
.___. .- _
1 I-

,

Testing and Analysis

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Using Formal Methods to Reason about Architectural Standards

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Charlottesville,VA,22904-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Using Formal Methods to Reason about Architectural Standards

Kevin J. Sullivan
Computer Science Department

University of Virginia
Thornton Hall

Charlottesville, VA 22903 USA
+1804 982-2206

John Socha Mark Marchukov
Socha Computing, Inc. Computer Science Department

13 Central Way, Suite 1200 University of Virginia
Kirkland, WA 98033 USA Thornton Hall

+12068229300 Charlottesville, VA 22903 USA
jsocha@socha.com +18049822292

sullivan @virginia.edu march@cs.virginia.edu

ABSTRACT
We present a study in which we used formal methods to
reason precisely about aspects of a widely used sofrware
architectural standard, namely Microsoft’s Component
Object Model (COM). We developed a formal theory of
COM to help us reason about a proposed compositional
architectural style based on COM, intended for use in a
novel commercial muhirnedia authoring system. The style
combined COM objects, integration mediators, and the
COM reuse mechanism of aggregation. Our use of formal
methods averted an architectural disaster by revealing
essential but subtle and counterintuitive properties of COM.
We partially validated our theory by subjecting it to review
by the designers of COM and by testing it against other
available data. The theory has good evidential support.

Keywords
Software engineering, formal methods, partial specification,
architecture, integration, mediator, Component Object
Model, COM, OLE, ActiveX, empirical, Microsoft,
multimedia

INTRODUCTION
The architectural designs of a vast number of systems will
depend on widely used architectural standards. Today, such
standards include Microsoft’s Component Object Model
(COM) [7] and the Object Management Group’s Common
Object Request Broker (CORBA) [S].

Such standards should be treated as critical infrastructure
systems. Architectural standards that provide foundations
for the interoperation of independent applications are
especially critical, because errors resulting from improper,
unanticipated or innovative use of such standards might go
unnoticed until interactions among fully deployed
applications finally reveal “killer” design faults.

p-hion to m&e di$#lmrd copies of all or part of this mete&l for
pmonal or classroom use is granted without fee provided that the copies
me not made or distributed for profit or commercial advantage. the COPY-
ri&t notice, the title of the publication and its date appear, end notice is
@en fiat copyright is by permission of the ACM, Inc. To copy othenvise.
to rrpubtish, to post on servers or to redistribute to lists, requires specific

pmission andJor fee
ICSE 97 Boston MA USA
Cop>+ht 1997 ACM O-89791-914-9/97/05 ..$3.50

503

Any lack of clear guidance in the proper application of an
architectural standard puts adopters at an undisclosed risk
of making errors in the critical, early architectural stages of
system design. To the extent practicable, users should be
relieved the burden of having to reason about subtle but
critical aspects of such standards. The designers of such
standards should specify their subtle aspects carefully, and
determine their architecturally important properties. The
products of these efforts should then be made available in
the form of tools, documentation, or even theorems, to help
users verify the legality of proposed uses of such standards.

This paper presents a study in which we used formal
methods [9,19,20] to develop a theory of a de facto
software architectural standard, namely Microsoft’s
Component Object Model (COM). We did this to reason
effectively about the conformance of a proposed COM-
based architectural style to the standard. In the absence of
prior work articulating architecturally critical properties,
and in the presence of what we saw as subtleties, we had to
bear the burden of reasoning precisely about the standard.

At stake was Socha Computing’s multimedia authoring
system, Herman. Our approach averted a costly
commitment to a flawed architectural style based on a
combination of mediators [21,22,23], COM objects, and the
COM reuse mechanism of aggregation.

The work described in this paper began when our initial,
informal attempt to convince ourselves of the legality of the
proposed style failed. Subtleties in the design of COM and
the silence of the published specification on key issues
made it hard to reason informally with confidence. To
facilitate reasoning, we decided to capture relevant aspects
of COM in the form of a mathematical theory from which
we could deduce key properties of the standard.

We began by sketching a modestly rigorous theory using
basic set theory concepts, based on a careful reading of the
COM specification [7]. We were astonished to find that the
theory predicted that our use of aggregation was illegal.
We concluded tentatively that our proposed style was
illegal, because, in particular, it appeared that the COM
specification precluded the use of COM aggregation as a

compositional information hiding mechanism.

We then tested our theory by submitting our conclusion for
review by the designers of COM, and by checking it against
other documents [11,12,18]. We found our conclusion to
be inconsistent with the designers’ intentions. Our initial
theory was thus not entirely correct.

We revised the theory somewhat to accommodate the new
data. The revised theory led us to conclude that 0~
proposed style was not inconsistent with the rules of COM,
but that it wouldn’t work as desired. We also concluded
that COM is even subtler than we at first believed.

Having refined our theory, we decided to try to build
additional confidence in it by increasing our level of rigor.
We expressed the theory in the Z language [20], checked its
syntax using the Z/Eves system [14], and proved our
theorems more rigorously. While our main architectural
insights emerged from the work done at a modest level of
rigor, we obtained deeper insight into the precise nature of
COM when we made the theory precise.

The rest of the paper is organized as follows. First, we
summarize the relevant aspects of COM. Next, we present
our proposed architectural style. Following that, we give a
brief overview of the problems we encountered. The next
section presents our formal theory, and the one after that
presents our two key theorems. Next we use the theorems
to reason about two COM-based architectural styles,
including our own. We then summarize our results, discuss
related work, and finally conclude.

COM AS AN ARCHITECTURAL STANDARD
COM is an important architectural foundation for much
component-based software. As an architectural standard,
COM defines the form of the components from which such
systems are built, several reuse and composition
mechanisms, and a set of properties that objects and
compositions of objects should have. As a widely used
standard it exerts an important influence on the world of
real software. COM is the architectural foundation for OLE
[5] and ActiveX [25], which are themselves foundations for
important systems used by many individuals and by large
segments of industry, government, and the military.

For our purposes, COM has several key features. First, a
COM object exposes multiple interfaces. Each interface
defines a set of operations for one service that the object
supports: e.g., persistence, cut-and-paste, and domain-
specific computation. Each interface belongs to one or
more interface types, each of which is identified by unique
interface identifiers (IID). COM objects int&act with each
other solely through pointers to their respective interface
instances. See Fig. 1.

504

Fig. 1 Components (rectangles) expose interfaces
(circles) that are accessed through pointers (arrows).

Second, every interface exports a special operation called
QueryZnte@zce. Querylnrerface allows a client with a
pointer to any interface on an object to obtain pointers to
other interfaces on the same object. Querylnterface allows
objects that were designed independently to negotiate
communication protocols dynamically. As the basis for the
interoperation of COM-based systems, Quer)llnteduce is
the heart of COM. “There is nothing as important to COM
as QueryZnterjuce [18, p. 561.” It is here, with
Querylnterface, that we had our architectural difficulties.

In more detail, QueryZnte@zce takes an ZID as a parameter
and returns, through another parameter, a pointer to an
interface of the designated type on the same object, If the
object does not support the designated type of interface,
QueryZnterface returns a null pointer. The return value
indicates whether an interface was returned successfully.

Most of COM’s reuse and composition mechanisms are
traditional object-oriented design constructs. They include
explicit procedure invocation, implicit invocation [141, and
delegation of calls to contained objects. However, COM
also provides an innovative mechanism called aggregation.
In aggregation, one object, the outer, contains other objects,
the inners. When the outer object is queried for an
interface, it can return a pointer to an interface that actually
belongs to an inner object.

Aggregation is useful when an inner object provides an
interface whose implementation matches the one required
by clients of the outer object. Aggregation permits calls
made by clients to be handled by the inner without the
overhead that would be required for the outer to delegate
calls to the inner. In Fig. 2, two of the interfaces of the outer
object are actually obtained from inner objects.

Fig. 2 An outer object aggregates two inner objects and
exposes two of their interfaces to its clients

Fig. 3 Composition of two multimedia components (CDib and CFile) into a larger multimedia component (CFileDib)
through the use of a mediator (CPersistDib) and COM aggregation (by CFileDib). Some interfaces of the subsystem
components @InterfaceA and IInterfaceB) are hidden by the outer object; others are exposed (IDib and IPersistFile).
In addition, the outer object exports its own interface (Iunknown).

THE PROPOSED ARCHITECTURAL STYLE
The proposed architectural style for Herman was driven by
two basic requirements. First, it had to support drag-and-
drop manipulation of multimedia components. Second, it
had to support the recursive composition of independent
multimedia components into larger components.

Drag-and-drop was to be based in part on a decision to
implement multimedia components as COM objects. The
compositionality requirement was to be met through a
combination of mediators and aggregation. Mediators
[21,22,23] provided an attractive mechanism for integrating
components into subsystems. Aggregation was to support
abstraction of subsystems through the encapsulation and
export of selected interfaces. This architectural style
appeared to use COM in a simple, straightforward way.

Fig. 3 illustrates the style. The mediator (rounded rectangle)
integrates the components (rectangles) into a subsystem,
which is then aggregated to make a larger component (outer
rectangle). The essence of the proposed approach was the
selective hiding of the interfaces of the aggregated objects.
By supporting the selection of variant components and
mediators, such aggregates would define reference
architectures [3,4] for families of related multimedia
components-an interesting idea that we can’t pursue
further in this paper.

OVERVIEW OF THE PROBLEM
An initially minor concern for the legality of the proposed
architectural style led us to try to convince ourselves of its
legality. The more we worked on this, the more we realized
that it was hard to reason about some non-obvious aspects
of COM. Our need to understand these subtleties led us to
use formal methods to build an abstract model, or theory, of
the aspects of concern.

The first version of our theory indicated that our style
violated the COM standard, and, that many other seemingly
natural designs would, too. In particular, we disproved the
putative theorem that COM aggregation supports
abstraction through the selective hiding of the interfaces of
aggregated objects. COM appeared not to support such
abstraction. Specifically, we proved that an outer object
would have to export interfaces for all types of interfaces
exported by inner objects. See Fig. 3 again. Our theory said
that the absence of interfaces of types IZnterfaceA and
ZIntelfaceB on the outer CFileDib component would be
illegal. As a corollary, we concluded that our architectural
style was illegal, because it depended on selective hiding of
interfaces.

After a subsequent exchange with the developers of COM,
we amended our theory and revised our conclusion. On the
basis of our revised theory we proved two key results that
we now believe to be valid. First, aggregation compromises
object identity as defined by COM. In particular, the
mediator in Fig. 3 would find CDib and CFile to have the
same object identity. Second, although selective hiding is
legal, its use implies that inner objects do not satisfy the
rules for Querylnterface, and therefore that they cannot be
treated as legal COM objects by other objects such as our
mediators. Our use of COM aggregation as a composition
mechanism therefore presented much more serious
difficulties than we had anticipated.

FORMAL MODEL AND REASONING
We now present our revised and formalized model of the
relevant aspects of COM, using basic concepts from first-
order set theory, expressed in the 2 language [20]. In the
next section, we use this model to deduce expected
properties of COM, which we model as theorems in our
theory.

505

-___ ,,1

__-,L_-_ _._-- i -.- .-I--_- - - --~

,

Interfaces
Each COM interface instance (or infe@zce) belongs to at
least one component and satisfies one or more interface
specifications (specifications or types). Like abstract
classes, specifications declare the operations of interfaces.
Like concrete classes, components bind implementations to
the operations declared by their interfaces. We need not
discuss implementations any further. A unique interface
identifier (or ZZD) identifies each specification. We model
interfaces, specifications and ZZDs as given sets of
unelaborated entities in Z, as their details are irrelevant.

[ZZD, Interface, InterjhceSpec]

The heart and distinguishing feature of COM is a special
interface type, IUnknown, whose ZZD is ZZD-ZUnknown.
ZUnknown exports three operations. Two that we do not
discuss further support reference counting for garbage
collection. The third is Querylnterface. All COM
interfaces can be viewed as inheriting from, i.e., as being
polymorphic with, IUnknown. Thus, all COM interfaces
export the QueryZnte$zce operation. We formalize
ZUnknown as a specification, and ZZD-ZUnknown as an ZZD
in the following Z axiom.

: lnter$aceSpec
ZlDJUnknown : ZZD

We model the association of each interface specification
with its unique ZZD as a total one-to-one function that, in
particular, associates ZUnknown with ZZD-ZUnknown.

ZlDOJTnterfaceSpec : Znte$aceSpec H ZZD

= ZlDJUnknown

We model the polymorphism of all interfaces with
ZUnknown as a relation ZntelfaceSpecOf that maps
interfaces to the specifications they satisfy. The predicate,
which treats the relation as a set of tuples, requires every
interface to satisfy at least the ZUnknown specification.

ZnterfaceSpecOf : Znte$ace tj Znte@ceSpec

t- Znter$ace x {IUnJcnown} G ZnterfaceSpecOf

Next, we use simple relational composition to define a new
relation, ZZDOjZnte@zce, which maps each interface to the
ZZDs of the specifications that the interface satisfies. It is
easy to see is that ZZDOfrntelface maps each interface to at
least ZZD-ZUnknown.

lZDOfInter$ace

t-

: Interface t-) ZZD

llDOflnterface= ZnterfaceSpecOf ; ZlDOjlnterfaceSpec

Interface Traversal
Because each interface is polymorphic with IUnknown, a
pointer to any interface can be treated as a pointer to
IUnknown; so QueryInterface can be called through any
such interface. The purpose of QuegZntevace is to allow a
client with a pointer to one interface to navigate to other
interfaces. In the rest of this paper we ignore the distinction
between interfaces and pointers to interfaces, WC thus
model the QuevZnte&ce operation of each interface as a
partial function QZ that maps the interface and a given ZZD
to another interface.

QZ : Interface xZZD -H ZnterJace

The COM standard requires that it be possible to obtain an
interface of type ZZD-ZUnknown by calling QuevZnterface
on any interface. We represent this requirement in our
theory with a predicate stating that QZ be defined for every
interface with ZZD-ZUnknown as the given ZZD.

lnteflace x {ZZDJUnknown} G dom Ql

Components
For our purposes, a COM component is an object that
exposes a finite set of interfaces. The set of interfaces
exposed by an object is defined recursively. -Every object
exposes a distinguished interface that satisfies at least the
ZUnknown specification. In COM, this interface is called
the distinguished ZUnknown of the object. If defined, the
result of applying QZ to an interface of an object is another
interface on the same object. We define the set of ZZDs of an
object to be equal to the set of ZZDs of the specifications
that are satisfied by the individual interfaces of the object.

- Component
Znteflaces : lF lntet$ace
iids : [FZZD
iunknown : Znterjhce

iunknown E Zntetiaces
V i : lnter$ace; d : ZZD

I i E Interfaces A (i, d) E dom Ql
l Ql(i, d) E lnter$aces

iids = IlDOflnterface {interfaces D

506

COM object identity is defined in terms of the distinguished
ZUnknown interfaces of components. The basis for identity
is the requirement that every call to QuevZntelface made
through any interface of an object, \vith ZZD-ZUnknown as a
parameter, always returns the same, distinguished
ZUnknown interface of that object. The identity axiom of
our model formalizes this requirement.

V X : Component; i : Znterjace [i E Xhterjixes
l QZ(i, IZDJUnknown) = X.iunknown

COM defines object identity as follows: Given any two
interfaces, you determine whether they are interfaces on the
same object by querying for ZZD-ZUnknown through each,
then comparing the returned interfaces (pointers). We
formalize COM object identity as a binary relation =com. It

is easy to see that =com is an equivalence relation.

=eom - : Component H Component

k

VX, Y : Component
l X=com Y a X.iunknown = Y.iunknown

At the heart of COM are rules governing QueryZntelface
operations that are intended to ease inter-object interface
negotiation. COM requires that the QuevZnterface
operations of an object allow clients to get from any
interface on that object to any other with one call to
QueryZntelface [181.

COM thus demands that Querylnterface operations be what
it calls reflexive, symmetric and transitive. Contrary to our
intuition, and to what we believe to be common
understanding, COM does not require reachability of
inter$aces one from another but only the ability to get from
one trpe of interface to another.

Our initial theory modeled all interfaces as following the
QueryZnte$zce rules. That theory led to the conclusion,
contradicted by the developers of COM, that selective
hiding of interfaces was illegal.

To obtain a theory consistent with both the published
specification and the stated intentions of the COM
designers, we changed our theory to model those interfaces
that do have the reflexivity, symmetry, and transitivity
properties as a subset of Interface called COMZntelfaces.
Thus, elements of Zntelface no longer model legal COM
interfaces alone. The first requirement on a legal COM
interface is that its QueryZntelface operations return
interfaces that actually have the requested ZZDs.

I COMZnterfaces : P Inter&e

Vi : Inter&e; cl : ZZD
I i E COMZnter$xes A (i, d) E dom QZ
l QZ(i, d) H d E ZZDOflnter$ace

In the following paragraphs, we formalize the
QueryZnte@zce rules. First, COM defines reflexivity to
mean that if you have a legd COM interface i with type
ZZD-Some, then calling QueryZntelface on i for ZZD-Some
must succeed. It is not required that the returned interface
be i itself, unless i is the distinguished ZUnknown and
ZZD-Some is ZZD-ZUnknown. Recall that ZZDOjlnte@xe
associates an interface with all of the ZZDs that it satisfies.
We formalize the COM notion of reflexivity by stating that
the domain of QZ contains the subrelation of ZZDOjlnterface
restricted to the subset of legal COM interfaces.

COMZnterfaces 4 ZZDOjIntetiace C dom QZ

Second, COM defines symmetry to mean that if you have a
legal COM interface i of type ZZD-Some, and if calling
QueryZnterface on i with ZZD-Other succeeds in returning
an interface p, then calling QueryZnterjhce on p with
ZZDJome must also succeed. Informally, if you can get
from here to there, you can get from there to here [lS]. The
subtlety, again, is that “here” and “there” refer to interface
types. The formal statement encodes this property,
requiring in particular that it holds for all legal COM
interfaces.

t/a, b : Znteqace; iidA, iidB : ZZD
1 {a,b} E COMhterfaces A (a, iidB) E dom QZ
l a H iidA E ZZDOffnter$ace A QZ(a, iidB) = b

z (b, ii&l) E dom QZ

Finally, the COM specification defines transitivity to mean,
informally, that if QueryZnterjhce can get you from “here to
there” and “there to somewhere else,” it can get you “here
to somewhere else.” The formal statement is similar to
those in the preceding paragraphs.’

’ The specification actually gives an unorthodox definition
of transitivity: informally, that you can get “from elsewhere
back to here.” The definition is not equivalent to the
ordinary definition of transitivity, and it is not strong
enough to ensure that QueryZntetface operations have the
required “anywhere-in-one-step” property. We therefore
interpret the COM specification as using an erroneous
definition of transitivity; and we have used the common
definition in place of the unorthodox one.

507

-~

- _ _- “.

Vu, b, c : Interface; iidA, iidB, iidC : IID
1 {a,b,c} C COMInterjaces

A {(a, iidB>, (b, iidC)} E dom QI
e a w iidA E IIDOflnterjke

A Q1(a, iidB) = b A QI(b, iidC) = c

3 (a, iidC) E dom Q1

Just as we had to distinguish legal COM interfaces, we also
had to distinguish legal COM objects. We model legal
COM objects as a subset of Component whose elements
have only legal COM interfaces.

I C E COMObjects
l C.Interfaces c COMInterfaces

A simple property of QueryInterface
At certain points in formulating our theory, we found it
prudent to test it against well-known properties of COM.
Although not stated in the specification, the set of interface
types of an object is supposed to be closed in some sense
under Querylntelface. Goswell asserts, “The set of interface
IDS [of an object] accessible via QueryInterface is the
same for every interface.... [ll].” The following statement
formalizes this property. In essence, it states that from any
interface on an object the same set of interface types is
accessible: namely, the set of all interface types exposed by
the object. A simple proof, given in the appendix, provides
support for the theory insofar as it shows that the theory
makes valid predictions.

Lemma: Totality of QZ
If C is a legal COM object, and if iidA is a type of an
interface exposed by C, then from any interface i of C it is
possible to obtain an interface of type iidA with one call to
Querylnterface.

t/C : Component; i : Interface; iidA : IID
1 C E COMObjects A iidA E C.iids A i E C.lnte@ces
l (i, iidA) E dom QI

Aggregation
In this section, we present the final part of our theory: a
model of COM aggregation. We model the containment
relation imposed by aggregation, and the rules governing
both the interfaces of aggregated components and the
implementations of their QuevIntelface operations:
specifically the COM nations of delegating -and non-
delegating inner interfaces.

First, as formalized in the Z axiom below, we model
component hierarchy as a relation, Aggregates, on
components (not just on legal COM objects). This
formalization is abstract, but sufficient for our purposes.
We model the export by outer objects of interfaces that arc
provided by inner objects by requiring that for any pair of
objects (outer, inner) in the Aggregates relation, at least
one interface of inner also must be an interface of outer.

Next, we model what COM calls the non-delegating inner
IUnknown of an aggregated object (the unique interface h
in the axiom below). We explain the need for this interface
in the next paragraph. The implementation of
QueryZnte@zce on this interface always returns interfaces
on the inner object. The outer object uses this interface to
obtain inner interfaces that will be exposed to clients,

Third, we model the COM concept of delegating inner
interfaces. The COM specification requires that all
interfaces of inner objects other than the non-delegating
IUnknown delegate Queryhterface calls to the outer, One
reason for this requirement is that Query1nterface
operations provided by interfaces exposed to clients of the
outer must return only interfaces on the outer object,
whether or not those interfaces are provided by the inner
object. Delegation ensures that this requirement is satisfied.
We model delegation as a constraint on the Q1 function.
For any delegating inner interface i we require that its QI
function (i-e., the function obtained by fixing the first
parameter of QZ to be i> be equal to the QZ function of one
of the interfaces of the outer object.

t

lggregates : Component H Component

f r, 0 : Component I 0 c-) r E Aggregates
sharing of at least one intcrfacc

0 I.Inter@es n O.inte@Xes f 0
hidden non-delegating inner IUnknown

A (3, h : Inter&e 1 h E Llnterjkes \ OJnterfaces
A hterJaceSpecOfcl{ h}D = {IUnknown)

delegation of all but one QI
0 3 0 : Interface 1 0 E O.interfaces

l Vi : Intetiace I i E IJnterfaces \ {h}
l ({i} XrrD) a Qr = ((0) XrrD) a Qr>

TWO THEOREMS OF COM
We now present our two main theorems. As consequences
of a theory that we believe models COM, these theorems
make precise and explicit two critical architectural
properties of COM that we had to understand in order to
reason effectively about our proposed architectural style.

Theorem 1: COM Component Identity
If a component oufer aggregates a component inner then
outer and inner share object identity as defined for COM
components.

VI, 0 : Component l 0 I+ I E Aggregates a I =com 0

This property of COM is not made explicit in the COM
specification, but we find support for it in Goswell’s
cookbook [111. A simple corollary is that all components
within an aggregate share identity. The proof of this
theorem is given in the appendix to this paper.

Theorem 2: Information Hiding
Let outer be a component that aggregates a component
inner. If inner is a legal COM object, then the set of types
of interfaces exposed by outer must include the set of types
of interfaces exposed by inner.

VI, 0 : Component 1 0 I+ I E Aggregates

l I E COMObjects a I.iids C O.iids

The contrapositive of the theorem, which is also true in the
theory, states that if outer does not expose interfaces with
ZZDs matching those of all inner interfaces, then inner is not
a legal COM object. To the best of our knowledge, this
property is not documented explicitly in any description of
the standard. The proof is in the appendix.

ANALYSIS OF TWO ARCHITECTURAL STYLES
In this section we analyze two architectural styles using the
theorems that we have proven. First, we present additional
support for our theory by showing that the predicted
properties of COM are not problematical when COM is
used in the traditional COM style. Then we discuss the
difficulties that we faced when we tried to use aggregation
in our innovative architectural style.

The OLE Container and Control Style
The traditional usage of COM aggregation is called the
OLE control and container idiom. In this style, an outer
component wraps an aggregated component, usually an
OLE control [5]. In the simple case, the outer exposes all of
the interfaces of the inner except for its non-delegating
IUnknown. The outer provides additional interfaces
supporting additional services. For example, the outer
might add an interface allowing the inner control object,
such as a button, to be managed by a container object, such
as a Visual Basic form [24]. The added interface would
support placement-on-form information. In other cases, the
outer hides some inner interfaces.

In both cases, the component identity theorem tells us that
the outer and inner components share identity. This merging
of identity creates no serious architectural problems

509

because the only client of the inner is the outer, which treats
the inner as a hidden implementation detail.

Nor does the information hiding property of COM present a
problem. If the outer exposes all interfaces of the inner,
then by definition it exposes interfaces with all of the types
of the inner interfaces, and so the status of the inner object
as a legal COM object is not necessarily compromised. If
the outer hides some inner interface types, the inner is not a
legal COM object; but, again, the consequences are limited
because the outer treats the inner as a hidden
implementation detail to which it has exclusive access.

Because the traditional use of aggregation in a control and
container style does not conflict with our theory, it is not
surprising that this common usage has not revealed the
architectural subtlety of aggregation in general. We view
the compatibility of our theory with the common usage of
COM as further evidence supporting the theory.

Our Proposed Architectural Style
The key difference between the traditional usage of COM
aggregation and our proposed usage is that in our style
aggregated components will have clients, such as mediators,
other than the aggregating outer components. See Fig. 3.
Our theory revealed this proposed architectural style to be
untenable.

First consider object identity. If a mediator within an
aggregate compares apparently distinct but aggregated
components for identity, it finds them to be identical. The
loss of object identity within an aggregate can be a serious
matter when what is aggregated is a subsystem having
multiple, interrelated components.

Second, consider information hiding [16,17]. We find
ourselves on the horns of a dilemma. Either the outer object
exports interfaces whose types include all of those of all
aggregated inner components, including interfaces intended
solely to support the integration of the component parts; or
our mediators cannot assume that the components that it
mediates are legal COM objects.

In both cases information hiding is compromised. In one
case, selective hiding of subsystem interfaces is precluded,
and thus so is abstraction of the aggregated subsystem. If
selective hiding is employed, then the mediators can no
longer treat the objects that they mediate as legal COM
objects because they will not follow the QueryIntelface
rules. In light of Rogerson’s pithy remark, that “There is
nothing as important to COM as QueryZntelface [lS, p.
561,” we have to view failure to follow the rules of
QueryZntelface as an architecturally serious matter.

The second information hiding problem bears additional
discussion. It has two aspects. First, as Pamas notes in
“‘Designing Software for Ease of Extension and
Contraction,” information hiding is a general concept in
that “. . . as far as possible, even the presence or absence of
a component should be hidden from other components [17,
p. 2291.” However, the presence of an outer is not hidden
from mediators, because aggregation compromises the
architectural properties of the mediated objects.

Second, because mediators can not depend on mediated
components having COM-defined architectural properties,
it is necessary to have ad hoc rules for aggregated objects.
Given that our architectural style depends on selective
hiding of inner interfaces, we decided that we had to require
designers of Herman components to follow such rules. Our
use of formal methods to reason precisely about the COM
standard led us to change our architectural style.

SUMMARY OF RESULTS
We present a number of results. First, we developed a
formal theory of subtle aspects of a widely used software
architectural standard. The theory might be of considerable
value to practitioners. In particular, it provides a basis for
documenting subtle but important aspects of COM.
Second, although our architectural style appeared to be a
natural, compositional use of COM, we showed through
formal reasoning that it was much more problematical than
it appeared to be at first. Third, this discovery helped us to
avoid a serious architectural design error in a commercial
development project before it harmed the firm. Fourth, we
demonstrated the profitable use of formal methods “in-the-
small,” not for requirements specification but to help us to
reason about one difficult architectural design problem.
Finally, in the methodological dimension, we have
emphasized the role of an empirical approach to developing
formal theories of architectural standards. When imposed
on the world of software, standards impose interesting,
stable structures that are amenable to empirical scientific
study, with the potential for interesting results.

Having demonstrated that COM has subtle but critical
architectural properties, we believe we have built a case for
treating widely used architectural standards as critical
infrastructure systems. The lack of a characterization of
important but subtle properties shifts significant,
undisclosed costs and risks onto adopters of such standards.
Our case focused on the use of formal methods to make
architectural properties of such standards explicit; other
applications of formal methods are clearly possible, too,
such as identifying ambiguities and inconsistencies.

RELATED WORK

510

Related work falls in several categories, especially software
architecture and formal methods. At the intersection of
these areas are results such as those of Abowd et al. [l],

Luckham [13] and Garlan and Shaw [lo]. Our work is
most closely related to, and most influenced by, that of
Abowd et al. and Garlan and Shaw.

Formalizing Software Architecture
Abowd et al. provide a comprehensive framework within
which a broad range of abstract architectural descriptions
can be given precise semantics, enabling analysis and
comparison of abstract architectural styles. The authors
observe that formalizing architecture can help designers to
ask and answer interesting questions about such styles,

We agree. By way of contrast, our objective was not a
generalized approach to formalizing descriptions in a range
of styles. Rather, we were driven to a minimal use of
formalism because we found that without it we could not
confidently answer key questions about our specific,
concrete architectural style: Was it legal with respect to the
specific, widely used standard on which it was based?

Our theory makes no attempt to model dynamic semantics.
We didn’t have to do that to answer our particular
questions. Both Luckham and Garlan model dynamic
semantics at the architectural level: as event orderings in
Rapide, and fair scheduling in pipe and filter architectures,
for example. Nor does our theory contain any generalized
concept of connectors. The only inter-component relation
that we model is aggregation. We have tried to use the
minimal sufficient formalism.

On the other hand, our theory appears to be richer than that
of Abowd et al. in other dimensions. We model a complex
relation over interfaces (corresponding to ports in Abowd et
al.), namely the QueryZnterface relation. We also model the
effect on this relation of a separate relation between
components, namely aggregation. In Abowd et al., there
appears to be no corresponding concept of either
relationships among ports, or of interactions between inter-
port relationships and inter-component relationships, such
as aggregation.

Despite the differences in focus and generality, our work
overlaps with that of Abowd et al. on one important issue:
the compositionality of architectural styles. Abowd et al.
show that within their theory, pipes in pipe and filter
architectural styles are compositional, but that components
that announce events in implicit invocation styles are not
compositional. We showed that legal COM objects are not
compositional under aggregation.

It is not surprising that we both focus on compositionality.
It is a critical property of any architectural style, because it
greatly facilitates the construction of new systems from
existing parts. Complications in compositionality arc thus
of deep concern to the architect. In this paper, we

- - -^ _I . .

characterize previously undocumented complications in the
compositionality properties of an important and widely used
architectural standard.

Formal Methods and Software Standards
Our concern for the integrity of standards is not new. Nor is
it surprising that subtleties that have not been analyzed can
have astonishing consequences. Ardis et al. noted that
ambiguities in the specification of a telecommunications
protocol make it “ . ..possible to completely defeat the
protection switching protocol, causing the communication
link to fail, even though there was at least one working line
in each direction [2].” They then express the hope that
“...future authors of standards will consider using formal
languages, so that ambiguity can be minimized.”

Our experience lends support to Ardis et al. Formal
methods appear to have an important role to play in
validating widely used standards. Until a standard has been
subject to rigorous analysis, however, and the results of the
analysis made available to users, the costs of reasoning
about the conformance of designs to the standard and the
risks of not doing so are shifted onto its users. Our
experience shows that it is possible for even a small firm to
use formal methods profitably, “in-the-small,” with modest
coverage and rigor, to reason about difficult design issues.

Object Models
Bryant and Evans [6] discuss a formalization of the
CORBA object model in Z, but neither the model or any of
its consequences is presented in detail. The purpose of the
specification that they emphasized was to help resolve
ambiguities and inconsistencies in the specification to
facilitate negotiation among those defining the standard.
The extent to which this work has progressed is unclear.

CONCLUSION
We have developed a formal theory of certain aspects of the
COM architectural standard. From the theory we deduced
subtle and counterintuitive but architecturally important
properties of COM. An initial, modestly formal theory was
sufficient to reveal problems in the proposed architectural
style for the Herman multimedia-authoring environment. A
subsequent test of the theory indicated that our conclusions
were not precisely correct; however, the required changes
did not fundamentally change our conclusions about COM
or our proposed architectural style.

To build additional confidence in the amended theory, we
decided to express it more precisely. We formalized the
initial, back-of-the-envelop theory by writing it in 2,
checking its syntax using the Z/Eves theorem prover, and
expressing and proving our main theorems rigorously. We
have not yet verified our proofs mechanically.

Socha Computing benefited most from our early, modestly
rigorous analysis, and from the feedback obtained when we
subjected our initial conclusions to review. Nevertheless,
our subsequent emphasis on increasing rigor was useful.
Like COM, we found our theory itself to be unexpectedly
subtle. The more aggressive use of formalism led us to a
theory that is more convincing to us and in which we thus
have significantly greater confidence.

While our discoveries about COM came as surprises, Socha
Computing, Inc. has not changed its decision to use COM
for its Herman system. In fact, COM is being used as
aggressively as at first envisioned. We find the design of
COM elegant and innovative. COM is the object standard
for many applications in very wide use. COM isn’t broken.

Nevertheless, COM and comparable standards do define the
foundations of vast numbers of important programs. These
standards are thus important infrastructure systems, and
should be specified with commensurate care. The presence
and the implications of any major subtleties must be
explicated. We used formal methods at varying levels of
rigor, profitably, to reason about one such architectural
standard and to verify the conformance of a design to it.

As to who should bear the costs of reasoning about such
subtleties, and the risks of not reasoning, that is an extra-
scientific issue to be resolved by extra-scientific means: the
market, policy, etc. We would prefer to see the designers
of such standards perform the necessary reasoning, so as
not to expose adopters to undisclosed risks. Perhaps the
research community can influence the incentive field by
subjecting real systems and real standards to scientific
study.

ACKNOWLEDGEMENTS
This work was supported by the National Science
Foundation under grants CCR-9502029 and CCR-9506779,
and by the Defense Advanced Research Projects Agency
(DARPA) under grant F30603-96-1-0314. We gratefully
acknowledge the contribution of Tony Williams, of
Microsoft Corporation, who agreed to criticize our early
theory of COM. We thank Odyssey Research Associates
for the use of the Z/Eves system. We thank the anonymous
reviewers, who encouraged more rigorous formalization of
our theory, and who contributed the term “in-the-small” as
we have used it in this paper. Finally, we thank David
Garlan for support and guidance.

APPENDIX: PROOFS OF THEOREMS

Proof of Totality Lemma:
Suppose that

511

-._.- ---. _ .--.

C : Component I C E COMObjects

i : Intetjiace I i e Chterfaces

ii&4 : ZZD 1 iidA E C.iids

Then
3 a : Interface I a E C.Znterfaces

l a I+ iidA E ZIDOflitterJxe

By the identity axiom of QI
QZ(i, ZZD-IUnknown) = QZ(a, ZZD-IUnknown) =

C.iunknown

By symmetry of QZ (C.iunknown, iidA> E dom QZ

Then by transitivity of QZ (i, iidA) E dom QZ

cl

Proof of CON Identity Theorem:
Suppose that
I, 0 : Component IO H I E Aggregates

Then by an axiom of aggregation
3 2 : Znter$ace 0 2 E OJnterfaces n I.Znte$aces

Thus by the identity axiom we have
Liunknown = QZ(z, ZIDJUnknown) = O.iunknown

And so I =com 0.

cl

Proof of Information Hiding Theorem:
Let I, 0 : Component

1 I E COIvfObjects A 0 I+ I E Aggregates

Let iidX : ZZD 1 iidX E Z.iids .

We shall show that iidX E O.iids.

By Identity Theorem
Z.iunknown = O.iunknown

Since iidX E Z.iids,

3 x : Interface I x E I.Znter$aces

l x H iidX E ZZDOjInterface.

By Identity Axiom
QZ(x, ZZDJUnknown) = I.unknown = O.iunknown

Note that O.iunknown is in COMZnte$aces since it is also

an interface of a legal COM object I.

By symmetry, (O.iunknown, iidX) E dom QZ.

Considerx, : Interface I xf = QZ(O.iunknown, iidX).

Since O.iunknown E O.Inter$aces, xl E O.Znterfaces by

definition of Component type.

Also, XI I-+ iidX E ZZDOflnterface because

O.iunknown B COMInterfaces and by the definition of

COMInter$aces

QZ(O.iunlcnown, iidx) I+ iidX E ZZDOjInterface.

Thus iidX E ZZDOflnter$ace a O.Znte$aces D = O.iids.

0

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

Abowd, G., R. Allen and D. Garlan “Formalizing style
to understand descriptions of software architecture,”
ACM Transactions on Sof-hoare Engineering and
Methodology, ~014, no. 4,Oct 1995, pp. 319-364.

Ardis, M.A., J.A. Chaves, L-3. Jagadeesan, P. Mataga,
C. Puchol, M.G. Staskauskas and J. Von Onnhausen, “A
framework for evaluating specification methods for
reactive systems,” Transactions on Sofhvare
Engineering, vol. 22, no. 6, June, 1996, pp. 378-389.

Batory, D. and S. O’Malley, “The design and
implementation of hierarchical software systems with
reusable components,” ACM Transactions on Sofnvare
Engineering and Methodology vol. 1, no. 4, pp. 355-
398, Oct. 1992.

Batory, D., L. Coglianese, M. Goodwin and S. Shafer,
“Creating reference architectures: an example from
avionics,” Proceedings of SSR’95, Software
Engineering Notes, April 28-30,1995, pp. 27-37.

Brockschmidt, K., Inside ULE, Microsoft Press, 1996.

Bryant, T. and A. Evans., “Formalizing the object
management group’s core object model,” Computer
Standards and Interfaces, vol. 17, no. 5-6, pp. 481-9,
September 30, 1995.

Common [sic] Object Model Specification, Microsoft
Developer Network Library, Microsoft Corporation,
1996 (especially sections 3.3.1 and 6.6.2).

The Common Object Request Broker: Architecture and
Specification, Object Management Group, Inc., 1995

Craigen, D., S. Gerhart and T. Ralston, “An
international survey of industrial applications of formal
methods, Volumes 1 and 2,” NIST GCR 92/626, U.S.
Department of Commerce, Technology Administration,
National Institute of Standards and Technology,
Computer Systems Laboratory, Gaithersburg, MD,
March, 1993.

10. Garlan, D. and M. Shaw, ‘An introduction to software
architecture,” Advances in Sofnyare Engineering and
Knowledge Engineering, Vol. 1, World Scientific
Publishing, 1993.

11. Goswell, C., “The COM Programmer’s Cookbook,”
Microsoft Office Product Unit, Spring 1995, revised
September 13, 1995, Available on the World-Wide
Web at the time of submission of this paper through
http://www.microsoft.com/oledev/olecom/com,co,htm

12. Kindel, C., “The rules of the component object model,”
Microsoft Developer Network Library, Technical
Articles: Windows: OLE COM, Microsoft Corporation,
October 20, 1995.

13.Luckham, DC., J.J. Kenney, L.M. Augustin, J. Vera,
D. Bryan, and W. Mann, Specification and Analysis of
System Architecture Using Rapide, IEEE Transactions
on Software Engineering, vol. 21, no. 4, pp. 336-355,
Apr 1995.

14.Meisels, I. And M. Saaltink, The Z!EVES Reference
Manual Cfor Version Z.3), Draft, ORA Canada
Technical Report TR-96-5493-03b, December 1995,
revised November 1996.

15. Notkin, D., D. Garlan, W.G. Griswold, and K. Sullivan,
“Adding Implicit Invocation to Languages: Three
Approaches,” Object Technologies for Advanced
Sojiware, Lecture Notes in Computer Science, Vol. 742,
pp. 489-510, Nov 1993.

16. Pamas, D., “On the criteria to be used in decomposing
systems into modules,” Communications of the ACM,
December, 1972, pp. 1053-1058.

17.Parnas, D. “Designing software for ease of extension
and contraction, ” Proceedings of the 3rd International
Conference on Software Engineering, pp. 264-277,
IEEE Computer Society Press, 1978

18. Rogerson, D., Znside COM, Microsoft Press, 1997

lg.Rushby, J., Formal Methods and Digital Systems
Validation for Airborne Systems, NASA Contractor
Report 4551, National Aeronautics and Space
Administration, Office of Management, Scientific and
Technical Information Program, 1993.

2O.Spivey, M., The Z Notation: A Reference Manual,
Prentice-Hall, 1992

21. Sullivan, K.J., ‘Mediators: Easing the Design and
Evolution of Integrated Systems,” Ph.D. Dissertation,
University of Washington Department of Computer
Science, August 1994.

22. Sullivan, K.J. and D. Notkin, “Reconciling Environment
Integration and Evolution,” ACM Transactions on
Sofhvare Engineering and Methodology vol. 1, no. 3,
July 1992.

23. Sullivan, K.J., LJ. Kalet and D. Notkin, “Mediators in a
Radiation Treatment Planning System,” IEEE
Transactions on Sofnyare Engineering, vol. 22, no. 8,
August 1996, pp. 563-579.

24. Visual Basic 4 User’s Manual, Microsoft Corporation,
1996.

25. Williams, A., Developing ActiveX Web Controls,
Coriolis Group, Inc, 1996

513

- --.--
- _. .’ .~

