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Abstract 
Studies in [7, 8, 91 concluded that for a variety of reasons, 
optimistic concurrency control appears well-suited to real-time 
database systems. Especially, they showed that in a real-time 
database system that discards tardy transactions, optimistic 
concurrency control outperforms locking. In this paper, we show 
that the optimistic algorithms used in those studies incur restarts 
unnecessary to ensure data consistency. We present a new 
optimistic concurrency control algorithm that can avoid such 
unnecessary restarts by adjusting serialization order 
dynamically, and demonstrate that the new algorithm 
outperforms the previous ones over a wide range of system 
workload. It appears that this algorithm is a promising candidate 
for basic concurrency control mechanism for real-time database 
systems. 

1. Introduction 
Real-Time Database Systems (RTDBSs) differ from 

conventional database systems in a number of ways. In RTDBSs, 
transactions have timing constraints, the primary performance 
criterion is timeliness level and not average response time or 
throughput, and scheduling of transactions is driven by priority 
considerations rather than fairness considerations. Given these 
significant differences, considerable research has been recently 
devoted to designing concurrency control algorithms for RTDBSs 
and to evaluating their performance [ 1, 2, 7, 8,9, 10, 1 1, 13, 14, 
161. Most of these algorithms are based on one of the two basic 
concurrency control mechanisms: locking [5] and optimistic 
concurrency control [12], and use priority information in the 
resolution of data conflicts, that is, resolve data conflicts in favor 
of the higher priority transaction. 

The problem of scheduling transactions in an RTDBS 
with the objective of minimizing the percentage of transactions 
missing its deadline was first addressed in [l,  21. Their work 
focused on evaluating the performance of various scheduling 
policies in RTDBSs through simulation experiments. A group of 
concurrency control algorithms for RTDBSs using two-phase 
locking as the underlying concurrency control mechanism was 
proposed and evaluated. 

The study in [7,8] focused primarily on the behavior of 
concurrency control protocols in a real-time database 
environment. The study showed that under the condition that tardy 
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transactions are discarded from the system, optimistic 
concurrency control outperforms locking over a wide range of 
system loading and resource availability. The key reason for this 
result was described that the optimistic method, due to its 
validation stage conflict resolution, ensures that eventually 
discarded transactions do not restart other transactions unlike the 
locking approach in which soon-to-be-discarded transactions may 
restart other transactions. Such restarts are referred to as wasted 
restarts [7]. 

In [8], the problem of adding transaction timing 
information to optimistic concurrency control was addressed. 
They showed that the problem is nontrivial partly because giving 
preferential treatment to high priority transactions may result in an 
increase in the number of missed deadlines. In particular, the 
delayed conflict resolution policy of optimistic algorithms 
significantly reduces the possibility that a validating transaction 
sacrificed for an active transaction with a higher priority will meet 
its deadline. In addition, this situation may aggravate the real-time 
performance of the system in two more ways. One is that the 
validating transaction is restarted after spending most of the time 
and resources for its execution. The other is that there is no 
guarantee that the active transaction which caused the restart of 
the validating transaction will meet its deadline. If the active 
transaction does not meet its deadline for any reason, the sacrifice 
of the validating transaction is wasted. In [8], they studied several 
altemative schemes of incorporating transaction priority 
information into optimistic algorithms, including a scheme based 
on priority wait mechanism with wait control technique. 
However, this study and others [ 1 1,141 showed that none of those 
schemes constantly outperforms the priority-incognizant 
algorithm. 

The results of these studies suggest several implications. 
First, the choice of basic (priority-incognizant) concurrency 
control mechanism has significant impact on the performance of 
concurrency control for RTDBSs. The work in [7] showed that 
although the optimistic algorithm does not take transaction 
deadlines into account in making data conflict resolution 
decisions, it can still outperform a deadline-cognizant locking 
algorithm in a real-time database environment. Second, the 
number of restarts incurred by concurrency control is the major 
factor deciding the performance of concurrency control in real- 
time database systems, that is, having more restarts leads to poorer 
performance. Therefore restarts should be avoided if possible. In 
fact, the same result was derived in the studies of conventional 
database system performance [3]. Finally, more study should 
address the problem of designing deadline-sensitive optimistic 
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concurrency control algorithms. A practical real-time 
concurrency control algorithm should provide significant 
performance gains over the deadline-insensitive algorithms under 
a wide range of system workload and operating conditions. 

In this paper, we address the problem of optimistic 
concurrency control algorithms that incur restarts unnecessary to 
ensure serializability among concurrent data access operations. 
We present a new optimistic concurrency control algorithm that 
can avoid such “unnecessary restarts,” by dynamically adjusting 
serialization order of transactions through the use of timestamp 
intervals associated with running transactions. It appears that this 
protocol is a promising candidate for basic concurrency control 
mechanism for RTDBSs. The design of deadline-sensitive 
concurrency control schemes based on this algorithm for RTDBSs 
was discussed in a different paper [14]. 

The remainder of this paper is organized in the following 
fashion: Section 2 reviews the principle of optimistic concurrency 
control, and shows deficiencies of the optimistic methods used in 
previous studies. A new optimistic algorithm is presented in 
Section 3. Section 4 describes our real-time database environment 
for experiments. In Section 5 ,  the results of the simulation 
experiments are highlighted. Finally, Section 6 summarizes the 
main conclusions of the study and outlines future study. 

2. Optimistic Concurrency Control 
In this section, we first discuss the principles underlying 

optimistic concurrency control, particularly regarding its 
validation. Then we show an example of unnecessary restarts 
incurred by the optimistic algorithms used in the previous studies. 

2.1. Principles 
In optimistic concurrency control, transactions are 

allowed to execute unhindered until they reach their commit point, 
at which time they are validated. Thus, the execution of a 
transaction consists of three phases: read, validation, and write 
[12]. The key component among these is the validation phase 
where a transaction’s destiny is decided. Validation comes in 
several flavors, but every validation scheme is based on the 
following principle to ensure serializability . 

If a transaction Ti is serialized before transaction Tj ,  the 
following two conditions must be satisfied: 

Condition 1: No overwriting 
The writes of Ti should not overwrite the writes of T j .  
Condition 2: No read dependency 
The writes of Ti should not affect the read phase of T j .  

Generally, Condition 1 is automatically ensured in most 
optimistic algorithms because I/O operations in the write phase 
are required to be done sequentially in critical section. Thus most 
validation processes consider only Condition 2, and it can be 
carried out basically in either of the following two ways [6]. 

2.1.1. Backward Validation 

In this scheme, the validation process is carried out 

against (recently) committed transactions. Data conflicts are 
detected by comparing the read set of the validating transaction 
and the write set of committed transactions, since it is obvious that 
committed transactions precede the validating transaction in 
serialization order. Such data conflicts should be resolved to 
ensure Condition 2. The only way to do this is to restart the 
validating transaction. The classical optimistic algorithm in [ 121 is 
based on this validation process. 

Let T,, be the validating transaction and T, (c = I, 2, ..., n, 
c # v) be the transactions recently committed with respect to T,,, 
i.e., those transactions that commit between the time when T,, 
starts executing and the time at which T,, enters the validation 
phase. Let RS(T) and WS(T) denote the read set and write set of 
transaction T, respectively. Then the backward validation 
operation can be described by the following procedure. 

validate( T,,); 
( 

valid := true; 
foreach T, (c = I, 2, ..., n) ( 

if WS(T,) n RS(T,,) + ( ) then valid := false; 
if not valid then exit loop; 

1 
if valid then commit WS(T,,) to database 
else restart(T,,); 

1 

2.1.2. Forward Validation 

In this scheme, validation of a transaction is done against 
currently running transactions. This process is based on the 
assumption that the validating transaction is ahead of every 
concurrently running transaction still in read phase in serialization 
order. Thus the detection of data conflicts is carried out by 
comparing the write set of the validating transaction and the read 
set of active transactions. That is, if an active transaction has read 
an object that has been concurrently written by the validating 
transaction, the values of the object used by the transactions are 
not consistent. Such data conflicts can be resolved by restarting 
either the validating transaction or the conflicting transactions in 
the read phase. Optimistic algorithms based on this validation 
process are studied in [6]. 

Let T, (a = I ,  2 ,..., n, a # v) be the conflicting 
transactions in their read phase. Then the forward validation can 
be described by the following procedure. 

validate(T,,); 

valid := true; 
foreach T, (a = 1, 2, ... , n)  ( 

( 

if RS(T,) n WS(T,,) # ( ] then valid := false; 
1 
if valid then commit WS(T,,) to database 
else conflict resolution(T,,); 

I 

In real-time database systems, data conflicts should be 
resolved in favor of higher priority transactions. In backward 
validation, there is no way to take transaction priority into account 
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in the serialization process. since it is carried out against already 
committed transactions. Thus backward validation is not 
amenable to real-time database systems. Forward validation 
provides flexibility for conflict resolution that either the validating 
transaction or the conflicting active transactions may be chosen to 
restart, so it is preferable for real-time database systems. In 
addition to this flexibility, forward validation has the advantage of 
early detection and resolution of data conflicts. 

All the optimistic algorithms used in the previous studies 
of real-time concurrency control in [7,8,9,11,13,14] are based 
on the forward validation. The broadcast mechanism in the 
algorithm, OFT-BC used in [7,8,9], is an implementation variant 
of the forward validation. From now on, we refer to this algorithm 
as OCC-FV. 

2.2. Unnecessary Restarts 
As we mentioned above, forward validation is based on 

the assumption that the serialization order among transactions is 
determined by the arriving order of transactions at validation 
phase. Thus the validating transaction, if not restarted, always 
precedes concurrently running active transactions in serialization 
order. We claim that this assumption is not only unnecessary, but 
also the validation process based on this assumption can incur 
restarts not necessary to ensure data consistency. These restarts 
should be avoided. To ensure this claim, let us consider the 
following example. 

Example 1: Let rJx] and wi[x] denote a read and write operation, 
respectively. on the data objat x by transaction i, and let vi and ci 
denote the validation and commit of transaction i. respectively. 
Consider three transactions TI, T2, and T3: 

TI: r1txI W l t X I  r l b l  W l t Y I  V I  
Tp. r2[x] wztx] ... v2 
TJ: r3[y] ... v3 

and suppose they execute as follows: 

If we use the forward validation process described above for the 
validation of TI, both the active transactions, T2 and T3 are 
conflicting with TI on data items x and y, respectively, and should 
restart. It is fair for T2 to restart since it has both write-write and 
write-read conflicts with TI. However, T3, we observe, does not 
have to restart, if there is no more conflict with TI than the write- 
read conflict on data item y. In fact no serialization order between 
TI and T3 has been built except for the read-write conflict on y. If 
we set the serialization order between TI and T3 as T3 + TI during 
the validation of TI, we can ensure data consistency without 
restarting T3.B 

We refer to such a restart of T3 in the forward validation 
as an unnecessary restart. Also, we refer to transactions having 
both write-write and write-read conflicts with the validating 
transaction like T2 as irreconcilably conflicting, while 
transactions having only write-read conflicts l i e  T3 as 
reconcilably conflicting. 

The design of the new optimistic algorithm presented in 

the next section is based on this categorization of active 
transactions. As we will explain, the categorization is 
automatically done by adjusting and recording the current 
serialization order dynamically using timestamp intervals 
associated with each active transaction. The performance gain by 
the new algorithm can be significant especially when reconcilable 
conflicts dominate, that is. the probability that a data object read 
is updated is low, which is true for most actual database systems. 
Generally, under a wide range of system workload, the algorithm 
provides a performance advantage by reducing the number of 
restarts at the expense of maintaining serialization order 
dynamically. 

3. A New Optimistic Algorithm 
In this section, we present the proposed optimistic 

algorithm in detail. We first explain the mechanism to guarantee 
serializability used in the algorithm, and then prove its 
correctness. At the end, we discuss the advantages and 
disadvantages of this protocol. We hereafter refer to this algorithm 
as OCC-TI. 

3.1. Validation Phase 
In this protocol, every transaction in the read phase is 

assigned an timestamp interval, which is used to record temporary 
serialization order induced during the execution of the transaction. 
At the start of execution, the timestamp interval of a transaction is 
initialized as [Op), i.e., the entire range of timestamp space. 
Whenever serialization order of a transaction is induced by its data 
operation or the validation of other transactions, its timestamp 
interval is adjusted to represent the dependencies. In addition to 
the timestamp interval, a final timestamp is assigned to each 
transaction which has successfully passed its validation test and 

In this algorithm, a transaction that finishes read phase 
and reaches validation is always guaranteed to commit as in OCC- 
FV. However, unlike OCC-FV in which a transaction is validated 
by comparing its write set and the read sets of transactions, the 
validation of a transaction in OCC-TI consists of adjusting the 
timestamp intervals of concurrent transactions. 

Let TI(T) and TS(T) denote the timestamp interval and 
final timestamp of transaction T, respectively. Then the validation 
process can be briefly described by the following procedure. 

guaranteed to commit. 

validate(T,); 

select TS(Tv) from TI(Tv); 
foreach T, (a = 1,2, ... ,1) ( 

1 
foreach Di (i = 1.2, ... , m) in RS(Tv) ( 

1 
foreach Dj (j= 1.2, ... , n) in WS(T,) ( 

1 
commit WS(T,) to database; 

I 

adjust(T,); 

update RTS(Dj); 

update m ( D j ) ;  

1 



First, the final timestamp, TS(T,), is determined from the 
timestamp interval, TI(T,). In fact, any timestamp in TI(T,) can be 
chosen to be TS(T,), because any value in TI(T,) preserves the 
serialization order induced by T,. In this algorithm, we always 
select the minimum value of TI(T,) for TS(T,) for a practical 
reason, which will be made clear later. TS(T,) is used in the next 
steps of the validation process. Second, the timestamp intervals of 
all the concurrently running transactions that have accessed 
common objects with T, are adjusted to reflect the serialization 
order induced between T, and those transactions. Any active 
transaction whose timestamp interval shuts out by the adjustment 
operation should restart, because it has introduced nonserializable 
execution with respect to T,. The details of the adjustment 
procedure will be described below. Finally, if necessary, the final 
timestamp of the committing transaction is recorded for every 
data object it has accessed. RTS(D) and WTS(D) denote the largest 
timestamp of committed transactions that have read and written, 
respectively, data object D. The need of this operation will be 
explained in the next section. 

The salient point of OCC-TI is that unlike other 
optimistic algorithms, it does not depend on the assumption of the 
serialization order of transactions being the same as the validation 
phase arriving order, but it records serialization order induced 
precisely and uses restarts only when necessary. Let us examine 
how serialization order is adjusted between the validating 
transaction and a concurrently active transaction for the three 
possible types of conflict: 

Read-write conflict (RS(T,) n WS(T,) # { }) 

This type of conflicts leads the serialization order between T, and 
T, to T, + Tu. That is, the timestamp interval of T, is adjusted to 
follow that of T,. We refer to this ordering as forward ordering. 
The implication of this ordering is that the read phase of T, is not 
affected by the writes of T,. 

Write-read conflict ( WS(T,) n RS(T,) # { )) 

In this case, the serialization order is recorded as T, + T,. That is, 
the timestamp interval of Ta is adjusted to precede that of T,. This 
ordering is referred to as backward ordering. It implies that the 
writes of T, have not affected the read phase of T,. 

Write-write conflict (WS(T,) n WS(T,) # ( )) 

A write-write conflict results in forward ordering, i.e., T, + Tu. 
Thus the order implies that T,’s writes do not overwrite Ta’s 
writes. 

Non-serializable execution is detected when the 
timestamp interval of an active transaction shuts out. The non- 
serializable execution is deleted from execution history by 
restarting the transaction. Obviously, the timestamp interval of an 
active transaction that requires both backward and forward 
ordering to record the execution of its operations will shut out. 
Such transaction are irreconcilably conflicting with the validating 
transaction. 

The adjustment of timestamp intervals of active 
transactions is the process of recording serialization order 

according to the conflict types and their corresponding ordering. 
It can be described by the following procedure. We assume that 
timestamp intervals contain only integers. 

adjust( T,); 
1 

foreach Di ( i  = 1, 2, ... , m) in RS(T,) { 
if Di in WS(T,) 
then TI(T,) := TI(T,) n [TS(T,), -); 
if TI(T,) = [ ] then restart(T,); 

1 

foreach D .  (j= 1,2,  ..., n) in WS(T,) ( 
if Dj i’, RS(T,) 
then TI(T,) := TI(T,) n [O,  TS(T,)-11; 
if Dj in WS(T,) 
then TI(T,) := TI(T,) n [TS(T,), -); 
if TI(Tu) = [ ] then restart(T,); 

1 
1 

3.2. Read Phase 
The adjustment of active transactions’ timestamp 

intervals at the validation of a transaction is the process of 
recording the serialization order between the committing 
transaction and the data operations performed by the concurrently 
running transactions until the moment. Because the active 
transactions continue to execute remaining data operations, the 
execution order induced by the remaining operations should be 
checked to determine if they induce any non-serializable 
execution. If so, the active transaction should restart. The 
following example demonstrates such late restart. 

Example 2: Consider two transactions TI and T2: 

TI: r1lvl W l [ Y I  ‘1  
T2: r2lvl W2[YI ... v2 

and suppose they execute as follows: 

At the validation of TI,  T2 has only a write-read conflict with TI.  
With the backward ordering, the serialization order between TI 
and T2 is set as T2 + TI,  and T2 is not restarted. However, later 
the write operation of T2, w2[y], induces a serialization order 
between T, and T2 in opposite direction. Thus T2 has to restart.. 

The detection of non-serializable execution by remaining 
operations of active transactions can also be done using the 
timestamp intervals. Because, in this case, the serialization order 
of active transactions is checked against committed transactions, 
we need to use the timestamps of data objects, i.e., RTS(D) and 
WTS(D) of data object D. In the read phase, whenever a 
transaction performs a data operation, its timestamp interval is 
adjusted to reflect the serialization induced between the 
transaction and committed transactions. If the timestamp interval 
shuts out, a non-serializable execution performed by the 
transaction is detected, and the transaction restarts. The process 
can be described by the following procedure. 
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read-phase(T,); 
1 

foreach Di (i = 1,2, .... m) in RS(T,) ( 

TI(T,) := TI(T,) n [WTS(Di), m); 
if TI(T2 = [ I then restart(T,); 

foreach D. (j - 1,2, ..., n) in WS(T,) ( 
pre-write(b.1;- 

read(Di); 

1 

TI(TJ := T~T,) n [wTs(D.), -) n [RTS(D~), =); 
if TI(TJ = 1 then restart(+,); 
I 

I 
Example 3: To understand how this procedure works, let us 
consider the previous example again. The execution history is 
given as follows: 

H2 = .IlYI rz[Yl W l l Y I  V I  C I  Wz[Yl. 

At its validation, TI is first assigned a final timestamp TS(TI), say 
74. Then with backward ordering, the timestamp interval of T2 is 
adjusted to be [0,73]. In addition, the timestamps of data object, 
RTS(y) and wTs(y), accessed by TI are updated to be 74. After the 
validation process, when T2 performs wz[y], its timestamp is 
adjusted by the following operation: 

TI(T2) := [0,73] n [74, m) n [74, -). 

Because this operation leaves TI(T2) shut out, non-serializable 
execution is detected and T2 restarts.. 

Note that in OCC-FV, transactions in read or validation 
phase do not need to check for conflicts with already committed 
transactions. In this algorithm, transactions conflicting with a 
committed transaction would have been restarted earlier by the 
committed transaction [7]. 

3.3. write Phase 
Once a transaction is in the write phase, it is considered 

to be committed. All committed transactions can be serialized by 
the final timestamp order. In the write phase, the only work of a 
transaction is making all its updates permanent in the database. 
Data objects are copied from the local workspace into the 
database. Since a transaction applies the results of its write 
operations only after it commits, the strictness [4] of the histories 
produced by OCC-TI is guaranteed. This property makes the 
transaction recovery procedure simpler than non-strict 
concurrency control protocols. 

3.4. correctness 

In this section, we give an argument on the correctness of 
the algorithm. First, we give simple definitions of history and 
serialization graph (SG). The formal definitions for these concepts 
can be found in [4]. A history is a partial order of operations that 
represents the execution of a set of transactions. Any two 
conflicting operations must be comparable. Let H denote a 
history. The serialization graph for H, denoted by SG(H), is a 
directed graph whose nodes are committed transactions in H and 
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whose edges are all Ti 4 Ti (i #I]  such that one of Tis operations 
precedes and conflicts with one of vs operations in H. To prove 
a history H serializable, we only have to prove that SG(H) is 
acyclic [4]. 

Lemma 1: Let TI and T2 be two committed transactions in a 
history H produced by the proposed algorithm. If there is an edge 
TI 4 T2 in SG(H), then TS(TI) c TS(T2). 

Proof: Since there is an edge, TI -+ T2 in SG(H), the two must 
have one or more conflicting operations whose type is one of the 
following three: 

Case 1: rl[x] + w2[x] 

This case implies that TI commits before T2 reaches its validation 
phase since rl[x] is not affected by W~[X]. For w~[x], OCC-TI 
adjusts TI(T2) to follow RTS(x) that is equal to or is greater than 
TS(T,). That is, TS(T1) S RTS(x) c TS(T2). Therefore, TS(T1) c 

Case 2: wl[xl + r2[xl 

This case is possible only when the write phase of TI finishes 
before r2[x] executes in T2’s read phase. For r2[x], OCC-TI 
adjusts TI(T2) to follow WS(x), which is equal to or greater than 
TS(TI). That is, TS(T1) I WTS(x) c TS(T2). Therefore, TS(T1) c 
TSf T2). 

Case 3: wl[xl+ w2[xl 

This case can be similarly proved to lead to TS(T1) c TS(T2)I 

Theorem: Every history generated by OCC-TI algorithm is 
serializable. 

Proof: Let H denote any history generated by the algorithm. 
Suppose, by way of contradiction, that SG(H) contains a cycle 
TI+ T2 + ... + T,, + TI, where n > 1. By Lemma 1, we have 
TS(T,) c TS(T2) c ... c TS(TJ c TS(TI). This is a contradiction. 
Therefore no cycle can exist in SG(H) and thus the algorithm 
produces only serializable histories.. 

WT2). 

3.5. Discussion 
In this section, we discuss the advantages and 

disadvantages of OCC-TI, and consider ways to include 
transaction deadline information in making conflict resolution 
decisions. 

The algorithm keeps all the advantages of OCC-FV. 
They include high degree of concurrency, freedom from deadlock, 
early detection and resolution of conflicts (compared to backward 
validation-based optimistic algorithm) resulting in both less 
wasted resources and earlier restarts. All of these contribute to 
increasing the chances of meeting transaction deadlines. Also, like 
the OCC-FV algorithm, OCC-TI can avoid the “wasted restart” 
phenomenon of locking-based algorithms because it allows only 
committed transactions to restart others. Furthermore, the ability 
of OCC-TI to avoid unnecessary restarts is expected to provide 
performance gains over the OCC-FV algorithm. 

However, this expected performance gain does not come 
for free. The main cost for this benefit is the management of 



timestamp intervals for active transactions and timestamps for 
data objects. This management can be done efficiently by using a 
transaction table and a data object table. The transaction table 
contains information of active transactions, including the read set 
and write set, and the timestamp interval of every active 
transaction. The information that is recorded in the data object 
table includes for each data object, D, WTS(D), RTS(D), the list of 
transactions holding locks on D, and the waiting list of 
incompatible lock requests on D. The data object table is also 
called a lock table (see Section 4.5.). 

Another important point to note here is that the degree of 
performance gain due to avoiding unnecessary restarts is 
dependent on the probability that a data object read is updated. 
When this write probability is low, that is, a write-read conflict 
rarely leads to a write-write conflict, the performance advantage 
can be significant. However, if the write probability is high, that 
is, a backward ordering for write-read conflict is almost always 
followed by a forward ordering for write-write conflict, the cost 
for timestamp interval management can overwhelm the benefit of 
reduced number of restarts. 

Finally, it should be noted that OCC-TI presented in this 
paper does not use any transaction deadline information to make 
decisions for conflict resolution. The incorporation of timing 
information into the algorithm to improve timeliness level is a 
problem to be addressed. One method to do this was studied in 
[13, 141. In this method, at the validation of a transaction, the set 
of active transactions is divided into two groups: reconcilably 
conflicting set and irreconcilably conflicting set. Conflict 
resolution between the validating transaction and the active 
transactions in the irreconcilable set is done by a deadline- 
sensitive scheme called Feasible Sacrifice [14]. Then the 
timestamp interval adjustment process for reconcilable set follows 
only when the validating transaction is decided to commit by the 
priority-based conflict resolution. 

The Feasible Sacrifice scheme gives precedence to 
urgent transactions, while reducing the number of missed 
deadlines due to wasted sacrifices through the use of a feasibility 
test of every validating transaction. For the feasibility test, we 
proposed an approach to estimating the execution time of restarted 
transactions in optimistic protocols. In [ 141, the Feasible Sacrifice 
scheme is shown to provide significant gains over deadline- 
insensitive optimistic algorithms, and to outperform constantly 
the conflict resolution scheme based on a priority wait mechanism 
with a wait control technique [8]. 

4. Experiment Environment 
This section outlines the structure and details of our 

simulation model and experimental environment which were used 
to evaluate the performance of concurrency control algorithms for 
RTDBSs. The issues on the implementation of optimistic schemes 
are also discussed. 

4.1. Tardy Transaction Policy 
It has been shown that the policy dealing with tardy 

transactions has a significant impact on the relative performance 
of the concurrency control algorithms in real-time database 

systems [7]. Different policies for tardy transactions are needed 
for real-time applications with soji deadlines and firm deadlines. 
In the former case, tardy transactions may have to run to 
completion (maybe with promoted priority), and in the latter case, 
they are considered having lost all value and hence be discarded 
from the system. Examples of applications having these types of 
deadline are given in [l]. The differences of the performance 
behavior of these two policies have been examined using simple 
queueing systems in [7]. In the experiments in this paper, we 
assume that transactions arriving in the system have firm 
deadlines. Therefore, transactions are discarded immediately after 
they miss deadline. 

4.2. Simulation Model 
Central to our simulation model for RTDBS is a single- 

site disk resident database system operating on shared-memory 
multiprocessors. The physical queueing model is depicted in 
Figure 1, and the associated model parameters are described in the 
next section. The physical queueing model is similar to the one 
used in [3]. CPUs share a single queue and the service discipline 
used for the queue is priority scheduling without preemption. 
Each disk has its own queue and is also scheduled with priority 
scheduling. 

In this model, the execution of a transaction consists of 
multiple instances of alternating data access request and data 
operation steps until all of the data operations in it complete or it 
is aborted for some reason. When a transaction makes a data 
access request, the request must go through concurrency control 
to obtain a permission to access the data object. If the request is 
granted, the transaction proceeds to perform the data operation 
which consists of a disk access and CPU computation. The 
transaction passes through disk queue and CPU queue. If the data 
access request is denied, the transaction will be placed into a data 
queue. The waiting transaction will be awakened when the 
requested data object becomes available. 

transac 

I I 
commit 

lock grant 
Concurrency :tions 

I n I 

:tions 

disk 

Figure 1 Simulation Model 
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If a data access request leads to a decision to abort the 
transaction, it has to restart. The system checks the eligibility of a 
transaction whenever it restarts, and whenever it is put into and 
comes out of a queue, to see if it has already missed its deadline. 
With the f m  deadline assumption, transactions that has missed 
deadline are aborted and permanently discarded from the system. 

4.3. Parameter Setting 
The database itself is modeled as a collection of data 

pages in disks, and the data pages are modeled as being uniformly 
distributed across all the disks. A transaction consists of a mixed 
sequence of read and write operations. We assume that a write 
operation is always preceded by a read for the same page, that is, 
the write set of a transaction is always a subset of its read set [4]. 

Table 1 gives the names and meanings of the parameters 
that control system resources. The parameters, CPUTime and 
DiskTime capture the CPU and disk processing times per data 
page. Our simulation system does not account for the time needed 
for lock management and context switching. We assume that these 
costs are included in CPUTime on a per data object basis. 

The use of database buffer pool is simulated using 
probability, rather than each buffer page being traced individually. 
When a transaction attempts to read a data page, the system 
determines whether the page is in memory or disk using the 
probability, BufProb. If the page is determined to be in memory, 
the transaction can continue processing without disk access. 
Otherwise, an IO service request is created. 

Table 2 summarizes the key parameters that characterize 
system workload and transactions. Transactions arrive in a 
Poisson stream, i.e., their inter-arrival times are exponentially 
distributed. The ArriRate parameter specifies the mean rate of 
transaction arrivals. The number of data objects accessed by a 
transaction is determined by a normal distribution with mean 
TranSize, and the actual data objects are determined uniformly 
from the database. A page that is read is updated with the 
probability, WriteProb. 

Ihble 1: Workload Parameters 

The assignment of deadlines to transactions is controlled 
by the parameters, MinShck and Maxslack, which set a lower and 
upper bound, respectively, on a transaction’s slack time. We use 
the following formula for deadline-assignment to a transaction: 

Deadline = AT + uniform(MinSlack, Maxslack) * ET. 

AT and ET denote the arrival time and execution time, 
respectively. The execution time of a transaction used in this 
formula is not an actual execution time, but a time estimated using 
the values of parameters, TranSize, CPUTime and DiskTime. This 
value is used only for the above deadline-assignment formula, but 
not used for any other purpose including conflict resolution 
decisions in concurrency control. In this system, the priorities of 
transactions are assigned by the Earliest Deadline First policy 
[ 151, which uses only deadline information to decide transaction 
priority, but not any other information about transaction execution 
time. 

Finally, the base values for parameters shown in Tables 
1 and 2 are not meant to model a specific real-time application. 
They were chosen to be reasonable for a wide range of actual 
database systems. 

4.4. Performance Metria 
The primary performance metric used is the percentage 

of transactions which miss their deadlines, referred to as Miss 
Percentage. Miss Percentage is calculated with the following 
equation: 

Miss Percentage = 100 * (# of tardy jobs I # of jobs arrived). 

In addition to Miss Percentage, we measure other 
statistical information, including system throughput, average 
number of transaction restarts, average data blocking time, and 
average resource queueing time. These secondary measures help 
explain the behavior of the concurrency control algorithms under 
various operating conditions. The average number of transaction 
restarts, which we refer to as Restart Count, is normalized on a 
per-transaction basis, so that its value represents the average 
number of restarts experienced by a transaction until it completes, 
or misses its deadline and is discarded. 

4.5. Implementation Issues 
In this section, we describe a physical implementation 

method for optimistic algorithms with forward validation 
described at the logical level earlier in this paper. The 
implementation is one of the major conditions for a correct 
performance comparison of concurrency control algorithms. 

Ihble 2 System Resource Parameters 
Meaning Base Value 

P j P m b  b b .  of a page in memory buffer I 0.5 

For the implementation, we have two major concems. 
One is the effiiency of validation. At the logical level, data 
conflicts are detected comparing the read set and write set of 
transactions. This method is impractical for actual database 
systems, since the complexity of the validation test is dependent 
on the number of active transactions. The other concem is the 
comparability of locking algorithms and optimistic schemes. In 
previous studies of concurrency control for RTDBSs in [7,8], the 
validation test of optimistic algorithms were implemented using 
broadcast mechanism by which the validating transaction notifies 
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other currently running transactions with data conflicts. The 
concept is straightforward, but it is difficult to compare the 
performance of locking protocol with optimistic algorithm 
implemented using broadcast mechanism due to the significant 
difference in their implementation. It is difficult to determine the 
fair cost for each implementation mechanism. This is especially 
true for simulation study, and also applies to performance study 
using actual systems such as testbed, because the implementation 
costs often vary from one system to another. 

Based on these reasons, we decided to use a locking 
mechanism for the implementation of optimistic protocols. The 
mechanism is based on the one proposed in [ll].  In this 
mechanism, the system maintains a system-wide lock table, LT, 
for recording data accesses by all concurrently executing 
transactions. There are two lock modes - read-phase lock (R-lock) 
and validation-phase lock (V-lock). An R-lock is set in LT 
whenever a transaction accesses a data object in its read phase, 
and an R-lock for write operation is upgraded to a V-lock when 
the transaction enters its validation phase. The two lock modes are 
not compatible. Generally, the validation process is carried out by 
checking the lock compatibility with the lock table. This locking- 
based implementation of validation test provides both efficiency 
and implementation comparability due to its complexity 
independent of the number of active transactions, and its use of 
locking, respectively. 

It is shown in [l 11  that the physical operations on the 
lock table of this implementation of the optimistic protocol are 
almost the same as those of locking protocols. Despite the 
similarity, there are some differences that may affect the relative 
performance of the locking and optimistic protocols. First, the 
locking duration of optimistic algorithm is shorter than that of 
locking protocols, since it is only during the validation and write 
phase of a transaction. Second, the R-locks of optimistic protocol 
will not block any concurrent transactions in the read phase. 
Finally, the optimistic protocol maintains the property of 
deadlock-freedom, even though R-locks and V-locks are used. 

5. Experiments and Results 
In this section, we present performance results from our 

experiments comparing concurrency control algorithms in a real- 
time database system. We compare three different concurrency 
control protocols: 2PL-HP which is basically a locking scheme, 
but resolves a data conflict between a lower priority lock holder 
and a higher priority lock requester by restarting the lower priority 
transaction [l], OCC-FV [7], and OCC-TI. Note again that OCC- 
FV and OCC-TI do not use transaction deadline information for 
data conflict resolution, while 2PL-HP does. 

The simulation program was written in SIMAN, a 
discrete-event simulation language [ 171. The data collection in the 
experiments is based on the method of replication. For each 
experiment, we ran the simulation with the same parameter values 
for at least 10 different random number seeds. Each run continued 
until 1 ,OOO transactions were executed. For each run, the statistics 
gathered during the first few seconds were discarded in order to 
let the system stabilize after initial transient condition. The 
statistical data reported in this paper has 90% confidence intervals 

whose end points are within 10% of the point estimate. In the 
following graphs, we only plot the mean values of the 
performance metrics. 

First, we examine the performance of concurrency 
control algorithms under the condition of limited resources. The 
values of parameters, NumCPUs and NumDisks are fixed two and 
four, respectively. Figure 2 shows Miss Percentage behavior of 
algorithms under different levels of system workload. System 
workload is controlled by the arrival rate of transactions in the 
system. In this experiment, the value of WriteProb is fixed at 0.25. 
From the graph, it is clear that for very low arrival rates under 10 
transactions/second, there is not much difference for the three 
protocols. However, as the arrival rate increases, OCC-FV does 
progressively better than 2PL-HP, and OCC-TI does even better 

One of the reasons for this performance difference is the 
difference in the number of restarts, Restart Count, incurred by 
each of the protocols, shown in Figure 3. As mentioned earlier, 
2PL-HP suffers performance degradation caused by wasted 
restarts. That is, the immediate conflict resolution policy of 2PL- 
HP allows a transaction that will eventually miss its deadline and 
be discarded to restart (or block) other transactions. This 
performance degradation increases as the workload level 
increases, since the number of transactions that miss their 
deadlines and have to be discarded increases. 

The delayed conflict resolution policy of optimistic 
algorithms helps them to avoid such wasted restarts. However, 
OCC-FV suffers performance degradation caused by unnecessary 
restarts described in Section 3. At the relatively low write 
probability of 0.25, the possibility of a backward ordering 
followed by a forward ordering is low, and many unnecessary 
restarts can be saved by OCC-TI protocol. This is shown clearly 
in Figure 3, where we observe a significant difference between the 
restart curves of OCC-FV and OCC-TI. 

Figures 4 and 5 show similar graphs as Figures 2 and 3, 
i.e., Miss Percentage and Restart Count of the these protocols 
under different levels of system workload. In this case, however, 
the system operates at a higher level of data contention with the 
value of WriteProb fixed at 0.75. The performance difference 
between 2PL-HP and OCC-FV becomes even bigger, since the 
number of wasted restarts in 2PL-HP tends to increase as data 
contention increases. However, OCC-TI does not show 
significant performance gains over OCC-FV. This is due to the 
fact that with the relatively high write probability of 0.75, not 
many restarts are made unnecessarily by OCC-FV, since most 
backward ordering is followed by forward ordering. 

One point to note here is that the restart count of all the 
three protocols decreases after a certain workload. The reason for 
this decrease is that after that workload point, resource contention 
dominates data contention in discarding deadline-missing 
transactions. 

Until now, the performance of the protocols was shown 
under a limited resource situation. In such situations, since 
resource contention dominates data contention quickly as system 
workload increases, the performance of the system is primarily 
determined by resource scheduling algorithms rather than 

than OCC-FV. 
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concurrency control algorithms. In fact, the performance 
difference shown in Figures 2 and 4 may not be very striking. 

To capture the performance difference of concurrency 
control algorithms without the effect of resource contention, we 
simulated an infinite resource situation, where there is no 
queueing for resources (CPUs and disks). The data contention is 
maintained relatively high with the value of WriteProb fixed at 
0.5. Figures 6 and 7 show Miss Percentage and Restart Count of 
the three protocols. As we expected, the performance difference 
of the three becomes clearer. Note that since in this infinite 
resource situation, there is no resource contention, the restart 
counts of the three protocols ever increase as the system workload 
increases. 

6. Conclusions 
In this paper, we have presented a new optimistic 

concurrency control algorithm. The design of the algorithm was 
motivated by the recent study results in [7, 81 concluding that 
optimistic approach outperforms locking protocols in real-time 
database systems with the objective of minimizing the percentage 
of transactions missing deadline. We observed that the optimistic 
algorithms used in those studies could incur restarts unnecessary 
to ensure data consistency. The new optimistic algorithm was 
designed to precisely adjust and record temporary serialization 
order among concurrently running transactions, and thereby to 
avoid unnecessary restarts. To evaluate the effect of the 
unnecessary restarts, a quantitative study was carried out using a 
simulation system of RTDBS with three concurrency control 
algorithms: two-phase locking with high priority conflict 
resolution policy (2PL-HP), optimistic protocol with forward 
validation (OCC-FV) and the proposed optimistic algorithm 
(OCC-TI). 

We showed that under the policy that discards tardy 
transactions from the system, the optimistic algorithms 

among the optimistic algorithms. The performance difference 
between OCC-FV and OCC-TI becomes large especially when 
the probability of a data object read being updated is low, which 
is true in most actual database systems. In conclusion, the factor 
of unnecessary restarts is not negligible in performance of 
optimistic concurrency control under both finite and infinite 
resource conditions, and the proposed optimistic algorithm is a 
promising candidate for basic concurrency control mechanisms 
for real-time database systems. 

The optimistic algorithm proposed in this paper does not 
use transaction deadline information in making decisions for data 
conflict resolution. We expect a better concurrency control 
algorithm by using an intelligent way of incorporating transaction 
deadline information into the basic mechanism. In a different 
paper [ 141, we studied deadline-sensitive concurrency control 
mechanisms based on OCC-TI for RTDBSs, and proposed a 
protocol that outperforms other real-time concurrency control 
algorithms currently known under a wide range of operating 
conditions. 

Outperform 2PL-HP, and OCC-TI does better than OCC-FV 
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