described in this chapter fall into the area of Bioinformatics, which has arguably gained a foothold
in all of the geographical regions considered, with consideration to research, education, and infrastructure.

In the region of Japan, there were numerous significant advances in the area of network inference. The
Kitano Laboratory (Symbiotic Systems Project) plays a leading role in the development of the Systems
Biology Markup Language (SBML) and the establishment of standards in modeling biological systems. In
addition, they are conducting research in the area of regression algorithms for network inference. The RIKEN
Yokohama Institute was, as noted elsewhere, an extremely large-scale operation, and there were numerous
laboratories addressing important problems in network inference, including: (i) inference algorithms
(cooperatively coevolutionary), (ii) the formation of a consortium for the study of receptor tyrosine kinase
regulatory networks, and (iii) the dynamic profiling of regulation in circadian networks by the Ueda
Laboratory (Kobe). The Miyano Laboratory (U. Tokyo) was also developing regression algorithms for
network inference of gene regulatory networks in yeast, and notably, they are conducting drug development
studies with pharmaceutical companies. The Computational Biology Research Center (Tokyo) was
conducting network inference studies for application to lung cancer. The Kanehisa Laboratory (Kyoto
University), well known for the Kyoto encyclopedia of genes and genomes (KEGG) database, is conducting
research in the reconstruction of dynamic networks via kernel methods, and is also enabling portability of the
KEGG database networks to SBML and genomic object net (GON) models formats. This can be useful for
the ultimate development of mechanistic large-scale network models. Finally, the Ito Laboratory at the
University of Tokyo was utilizing heterogeneous measurements for network inference (MS, FRET, ChiP,
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GATC-PCR, etc.), which is viewed as essential to overcome the identifiability issues described earlier in this
chapter.

In Europe, the Max Planck Institute for Dynamics of Complex Systems (headed by Prof. Gilles) was one of
the few groups that was explicitly addressing the challenges in identifiability, model iterations, perturbations,
and design of experiment. At Humboldt University in Berlin, there were efforts described for dynamic
modeling from microarray data, with application to the Ras pathway. The Reuss Laboratory (Stuttgart)
described bioinformatics studies with application to cytochrome p450. The Armitage Laboratory (Oxford)
emphasized bottom-up approaches for pathway analysis in histidine sensing. The Noble Laboratory (Oxford)
challenged the strict bottom-up and top-down approaches, advocating a combination that starts in the middle.

A number of groups are vigorously active in the United States in the area of network inference, across all the
technical areas outlined above. The Ideker group at UC-San Diego and the Ingber group at Harvard Medical
School are pursuing Boolean approaches. The Gifford group at MIT and the Koller group at Stanford are
employing Bayesian network approaches for investigation of networks focused on genomic data, and by the
Lauffenburger group at MIT for investigation of networks focused on proteomic data. Regression methods,
such as principal components analysis, network components analysis, and decision tree analysis are being
used by the Liao group at UC-Los Angeles to study genomic networks and their relationship to physiological
functions, and by the Lauffenburger group at MIT to study proteomic networks and their relationship to
physiological functions. Cybernetic approaches are championed by the Ramkrishna group at Purdue, and flux
balance methods—mainly for metabolic networks—by the Palsson group at UC-San Diego and the
Stephanopoulos group at MIT.

SUMMARY

In summary, one finds numerous network inference studies in all of the regions described with the U.S.,
Japanese, and lIsraeli groups leading in the development of methodologies. All regions showed exciting
application studies, with significant potential for “success stories” to emerge in the coming years.

The encouraging trends that were observed included: (i) multiple, complementary approaches to the
regression of models for network inference, (ii) motifs and modules being incorporated into network
inference methods, (iii) a nice interplay emerging between the classical static network databases and the
formats for dynamic systems biology models (e.g., SBML), and (iv) a considerable amount of curricular
development in this area (notably in bioinformatics).

Of concern was the fact that the issues of: (i) explicit incorporation of dynamics, (ii) identifiability and
(in)validation of models, and (iii) model iterations with design of experiment, were receiving only modest
attention in the regions, with noteworthy efforts in the U.S. and Europe (particularly Germany). There were
many reported examples of researchers identifying large numbers of parameters from relatively small data
sets. However, there appear to be a number of groups working towards solutions to these challenges, and
considerable progress can be expected in the next two to three years.
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CHAPTER 4

MODELING AND NETWORK ORGANIZATION

Cynthia Stokes and Adam Arkin

INTRODUCTION

The use of mathematical modeling and analysis of networks has a long history in biological research. Perhaps
the best-known early example of insightful modeling is the work of Hodgkin and Huxley in 1952 describing
how sodium and potassium ion channels could function together to produce the membrane action potential in
neurons (Hodgkin and Huxley, 1952). For several decades, models and theory were mostly the domain of
applied mathematicians, physical scientists and engineers, many of whom worked rather independently of
experimental science and the work remained somewhat obscure and theoretical. With the broad availability
of computers and IT infrastructure that has emerged in the last several decades, the use of modeling and
theory in biological research has expanded greatly, as has the size of the models being developed.

Historically, much modeling was used to study and interpret what could be directly observed in the
laboratory, namely, functions of cells, tissues, organs and organism physiology. In addition, starting with the
work of Jacob and Monod there was a great deal of biochemical and genetic modeling. Enzymological
modeling such as that by Garfinkel was mechanistically very detailed and chemically supported. On the other
hand, the genetic network models were far more abstract and rarely related to data. However, it was
recognized that in many cases that there was a common underlying mathematical framework to both.
Techniques from non-linear dynamics, chemical engineering analyses (stoichiometric network analysis, etc.)
were brought to bear. More abstract models of these processes were used to study the possible organization
and optimalities of biological networks. Jim Bailey, Goodwin, and others wrote monographs on the topic.
And of course, Turing himself made the first links from chemistry to development.

With the advent of molecular biology and ensuing capabilities in genomics, proteomics, and so forth,
mathematical models are now being used extensively to study intracellular molecular networks such as
kinase cascades and metabolic pathways, as well as gene regulatory networks. These intracellular molecular
networks are a primary subject of network organization analysis, along with epidemiological networks, and
structural networks such as lung airway, vascular, and neural network topologies. At the same time, modeling
of multicellular networks with multiple intercellular interactions, and sometimes multiple anatomical scales
(biochemicals, cells, tissues, organs), has continued and in the last 5-10 years the biological breadth and
detail of such models has increased dramatically. This has been possible because of both the increased
availability of data that informs both model structure and parameter values, as well as the availability of
sufficient computational power with which to code and solve them.

The growing popularity of modeling in biological research is evident from the increasing number of public
forums dedicated to or including it. (Akutsu, Miyano et al., 2000) The number of research conferences
including or fully devoted to biological modeling has increased dramatically in the last five years and are too
numerous to list here. As noted in the introductory chapter, new journals devoted to systems biology,
including modeling and network organization, have been launched, including In Silico Biology, PL0oS
Computational Biology, IEE Proceedings Systems Biology, and Molecular Systems Biology.
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Applications of Models

Modeling and analysis are uniquely suited to a wide variety of applications. Models can be used to test
specific hypotheses, for instance, about how a system is structured or how it functions. They can be used to
make predictions, which can then be tested with appropriate experiments. Models can be used in a more
exploratory manner, for instance, to discover the types of properties that might emerge from integration of
parts with specific properties in specified ways. While experiments can also be used to test hypotheses, make
predictions and explore, mathematical models explicitly represent components and their interactions in a
controllable, manipulable environment (the computer) which allows calculation of how these things change
through time and space (if those are included) and observation of every element and relationship in the
model. The analogous experimental measurements would frequently be difficult or impossible and
sometimes unethical. In addition to these specific applications in research, models are also excellent aids to
communication and teaching. In contrast to static words or pictures on a page, they provide an interactive
method for demonstrating and exploring how the modeled system works in an easy-to-use computer
environment.

What is a Mathematical Model?

A model is a set of structured assertions that specify the interactions among entities of a network. An
example of a model that illustrates this definition is given in Figure 4.1. The entities in a model can be many
different things, such as properties of specific biological elements (e.g., molecular concentration, cellular
density, or organ volume) or specific physiologic characteristics (e.g., blood pressure, heart rate, or weight).
Likewise the interactions that are specified among the entities can represent various processes such as
molecular reactions, binding of a molecule to a cell-surface receptor, subsequent stimulation of that cell, etc.
From a model one can calculate how the entities change over time and/or through space or their value at
steady state.

Reaction system Model of dynamics Model solution

A+B E>C E>D M:@:—klf([D])[A][B]

dt dt
- -k rqopraie -k (o) o
d[o] =k,[C] time (C]

dt

Figure 4.1. Schematic of a chemical reaction system where chemical species A and B react together to form
C, which further changes into D, and D inhibits the first reaction. The equations of a mathematical model
of that system using ordinary differential equations (ODEs) are shown along with a graph of a simulation

of that model, assuming A and B start with equal, non-zero concentrations while C and D are initially
zero. Brackets around a chemical name indicate concentration.

Mathematical models of biological systems can take many different forms, and the appropriate types of
mathematical equations are highly dependent on the problem one is attempting to represent with the model.
Many models utilize ordinary or partial differential equations to represent continuous, deterministic systems
and partial differential equations if space or mechanics are involved. Various methods are used to include
stochastic or probabilistic properties of the system including Langevin dynamics and the more physically
rigorous chemical master equation. Discrete methods like particle/molecular dynamics, cellular automata and
agent-based models are utilized where the actions of individual elements of a system, rather than the
population behavior, is of interest.

What is Network Organization Analysis?

It is believed that biological networks are not randomly structured, but rather that various parts of the
network have structures that provide specific functional units, and those structures can be found in multiple
parts of the network. Although universal definitions are not agreed upon, these subunits with the same
structure are often called motifs or modules, where the term motif is often used to indicate the smallest
repeated unit and module to indicate a collection of units that form a “separable” functional group—that is, a
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group of processes that together create some well-defined behavior that is a pure input/output function and is
not otherwise affected by inclusion of the network—although those definitions are not universal. For example,
Segal et al. (2003) define a module in the context of gene expression as a group of genes that tend to respond
in a joint manner, i.e., through temporally coordinated gene expression. Wuchty et al. (2003) define a module
in the context of network topology as a discrete group of interconnected elements that is abstracted from the
topology of the network. VVon Dassow et al. (2000) define a module functionally as a set of genes and their
products which, as an emergent consequence of their interactions, perform some task nearly autonomously.

Figure 4.2 illustrates molecular networks and motifs. These smaller units are thought to derive from
functional need of the organism as well as fundamental physical principles (e.g., thermodynamics). The
analysis and theory of network organization focuses on discovering underlying principles and motifs of
systems and networks. Many different approaches to network organization analysis are being used in biology
and various reviews are available (Alm and Arkin, 2003; Barabasi and Oltvai, 2004; Itzkovitz and Alon,
2005).
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Figure 4.2. Example of (A) a molecular interaction network involved in bacterial chemotaxis adapted from
Alon et al. (1999) and (B) a single motif, the feed-forward loop, frequently found within intracellular
molecular networks.

OVERVIEW OF WORLDWIDE EFFORTS

A wide variety of research efforts utilize biological modeling and network analysis throughout the U.S.,
Europe, Japan, and elsewhere. This report’s summary of work in the different regions discusses modeling
efforts in terms of several broad subjects, including intracellular gene regulatory and biochemical networks;
cellular metabolism; receptor dynamics and cell function; multi-cellular/tissue/organ function;
electrophysiology; organism development; and spatial organization and pattern formation. While somewhat
arbitrary, these categories group problems that are frequently of common interest to a given set of
researchers. Network organization research is discussed as a separate category, and the efforts of industry in
these areas are discussed in a separate section below.

Biological Modeling and Network Organization Analysis in the United States

The use of models in biological research in the U.S. is extensive; a comprehensive review is beyond the
scope of this chapter. Instead, representative studies that illustrate the variety of ongoing research are
highlighted and referenced.

The subject of signaling networks and gene regulatory networks has garnered much attention in recent years,
and strong efforts at representing and understanding specific networks using models have been put forth by
researchers such as Ravi lyengar (Mt. Sinai School of Medicine), John Tyson (University of Virginia), Adam
Arkin (University of California-Berkeley) Peter Sorger (Massachusetts Institute of Technology) and Hamid
Bolouri (Institute for Systems Biology). Arkin, working with Harley McAdams, John Ross and recently
Michael Samoilov, pioneered the study of the importance of stochastic chemical processes in gene expression
and signal transduction. He demonstrated how, from physical chemical first principles, gene expression in
prokaryotes is expected to show bursts and erratic production of proteins. In later work he showed that the
fundamental fluctuations in reaction rates can result in qualitatively different behaviors than that predicted by
standard mass-action kinetic models. He has followed up the implications of this noise in the lysis/lysogeny
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decision of A-phage and type-1 pili phase variation among other systems and shown that the noise is a
fundamental and biologically important part of the regulation of these systems. Van Oudenaarden and
Elowitz have each separately followed-up this work with elegant theories and measurements of the effect in
bacteria. Wolf and Arkin then recently showed under what conditions such non-genetic diversification
mechanisms are part of an evolutionarily stable strategy.

lyengar’s research focuses on cellular signaling systems, utilizing close integration of experimental and
theoretical methods, with emphasis on signaling associated with G-protein coupled receptors. For example,
lyengar and colleagues developed a model of the mitogen-activated protein kinase (MAPK)/protein kinase C
(PKC) system, and in concert with targeted experimentation they demonstrated that this system can operate
with one or two stable states and is therefore quite flexible in its ability to control cellular processes such as
cell cycle (Bhalla, Ram, and lyengar, 2002). Tyson and his collaborators have developed detailed models of
the molecular control mechanisms of cell cycle in fission yeast, budding yeast, frog embryo and mammalian
cells (Chen et al., 2004; Zwolak, Tyson, and Watson, 2005; Novak and Tyson, 2003; Sveiczer, Tyson, and
Novak, 2004). They have worked closely with experimentalists to compare the function of the budding yeast
cell cycle model in 131 mutant cells, finding good agreement for 120 and disagreement for 11, in the process
demonstrating specific areas where the biology is not well-understood (Chen et al., 2004).

Sorger applies experimental and computational approaches to the analysis of chromosome segregation,
genomic stability and programmed cell death in yeast, mice and human cells. In collaboration with Doug
Lauffenburger (MIT) and others, his apoptosis work has included the development of an experimentally-
based 400 equation ODE model that can capture cell-type specific variation in the generation of survival
signaling emanating from the epidermal growth factor (EGF) receptor (Schoeberl et al., 2003). Bolouri has
utilized similar modeling as well as theoretical analysis to study gene regulatory networks, including those
important for organism development and the immune system (Ramsey, Orrell, and Bolouri, 2005; Bolouri
and Davidson, 2003).

One step up on the continuum of biological scale is cell behavior, frequently modeled in relationship to cell
surface receptor dynamics as well as intracellular signaling networks. For example, Jennifer Linderman
(University of Michigan) focuses on the dynamics of receptor binding and trafficking and how these
influence cell response to endogenous and exogenous ligands (e.g., therapeutic drugs). She has used
modeling to demonstrate how receptor desensitization and drug-induced signaling may be decoupled through
alteration of drug properties (Woolf and Linderman, 2003). Doug Lauffenburger’s (MIT) work has focused
on deciphering how cells interpret ligand binding through the dynamics of receptor trafficking and signal
transduction to result in a specific behavior, with primary focus on cell proliferation, chemotaxis and
apoptosis. A recent study combining modeling of receptor trafficking leading to uptake and degradation of
granulocyte-colony stimulating factor (G-CSF) by neutrophils with molecular modeling of receptor-ligand
structure-function interactions predicted how amino acid substitutions in G-CSF could reduce uptake and
thereby increase its half-life within the bloodstream when administered to neutropenic patients, such as
cancer patients on chemotherapy (Sarkar, et al., 2002; Sarkar and Lauffenberger, 2003). Hans Othmer
(University of Minnesota) has made significant contributions through modeling in a number of biological
areas, for example in the chemokinesis and chemotaxis of both single bacteria and populations of bacteria
(Albert, Chiu, and Othmer, 2004; Erban and Othmer, 2004). Jason Haugh (North Carolina State University)
has used models of the platelet-derived growth factor (PDGF) receptor/PI13-kinase/Akt signaling system in
relationship to cell survival to test alternative hypotheses about the dynamic behavior of ligand- receptor
interactions. His group demonstrated that dimerization requires the association of two 1:1 ligand-receptor
complexes as an initial step with possible formation of stable 1:2 complexes thereafter, rather than
dimerization of two receptors by one ligand initially (Park, Schneider, and Haugh, 2003).

The area of metabolic networks and metabolic control within cells is a subset of both of the above but is
specialized enough as a field to describe it separately. Because of its special status as an industrially
important field, metabolic modeling and analysis was one of the earliest systems biological fields to emerge.
The field rests on a foundation of chemical engineering and enzymology that matured in the 1950s and “60s.
One of the earliest and most ambitious models was by Garfinkel and Hess in the early ‘60s and covered
hundreds of reactions in the metabolism of Ehrlich ascites tumor cells. Few models of this scale and
mechanistic detail have been attempted since. Whole theories have grown up around these and like models to
understand the control of flux in these networks. In the early 1970s Heinrich and Rappoport and Kacser and
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Burns developed Metabolic Control Analysis (MCA), which concerns the sensitivity of steady-state fluxes of
metabolic networks to perturbations in enzyme concentrations and other parameters of the system.

Major U.S. contributors in this area include James Liao (University of California-Los Angeles), Gregory
Stephanopoulos (Masachusetts Institute of Technology (MIT)) and Bernhard Palsson (University of
California-San Diego), among others. Greg Stephanapoulos at MIT has been the leader at using MCA
coupled to measurements of metabolites and fluxes to learn how to redistribute material flux in these
networks towards desired end products of metabolism. Bernhard Palsson at UCSD has built on classical work
in stoichiometric network analysis (SNA) and other flux-based chemical engineering analyses to develop an
effective flavor of flux balance analysis that, given fairly conservative assumptions and a set of input
nutrients, can predict the flux through the metabolic network that maximizes growth. He has used these
analyses and metabolic reconstructions to predict under which conditions a cell will grow while producing a
molecule of interest. He has also used such models and experiments to predict the effect of mutants on the
growth mechanism and to derive so-called extreme-pathways that might represent the controllable fluxes in
metabolism. Ideker, initially together with Lee Hood, has pioneered data-fusion on molecular interactions,
gene expression measurements, and genetic perturbations to build more statistical models of the control of
metabolic pathways. Liao’s research focuses on mapping control circuitry of metabolism and re-engineering
those circuits to provide new functionality within a cell. For example, Liao’s group identified the
stoichiometric limitation caused by the phosphotransferase system (PTS) in the production of various
metabolites, and experimentally demonstrated a solution by overexpression of phosphoenopyruvate synthase
to recycle pyruvate back to phosphoenopyruvate (Patnaik and Lao, 1994; Patnaik and Spitzer, 1995).

The cell functions discussed above frequently occur within multicellular organisms or populations of single-
celled organisms and therefore mathematical models have been utilized to investigate many biological
functions that involve networks of cells, tissues and organs. Denise Kirschner (University of Michigan) has
developed ODE and agent-based models of interacting populations of immune cells and infecting microbes
to study infectious diseases including HIVV/AIDS and tuberculosis. For example, Kirschner’s model of M.
tuberculosis infection in the human lung and draining lymph node was used to predict how different balances
of key T cell and macrophage functions would lead to different patient outcomes such as active infection
versus latency as well as the biologic functions that could be good targets for modulation by antibiotics
(Marino and Kirschner, 2004). Alan Perelson (Los Alamos National Laboratories) has used models to study
the dynamics of the T and B cells of the immune system and its response to infection and therapy for
infection, for example the treatment of HIV and hepatitis (Gilchrist and Coombs, 2004; Dixit et al., 2004).
Building on this model, Leor Weinberger, David Schaffer and Adam Arkin have begun to use such models as
the foundation for the design of therapies for control of the onset of AIDS. They proposed an extension to
Perelson’s model that allowed the exploration of how to best engineer a conditionally-replicating viral gene
therapy that would prevent AIDS but not HIV-1 infection. Another area with a long history of modeling is
vascular structure and angiogenesis. Thomas Skalak (University of Virginia) has made significant
contributions to the understanding of vascular remodeling regulation by mechanical stresses and wound
repair using cellular automata models (Pierce, Van Gieson, and Skalak, 2004), while Rakesh Jain (Harvard
University) has worked through a succession of ODE and partial differential equation (PDE) models in close
conjunction with experimental work to understand the physicochemical drivers of tumor angiogenesis (Stoll
et al., 2003; Ramanujan et al., 2000). Mechanical aspects of biological functions at both the macroscopic and
microscopic levels are also subjects of modeling. The fluid mechanics of blood flow is a major subject of
modeling. For example, Roger Kamm (MIT) is using finite element models of blood flow in the carotid
artery in conjunction with magnetic resonance imaging (MRI) and histology to understand how the blood
sheer stress correlates with histologic markers in atherosclerotic plaques (Kaazempur-Mofrad et al., 2004).

Electrophysiology of cells and the organization of electrically active cells into tissues and organs is a major
subfield spanning molecular networks, cell biology, and multicellular/tissue/organ systems. It has involved so
much modeling activity that it deserves its own discussion. Electrophysiology may in fact be the biological
area that has the most modeling associated with it, and the studies in this area are on average significantly
more quantitative than in most other areas of biology. The electrophysiology of the cardiac myocyte and the
organization of myocytes into the structure of the heart are the subject of much research both in the U.S. and
internationally, oftentimes through international collaborations. In the U.S., Raimond Winslow (Johns
Hopkins University (JHU)), Andrew McCulloch (UCSD), and Yoram Rudy (Washington University), among
others, have developed various models of excitation-contraction coupling and its regulation in the cardiac
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myocyte, as well as integrated models of multiple myocytes into heart tissue, single ventricles, and the whole
heart (Winslow et al., 2000; Luo and Rudy, 1994 1; Luo and Rudy 1994 2; McCulloch, Hunter, and Smaill,
1992). Such modeling has been used to better understand how molecular and cellular behavior together with
spatial organization determines normal heart function as well as arrhythmias, myocardial infarctio, and other
cardiac dysfunctions. Electrophysiology is also central to the function of the nervous system, and modeling is
used extensively in this field to understand how various ion channels and pumps drive neural electrical
conduction and transmission, as well as how networks of neurons function in organized tissues to result in
observable physiology. As the field is quite vast, the reader is referred to several books with review chapters
for a broader view of the field (Chow et al., 2005; Koch, 2004; Koch and Segev, 1998; Dayan and Abbott,
2001).

Pattern formation and spatial organization in biological systems involve significant modeling efforts. Many
phenomena with important spatial organization aspects occur in organism development. George Oster (UC-
Berkeley) has used models to, for example, demonstrate how waves and aggregation patterns in populations
of microbes are driven by various characteristics of cell motility (lgoshin et al., 2004). Davidson has
developed models to compare alternative hypotheses about the mechanism of the invagination of the sea
urchin (Davidson et al., 1995); while Garrett Odell (University of Washington) has studied numerous
morphogenesis problems, including how specific genetic control modules drive segment polarity in
Drosophila (von Dassow, et al., 2000; von Dassow and Odell, 2002). James Murray (University of
Washington) has contributed to the understanding of numerous spatial and patterning phenomena in biology
including scarring, fingerprint formation, and skin patterning (Tranquillo and Murray, 1993; Cruywagen,
Maini, and Murray, 1994). Like Odell, Stanislav Shvartsman (Princeton University) also combines modeling
with genetics and cell biology to understand patterning (Pribyl, Muratov, and Shvartsman, 2003 1; Pribyl,
Muratov, and Shvartsman, 2003 2).

Finally, it is worth noting that various aspects of whole organism physiology, such as metabolism and
respiration have a long history of modeling. These models typically described the biological components and
functions at the level of tissues, organs, and/or organ systems including physical properties and geometric
features, which fell from favor with the advent of cellular and then molecular biology in the later part of the
twentieth century. The work described above in multicellular/tissue/organ networks, which includes more
molecular and cellular biology, could be considered the new physiologic modeling when it bridges to aspects
of organism function.

Analysis of network organization is most frequently focused on the properties and organization of
intracellular biochemical networks based on the large databases arising from genomics, transcriptomics, and
proteomics, although the same principles are applicable to networks of cells or other biological elements.
This is exemplified by the work of Albert-Laszlo Barabasi (Notre Dame) and colleagues analyzing the
properties of many network types, from intracellular proteins to the internet (Yook, Jeong, and Barabasi,
2002; Barabasi and Bonabeau, 2003; Jeong et al., 2000). In studying the connectivity of elements in these
networks, he has demonstrated that many such networks are “scale-free.” In scale-free networks the
probability P of any node being linked to some number k of other nodes follows a power law distribution (log
P(K) vs. log K is linear). Slightly different analyses of the properties of these networks lead to predictions of
different variations of the scale-free architectures which have implications both for how they are controlled
and how they arose evolutionarily. These studies attempt to link various topological properties of the network
to properties such as the speed at which information can be communicated, which points in the network are
most susceptible to failure, and how different network architectures are more or less robust. The architectural
arguments are still somewhat phenomenological (such as noting that highly-connected proteins may have a
higher chance of being essential, etc.), while more generic statistical theories come to diametrically opposed
interpretations (Carlson and Doyle, 2002; Carlson and Doyle, 1999; Morohashi et al., 2002; Csete and Doyle,
2002; Kitano et al., 2004).

Motifs and modularity are another of the major areas of study of network organization. One of the seminal
papers in this area was a mechanistic study of the robustness of exact adaptation in the E. coli chemotactic
response by Naama Barkai (now at Weizmann Institute) and Stanislas Leibler (Rockefeller University). In
this work they demonstrate how the architecture of the signal transduction network ensures exact adaptation
of the response regulatory activity to a step of chemoattractant throughout a wide range of kinetic parameters
for the underlying biochemical reactions. This robustness was subsequently shown to exist through
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measurements of E. coli with differently expressed chemotactic pathway molecules by Uri Alon and Leibler.
Tau MuYi and John Doyle showed that the engineering explanation for this was the existence of an integral
feedback motif in the network. The search for “overrepresented” examples of these seemingly important
control motifs has become a popular area of study facilitated by better quality databases of cellular networks
and high-throughput datasets of molecular interaction. However, caution in the analysis of these motifs from
the topological viewpoint is necessary. Elowitz and Leibler have shown experimentally that the same
topology of a gene expression motif can yield very different dynamics depending on the exactly kinetic and
thermodynamic parameters. This had been predicted theoretically for years but the experimental
demonstration was powerful.

The linkage of motifs to evolutionary processes is only just beginning to be explored. The statistical
overrepresentation of certain topologies of biochemical interactions is evocative and Chris Voigt, Denise
Wolf and Adam Arkin have explored why certain topologies might be selected evolutionarily because of
their dynamic flexibility in a study of the Bacillus subtilis sinIR operon and made a first attempt to
understand the evolutionary selection on different parts of the motif by comparing the sequence of
orthologous implementations of the motif in related bacteria. Rao and Arkin examined how small differences
in the orthologous chemotaxis pathways in E. coli and B. subtilis, while having similar gross behavior,
differed in the mechanisms of control and the resultant robustness of the network. These approaches to the
quantitative analysis of cellular regulatory motifs and the linkage to the evolution of these pathways
promised a more complete understanding of the design and architecture of cellular pathways.

Major Alliances, Collaborations and Institutions

It is noteworthy that in the last decade several large alliances and collaborations have been formed that have
goals to understand biological systems as integrated systems (e.g., systems biology) and have included
mathematical modeling as a central method for the research. Perhaps one of the oldest, a grassroots
international effort with many U.S. contributors but without specific federal support, is the Physiome Project
(Crampin et al., 2004), spearheaded by James Bassingthwaighte (http://www.physiome.org/). The Physiome
Project’s major long-range goal is to understand and describe the human organism, its physiology and
pathophysiology quantitatively, and to use this understanding to improve human health.

The Alliance for Cell Signaling (AfCS, www.signaling-gateway.org), directed by Alfred Gilman (University
of Texas Southwestern Medical Center), is a multidisciplinary, multi-institutional research program to study
the network properties of cellular signaling systems utilizing a well-organized system for obtaining cell
samples and running experiments, databasing results, and integrating the knowledge into models. The AfCS
was originally focused on B cells and muscle cells, but recently refocused on macrophages because of
significant technical difficulties dealing with the first two. Approximately 50 investigators at 20 academic
centers are involved in the AfCS, and it is funded by the National Institute of Health (NIH) and five major
pharmaceutical companies. In 2003, the AfCS formed a partnership with Nature Publishing Group to create
the Signaling Gateway (http://www.signaling-gateway.org), which provides signaling data and results from
AfCS freely to interested parties. Another multi-institution initiative is the Cell Migration Consortium
(http://www.cellmigration.org/index.html), which aims to accelerate progress in migration-related research
by fostering multi-disciplinary research activities and producing novel reagents and information. The
Consortium is comprised of over thirty investigators and collaborators from over 15 institutions, and includes
a modeling initiative as one of its key thrusts.

An example of a major center in systems biology at a single institution is the Cell Decision Processes (CDP)
Center at MIT (http://csbi.mit.edu/research/projects/celldecision), directed by Peter Sorger and funded by the
National Institute of General Medical Sciences (NIGMS) for $16 million over five years. The CDP Center
research involves an interdisciplinary team of cell biologists, computer scientists and microsystems engineers
tackling the systems biology of protein networks and signal transduction in mammalian cells, with particular
focus on programmed cell death. CDP Center research is based on the hypothesis that understanding cell
decision processes requires the development of network models that combine quantitative rigor with
molecular detail. The resulting models are hybrids that contain highly specific representations of critical
reactions and abstract representations of the system as a whole. Other systems biology centers supported by
NIGMS include the Center for Quantitative Biology in Princeton; the Center for Cell Dynamics at the
University of Washington; and the Bauer Center for Genomics research at Harvard.
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The U.S. government also has a number of departments and centers associated with its research organizations
that focus on systems biology and/or modeling of biological systems. These include the systems biology
department at Pacific Northwest National Laboratory (http://www.syshio.org), the physical biosciences
division dedicated to quantitative biology at the Lawrence Berkeley National Laboratory, and the systems
biology Genome to Life (GTL) projects sponsored by the Department of Energy.

Biological Modeling and Network Organization Analysis in Europe

Biological modeling in Europe has a long history, and is indicative of the wide variety of subjects addressed
and techniques being utilized in the field. The specific sites that employ modeling of biology systems in their
research that the panel visited in Europe and Japan are listed in Table 4.1. Here a number of studies that were
notable for their innovation and contributions in the different categories listed above are described.

A particularly notable study of a biochemical network is the work of Ursula Klingmiiller of the German
Cancer Research Center in Heidelberg and a leader within the German Hepatocyte Project. She and her
colleagues’ work on the Jak-stat regulatory network has lead to new insights about its structure and function.
She utilized a combined modeling-experiment approach to distinguish between two alternative hypotheses
about how signal transducer and activator of transcription (STAT), after phosphorylation by a Jak-activated
receptor, could enter the nucleus and activate gene expression (Swameye et al., 2003). They used a novel
procedure to compare mass-action kinetic models of the alternative hypotheses to experimental data to
demonstrate that STAT5 must become unphosphorylated and recycled out of the nucleus and back in again
rather than get trapped in the nucleus and be degraded. They then used the model to ask what intervention is
most effective for increasing STAT5-p in the nucleus, the conventional view of increasing phosphorylation,
or blocking nuclear export. The model predicted the latter, and they used experiments to demonstrate this
was correct.

Intracellular metabolic networks and control are areas with significant attention in Europe. David Fell at
Oxford Brookes University in England utilizes metabolic engineering approaches to study metabolism
primarily in plants and bacteria, including threonine biosynthesis in E. coli, potato tubor metabolism (in
collaboration with Advanced Cell Technologies in Cambridge), photosynthesis, and antibiotic production in
actinomycete (Poolman, Assmus, and Fell, 2004; Schafer et al., 2004; Chassagnole et al., 2003; Thomas et
al., 1997). In addition, he utilizes structural modeling, the deconstruction of large networks into smaller
substructures, to predict pathways that are feasible from gene expression information and those capable of
greatest metabolic yields. In one notable study, he predicted that there should be six categories of arid-
environment plants in terms of crassulecian acid metabolism instead of only four as previously known.
Recent recognition of a fifth and discovery of a sixth lends support to his prediction.

Hans Westerhoff of Free University in Amsterdam, Netherlands, is a leader within a large group of
researchers in the Netherlands that utilize metabolic control analysis to study metabolic networks and
regulation in yeast and bacteria as well as signal transduction. In related work, the focus of Reinhart Heinrich
of Humboldt University, Berlin, is on dynamic models of metabolism and control of networks as well as
other biological pathways. His approach involves modeling, with close verification by experiments, using
methods from nonlinear dynamics and simulation, bifurcation theory, metabolic control analysis,
stoichiometric network analysis, stochastic process theory, optimization and graph theory. In recent work
with Mark Kirschner combining modeling and experimentation, he studied the effect of Wnt stimulation on
[B-catenin expression in Xenopus oocyte extracts, finding that depending on topology there were greater and
lesser regions of stability of the G-protein signal transduction network based on both the number of kinases
in the network and phosphatase activity (Lee et al., 2003). In other work, Heinrich has analyzed the evolution
of networks by using the large metabolic maps in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (http://www.genome.jp/kegg), determining how such metabolism could be built a step at a time
from finding critical routes from each metabolite to other necessary endpoints. Different substrates can make
different numbers of primary metabolites through the known reaction network. For example, adenosine
triphosphate (ATP) can make about 1,500 whereas glucose can only make around 50, suggesting that a great
deal of the cell’s metabolic network could have been elaborated from a smaller metabolism based only on
transformations of ATP (Ebenhoh, Handorf, and Heirich, 2004).

Cell function and its intracellular regulation are the subjects of interest of a longstanding modeler in Europe,
Albert Goldbeter at the University Libre de Bruxelles in Belgium, a university with a long tradition of



Cynthia Stokes and Adam Arkin 37

theoretical biology. Through his modeling work Goldbeter has contributed to the understanding of various
dynamic cellular phenomena including regulation of Circadian rhythms and metabolic oscillations (Goldbeter
et al., 2001; Leloup and Goldbeter, 2003; Goldbeter, 2002). Others in his department have contributed in the
areas of dynamics of regulatory gene networks, calcium signaling, theoretical ecology and social insect
behavior.

Cellular chemotaxis of both prokaryotes and eukaryotes is another subject with a significant history of
modeling and analysis to help understand the molecular and physical mechanisms driving it. Dennis Bray,
Cambridge University, has made significant contributions on chemotaxis of E. coli since the early 1990s.
This is a particularly tractable system to study because only six or seven proteins are involved in its
regulation. Bray’s group has both deterministic and stochastic models they use to study excitation,
adaptation, mutant phenotype, individuality, and the effect of architecture of intracellular space (Lipkow,
Andrews, and Bray, 2005; Shimizu, Aksenov, and Bray, 2003; Bray and Bourret, 1995). Another European
researcher modeling chemotaxis and cell motility is Wolfgang Alt (Bonn, Germany), although the panel did
not visit his laboratory.

In the subfield of electrophysiology, Denis Noble of Oxford University has studied cardiac biology for more
than forty years, collaborating with Raimond Winslow (U.S.), Peter Hunter (New Zealand), and Andrew
McCullough (U.S.). Noble’s research group tightly integrates experimental and modeling approaches in their
study of how ionic currents drive cardiac myocyte function and how cellular function is integrated spatially
and dynamically to drive the function of the whole heart (ten Tusscher et al., 2004; Garny et al., 2003;
Markhasin et al., 2003; Noble, 2002). Over the years, his models have contributed to the understanding of
energy conservation, the necessary stoichiometry of ion exchangers, and mechanisms of calcium balance in
cardiac myocytes, and the implications of these for cardiac dysfunctions such as arrhythmia (see Noble,
2002, for review). The heart is arguably the organ most comprehensively modeled, in terms of biological
detail (molecular, cellular, spatial organization, dynamic function). Noble notes that what has made this
possible is that relevant experimental work has been ongoing for 40 years, providing a vast body of data and
knowledge. The major regulators of the cell and tissue function (ion channels generally) are quite accessible
to measurement, and the cell properties that contribute to many aspects of whole organ function are relatively
few and aren’t strongly dependent on vast intracellular signaling networks.

Ernst Dieter Gilles and his associates at the Max Planck Institute for Dynamics of Complex Technical
Systems in Magdeburg, Germany have focused on aspects of model validation and model-based
experimental design (Kremling, 2004), areas with a long history in engineering and physical sciences but less
in biological modeling. Gilles’ department closely integrates experimental and modeling work for the
purpose of improving the understanding of biological phenomena and identifying solutions for medical
problems, particular drug target identification. The methods employed included detailed mathematical
modeling, model validation and iterations (via design of experiment) for hypothesis testing, system-theoretic
analysis of properties including robustness, and decomposition and model reduction. The particular
biological areas of research include signal transduction and regulation in bacterial cells and eukaryotes,
metabolic network structure, and computer-aided modeling and analysis of cellular systems (Stelling and
Gilles, 2004; Schmid et al., 2004; Stelling et al., 2004). Gilles has noted that their initial attempts at
collaborations with biologists were not effective because their engineering approaches were not appreciated
by the biologists. They have become more effective over the years by refining their modeling efforts,
becoming more visual and including lower-level biological details. Their work has made important
contributions in the extraction of design principles from the robustness analysis of the circadian clock
(Stelling, Gilles, and Doyle, 2004), and the use of identifiability tools to guide experimental design for
modeling of cell cycles. An important conclusion of the latter work was that perturbations were more
important than additional measurements in formulating an optimal experiment for model identification.

Large-Scale Alliances and Collaborations

Several large-scale systems biology projects in Europe include modeling as a cornerstone. One launched in
January 2004 is the Hepatocyte Project in Germany, funded by the German Federal Ministry of Education
and Research (BMBF) in its “Systems for Life—Systems Biology” initiative. The thematic focus and
structure for the Hepatocyte Project was shaped starting in 2001 by an expert panel of about 80 scientists
through four workshops. The goal to understand the mechanisms of behavior of hepatocytes was ultimately
selected because of the hepatocyte’s central function in metabolism, their central role in the uptake and
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conversion of drugs and thereby their interest to industry, and their ability to regenerate. The panel expected
this research to have high impact on problems in pharmacology and pathophysiology, despite the challenges
involved in the complex biology of hepatocytes, the difficulty in their handling and cultivation, and need to
create a bioinformatic and modeling framework to organize information about them. The Hepatocyte Project
has an interdisciplinary competence network linking bioscience with computer science, mathematics and
engineering sciences. Two sub-projects (Project A is detoxification and dedifferentiation in hepatocytes and
Project B is regeneration of hepatocytes) rest on two technological platforms, cell biology and modeling. The
project has 25 participating groups, and funding of €14 million is provided over three years beginning in
2004.

Another large consortium project entitled “Biosimulation; A New Tool in Drug Development”
(http://chaos.fys.dtu.dk/biosim/Beskrivelse_af BioSim.html) was announced in December, 2004 by The
European Commission and the Technical University of Denmark (DTU) to support the growing importance
of modeling for biomedical research, and pharmaceutical development in particular. The project is funded
under the European Union's Sixth Framework Program for Research at the level of €10.7 million over five
years. The project’s aim is to strengthen Europe's competitiveness within drug development by bringing
together the leading European biosimulation experts in a scientific network and promoting collaboration
across disciplinary boundaries as well as between industry, regulatory authorities, and academia. The
network will focus on the development of professional, physiologically based models that can help the
pharmaceutical industry develop safe and effective drugs at significantly lower costs. It was motivated by the
recognition that academic institutions in Europe have significant expertise in biological modeling, and
several groups are individually at the research front in their specific areas, but the research is strongly
fragmented and the industry itself has relatively few qualified experts in the field. Coordinated by the DTU,
the network comprises approximately 100 researchers from 25 universities/research centres, nine small or
medium-sized enterprises, the medicines agencies of Denmark, Spain, the Netherlands and Sweden, and one
large pharmaceutical company, Novo Nordisk.

Biological Modeling and Network Organization Analysis in Japan

Modeling of biological systems is quite evident in Japan, although from the sites the panel visited it appears
to be less extensively utilized than in the U.S. and Europe. The sites with modeling components of their
research that the panel visited are included in Table 4.1 and a few of those are highlighted here.

The work of Satoru Miyano focuses on estimating gene networks from genome-wide biological data, as well
as software tools for bioinformatics and modeling (described below) and pathway database projects. Miyano
is the current president of the Japanese Society for Bioinformatics, and the editor-in-chief of the newly
established IEEE Transactions on Computational Biology and Bioinformatics. This group has developed
hybrid functional Petri net methods for gene network inference (Akutsu, Miyano, and Kuhara, 2000; Doi et
al., 2004) and their current Gene Network Inference Method (G.NET) can yield the optimal gene network for
twenty genes (on a Sun Fire 15K 100 CPU machine) in one day. As a test case they used the method to
discover the function of the oral antifungal griseofulvin and predict new targets related to it. Specifically,
they measured gene expression as a function of exposure, and used a Boolean network approach using the
drug as a virtual gene to predict genes that were directly affected by the drug. Then they made predictions of
related components in the pathway that would also be effective if manipulated (Savoie et al., 2003). This
work was done in collaboration with a small company with compounds related to griseofulvin.

A well-known modeling group in Japan is that of Hiraoki Kitano of the Symbiotic Systems Project associated
with the Systems Biology Institute (SBI). The basic goal of the project is to develop and apply new
technology and computational tools to understand dynamical phenomenon in cellular systems. Areas of
research include the theory of the robustness of cellular networks, signal transduction in yeast and mammals
(collaborating with the Alpha Project and the Alliance for Cellular Signaling), respiratory oscillations in
yeast, and calcium oscillations in mammalian cells (including collaborations with the Karolinska Institute)
(Ktano et al., 2004; Kitano, 2004; Yi, Kitano and Simon, 2004). A significant focus of Kitano’s work has
been the development of modeling software and markup languages to encode and share models as described
below, as well as advanced hardware platforms for simulations.
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European and Japanese Sites Utilizing Modeling Visited by Panel

Institution Location Principal Investigator(s) Research Subjects

Department of Physiology, [ Oxford, Denis Noble, Peter Kohl, Cardiac biology; respiratory biology

Oxford University England Ming Lei

Department of Anatomy, Cambridge, Dennis Bray Chemotaxis in E. coli

Cambridge University England

University of Sheffield Sheffield, Chris Cannings, Richard Cell organization in tissues; system

(multiple departments) England Clayton, Steve Dower, Mike | organization in insect societies;

Holcombe, Nick Monk, Eva protain-protein interaction networks;

Qwarnstrom, Francis inflammatory mediator signaling;

Ratnieks, Rod Smallwood, agent-based models; toll receptor

Phillip Wright, Will signaling; cell signaling and network

Zimmerman pattern formation; ventricular
fibrillation

Mathematics Institute, Coventry, Andrew Millar, Nigel Network regulation; transmembrane

University of Warwick England Burroughs, Jim Beynon, protein transport; Circadian clock;

Greg Challis immunology; population genetics

Centre for Mathematical Oxford, Philip Maini (Director), Jon Nutrient and drug delivery to tissue

Biology/Mathematical England Chapman, Chris Scofield, with application to cancer;

Institute, Oxford University Jotun Hein cardiovascular biology; cell cycle;
model integration methods; population
genetics and genomics; wound healing

School of Biological and Oxford, David Fell Metabolic networks; cell cycle; IkB

Molecular Sciences, Oxford | England regulation

Brookes University

Centre for Mathematics in London, Anne Warner (Director), Liver metabolism; software and

the Life Sciences and England Anthony Finkelstein, methods to integrate across biological

Experimental Biology, Jonathan Ashmore, Robert scales

University College London Seymour

Computational Systems Hinxton, Nicolas LeNovere Topology and dynamics of neuronal

Neurobiology program, England cell signaling pathways; dopamine

European Bioinformatics signaling

Institute

German Cancer Research Heidelberg, Otmar Wiestler, Siegfried Hepatocyte Project; signaling

Center/Hepatocyte Project Germany Neumann, Ursula pathways; structural and functional

Klingmuller, Willi Jager, genomics; cancer risk factors and
Wolfgang Driever, Matthias | prevention; tumor immunology;
Reuss, Eric Karsenti, Jens innovative diagnostics and therapy
Doutheil, Jan Hengsteler,
Sven Sahle
Max Planck Institute for Magdeburg, | Ernst Dieter Gilles, Jorg Model validation and experiment
Dynamics of Complex Germany Stelling design; signal transduction and

Technical Systems

regulation; computer-aided modeling
and analysis of cellular systems
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European and Japanese Sites Utilizing Modeling Visited by Panel
Institution Location Principal Investigator(s) Research Subjects
Collaborative Research Berlin, Reinhart Heinrich, Hanspeter | Metabolic control; biological
Center for Theoretical Germany Herzel, Peter Hammerstein, dynamics; Ras signaling; Circadian
Biology, Humboldt Hermann-Georg Holzhutter clock; Huntington’s disease;
University Hepatocyte Project
Department of Vertebrate Berlin, Hans Lehrach, Edda Klipp, Yeast stress response and
Genomics, Max Planck Germany Silke Sperling mitochondrial damage; Downs
Institute for Molecular syndrome; cardiac development;
Genetics
University Libre de Brussels, Albert Goldbeter Biological dynamics, Circadian
Bruxelles Belgium rhythms, cell cycle
Vrije Universitaet Amsterdam, | Hans Westerhoff, Jurgen Metabolic control analysis, network

(Free University)

Netherlands

Haanstra, Frank
Bruggemann, Jorrit
Hornberg

based drug design, Silicon Cell
toolkit, signal transduction

Delft University

Delft,
Netherlands

Wouter van Winden

Metabolic control

Cell/Biodynamics
Simulation Project, Kyoto
University

Kyoto, Japan

Akinori Noma (Director),
Tetsuya Matsuda, Nobuaki
Sarai

Cardiac biology; biosimulation
software development

University Tsuruoka
Campus

Symbiotic Systems Project, | Tokyo, Hiraoki Kitano Modeling technology; model

Systems Biology Institute Japan standards technology; robustness of
cellular networks; yeast signaling

Human Genome Center, Tokyo, Satoru Miyano Gene network inference from genome-

Institute of Medical Japan wide data; yeast networks; pathway

Science, University of databases; software for bioinformatics

Tokyo and simulation

Department of Tokyo, Shinichi Morishita, Takashi Functional genomics and signaling in

Computational Biology, Japan Ito budding yeast; mammal epigenomics;

Graduate School of Frontier computational approaches to Omics

Sciences, University of

Tokyo

RIKEN Yokohama Institute | Yokohama Akihiki Konogaya, Mariko ErbB-mediated signal transduction;

City, Japan Hatakeyama, Shuji Kotani yeast cell cycle; reaction-diffusion

systems; Grid computing; cell cycle
modeling

Institute for Advanced Yamagata, Masaru Tomita, Hirotada E-CELL project

Biosciences, Keio Japan Mori

Bioinformatics Center,
Institute for Chemical
Research, Kyoto University

Kyoto, Japan

Minoru Kanehisa

KEGG project; dynamic metabolic
models
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Modeling of electrophysiological phenomena, with flavors of intracellular signaling, cell behaviors, and
multicellular/tissue/organ categories, is the work of Akinoi Noma at Kyoto University. Noma has had a
distinguished career in experimental cardiac physiology and electrophysiology and only added modeling to
his research methods in the past several years. His Cell/Biodynamics Simulation Project is focused on
developing and applying models of cardiac myocytes and their integrated function in the heart, closely
related to work by Noble described above. Their novel contributions include the addition of intracellular
biochemical mechanisms such as ATP utilization, redox state balance, and pH (Matsuoka et al., 2004). In
contract, most myocyte models have concentrated on cell surface molecular entities and behaviors,
specifically the ion channels, pumps and action potentials. This is a National Leading Project for Cooperation
between Industry and Academia sponsored by Ministry of Education, Culture, Sports, Science and
Technology (MEXT) on a five-year grant, which requires industry involvement and work that is relevant to
economic growth. Dr. Noma has involved seven pharmaceutical companies to date, including Nippon
Shinyaku, Shionogi, Sumitomo Chemicals, Tanabe, Sankyo, Takeda, and Mitsubishi Well Pharma, as well as
researchers at Kyoto and Keio Universities in Japan and others in Poland and Korea. Four of the
collaborating companies have placed a full-time employee in the Dr. Noma’s group in Kyoto, while the
others send visiting researchers for short visits periodically. This project is also a major developer of
modeling/simulation tools, as described in infrastructure below.

In the area of network organization analysis, the work of Masanori Arita (University of Tokyo) has
demonstrated how structural information of metabolites is important for computing biochemical pathways
and understanding the network properties of those pathways (Arita, 2004).

INTEREST AND INVOLVEMENT OF INDUSTRY

The interest and involvement of industry in systems biology efforts that include modeling and network
organization work are significant although hardly ubiquitous, and quite variable between regions. The
industry of concentration is pharmaceutical and biotechnology, although applications in the nutraceutical,
agricultural supply/chemical and bioprocess industries also exist. Here activities within the industry as well
as the relationship between industry and academia are summarized.

R&D Using Modeling in Industry

Companies using mathematical models of biological systems are treating them essentially as in silico
laboratories that complement the experimental laboratories. As described in the introduction, models are
particularly suited to tracking the states of and relationships among numerous elements through time and
space, especially for large, complex systems as found in biology and medicine. Applications of systems
biology modeling within the pharmaceutical industry vary from drug target identification to clinical trial
design and analysis. Models of intracellular biochemical networks are typically utilized to investigate how
modulation of that network, by agonizing or antagonizing network components, affect the associated cell
function. The direct relationship of that cell function to a particular disease is disease-specific, for instance
proliferation of a cancer cell is directly related to disease outcome (tumor size, say), whereas modulation of
an inflammatory cell within the asthmatic airways still requires extrapolation to relevant clinical endpoints.
Models of whole organs in which a disease is isolated, like the heart for cardiac arrest or arrhythmia, or of
multicellular/tissue/organ systems that include relevant clinical endpoints, bridge cellular function to relevant
clinical outcomes much as an experimental animal model would.

Given that drug targets are nearly always molecular, modeling within the pharmaceutical industry is most
frequently focused at the level of intracellular biochemical networks. Several companies in the U.S. that are
focused on development and use of such intracellular network models include Gene Network Sciences
(U.S.), Merrimack Pharmaceuticals (U.S.), Genomatica (U.S.) and Physiomics (U.K.). Gene Network
Sciences uses inference modeling and mechanistic simulation of intracellular biochemical and gene networks
related to cell cycle to do research on cancer and its treatment (Christopher et al., 2004). More recent
directions include cardiac electrophysiology. Physiomics also focuses on modeling cell cycle control. EGF
receptor dynamics and downstream signaling associated with various cancers are the subject of modeling at
Merrimack Pharmaceuticals. In contrast, Genomatica utilizes models of microbial and yeast cell metabolism
to improve bioproduction of chemicals and proteins, among other applications.
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Multicellular/tissue/organ network function has also attracted the application to pharmaceutical development.
Entelos, Inc. (U.S.) utilizes dynamic ODE models of the biological systems involved in specific diseases to
evaluate drug targets, select lead compounds, predict biomarkers, and design clinical trials. Current areas of
work include model representations of human diseases (asthma, hematopoiesis, obesity, rheumatoid arthritis,
and type 2 diabetes), and animal models of human disease (type 1 diabetes).

Larger pharmaceutical companies that utilize biological systems modeling in some of their R&D activities
include Pfizer, AstraZeneca, Hoffman-La Roche, Johnson & Johnson Pharmaceutical Research Division,
GlaxoSmithKline, Novartis, Organon, and Bayer. This list is probably not exhaustive. In some of these
companies the inclusion of modeling is quite extensive, while in many it is often confined within a single
therapeutic area or a single group that works with multiple experimentalists.

There seem to be fewer companies primarily devoted to using modeling as a primary R&D method in other
areas of the world. In addition to Physiomics mentioned above, another modeling-focused company is
Optimata in Israel, whch utilizes modeling to optimize drug dosing and schedules, in particular for cancer
treatment.

While companies are notably less forthcoming than academic researchers with making their models and
research results public, there is emerging evidence that modeling is significantly impacting pharmaceutical
development. For example, Entelos and Organon recently made public that they are engaging in collaborative
drug development focused on three novel targets that were identified using Entelos Rheumatoid Arthritis
PhysioLab® platform (http://www.entelos.com/news/pressArchive/press62.html). Johnson & Johnson
Pharmaceutical Research and Development has also disclosed that simulations of a type 2 diabetes drug with
Entelos Metabolism PhysioLab platform enabled them to reduce the patient recruitment requirements by 60%
and trial duration by 40%, as compared to the originally proposed trial protocol (Trimmer et al., 2005).
Optimata has also made public that they are utilizing their simulation methods to create individualized
treatment protocols for breast cancer patients in a clinical trial at the Nottingham City Hospital Trust,
although results are not yet available for the study (http://www.export.gov.il/Eng/_Articles/
Article.asp?CategorylD=464&ArticlelD=1017). An example of results from a large pharmaceutical company
is Hoffman-La Roche’s use of modeling of a treatment for hepatitis C. They used modeling and simulation to
account for a variety of factors in different patient populations such as genotype of virus and weight of the
patient. The results were important for the approval of the drug in both Europe and the U.S. (McGee, 2005).

Relationships between Academia and Industry in Different Regions

Close relationships between industry and academia were particularly obvious in Japan in comparison to the
U.S. and Europe. Many Japanese academic researchers stated that the government research funding agencies
strongly encouraged collaborations with industry and the transfer of technologies to industrial concerns,
either through the start up of new companies or to established companies. In numerous laboratories there was
active involvement in the research by industry staff in residence.

In contrast, in Europe the relationship of industry to academic research was at the level of a few
collaborations (without exchanging personnel) and the encouragement by funding agencies to transfer
findings and technology developments to industry. The recent large collaborative projects in Germany and
the EU described above were both influenced by the interests of the pharmaceutical industry, although in the
Hepatocyte Project there is no actual industry involvement. The EU Biosimulation project is too new to know
how involved the corporate partners will become beyond providing funding.

In the United States, academic-industry collaborations are common, although it is uncommon for industry
personnel to spend time in an academic lab. The reverse is probably more likely. It has become the norm for
universities in the U.S. to patent research findings and then license them to companies or for the inventors to
start new companies to commercialize the inventions.

INFRASTRUCTURE SUPPORTING MODELING AND NETWORK ORGANIZATION ANALYSIS

Throughout the U.S., Europe and Japan, the study panel found significant efforts devoted to the development
of software platforms in which to build and simulate mathematical models of biology (and sometimes more
general) systems. While variations exist among these platforms, the panel concluded that significant
replication of numerous features and capabilities among them also exist. A table listing a number of
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modeling and simulation platforms focused on or frequently used for modeling of biological system networks
is given in Table 4.2 along with some descriptive information and web sites at which the reader can learn
more. Additional lists on the web can be found on the Systems Biology Markup Language (SBML) web site
(http://sbml.org) for software packages that are compatible with SBML and the Bio-SPICE web site
(https://users.biospice.org/tools.php) for those that are part of the Bio-SPICE project.

for academic
use

Table 4.2
Software for Modeling and Simulation of Biological Systems
Software Main Applications Developer or Availability Web site
Platform Main Contact to Others®
Bio-SPICE Collection of many DARPA.- Source and https://users.biospice.org/hom
software packages with sponsored binary e.php
many applications—see consortium; Sri download via
web site Kumar, program | web site
manager
Virtual Cell | ODEs with multiple Leslie Leow, Use through http://www.vcell.org
compartments; PDEs u.s. internet
Teranode Teranode Corp. Commercial; http://www.teranode.com
Design Suite reduced price
for academic
use
MATLAB General math simulation The MathWorks Commercial; http://www.mathworks.com
& SimuLink | tool reduced price

Mathematica

General math equation
solver and simulation

Wolfram
Research, Inc.

Commercial;
reduced price
for academic
use

http://www.wolfram.com

electorphysiologic tissue
(heart)

YAGNS Biochemical reaction RIKEN Access via http://big.gsc.riken.jp/big/Res
(Yet network simulator (ODEs) | Yokahama, Japan | web upon earch/Cellular_Knowledge_M
Another request odeling_Team/Folder.2004-
Gene 01-15.5608/Folder.2004-01-
Network 15.5713/Document.2004-01-
Simulator) 15.3211
Genomic Biological pathway Gene Networks Contact http://www.genomicobject.net
Object Net/ | modeling and simulation Inc., Japan company /member3
Cell based on hybrid functional
Ilustrator Petri net (HFPN) and XML
Cell Structured diagram editor Hiraoki Kitano, Download via | http://www.celldesigner.org
Designer for drawing gene- Japan web site

regulatory and biochemical

networks; simulation by

linking to other packages
SimBio / Cell electrophysiology and | Akinori Noma, Download via | http://www.sim-bio.org
DynaBioS® | Finite element modeling of | Japan web site
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Table 4.2
Software for Modeling and Simulation of Biological Systems
Software Main Applications Developer or Availabilitly Web site
Platform Main Contact to Others

JDesigner/Ja | Biochemical network Systems Biology | Download via | http://www.sys-bio.org

rnac layout tool and simulation Workbench web site
package (ODEs) project, Japan

and U.S.

ProMoT/DI Object oriented and Martin Ginkel, Download via | http://www.mpi-

VA equations based modeling Germany web site magdeburg.mpg.de/de/researc
tool for simulation; h/projects/1002/comp_bio/pro
differential and algebraic mot
equations

GENESIS/ Graphical simulation Sharat Vayttaden | Download via | http://stke.sciencemag.org/cgi

Kinetikit environment focused on and Upinder web site [content/full/sigtrans;2004/21
signaling networks Bhalla, India 9/pl4/DC1

Copasi Complex pathway Pedro Mendes, Download via | http://www.copasi.org
simulator (not biology U.S. and Ursula web site
specific) Kummer,

Germany

Cellerator (a | Mathematica package for Bruce Shapiro, Download via | http://www.cellerator.info

Mathematica | automatic equation Eric Mjolsness, web site

package) generation and simulation u.S.
for signaling networks and
networks of cells

BioNetGen Cell signaling networks Michael Blinov, Download via | http://cellsignaling.lanl.gov/bi
based on interactions of James Faeder, web site onetgen
individual molecules William

Hlavacek, U.S.

E-Cell Object-oriented software Masaru Tomita, Download via | http://www.e-cell.org
suite for modeling, Japan web site
simulation, and analysis of
large scale complex
systems

JigCell Modeling of biochemical Virginia Tech Download via | http://jigcell.biol.vt.edu
reaction pathways web site

MCell Monte Carlo simulator of Thomas Bartol, Download via | http://www.mcell.psc.edu
cellular microphysiology Jr., and Joel web site

Stiles, U.S.

COR Cell electrophysiology Denis Noble, To be http://cor.physiol.ox.ac.uk

(Cellular U.K. available via

Open web site

Resource)

1 Terms of availability frequently differ depending on the expected use of the software (e.g., non-commercial or commercial) and may

require licenses for other software used in the package.

Reasons given by researchers for developing new platforms included the need to have faster simulation
capabilities, improved usability, and features specific to the biologic system being modeled by the
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developer’s research group. Usability issues were mentioned with particular attention to making models and
simulation more accessible to non-expert users, although technical usage was also mentioned. The latter
includes such things as ease of specifying model equations (e.g., specifying equations by drawing structured
diagrams rather than typing them), input and modification of parameter values, specification of protocols to
simulate, and storage/retrieval of simulation specifications and results. Features desired were typically
specific mathematical methods such as those to handle stochastic processes or finite element algorithms, as
well as analytical methods such as parameter optimization or sensitivity analysis.

Some modeling software is available commercially, the most commonly used (at least in the U.S.) general
purpose numerical computing platform being MatLab by The MathWorks, followed perhaps by Mathematica
(Wolfram Research). Matlab and Mathematica both have announced special tools for systems biology. More
specialized commercial software includes Berkeley Madonna, and a number of pharmacokinetic simulation
packages. Benefits of such commercial platforms are their formal quality assurance/quality control (QA/QC)
processes as well as formal means for reporting bugs and requesting new features. The disadvantage is that
they are not free, although the cost of most commercial packages tends to be nominal for academic use.
Many of the mentioned packages are not specialized for biological systems, are not well linked to biological
databases and data sources, and are not user-friendly for the biological user. For the many platforms being
developed noncommercially within research groups, the most common method of dissemination (when
available) is via the group’s web site. The advantage of development within research groups is that the
software features and user interface can be closely guided by end-users within the group. Some
disadvantages, however, are that QA/QC procedures for such software are frequently unclear and likely
absent in many cases and “services” to users outside the developer’s group, such as ways to report bugs and
request new features, are not always clear and response by developers not assured.

The fact that so many new packages are in development strongly suggests that those available, commercial or
otherwise, are not fully meeting significant needs of the biological modeling community. While no one piece
of software will meet the needs of all modeling efforts, the panel believes that the community would be well-
served by a national or international resource devoted to making broadly applicable platforms widely and
freely available, as well as supporting maintenance and expansion. Such a resource should reduce the
ongoing proliferation of somewhat duplicative and quite expensive software development. The Bio-SPICE
program funded by Defense Advanced Research Projects Agency (DARPA) for the last three years is an
example of such a program although it focused primarily on initial development for an open-source
infrastructure for integrating such software. The funding for this project ends in 2005 and currently there are
no allocated resources from DARPA or elsewhere to continue funding to support dissemination of the
resulting software or its continued development.

Sharing of Models

Historically models have been shared through literature publication. As modeling has become a more
common way to do biologic research and the models themselves have become larger, this method has
become less satisfactory to many and a strong desire to more easily share models in electronic form between
research groups has grown. While some researchers simply want to use or modify published models without
having to re-generate computer code to do so, others also want to integrate others’ models with their own to
create models of larger biological systems.

The main difficulty in sharing models electronically is that models are encoded for specific software and
hardware platforms that aren’t universally compatible with software or hardware in other labs. To alleviate
this problem, two main international efforts are underway to better enable model sharing, namely, the
development of markup languages that encode mathematical equations typically used in models of biological
systems. For encoding models, Systems Biology Markup Language (SBML,; http://sbml.org) (Hucka et al.,
2003) and CellML (Cell Markup Language; www.cellml.org) are two major languages under development.
The idea is to create a language analogous to HTML (hypertext markup language), the common encoding
language for the web. As long as one has an HTML “decoder” on one’s computer, e.g., a browser such as
Microsoft Internet Explorer, then one can interpret the text, pictures, etc. encoded in an HTML file and the
same file can be viewed on all computers. SBML is focused on language to encode math that describes
biochemical reaction networks while CellML is focused on describing cellular components and
compartments as well as biochemical reaction networks. SBML began in Japan and at CalTech and has since
become an international collaboration effort with funding from the U.S., Japan and the U.K. Development
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efforts on CellML are based in New Zealand. At least one other biological modeling-focused markup
language is being developed by Satoru Miyano’s group in Japan, labeled Cell System Markup Language,
although it does not appear to be publicly available yet.

Part of the effort associated with both SBML and CellML is the development of a public repository of
models online in the markup language (see http://sbml.org/models.html and http://www.cellml.org/examples/
repository/index.html, respectively). Authors of models are encouraged to deposit a version of their model on
the web site, available for download by others. Another such repository just launched in April, 2005, is
Biomodels.net (http://www.biomodels.net/), which is supported by multiple organizations from several
countries. Numerous individual labs also provide either models for download or for simulation over the
Internet via their web sites.

While none of these markup languages are as yet accepted as the standard, researchers (at least in the U.S.)
generally acknowledge SBML as being the most frequently used. Certain U.S. funding agencies, including
the National Science Foundation (NSF), have taken the position that models developed with their funding
must be made publicly available in SBML. The panel is not aware of such a policy at other agencies or
nonprofit funding groups in the U.S. or by funding agencies in other countries. Journals generally do not yet
require that authors provide electronic versions of their models to the readership in any form.

NEEDS AND RECOMMENDATIONS

In this study the panel has recognized several needs and deficits of the modeling efforts in systems biology
and makes several recommendations to alleviate these. First and foremost, the panel notes the need for
substantially greater and more widespread integration of modeling and experimental programs. Currently the
majority of modeling and experimental efforts on a given subject are performed somewhat or completely
remotely from each other. This decreases the benefit of both to each other, and slows progress in developing
new understanding in many fields. Data from diverse laboratories and with diverse protocols are often found
to be difficult to compare when placed in model context implying both that models can help ensure
consistency among datasets thus preventing spurious conclusions about the significance of a particular
observation and that data quality control is even more important than model quality control. While it may
seem from the highlighted examples above that modeling work is commonly integrated with
experimentation, the examples were selected in part because they demonstrated how well-integrated
programs provided unique insights into the subjects of study. The reason that such tight integration is
promoted by the panel is because models can’t be developed or tested without experimental data, and the
experimentation that provides the necessary data is often not obvious without the model guiding its design.
The experiment-model iteration paradigm that is most productive is illustrated in Figure 4.3.

Closely related to the need for experimental-modeling integration within research endeavors is a need for
improved means of comparing experimental data and modeling results. Many software platforms for
modeling currently don’t support easy representation of experimental data, for instance, so both the data and
modeling results have to be exported to a third software to allow the comparison.

Another major need is for a means of disseminating and maintaining good cheap or free software appropriate
to modeling of various problems nationwide and internationally. The proliferation of modeling software
platforms was discussed above. It is the panel’s conclusion that many of these platforms are duplicative and
the time and cost being expended to develop all of them could be better used to make some of them more
widely available as well as to maintain and expand those platforms.

The panel also agrees with the widely stated desire of researchers to be able to more easily share their models
with one another in electronic form. The panel therefore supports the efforts of the groups developing SBML
and CellML, however, these are efforts funded by several grant agencies, that funding is not guaranteed, and
no one is required to use either of these (or other translational languages), so their future, and the possible
future of improved ease of sharing models, is not assured.
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Model development and refinement
(Components, Connections, Dynamics, Magnitudes)
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Figure 4.3. With the purpose of increasing understanding of a biological system function, one needs a set of
data to develop the first model. That first model can then be simulated or analyzed to pinpoint
uncertainties that are important to the system and then recommend a new set of experiments to measure
relevant quantities to reduce those uncertainties. The new data can be used to revise the model. The
model at various stages of iteration can also be used to test hypotheses about the system’s function or
means of modulating that function, and interesting predictions from those tests can then also be verified
(or refuted) experimentally.

SUMMARY OF KEY FINDINGS

This chapter described the state of systems biology research involving modeling and network organization
analysis. A number of key findings can be summarized. Modeling and network organization analysis efforts
are utilized in many areas of biological study and in all countries visited, but are definitely not ubiquitous
throughout biological and biomedical research. The panel found that research efforts that closely integrated
modeling with experimental work were the most productive in terms of driving new understanding of a
biological system. Related to this, the panel concluded that a substantial increase in the number of efforts
using model-based experimental design is needed to attain the most informative data, which leads to
maximally useful models. An implication of this is that having large data generation centers to globally
profile molecular abundances or activities might not provide the ideal substrate for gaining a
mechanistic/causal understanding of how cells transform genotype into phenotype. Data generation and
models that integrate, follow implications of, and make testable assertions about the causal basis of that data
need to be strongly linked. In addition, better tools for model-experiment comparison would be helpful.
Significant resources are being invested in the development of modeling and simulation software worldwide,
and at least some duplication of effort is apparent. Sharing of models between researchers remains a
challenge but is being addressed by the development of several markup languages. Finally, the involvement
and interest of industry in use of modeling in biology is significant although, again, not ubiquitous.
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CHAPTER 5

SYSTEMS BIOLOGY IN PLANT RESEARCH

Fumiaki Katagiri

INTRODUCTION

Generally speaking, systems biology research in plants has not reached an advanced stage, a situation largely
due to the low level of funding for basic plant research. There are two major reasons for this. First, crop
species to which plant research outcomes could be applied are numerous and diverse, and many problems
that need to be solved are species-specific. Therefore, resources are spread thinly among many different plant
systems. There is also strong political pressure to shift plant research funding toward crop species at the
expense of model systems, even though the crop systems are generally less tractable. Since quality, quantity,
and correlativity of experimental data and a repeating cycle of experimental and theoretical work are critical
for success in systems biology, it would be best to focus on model plant species at this stage. Second, the
agribusiness industry is showing declining interest in applications of biotechnology. Due to the anti-GMO
(genetically modified organism) movement in developed countries, the industry expects difficulty in
marketing biotech-based high-value products, such as functional foods, which could involve complex
metabolic engineering. The declining research activities in the agribusiness industry also reduce the
employment prospects for scientists trained in plant biology. Low funding levels are directly related to
slower progress in new basic research areas, such as systems biology, especially when the research requires
relatively large early investments and long periods of time for outcomes to be apparent. Furthermore,
interdisciplinary research areas such as systems biology need to attract researchers from different disciplines
to particular biological systems, which is difficult when funding levels are low and future job prospects are
poor. In this context, it was disappointing to learn that a major plant systems biology collaborative program
in Japan, the rice genome simulator project, was abruptly cancelled last year without clear explanation.

Another challenge, which is not specific to the plant research field, is that the humber of senior principal
investigators (P1s) who can properly evaluate systems biology projects is very small. Senior Pls are the ones
who would organize large projects, make major changes in curricula, review manuscripts, evaluate grant
proposals, and promote young researchers. Due to the enormous success of molecular genetics for many
years, a large percentage of senior Pls cannot appreciate projects that are not reductionism-oriented and do
not yield clear yes/no answers based on highly simplified hypotheses. The effect of this on systems biology
funding is severe. This bias constitutes a drag on the adoption of systems biology by the research community.
Training the next generation of researchers in systems biology is another important issue, and it is discussed
in detail in Chapter 6. However, this senior Pl issue is, in a sense, more important than training young
researchers. Young researchers would easily be discouraged if they were not properly evaluated and
encouraged by people with the power to influence their careers.

To accurately model a biological network, researchers need to know the identity and function of a sufficient
number of molecular components that correspond to nodes in the network, although what fraction is
sufficient is frequently debated. Molecular networks in many plants are generally less well-studied than in
animals and microbes, and it is believed by many that not enough is yet known to move to modeling.
Therefore, in many networks, identification of components is a major task at present. Functional genomics,
i.e. discovery of gene function on a large scale, is a popular approach for this purpose. Public funding, such
as Arabidopsis 2010 by the National Science Foundation (NSF) and programs funded by the EU, is
supporting many ongoing functional genomics efforts in the U.S., Europe, and Japan. The panel visited some



54 5. Systems Biology in Plant Research

of the major sites for these efforts, such as Dr. Beynon’s group for the Complete Arabidopsis Transcriptome
MicroArray (CATMA) program (http://www.catma.org) in Europe (Hilson et al., 2004) and Dr. Shinozaki’s
group at the RIKEN Genome Sciences Center in Japan (Sakurai et al., 2005). However, plant research
programs that have advanced beyond the stage of component identification do exist. In the following
sections, some examples of advanced plant systems biology research are reviewed. The sections are divided
according to the areas of research rather than by geographic areas. This is because clear regional differences
were not apparent and because it is crucial for the plant research community to coordinate and cooperate at
the global level since the total funds available for research in these areas are limited.

METABOLIC NETWORKS

The structures of major metabolic networks are well established. Some groups are already studying dynamics
of the networks. While metabolic networks can be illustrated as conventional metabolic maps, it is not clear
which routes are really important to explain the fluxes in these networks. Dr. Fell (Oxford Brookes
University) applied the elementary mode analysis (Schuster et al., 2002) to phase 3 (daylight metabolism of
stored malate with no net CO, uptake) of the Crassulacean acid metabolism (CAM). CAM plants are
typically plants of arid climates. They open stomata during the night to assimilate CO, into malate, and
during the day they use the carbon stored in malate for Rubisco (ribulose 1,5-bisphosphate
carboxylase/oxygenase) -driven carbon fixation without opening stomata. In this way they minimize loss of
water. The analysis predicted six distinct pathways that could be used to accomplish CAM whereas only five
pathways were known. Later, Mesembryanthemum crystallinum (common ice plant) was found to use the
sixth pathway for CAM, validating the prediction.

Dr. Shachar-Hill’s group (Michigan State University) combined the Elementary Mode Analysis with
experimental measurements of mass balance, enzyme activity and stable isotope labeling in a study of
carbohydrate conversion to oil through glycolysis in immature green seeds of Brassica napus (oilseed rape)
(Schwender et al., 2004). The efficiency of conversion was higher than expected. They discovered that
refixation by Rubisco of released CO, explains the high efficiency. This was the first description of the role
of Rubisco in this context.
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Figure 5.1. A newly discovered pathway for refixation of CO, released during conversion of
carbohydrate to storage fat (Schwender et al., 2004).

Major efforts to collect correlated messenger ribonucleic acid (mRNA) profiles, metabolite profiles, and
other phenotypes from many genetically perturbed Arabidopsis plants are under way at the Max Planck
Institute for Molecular Plant Physiology (http://www.mpimp-golm.mpg.de/) in Golm, Germany and by
members of a collaboration led by the Kazusa DNA Research Institute (KDRI) (http://www.kazusa.or.jp/eng/
index.html) in Chiba, Japan. The research in Germany is led by Drs. Willmitzer and Stitt and focuses on
primary metabolism. In addition to use of the Affymetrix GeneChip array, they collect mRNA profiles of
most transcription factor genes using a high-throughput real-time reverse transcription-polymerase chain



Fumiaki Katagiri 55

reaction (RT-PCR) (Czechowski et al., 2004). They also measure protein levels of major enzymes and use
other specialized profiling methods. The research in Japan is led by Drs. Shibata (KDRI) and Saito (Chiba
University) and focuses on secondary metabolism. They use sophisticated equipment (gas chromatography
time-of-flight mass spectrometry—GC-TOF-MS, Liquid chromatography photo-diode-array-detection mass
spectrometry—L C-PDA-MS, Capillary electrophoresis mass spectrometry—CE-MS, liquid chromatography
fourier transformation mass spectrometry—LC-FT-MS, and liquid chromatography time-of-flight mass
spectrometry—L C-TOF-MS) for metabolomic measurements in addition to mRNA profiling with the Agilent
microarray (Hirai et al., 2004). Accurate mass information obtained by Fourier transformation mass
spectrometry (FT-MS) is a great help in identification of metabolites. The Japanese group uses a well-
established suspension culture cell line to ease the issue of establishing consistent growth conditions. Both
German and Japanese groups have invested in bioinformatic tools, including viewers that integrate
expression and metabolite information along metabolic maps (Thimm et al., 2004).

To understand the dynamics of metabolic networks, metabolic flux measurements are important. Dr. Shanks
(lowa State University) has developed a computer-assisted method to estimate metabolic fluxes of several
pathways using biosynthetically directed fractional **C-labeling and two-dimensional [**C, *H] nuclear
magnetic resonance (NMR) (Sriram et al., 2004). This method could be applicable for many known
metabolic networks.

REGULATORY NETWORKS IN DEVELOPMENTAL PROCESSES

Thanks to extensive genetic analysis, many important components of regulatory networks that control several
developmental processes are known. If key information can be collected about the important components,
sufficient information may be obtained to model such regulatory networks at a practical level. Some
developmental processes are explained by transcription-regulatory cascades. In such cases, the activity of
each gene is well correlated with the mMRNA level of the gene. For plants to be successful in evolutionary
terms, it is crucial to have flowers open and seeds set at the right time in the growing season. Many factors,
such as photoperiod (day length), the plant hormones called gibberellins, and experience of cold weather, can
affect flowering time. Dr. Welch (Kansas State University) modeled the Arabidopsis flowering time control
system using mMRNA levels of the important molecular components of the process (Welch et al., 2003).
Circadian rhythms are important in developmental controls as well as in physiological controls. For example,
plants measure photoperiod by comparing it with their own circadian rhythms. Dr. Millar and his
collaborators (University of Warwick, U.K.) modeled the Arabidopsis circadian clock (Locke et al., 2005).
Although circadian clocks exist in diverse organisms, such as cyanobacteria, fungi, animals, and plants, the
molecular machinery in different organisms seems to be quite diverse. In the case of cyanobacteria, an in
vitro system composed of three proteins that can generate a 24-hour period has recently been reconstituted
(Nakajima et al., 2005). It is of interest to see whether the network structures and the system control are also
diverse, even though the resulting clocks are all robust in the maintaining period.
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Figure 5.2. Model for the central feedback in the Arabidopsis clock (Locke et al., 2005).
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An ambitious project called The Computable Plant has been initiated by a consortium led by Dr. Meyerowitz
(Cal Tech) (http://www.computableplant.org/). This project aims to model development of the shoot apical
meristem (SAM) in Arabidopsis. Meristems are the inner plant tissues, where regulated cell division, pattern
formation, and differentiation give rise to plant parts like leaves and flowers. The project includes modeling
efforts as well as experimental efforts to monitor the cell lineage of specific cell types in real time (Reddy et
al., 2004). This process will ultimately be automated.
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Figure 5.3. Variation of theoretically generated plant architectures (Ferraro et al., 2005).

Morphogenesis has been a central interest in developmental biology. Some modeling work has been done to
explain plant morphogenesis at various scales. Dr. Coen’s group (John Innes Center, Norwich, U.K.)
measured cell growth in the snapdragon petal using clonal analysis (Rolland-Lagan et al., 2003). Then they
modeled the complex shape of the petal based on the cell growth pattern. Simulation of the model found that
the direction of growth that was maintained parallel to the proximodistal axis of the flower was crucial for
formation of the asymmetric petal shape, but other factors, such as changes in cell shape, were not. Dr.
Prusinkiewicz’s work (University. of Calgary, Canada) involves mathematical modeling of the plant
architecture using L-systems with a small number of parameters (Prusinkiewicz, 2004). For example, diverse
inflorescence shape patterns seen among various dicot plant species could be explained by two parameters
that represent characteristics of a putative factor. This approach can be considered as reverse engineering of
the plant architecture. It will be interesting to see if an actual molecular counterpart of the putative factor
exists.

CONCLUDING REMARKS

Progress of systems biology research in the plant field has been slow. However, several advanced studies
shed light on unique aspects of plants. There are no clear national differences in plant research in systems
biology. Several actions are needed to promote systems biology of plants.

To make the most out of limited funding:

»  Focus on model plant species. It is clear that the majority of advanced studies have been performed with
model plant species, such as Arabidopsis.

»  Cooperate rather than compete at the global level.
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To compensate for the Pl population bias against promotion of systems biology in the research community:
» Implement a sustaining, targeted funding program in plant systems biology.
To raise the next generation of researchers:

» Train biology-major students in quantitative science.
»  Recruit students oriented to mathematics, engineering, physics, and chemistry into plant biology.
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CHAPTER 6

EDUCATION, NATIONAL PROGRAMS, AND INFRASTRUCTURE IN
SYSTEMS BIOLOGY

Marvin Cassman, Douglas Lauffenburger, and Frank Doyle

INTRODUCTION

The future of systems biology will depend on three critical elements: education of a new generation of
scientists who have both biological and mathematical training; the availability of funding that operates
outside of disciplinary boundaries; and the availability of a supportive infrastructure that can accommodate
the needs of an intrinsically interdisciplinary research area. This chapter will consider the status of these
issues both in the U.S. and elsewhere.

EDUCATION

Not surprisingly for such a hot field, systems biology has spurred interest from thousands of researchers,
some just starting their careers, others well established but looking for an opportunity to become involved.
Because of the need to couple computational analysis techniques with systematic biological experimentation,
more and more universities are offering PhD programs that integrate both computational and biological
subject matter.

Page 62 lists a set of current educational programs in this field. Several of the early endeavors in the U.S. are
closely associated with bioengineering. The Computational & Systems Biology graduate program was
established at the Massachusetts Institute of Technology (MIT) in 2004 as a three-way partnership among the
biological engineering, biology, and electrical engineering and computer science departments. The
University of California, San Diego (UCSD) offers a systems biology track within its Bioengineering
graduate program. Other nascent programs are not closely associated with formal engineering programs but
instead arise out of life sciences or medical sciences fields. Examples of these include the new programs at
Harvard Medical School, the Institute for Systems Biology, Oxford University, and Biocentrum Amsterdam.

Given the pace of the field, it is certainly too early to endorse a particular syllabus as the correct or best
option. However, the study of systems biology must lead to a rigorous understanding of both experimental
biology and quantitative modeling. Programs might require that all students, regardless of background,
perform hands-on research in both computer programming and in the wet laboratory. Required coursework in
biology typically includes genetics, biochemistry, molecular and cell biology, with lab work associated with
each of these. Coursework in quantitative modeling might include probability, statistics, information theory,
numerical optimization, artificial intelligence and machine learning, graph and network theory, and nonlinear
dynamics. Of the biological coursework, genetics is particularly important, because the logic of genetics is, to
a large degree, the logic of systems biology. Of the coursework in quantitative modeling, graph theory and
machine-learning techniques are of particular interest, because systems approaches often reduce cellular
function to a search on a network of biological components and interactions. A course of study integrating
life and quantitative sciences helps students to appreciate the practical constraints imposed by experimental
biology and to effectively tailor research to the needs of the laboratory biologist. At the same time,
knowledge of the major algorithmic techniques for analysis of biological systems will be crucial for making
sense of the data.
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An alternative to pursuing a cross-disciplinary program is to tackle one field initially and then learn another
in graduate school. Examples would include choosing an undergraduate major in bioengineering and then
obtaining a PhD in molecular biology, or starting within biochemistry then pursuing graduate coursework in
bioengineering and systems biology. This leads to a common question: when contemplating a transition, is it
better to switch from quantitative sciences to biology or vice versa? Although some believe that it is easier to
move from engineering into biology, the honest answer is that either trajectory can work. Some practical
advice is that if coming from biology, it is best to start by becoming familiar with Unix, Perl, and Java before
diving into more complex computational methodologies. If coming from the quantitative sciences, an
effective strategy is to jump into a wet laboratory as soon as possible.

With the formation of myriad new academic departments and centers, the academic job market is booming.
On the other hand, biotechnology firms and ‘big pharma’ have been more cautious about getting involved.
However, most agree that in the long term systems approaches promise to influence drug development in
several areas: (a) target identification, in which drugs are developed to target a specific molecule or
molecular interaction within a pathway; (b) prediction of drug mechanism of action (MOA), in which a
compound has known therapeutic effects but the molecular mechanisms by which it achieves these effects
are unclear; and (c) prediction of drug toxicity and properties related to absorption, distribution, metabolism,
and excretion (ADME/Tox). In all of these cases, the key contribution of systems biology would be a
comprehensive blueprint of cellular pathways used for identifying proteins at key pathway control points, or
proteins for which the predicted perturbation phenotypes most closely resemble those observed
experimentally with a pharmacologic or toxic agent.

Looking toward higher levels of living systems behavioral hierarchy, students preparing for research careers
in integrative systems physiology should build a strong foundation in core life sciences, mathematics and
engineering. It is particularly useful to be immersed in life sciences courses which present biological
principles in the context of mathematical models and engineering methodologies. An example of such a
course is the year-long course entitled Physiological Foundations of Biomedical Engineering offered in the
Biomedical Engineering department at the Johns Hopkins University. Foundation courses in mathematics
could include ordinary and partial differential equation theory as well as probability theory and stochastic
processes. While not commonly available, introductory course work in nonlinear dynamical systems theory
would be valuable. Students may also opt to build a strong foundation in a core engineering discipline such
as mechanical, chemical or electrical engineering.

Students pursuing any aspect of computational or systems biology at the graduate level face the hard fact that
they must be as deeply educated in relevant areas of the life sciences as their biological colleagues, and they
must be as strong in appropriate areas of engineering and mathematics as their colleagues in traditional areas
of engineering and mathematics. Students will only be successful in this endeavor if they have a true love for
both their chosen areas of biology and math/engineering. The broad discipline of quantitative modeling of
biological systems is one that is developing rapidly and is seeing increased representation in bio- and
biomedical engineering, life sciences and traditional engineering departments. Students may therefore
undertake combined experimental and modeling research or modeling research conducted in collaboration
with experimental investigators with reasonable confidence that they will be able to find an academic
department which appreciates and supports the particular balance they have chosen between modeling and
experimentation.

Comparative Programs

A comparison between U.S. and other countries in education is difficult, largely because the programs that do
exist are of such recent origin. One striking difference is the major role that engineering has played in the
development of systems biology and systems biology training in the U.S. and its relative absence in the EU
and the U.K. (This was not as true in Japan and clear exceptions can be found in Europe, such as the Max
Planck Institute for Complex Technical Systems in Magdeburg.) In general, the backgrounds of the major
practitioners outside the U.S. show a heavier representation in physics and mathematics (the latter
particularly in the U.K.) and very little in engineering. This is stated neither as a positive or negative, but it
does reflect organizational and cultural differences that will be inevitably be reflected in the approaches to
training.
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However, at this point in time the most identifiable characteristic of training in systems biology is its
absence. The most common response to queries about educational programs was that they didn’t exist. Since
the research efforts are themselves of recent origin perhaps this isn’t surprising. However, it is a significant
barrier to the development of the field. It is therefore worth examining some of the programs that the WTEC
panel was able to see.

Japan
Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo

This is the first official department of computational biology in Japan, although others are emerging. It began
in 2003 and has six faculty and about 30 graduate students. Although its focus is on bioinformatics and
“omics” rather than systems biology, it is clearly moving in the direction of modeling and analysis of
dynamics in biological systems.

Bioinformatics Center, Institute for Chemical Research, Kyoto University
Human Genome Center, Institute of Medical Science, University of Tokyo

This is a joint effort that has both teaching faculties and has generated a curriculum in bioinformatics that is
widely used. Although most of the courses are focused on genomics, there are also courses on network
analysis and pathway reconstruction, and modeling and simulation.

Institute for Advanced Biosciences, Keio University

This is both a graduate and undergraduate program with a wide array of courses from genomics to genetic
networks to software engineering. A striking innovation is a student laboratory where bicinformatics students
(presumably those without much of a background in biology) are trained in experimental techniques for up to
a year.

Europe
Humboldt University, Berlin

Humboldt University has an Institute for Theoretical Biology, a Department of Theoretical Biophysics, and a
graduate school in the Dynamics of Cellular processes. Courses in modeling began as long ago as 1993,
making it an early adopter in areas related to systems biology. Students come from all of these programs to
take a well-developed curriculum in bioinformatics, theoretical biology, and biophysics including formal
courses on systems biology and mathematical modeling. They also run two-week workshops in the area.
International graduate collaboration programs have been established with Bioinformatics at Boston
University, the Kyoto Genomics and Bioinformatics Center, and with the BioCentrum in Amsterdam. These
programs include joint workshops, PhD student exchanges and post-doctoral fellowships.

Free University of Brussels

The Free University is initiating a MS degree in Bioinformatics and Modeling. This will have three
orientations, one of which would be chosen by the students during the second year of the MS: “classical”
bioinformatics; computational structural biology; and modeling of dynamic biological phenomena. This will
not begin until 2007.

Free University of Amsterdam

The Free University has a new MS program in Biomolecular Integration/Systems Biology. The aim is to
provide both expertise in advanced conceptual and modeling methodologies as well as insight into important
biological/biomedical issues. It is a two-year program, and involves a detailed research project where the
student spends half the time in Amsterdam and half the time with a partner group in a different country, both
locations being involved in the advising. Teaching efforts at the PhD level were still evolving at the time of
our visit, and involved a joint graduate school with Humboldt University.

Centre for Mathematics and Physics in the Life Sciences, University College, London

This provides a PhD program that trains students who arrive with a background in biology in mathematics,
while students with a background in physics and math take courses in biology. All take a course in modeling
and bioinformatics and one in physical techniques in the life sciences. This is followed by a set of case
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studies in interdisciplinary research plus seminars and special courses. The didactic part of the program is
one year, followed by three years of research.

University of Warwick, Mathematics Institute

Interdisciplinary Program in Cellular Regulation
Molecular Organization and Assembly in Cells

This is a four-year program which currently aims to train eight postdocs with backgrounds in mathematics so
that they are equipped to study biological problems. The program is focused on theoretical analysis, and the
funding does not support experimental data generation. Postdocs are trained in biology through seminars,
journal clubs, and attendance in group meetings of biology labs and single-afternoon symposia designed for
the program. They take courses for MOAC (Molecular Organization and Assembly in Cells) students (see
below). They are also paired with biologists for particular projects. The PhD program in MOAC integrates
areas of mathematics, biology, and chemistry. This program is funded by a seven-year Doctoral Training
Center grant which started in 2003. The program starts with a six-month course for the three areas, followed
by a lab rotation in each of the three areas before students choose labs for their PhD projects. Most students
entering the program usually have backgrounds in physical chemistry.

Conclusions

The general impression is that most of the formal teaching programs, in the U.S. and abroad, are in
bioinformatics rather than systems biology. Relatively few examples of training in modeling are focused on
biological systems, and where they do exist they tend to be isolated courses rather than fully integrated
programs in systems biology. Most of the programs offer somewhat ad hoc “menu selection” curricula. The
difficulty of training quantitative students in biology and vice versa is clearly well understood and no real
solution has yet been provided, although a number of experiments are underway. In addition to the examples
given here, there is also a program in the U.K. to allow senior faculty to train in other disciplines (“discipline
hopping” see below). It is much too early to tell which, if any, of these are successful in producing qualified
researchers in systems biology. Given the importance of this issue and its embryonic state, some mechanisms
for exchanging information internationally and locally on best practices are essential.

Selected Programs in Systems Biology
a. Graduate Programs with Systems Biology Courses
Europe and Great Britain

Flanders and Ghent University
Department of Plant Systems Biology
http://www.psb.ugent.be/

Max Planck Institutes

Institute of Molecular Genetics

Institute of Dynamics of Complex Systems
http://lectures.molgen.mpg.de/
http://www.mpi-magdeburg.mpg.de/

University of Rostock
Systems Biology & Bioinformatics Program
http://www.sbi.uni-rostock.de

University of Stuttgart
Systems Biology Group
http://www.sysbio.de/

Humboldt University Berlin
Institute for Theoretical Biology
http://ith.biologie.hu-berlin.de/

Department of Theoretical Biophysics
http://www.biologie.hu-berlin.de/~theorybp/



Free University of Amsterdam
BioMolecular Integration/Systems Biology
http://www.systembiology.net/topmaster/topmasterbmisbam.htm

University College, London
Centre for Mathematics and Physics in the Life Sciences
http://www.ucl.ac.uk/CoMPLEX/

University of Warwick

Interdisciplinary Program in Cellular Regulation
Molecular Organization and Assembly in Cells
http://www.maths.warwick.ac.uk/ipcr/

University of Oxford
Centre for Mathematical Biology
http://www.maths.ox.ac.uk/cmb

Asia

A*Star Bioinformatics Institute, Singapore
http://www.bii.a-star.edu.sg/

University of Tokyo
Graduate School of Information Science and Technology
http://www.i.u-tokyo.ac.jp/index-e.htm

Department of Computational Biology, Graduate School of Frontier Sciences
http://www.k.u-tokyo.ac.jp/renewal-e/course_jyoho/senkou-e.html

Kyoto University and University of Tokyo
Education and Research Organization for Genome Information Science
http://www.bic.kyoto-u.ac.jp/egis/

Keio University
Institute for Advanced Biosciences
http://www.iab.keio.ac.jp/

North America

Cornell, Sloan-Kettering, and Rockefeller Universities
Physiology, Biophysics & Systems Biology

Program in Comp. Biology and Medicine
http://www.cs.cornell.edu/grad/cbm/
http://biomedsci.cornell.edu

Massachusetts Institute of Technology

Computational and Systems Biology Initiative (CSBi), Biological Engineering Division

http://csbi.mit.edu/

Princeton University
Lewis-Sigler Institute for Integrative Genomics
http://www.genomics.princeton.edu

Stanford University
Medical Informatics (SMI) and BioX
http://smi-web.stanford.edu/

University of California Berkeley
Graduate Group in Computational and Genomic Biology
http://cb.berkeley.edu/

University of California San Diego
Department of Bioengineering
http://www-bioeng.ucsd.edu/
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