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Abstract 
Wide-area parallel processing systems will soon be 
available to researchers to solve a range of problems. In 
these systems, it is certain that host failures and other 
faults will be a common occurrence. Unfortunateb, most 
parallel processing systems have not been designed with 
fault-tolerance in mind. Mentat is a high-performance 
objec t-oriented parallel processing system that is based 
on an extension of the data-flow model. The functional 
nature of data-flow enabies both parallelism and fault- 
tolerance. In this paper, we exploit the data-flow 
underpinning of Mentat to provide easy-to-use and 
transparent fault-tolerance. We present results on both a 
small-scale network and a wide-area heterogeneous 
environment that consists of three sites: the National 
Center for Supercomputing Applications, the University 
of Mrginia and the NASA Langley Research Center. 

1. Introduction 
Recent advances in network technology promise to 

make gigabit-per-second bandwidth between remote 
hosts a reality in the near future. This increase in 
bandwidth paves the way for increased exploitation of 
distributed computing resources. Coupled with advances 
in distributed memory parallel compiler technology, there 
is strong reason to believe that wide-area distributed 
parallel processing will be an increasingly popular and 
important programming paradigm. Parallelizing and 
distributing program sub-tasks has the potential of 
increasing performance for many applications while also 
improving the overall utilization of system resources. 

Unfortunately, there is a downside. When a program is 
partitioned into sub-tasks, each sub-task may be 
distributed among different processors. As the number of 
processors employed by an application increases, so does 
the chance that the application will fail due to a host 
failure. 

At the University of Virginia, we have first hand 
experience the problems caused by host failures in 
distributed systems while developing and using a 
prototype for the Legion project [12][13] (information on 
Legion is available on the WWW at 
http : //www . cs .Virginia. edu/-legion) . The objective of 
Legon is to construct the software environment to enable 
a nation-wide or world-wide virtual computer capable of 
supporting distributed and parallel applications. Our 
current prototype, that we call the Campus-Wide Virtual 
Computer (CWVC), contains a mix of over 90 
workstations and an IBM SP-2 multicomputer. Even in 
this relatively small environment, we are frequently 
experiencing host failures. On the scale of the envisioned 
nation-wide system, host failures will simply be a fact of 
life and must be dealt with accordingly. User 
applications, especially those that are critical or are 
composed of many distributed components, must be 
resilient to host failures. Fortunately developing fault 
tolerant parallel applications does not need to be difficult. 

In this paper we show that by developing applications 
using the data-flow model of parallel computation there 
is a simple method for providing fault-tolerance. The key 
to our approach is in exploiting the functional nature of 
data-flow programs in the fault-tolerance mechanisms. 
Recall that data-flow computations are modeled by 
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actors, arcs, and tokens. Actors are computation 
primitives, tokens carry data or control information, and 
arcs are used to model the dependencies between actors. 
The distinguishing feature of actors in terms of fault 
tolerance is their idempotent nature: an actor presented 
with the same tokens will always produce the same 
result. Thus, fault-tolerance can be easily achieved 
through actor replication, i.e. replicate an actor k times 
and use the first available result (discard later arriving 
results). 

In an earlier paper [ls], we implemented actor 
replication and showed its performance and resource 
consumption characteristics using a synthetic pipeline 
application on a small homogeneous network of 
workstations. The main problem with our previous 
technique was its high consumption of resources. 
Furthermore, we found that under a saturated 
computational environment increasing the level of 
replication actually decreased performance as replicates 
competed with each other for the same finite pool of 
resources. 

In this paper, we extend our work by introducing the 
concept of dormant actors. Using dormant actors, 
programmers can increase the fault-tolerance 
characteristics of their applications with very little 
overhead. We tested this new approach using a 
DNA/Protein sequence comparison application in two 
different environments. The first environment consisted 
of a local-area dedicated network of Intel 80486 
machines. The second environment consisted of a wide- 
area, heterogeneous environment comprised of three 
autonomous sites: the National Center for 
Supercomputing Applications (NCSA), the University of 
Virginia (Wa)  and the NASA Langley Research Center 
(LaRC). 

The remainder of the paper is organized as follows. 
We first present a brief overview of the Mentat system 
and its execution model (Section 2). We describe the 
interface for specifying a fault-tolerance policy and 
discuss the protocol used to transparently replicate both 
active and dormant actors. We also illustrate the mapping 
of Mentat source code to actual run-time 
implementations (Section 3). We then describe the 
DNAProtein sequence comparison application (Section 
4) and analyze its performance and recovery 
characteristics using several fault-tolerance policies 
(Section 5) .  Finally, we discuss related work (Section 6) 
and conclude (Section 7). 

2. Mentat 
Mentat [9] is a high performance, object-oriented 

parallel processing system. There are two primary aspects 

of Mentat: the Mentat Programming Language (MPL) 
and the Mentat run-time system. MPL is an object- 
oriented programming language based on C++. The 
granule of computation is the Mentat class member 
function. The programmer is responsible for identrfying 
those object classes whose member functions are of 
sufficient computational complexity to allow efficient 
parallel execution. Instances of Mentat classes are used 
like C++ classes, freeing the programmer to concentrate 
on the algorithm, not on managing the environment. 

The data and control dependencies between Mentat 
class instances involved in invocation, communication, 
and synchronization are automatically detected and 
managed by the compiler and run-time system without 
further programmer intervention. 

Mentat classes are denoted by the inclusion of the 
keyword mentat in the class definition. Mentat classes 
may be qualified as either regular or persistent. 
Instances of regular Mentat classes do not maintain state 
between invocation, thus the implementation may create 
a new instance to handle every member function 
invocation. Persistent Mentat classes maintain state 
information between member function invocations. This 
is an advantage for operations that require large amounts 
of data or that require persistent semantics. 

Mentat objects are active entities and possess a name, 
a thread of control, and their own address space. From 
the user’s perspective, Mentat objects communicate via 
asynchronous member function invocation. 

2.1 Mentat execution model 
The Mentat execution model is based on the macro 

data-flow model (MDF [lo]) an extension of the pure 
data-flow model. MDF is one of several large grain data 
flow models [1][3] that expand on traditional data flow 
[22]. The salient features of MDF are that it incorporates 
the notion of state, adds the ability to dynamically create 
graphs, and provides coarse grained actors. In MDF, 
actors with states are said to be persistent actors while 
stateless actors are called regular actors. Persistent actors 
that share state map directly onto member functions of a 
persistent Mentat class. Similarly regular actors map onto 
member functions of a regular Mentat class. For the rest 
of the paper, we may thus use a class name and a member 
function to denote actors. 

The Mentat run-time system implements a virtual 
macro data-flow machine that transparently constructs 
program data-flow graphs, schedules actors on 
processors, and manages communication and 
synchronization. The token matching unit (TMU) 
implements the pure data-flow subset of the MDF model 
and is responsible for matching tokens and for enabling 

3 



an actor when all its tokens are present. When an actor is 
enabled, the TMU calls on the instantiation manager 
(IM) to schedule a regular object for the actor. The TMU 
then forwards the tokens to the object so that the actor 
may fire, i.e. execute. To distribute the workload 
associated with regular actors and scheduling, there is 
one TMU and one IM per host in a Mentat system. Note 
that by delaying the instantiation of regular objects until 
the tokens are matche4 the Mentat scheduler can make 
better placement decision by having access to up-to-date 
information (e.g. load). 

The macro data-flow underpinning of Mentat is 
completely transparent to end users. In Figure 1, we 
illustrate the mapping from a sample MPL source code to 
its execution. At run-time, calls made to object functions 
(actors) are transformed into a macro data-flow graph 
that is then acted on by the run-time system to deliver the 
proper arguments (tokens) to the appropriate object's 
function. The mechanism for buildmg graphs and 
detecting data dependence is fully described in [ 101 [ 1 11. 

The graph (Figure lb) is constructed at run-time and 
maps onto the implementation as follows : 

~~ ~ 

(la) Source code 

m i n 0  i 
data-processor A, B; 
input in; // persistent oblect 
int res[NW-WXXERs]; // store results 

for ( i n t  1 = 0; i < NUP-LKRKEFS; +ti) 

// regular oblects 

res[i] = B.filterZ(A.filterl(in.get(i)) ); 
} 

_I 

( 1 b) Data-flow 

((lc) Execution l L-' 

~~~ 

Figure 1. Transformation from source code to execution 

For each iteration, 
A message that contains the token I and a copy 
of the data-flow graph is sent to the persistent 
actor i n .  g e t .  Tokens carry a computation tag 
that uniquely identifies an actor and the number 
of tokens required to enable that actor. 
Computation tags are equivalent to token colors 
in the data-flow litterature. 
i n .  g e t  then sends a message containing its 
output token to a TMU along with the program 

graph. The TMU is selected by a hash function 
on the computation tag for actor A. f i 1 t e r 1. 
Upon receiving the token, the TMU enables the 
actor A. f i 1 t e r 1 and then makes a scheduling 
request to the Mentat scheduler. The scheduler 
instantiates object A and returns A s  physical 
address (host id and port number). 
The TMU forwards the token and program 
graph to object A. 
Object A executes function filter 10. 
When A. f i l t e r l  finishes, it must send the 
result along all outgoing arcs in the data-flow 
graph representation. Since B is also a regular 
object, A forwards its output token to the TMU 
handling B. f i l t e r 2 .  Again, the TMU is 
selected by hashing on the computation tag for 
E. f i l t e r 2 .  
B.  f i 1 t e r 2 is handled similarly with the end 
results sent back to the main program. 

This simple example represents a pipeline 
computation that consists of three stages. In a traditional 
pipeline, the rate of output is determined by the slowest 
stage. For example, if i n .  g e t  produces an output token 
every second, f i l t e r 1  takes one second, and 
f i l t e r 2  five seconds, then we will get an output every 
five second. 

Mentat exploits the fact that the two filters are regular 
objects and instantiates a new copy to service each 
request. The fully elaborated execution (Figure IC), 
represents a pipeline with multiple functional units. 
Thus, throughput is no longer limited by the slowest 
stage and we can obtain an average throughput rate of 
one output per second per iteration once the pipe is full. 

Another feature of Mentat is that results from 
function invocations do not return to the caller unless 
they are needed. In the pipeline example above, the 
output from the first filter is never returned to the main 
program and is automatically forwarded to the second 
filter. 

3. Supporting fault-tolerance 
In a previous paper [ 181 we described modifications to 

the Mentat run-time system for supporting an actrve 
replication policy -- actors fired as soon as they were 
enabled -- and noted the resulting inefficient use of CPU 
resources. We now extend our earlier work by 
introducing the concept of dormant actors. Unlike active 
actors, dormant actors do not fire right away when 
enabled but wait until they detect the failure of an 
ongoing computation. Dormant actors serve a similar 
function to backup replicates in a primaryhackup 
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replication scheme. The main difference here is that there 
is no need for explicit synchronization protocols or state 
transfer primitives. 

The combination of active and dormant actors provide 
users with the mechanisms for trading-off fault-tolerance, 
resource consumption and performance. By using 
dormant actors, application designers can reduce their 
consumption of CPU while increasing the level of fault- 
tolerance. However, there is a trade-off between resource 
consumption and performance. In the presence of 
failures, active actors provide instantaneous recovery, 
while dormant actors will take longer to recover as they 
must first detect failure and then restart the computation 
from the beginning. 

The replication strategies presented in this paper only 
apply to program graphs composed of regular actors. If 
the program graph contains persistent actors, then they 
will not be replicated and present single failure points 
(transparently replicating persistent actors is much more 
difficult and will be addressed in future research). This is 
not a major problem as applications that use regular 
objects typically exhibit a mastedworker or a pipeline 
structure. Thus, persistent actors in a graph usually 
bracket a composition of regular actors, and it is that 
subset of the program graph that we are replicating. In 
fact, the main program is usually both the initiator of a 
parallel computation and its recipient. 

Furthermore, we assume that both user and system 
objects (lM and TMU) are correctly implemented (i.e. no 
logical errors) and fail only when the host on which they 
are placed fails. We also assume that communication 
links do not fail. 

3.1 Specifying the fault-tolerance policy 
One of our key goals is to provide application writers 

with an easy-to-use mechanism for speclfylng fault- 
tolerance. The interface for selecting a replication policy 
simply consists of creating an instance of the class 
ft policy, setting the number of active and dormant 
replicates, and specifying a ping value. The policy is then 
valid within the scope of the declaration. This gives users 
the flexibility of tailoring their fault-tolerance policies to 
Merent parts of their code. 

The interface to ft policy is shownbelow: 
(1) class ft-Eolicy 
(2) public: 
(3) ft-policy (int active, 

(4) -ftpolicy() ; 
(5) 1; 

int dormants=O, int ping=O); 

The following Mentat code fragment illustrates the 
use of ft-policy: 

(1) main0 I 
(2) int a; 

(3) regular-class Y; 
( 4 )  
(5) / /  2 active only 
(6) ft-policy replication(2,O) ; 
( 7 )  
(8) a = Y.opZ(3); 
(9) printf ("a = %d\n", a); 
(10) 
(11) { / /  new scope, 1 active, 
(12) / /  3 dormants, 30 sec ping 
(13) ft-policy replication2 (1,3,30); 
(14) int b; 
(15) regular-class2 D, F; 
( 1 6 )  
(17) b = D.opl( F.op2(4)); 
(18) 1 
(19) //policy restored to 2 active 
(20) I 

Line (6) specifies a replication policy of two active. 
The run-time system transparently replicates Y.  op2 ( 3 
twice. On line 13 the user has selected another policy that 
is enforced within the scope of the declaration (lines 13- 
17). The original policy is automatically restored when 
the flow of control exits scope (line 18). 

The fault-tolerance policy only applies to objects that 
are directly invoked by the caller -- objects Y, D, F in this 
example -- and does not propagate to called objects. If 
Y.0~20 invokes another object 2 before returning its 
result, Z will not be replicated by default 

3.2 Active actor replication 
Before describing the algorithm for dormant actor 

replication, we first review the implementation of active 
actor replication. Both replication methods use the same 
underlying mechanisms for transparently replicating 
regular actors. 

To implement replication, the Mentat run-time system 
duplicates tokens and sends them to distinct TMUs. The 
additional TMUs are selected by using a parameterized 
hash function on the computation tag that, given a 
number x, returns TMUx and guarantees that 
TMUo..TMUx-I are all on distinct hosts. 

Using the same pipeline example as before, we show 
the process of transforming MPL source code to a 
replicated execution graph (Figure 2). 

For each iteration, 
A message that contains the token i, a copy of the 
data-flow graph, and the fault-tolerance policy is 
sent to the persistent actor i n .  get. Note that the 
token is not replicated since in. get is persistent. 

0 in. get then sends a message containing its 
output token to k distinct TMUs. The level of 
replication k is extracted from the fault-tolerance 
policy. In this particular case, k = 2. 
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(Za) Source code 

m i n 0  i 
data-processor A, B; 
input in; // persistent object 
i n t  res [NuM-VKRKERS] ; 

ft-plicy replicationi2); // specify policy 

for ( i n t  i = 0; i < NW-KXWEPS; wi) 

// r@ar objects 

// store results 

res[i] = E.filter2iA.fil-terl(in.get(i) ) ) ;  

1 
a 

(2b) Data-flow graph for ea& iteration c 

I 
(2c) Execution for one iteration 1 
I Objects in dashed round- rectangles are on the same host I 

Figure 2. Active replication- 

*Upon receiving the token, each TMU 
independently enables the actor A. f i 1 t e r 1 and 
makes a scheduling request. The scheduler 
instantiates object A on the same host as the TMU 
and returns A’s physical address (host id and port 
number). There are now two copies of A. 

*Each TMU forwards the token, the program 
graph, and the fault-tolerance policy to its 
respective A. 
Each A executes function filterlo. 
When each A. f i l t e r1  finishes, it duplicates 
the result token and sends it to the two TMUs 
handling B. f i l ter2.  
Each TMU receives a total of two tokens but 
discards one. At t h s  point, B. f i l t e r2  is 
handled normally with the end results sent back to 
the main program. 

In order to make a k-replicated object tolerate k - 1 
host failures, we must ensure that they are placed on 
distinct hosts. This is accomplished by scheduling regular 
objects on the same host as the TMUs handling them. 
Since the TMUs participating in replicating a regular 
actor are guaranteed to be on distinct hosts (assuming 
that the number of hosts is at least k), it follows that the 
objects themselves will be on different hosts. 

An arbitrary graph composed of k-replicated actors 
can tolerate k - 1 host failures. As long as one of each of 
the individual replicated actor succeeds, there will be a 
path along which the overall computation may complete. 

Consider the execution graph in Figure 2 where k = 2. To 
prevent main from receiving its result would require at 
least two failures, otherwise there would be a path from 
i n .  g e t  to main. 

3.3 Algorithm for dormant actor replication 
The implementation of active replication was a 

relatively simple extension to the Mentat run-time 
system. Its simplicity stems from the fact that TMUs need 
only make local decisions and do not coordinate their 
operations. Implementing dormant replication is much 
more complex as it requires TMUs to cooperate amongst 
themselves. 

The mechanisms for replicating dormant actors and 
sendmg tokens to multiple destinations are the same ones 
used in active replication (Figure 2). To aid in the 
description of the implementation, we distinguish 
between active and dormant TMUs, i.e. TMUs that 
handle active or dormant actors respectively. Note that in 
the following Qscussion TMUs are active or dormant 
with respect to a single computation. 

The computation tag and the fault-tolerance policy 
determine the set of participating TMUs. The replication 
level, k, is the number of active actors plus the number of 
dormant actors. We use the parameterized hash function 
to order the set of participating TMUs (TMUo..TMUk.,) .  
By convention, TMUO..TMU,.~ are active and 
TMU,. . T M U k - I  are dormant. 

To s imple the description of the algorithm, we 
assume that there is only one active and d dormant 
TMUs. Recall that an active TMU schedules an actor as 
soon as it is enabled. The task of the dormant TMUs is to 
monitor the progress of the scheduled actor and restart it 
when a failure is detected. To minimize the number of 
ping messages, the dormant TMUs do not all monitor the 
active actor. Instead the dormant TMUs elect a leader 
that is responsible for monitoring the scheduled actor. 
The leader assumes failure when the actor does not 
respond within the specified ping interval Po. 

The dormant leader also sends a “pulse” message 
every Po seconds to each of its followers. When a 
follower does not receive a pulse within a time interval 
P,, it elects itself leader. The value Pi is set accordmg to 
the rank of each follower and is a multiple of p0 . By 
staggering the values of Pi, we attempt to elect a unique 
leader. In the event that multiple leaders are elected, they 
will start monitoring the same object, which will increase 
the number of ping messages sent to the object. In the 
unlikely worse case scenario, all followers turn leaders 
and reschedule the same failed computation. While this 
may waste resources it does not affect the correctness of 
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the computation. The net result is that we are back to an 
active replication policy. 

We now describe the steps taken by a TMU when it 
has matched the tokens for an actor: 

TMU: 
(Tl) TMU determines whether it is active or 
dormant. Since we have assumed a policy of k 
replication (one active and d dormants), TMUo is 
active and TMUl . . m k - 1  are dormant. 
Active: 

(A2) 
physical address to all dormant TMUs. 

Dormant: 
(D2) TMU determines whether it is a leader 
or a follower. We have assumed only one active 
TMU, thus the leader is TMUl and the followers 
are TMU2. . Th’fUk-1. 
Dormant Leader: 

Schedules regular object and forwards 

(L3) If the dormant leader does not receive 
a physical address within Po seconds, it 
changes status from dormant to active and 
reschedules the computation (A2). 
(L4) Pings instantiated object every PO 
seconds using physical address received from 
active TMU (A2). 
(L5) If object does not reply within PO 
seconds, it changes the status to active and 
reschedules the computation (A2). 
(L6) Sends pulse to followers every PO 
seconds. 

(F3) Determines rank F, within the set of 
followers. Fo is the highest ranking follower 
and is initially TMU2. 
(F4) If no pulse is received within Po * 
(i+l) seconds, it elects itself leader and sends 
a pulse message to lower ranked followers. 

Dormant Follower: 

We also present the protocol for regular objects: 
Regular object: 

(Rl) Asynchronously responds to pings sent by 
dormant leader TMU. 
(R2) Upon completing a computation, it notlfies 
dormant TMUs so that they can stop tracking this 
computation. 

Using dormant replicates in conjunction with active 
replicates provides the same guarantees as active 
replication alone since all dormant TMUs have the 
potential of changing their status to active TMUs. Indeed, 
a dormant TMU with a ping value set to 0 is essentially 
equivalent to an active TMU. If the active actor fails, 
steps L3 and L5 guarantee that a dormant leader TMU 

turns active and reschedules the actor computation. If the 
leader TMU fails, step F4 guarantees that at least one of 

TMUo is the active TMU. TMU1, TMUZ, “ M U 3  are dormant 
T M U s .  TMUI is the dormant leader and monitors the health 
of XI by periodically sending ping messages. TMUl also 
sends “pulse” messages to its followers. 

the dormant follower TMU elects itself leader within a 
bounded time interval. 

4. DNMrotein sequence comparison 
Our test application compares two protein or DNA 

sequence libraries. Each library contains one or more 
sequences, each of which consists of a sequence name 
and a variable-length string of characters (also known as 
residues). Each sequence in the first library, called the 
source library, is compared against each sequence in the 
second, called the target library, For each sequence 
comparison, a score is generated reflecting sequence 

’/ Mentat source code 
‘1 T h i s  is the heart of the application 
{i 
iomnplib (genom-lib src, mllector-class mllector) 
r 

worker w; // Smith-Watem 
chunk *t.qt-chunks; 
chunk source-chd; 

ft-plicy replication(adive, d o m t ,  ping); 

tgt chunk = tgt .get-chunk (nun-workers ) ; 
srcchunk = src. get-chunk ( ; 

for (i=O; i < nun-mrkers; ++i) i 

- 

mllector.register( 
s w . c o m ~ r e ( s r c - c h ~ , t g t - c h ~ [ l ]  1 ) ;  

I 
t 

1 Policy shown is 1 active and 1 dormant 

Figure 4. Mentat source code and program graph 
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commonality using the Smith-Waterman [2 11 algorithm. 
Once all of the scores have been generated for all 

sequence comparisons, they are sorted and statistical 
information is generated. An important attribute of the 
algorithm is that all comparisons are independent of one 
another and if many sequences are to be compared, they 
can be compared in any order. This parallelism is easy to 
exploit. 

The program consists of several Mentat objects, the 
source and target libraries, a collector object that 
monitors the progress of the comparisons, a recorder 
object to gather statistical information, and finally, 
workers to perform the actual comparisons. 

In Figure 4, we show the heart of the application. For 
each worker, we compare the source library with a subset 
of the target library. The results of the comparisons are 
then forwarded to the collector object. Note that the 
workers are the only objects that are instances of regular 
Mentat classes. All other objects are persistent. 

16 
24 

5. Experiment 
We ran our experiments on two very different 

environments. The first consisted of a dedicated network 
of 26 33MHz 80486 PCs running Linux connected by 
Ethernet. This controlled environment allowed us to 
analyze our data with a high degree of confidence. The 
second environment consisted of shared computing 
resources at three sites: the SGI Power Challenges at 
NCSA, high-end SGI workstations at NASA Langley and 
several SUN workstations running both SunOS & Solaris 
at the University of Virginia (Wa).  

To minimize the impact on other users, we ran our 
experiments over the course of several nights. Even then, 
the machines were often heavily utilized (especially the 
Power Challenges at NCSA and the compute servers at 
UVa) and the load varied widely. In addition, we limited 
ourselves to using at most 5 processors of the 16- 
processor Power Challenges and 2 processors of the 4- 
processor Solaris compute servers at UVa. Table 1 lists 
the resources used at each site. 

Table 1. Testbeds configuration 

160 283 199+31 15-50 
164 2678 212537 14.57 

To determine the relative strengths and weaknesses of 
various replication strategies, we tested their performance 
in both environments with the DNNprotein sequence 
comparison application developed at the University of 
Virginia. Performance is given in terms of millions of 
matrix entries per second (MEPS) and is a standard 
benchmark in the biochemistry community. Each matrix 
entry corresponds to one residue from one sequence 
compared against one residue from another sequence. 

We explored several replication strategies: 1 active, 1 
active and 1 dormant (30 second ping interval), and 2 
active. For the last two policies, we tested both the 0 and 
1 host failure case. For all configurations, we varied the 
number of workers from 8 to 24. 

Baseline sequential times and their corresponding 
MEPS are given in Table 2. Note that we used Merent 
libraries for the testbeds. The MEPS rating for the Intel 
platform corresponds to 905,079,926 residue 
comparisons whereas performance for the other platforms 
were computed with 3,087,930,284 residue comparisons. 
This was a practical decision as the Intel based machines 
are relatively slower. 

(I MacHwE I C P U T m  I MEPS 1 
(SEC) 

SGI Power Challenge Array 1 1455 I 2.12 1 SrIndig; ~ ~ 1 :ii; 1 i:3: 1 
S arc20 SunOS 
s arc 10 Solaris 1887 
Intel 80486-33 Linux 2985 0.30 

Table 2. Relative performance of each class of machine 
using sequential version of the application 

In Table 3 we show the average wall clock time 
elapsed for the baseline case (1 active, no dormant) with 
no failures on both testbeds. i i  

Dedicated Homo eneous Testbed 

1 166 I 207 
1-24 Shared Heterogeneous Testbed 

8 



homogeneous environment was good. However the focus 
of this paper is not on the absolute performance of the 
application but rather on exploring the costs associated 
with using various fault-tolerance replication policies. 

WORKER5 m MAX MEAN MEPS 
&POLICY Tmm(s) TIME(S) TILLIE(S) 

Dedicated Homogeneous Testbed 
8 (1J) I 463 I 466 I 408f2 I 2.22 . 
8 (2.0) I 377 I 408 I 194+1? 12.30 

5.1 Execution in failure-free mode 
We found that the additional performance overhead 

incurred using 1 dormant actor is very low as compared 
to the non-fault tolerant base case (Table 4). In all cases, 
the difFerence is within 6%. This should be expected 
since a dormant actor does not fire unless a fault is 
detected. In the cases of 2 active replicates in a dedicated 
homogenous environment, we find that as the number of 
workers increases, performance degradation occurs. 

This performance penalty is a symptom of a saturated 
computational environment. As the number of workers 
increases, the chances of multiple objects being scheduled 
on the same host also increases. With our 26 host 
homogeneous test environment, using 2 active replicates 
with more than 13 workers guarantees that at least two 
workers will be scheduled on the same host. 

( M A X  

Table 4. Effects of using active and dormant replicates 
for fault tolerance (Policy in parenthesis denote 
the level of active and dormant replication) 

We do not observe any performance advantage to 
using multiple active replicates in our heterogeneous 
testbed, however because of the high variance within the 

heterogeneous network, we cannot draw any definite 
conclusion. 

for fault toleraice with one host failure (Policy in 
parenthesis denote the level of active and 
dormant replication) 

The data suggests that using dormant replication, fault 
tolerance can be obtained without negatively impacting 
resource consumption or application performance 
sig”t1y. The advantages of dormant replication 
over active replication is its more eflicient use of 
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resources. In failure free mode, there is no sigtllficant 
performance penalty (less than 6%). Theoretically, the 
potential benefit to active replication is its instant 
recovery characteristic. Unfortunately, t h s  is only true 
when the number of available resources is sufficiently 
high. Otherwise, in a saturated environment, replicated 
workers may compete with each other for the same 
available resources; thus negatively impacting 
performance. In a highly shared environment such as 
our heterogeneous testbed active replication may 
consume resources that other users could have used. 

6. Related work 
While there is a rich literature in fault-tolerance for 

distributed and real-time systems, there has been much 
less done in the area of fault-tolerant parallel processing 
systems. Most of the work has concentrated on fault- 
tolerant hardware, e.g. fault-tolerant networks and system 
reconfiguration &er a fault. There has been some 
though, for example, FT-Linda [4], PLinda [14], Ora 
[ 151, Calypso [5], and Fail-safe PVM [ 161. These systems 
use a combination of well known mechanisms such as 
replication, transactions, message logging, or 
checkpoints and rollbacks to provide fault-tolerance. 

Mentat differs from these systems in that its 
underlying computational model is based on data-flow. 
Moreover, Mentat and macro data-flow (MDF) differ 
from other large grained data-flow systems such as 
Paralex [2], CDF [3], HeNCE [6], and CodeRope [8] in 
that program graphs in MDF are dynamic and generated 
at runtime. In Mentat, the program graphs are generated 
by the compiler and run-time system, unlike [2][6][8], 
where the programmer is responsible for generating the 
program graphs using a graphical interface. Paralex uses 
the ISIS tookt  [7] to provide fault-tolerance and to our 
knowledge is one of the few data-flow parallel processing 
system that provides direct support for fault-tolerance. 
ATAMM [19] is another but its application domain is 
embedded real-time systems. 

The techniques described in this paper are easily 
applicable to any coarse grain data-flow systems. 
Replication is not novel and is a well understood concept 
even in the general case of objects/processes with state 
[17][20]. Our work differs in that we have focused on the 
special case, i.e. stateless objects, and have exploited 
their idempotent nature to provide easy-to-use fault- 
tolerance. The combination of active and dormant 
replication form a very special kind of replicated group 
that does not require group communication protocols. We 
have tailored our group abstraction to work with objects 
that do not maintain state and this considerably 
simplifies our design. 

7. Conclusion 
Wide-area parallel processing systems will soon be 

available to researchers to solve a range of problems. It is 
certain that host failures and other faults will be an every 
day occurrence in these systems. Unfortunately 
contemporary parallel processing systems were not 
constructed with fault-tolerance as a design objective. 

The data-flow model offers hope. Its functional nature, 
whch makes it so amenable to parallel processing, 
also facilitates straight-fonvard fault-tolerant 
implementations. It is the combination of ease of 
parallelization and fault-tolerance that we feel will 
increase the importance of the model in the future and 
lead to the widespread use of functional components. 

We have demonstrated the mechanisms by which the 
Mentat run-time system transparently replicates data- 
flow actors to implement a user defined fault-tolerance 
policy. We have also introduced the concept of dormant 
actors. Unlike active actors, dormant actors do not 
execute as soon as they are enabled but wait until failure 
occurs before firing their computation. We have shown 
that by using dormant actors, programmers can add fault- 
tolerance to their code without a sigtllficant impact on 
resource consumption, and in failure-free mode, without 
paying a hgh performance penalty (less than 6% in all 
cases). 

We have presented results from a production 
biochemistry application running over both a local, 
dehcated network of Intel based machine and a wide- 
area heterogeneous environment consisting of shared 
resources from three sites: NCSA, NASA Langley and 
the University of Virginia. The wide-area heterogeneous 
testbed represents an early prototype of the envisioned 
nation-wide Legon system. 

Future work consists of incorporating persistent actors 
in our replication strategies and on extendmg our 
replication mechanism to handle network partitioning. 
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