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Background

The U.S. Navy is developing a series of
disposable air-deployed sonar arrays
for undersea surveillance.  The arrays
must be

• high-gain (high-element-count)

• low-cost

• reliable

• autonomous (in-array processing)

• battery-powered (30-day mission time)



data
collector

and
processor

“dumb nodes”

“smart nodes”

Background (cont.)

First Generation Concept:

"freight train" architecture in which data taken at each node is
loaded onto a train which passes down a "track" to a centralized
data processor.  The data processor in this architecture represents
a single-point-of-failure, a potential performance bottleneck, and a
major cost driver

Next Generation Architecture:

each node of the network represents a processing element of a parallel
processor, essentially turning the array itself into a distributed parallel
processing machine.



Advantages:
• This approach offers the potential for greatly reduced
   cost with increased system performance, dependability,
   and versatility.

•  Using the spare processing capacity in the network
   protocol processors together with the high data rate
   offered by fiber optics,  these improvements can be
   achieved at essentially no increase to the per-node cost
   of the array.

Background (cont.)



Candidate Network Topologies
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Modeling & Simulation
• simulates COTS devices (µP, RAM,

ADC, etc.) as well as key ASIC
characteristics

• determines device characteristics
for optimal
– performance (MHz, MFLOPS)
– power consumption
– standby-mode usage
– size and weight
– cost

• development for hardware
prototype
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• decomposition, partitioning,
mapping, tuning, and T&E for
conventional (both time- and
frequency-domain) parallel
beamforming algorithms

• testbed performance studies
provide insight into advantages
and disadvantages of each new
variant

• interrelationships between each
promising variant and the
candidate node and network
architectures are explored

Distributed Parallel Algorithms
and Programs
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Distributed Parallel Algorithms
and Programs (cont.)
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Coarse-grain
parallel
beamformer for
bi-directional
and ring arrays

Distributed Parallel Algorithms
and Programs (cont.)
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Medium-grain
parallel
beamformer for
bi-directional and
ring arrays

Distributed Parallel Algorithms
and Programs (cont.)
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Performance of coarse- and medium-grain parallel beamformers on a cluster of
eight SPARCstation-20/85 workstations connected by OC-3c ATM (155-Mbps), for
steering directions from -90 to 90 degrees in increments of 0.5, 1, or 2 degrees

Experimental Results
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Performance of unidirectional array, ring, and bidirectional array parallel
beamformers with network-dependent link-by-link communication on the ATM
cluster, for steering directions from -90 to 90 degrees in increments of 0.5 degrees
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• Unified design tool for
modeling and simulating next-
generation sonar arrays and
beamforming algorithms
– Rapid virtual prototyping
– Fine-grain system simulation
– Integrates and augments

• Algorithm research
• Network research
• Node architecture research

– Can model current technology
and predict performance of
future technology

Integrated Simulation Environment
(ISE)

Parallel Beamform Algorithm

C-MPI Implementation

BONeS/MPI Runtime Interface

BONeS Simulation Environment

Network and Node Models



• Parallel programs written in
unmodified C-MPI code

• User process (via
BONeS/MPI calls) informs
BONeS how long code
block computation takes

• BONeS will simulate the
communication, informing
the process when complete

• Thus, both HWIL
computation and simulated
communication are taken
into consideration for
prototype development

ISE Timing

processes

BONeS

BONeS/MPI
Interface

Program
 execution

Bidirectional array

MPI calls timed via
network simulation.

Code block timing via
hardware-in-the-loop
execution (with scaling
option).

network model
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ISE Runtime Environment

PP PPPP
B O N e S

Relay RelaySocket

BONeS FileBONeS File

reads
local
fi les

creates
remote

files Data

Signal to
B O N e S

Signal to
Processes

Signal  Type

Reques t

Packet

Data

Signal to
B O N e S

Signal to
Processes

Signal  Type

Reques t

Packet

MPI Processes

ISE Runtime Environment



Performance of medium-grain parallel beamformer both on a cluster of eight
UltraSPARC-2/200 workstations connected by OC-3c ATM (155-Mbps) and on
UltraSPARC-HWIL ISE, for increments of 2 degrees

Preliminary ISE Results

0

1

2

3

4

5

6

7

8

4 6 8
Processors

S
p

ee
d

u
p

Ideal

Medium-grain Algorithm (2-degree divisions; Simulated Bidirectional)

Medium-grain Algorithm (2-degree divisions; Simulated Ring)

Medium-grain Algorithm (2-degree divisions; ATM)



• Existing and new beamforming programs can be simulated on
nonexistent platforms; thus dozens of systems may be
simulated which would be too costly to build

• Interface provides a universal glue to which any MPI
programs can attach to a simulated network

• Real application data flows, so programs are validated as well.
Conversely, working applications may effectively be used to
debug and improve network protocols

• Although BONeS/MPI is run on Sun workstations, the ISE may
simulate many architectures and processors by scaling the
performance of the SPARC code block measurements

ISE Advantages



Conclusions and Future Research

◆ The use of distributed and parallel processing techniques will reduce
the size and cost and improve the performance and reliability of
autonomous disposable sonar arrays.

◆ The performance of architectures based on uni-directional rings and
bi-directional linear networks are comparable.

◆ Both coarse- and medium-grain parallel algorithms provide near-
linear speedup for high-spatial-resolution beamforming, with coarse-
grain beamformers performing marginally better at all spatial
resolutions.

◆ An integrated simulation approach can provide a rapid virtual
prototyping capability that will further reduce system costs.

◆ Future plans include extending this work to split-array with cross
spectral correlation and adaptive beamforming.  A laboratory
network prototype is also planned.


