The DoD Architecture Framework Views as Requirements Vehicles in a Model Driven Architecture Systems Development Process

Dr. Michael P. Bienvenu, bienvenu@mitre.org, The MITRE Corporation
Keith A. Godwin, kgodwin@mitre.org, The MITRE Corporation
The DoD Architecture Framework Views as Requirements Vehicles in a Model Driven Architecture Systems Development Process

1. **REPORT DATE**
 - JUN 2004

2. **REPORT TYPE**

3. **DATES COVERED**
 - 00-00-2004 to 00-00-2004

4. **TITLE AND SUBTITLE**
 - The DoD Architecture Framework Views as Requirements Vehicles in a Model Driven Architecture Systems Development Process

5. **AUTHOR(S)**

6. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 - Mitre Corporation, 202 Burlington Road, Bedford, MA, 01730

7. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **DISTRIBUTION/AVAILABILITY STATEMENT**
 - Approved for public release; distribution unlimited

10. **SUPPLEMENTARY NOTES**
 - The original document contains color images.

11. **ABSTRACT**

12. **SUBJECT TERMS**

13. **SECURITY CLASSIFICATION OF:**
 - a. REPORT: unclassified
 - b. ABSTRACT: unclassified
 - c. THIS PAGE: unclassified

14. **LIMITATION OF ABSTRACT**

15. **NUMBER OF PAGES**
 - 18

16. **RESPONSIBLE PERSON**

17. **NAME OF RESPONSIBLE PERSON**

18. **REPORT NUMBER**

19. **REPORT NUMBER**

Standard Form 250 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Agenda

- Architecture Framework Overview
- A Systems Engineering Perspective of Architecture Views
- An Integrated Architecture Approach
- Application to JSSEO Model Driven Architecture Development
- Tool Adaptation
- Requirements Management
- Summary

Purpose

- Describe our Approach to Extending DoDAF to Unify Architecture, Requirements and Requirements Traceability
- Demonstrate that the DoDAF can be Inline with the Systems Engineering Process
DoD Architecture Framework 1.0

DoD Architecture Framework v1.0

DoDAF Background

- DoDAF is Mandated for Representing Architectures for the DoD
 - Operational, System, Technical Views (AV, OV, SV, TV)
 - Addresses Structure, Data, Behavior
 - Mainly Diagrams or Tables
- DoDAF is Governed by a Working Group with Representatives from Across DoD Services and Agencies
- **Focus Should Be on the Underlying Meta-Data**
 - What The Diagrams Mean, Not What They Look Like
- Not Intended as a Systems Engineering Tool, or as a Primary Requirements Vehicle
 - Tendency to be Descriptive rather than Prescriptive
 - Doesn’t Mandate that Requirements be Specified
 - Assumes (but doesn’t require) a Disciplined Process with Strict Consistency Between Products
Challenges for Our Project

- Desire to use DoDAF to Support Systems Engineering
 - Architectures as more than just a Descriptive Report
- Coupled Architectures – Operational, System, Software
- Linked, Traceable Requirements at all Levels
- Address Model Driven Architecture (MDA) Challenges
 - Integrated Architecture Behavior Model (IABM) to meet needs of Single Integrated Air Picture (SIAP)
 - Distributed Nature of the Desired System
 - Rapid Development Prior to Definition of the Full Set of Requirements -- Evolutionary/Iterative Development
 - Iterative Development, Constant Refinement of Requirements
 - OO Based Design Processes Based on UML notation
Relating DoDAF OV and SV Products

Operational Views

System Views

Diagram Concept from Steve Ring, MITRE Corp.
DoDAF OV to SV Connection - **Deficiencies**

Matrix Correlating Operational Activities to System Functions

Insufficient Linkage for Requirements Traceability!
A Systems Engineering View

- Requirements Allocation and Traceability Provide Rigor Needed to have Architecture Views Support System Engineering
- Need to Establish
 - Linkage Between Requirements and Architecture Elements at Each Level
 - Linkage Between Requirements at Different Levels
- Conventional Approach to DoDAF vs Requirements Aligned Approach
An Integrated Architecture Approach

- Architectures Capture Requirements in Context
 - Architecture Views are Relevant to the Systems Engineering Process and Become De Facto Living Documents with the Evolutionary System Design
 - Separated Requirements may not have the Meaning they have in Context, or in a Specified Sequence (Using Rules, Statecharts or Sequence Representations)

- All Requirements get Implemented through Something in the Architecture, and there Should be Nothing in the Architecture that isn’t there to help Satisfy Requirements

- All Elements in an Architecture Should be Satisfying one or more Requirements
 - Richer and Rigorous Correlation Between Requirements at Different Levels of the Architecture
 - Can be Design-Derived Requirements

- Each Requirement Should be Allocated to at Least One Architecture Element Somewhere
 - If all Requirements Should be Testable, then there must be Something to Test
Architecture – Requirements Traceability

- Requirements Apply to More than Just Functions
- Data, Interfaces, and Behavior Should also have Requirements, and be Related between OVs and SVs
Assigning Requirements to an Operational Activity (Example)

- Portion of one of the OV-5 Dataflow Diagrams
- Requirements can be Attached to
 - Operational Activities (boxes)
 - Information Exchanges {data} (lines)
Comprehensive Approach for JSSEO

- **JSSEO Project Characteristics**
 - Based on Model Driven Architecture (OMG)
 - One Fact, One Place
 - Requirements Traceability
 - Auto-Generation of Documentation

- **Agile Development**
 - Iterative Requirements Definition and Refinement
 - Appropriate for “Disruptive Systems” *
 - Distributed System and System Requirements

- **Support Implementation of Software to Heterogeneous Host Systems**

- **Tailoring of DoDAF products**
 - UML as Basis for System Views

* Clayton M. Christensen, *The Innovator’s Dilemma*
Role of an Integrated Architecture within JSSEO

- Integrated Architecture (IA) Contains
 - Operational and System Architecture
 - Operational and System Requirements
Extending DoDAF to Address JSSEO MDA

- Diagram Adaptation Primarily on the SV side.
- SV-1, -2, -4, -6, -11: Use UML Class and Object Diagrams
 - Variety of Uses
- Interconnect Template
 - The IABM, its Layers, and its Interfaces to the Host System
 - Classes Defined for Commonality
 - Object Instance Versions for each Host System
- Capability Areas
 - “Virtual” Classes Defined to hold Domain-Level Requirements
- Interface Specification
 - Associations/Links can have Requirements Attached, and Support Message Definition
Operational Requirements (Derived from Primary Sources) Associated with Diagram Elements
IA System Views & Requirements

- System Requirements Allocated to System View Elements
- Some Requirements derived from Architecture Context (Interfaces)
IABM Capabilities Object Model (Example)

- Links System Views with IABM Design
- IABM “Capabilities” are Virtual Objects used to hold Sets of Related Domain* Requirements.

*I UML Development Terminology for a Collection of Classes
Value of Architecture/Requirements Process to JSSEO

- Unified Repository of Integrated Information
 - Allows Automated Detection of Mismatches
 - Support for Automated Document Generation
 - Integrated Product Focus for Configuration Control & Management

- Efficiency: Engineers Think, Tools Help Keep Track

- Fewer Tools Means Fewer Manual Translations between Tools
 - Every (manual) Translation Provides an Opportunity for Mis-translation
 - Translations Mean More Effort, More Complicated Updating Process, Lower Probability of Continued Success

- Up-To-Date Design
 - Architecture, Requirements, Design Updated Monthly
Implementing the Solution

- Architecture Tool Adaptation
 - Architecture Diagramming and Requirements Management Tools Configured to Support the JSSEO Development Process
 - Automated Data Exchange Between Tools to Minimize Data Entry Duplication

- Requirements Management
 - Flexible Scheme for Identifying and Tracing Requirements
 - Requirements Managed Individually, not as a Set within a Specification

- Metrics, Reports and Status Monitoring
 - Oriented Toward Determining Completeness of Requirements Traceability
 - Account for All Aspects of Traceability
 - Requirement to Source
 - Requirement to Requirement
 - Requirement to Architecture View Diagram Elements
 - Requirement to Development Tool Domains
Adapting Tools

No Single Tool Meets All Needs - Requires Suite of Interoperable Tools

PRIMARY TOOLS

- Popkin Systems Architect
 - DoDAF Views (Diagrams)
 - Requirements (multiple levels)
 - Associates Requirements with Architecture Elements (Symbols & Definitions)
 - Encyclopedia of Architecture Data Stored in MS SQLServer

- Telelogic DOORS
 - Requirements Repository
 - Traceability Management
 - Interface to Pass Requirements into Kennedy-Carter iUML Development Tool

SUPPORTING TOOLS

- MS Excel
 - CSV Files for Export/Import of Requirements Between DOORS & System Architect

- MS Access
 - Statistical Reports on Requirements Management
 - SQLServer Import/Export of Architecture Data

- HTML
 - Browser Viewable Reports of Architecture Elements and Associated Requirements
Popkin System Architect

- Configured for JSSEO Development Process
 - UML for System Views to Align with UML in MDA
- Modified USRPROPS.TXT file
 - Added Requirement Definitions (Addressables) for Operational, System, and Domain Requirements
 - Extended Symbol Definitions to Accept Associations of Requirement Addressables
 - Extended System Requirement Definition to Accept Associations of Operational and Domain Requirement Addressables
- Used to Build DoDAF OV s and SVs
- Imports Requirements from DOORS Repository (via Excel Files)
- Assigns Requirements to Diagram Elements
 - Drag and Drop Requirements to Diagram Symbols
Attaching Requirements To A Symbol

1. Select Symbol
2. Select Requirements Tab
3. Drag & Drop Requirements
Defining Requirements Linkages

System Requirement

Operational Requirements Traced to System Requirement

Domain Requirements Traced to System Requirement
Requirements Management

- Requirements Database in DOORS
 - Independent Operational, System, and Domain Requirement Lists
 - Unique Identifier for Each Requirement
 - Requirement Attributes for Status Tracking

- Traceability to Source Documents, Between Requirements and to Architecture Elements

- Reports on “Orphan” Requirements or Architecture Elements Produced from both SA and DOORS
Requirements Internal Meta Structure & States

- Only Current Requirements are Linked
 - Linkages to Diagram Element, Other Requirements, or Source Document
- Superseded or Cancelled Requirements are Archived

Requirements Class State Chart

- Requirements are Approved Prior to Assigning Linkages
- Requirements, Once Created, Stay in System
Movement of Requirements Between Tools Requires Adaptation of ‘One Fact One Place’ Program Goal

- Requirement Definition in DOORS
 - Exported to System Architect
- Requirement Relationships Defined in System Architect
 - Exported for Detailed Reporting
 - Exported to DOORS for Traceability Management
Tool Suite Interoperability

- Modified USRPROPS.TXT
- OVs & SVs
- Aligned Requirements
- Traceability Management & Reports (MS Access)
- Architecture Data
- Requirements
- Requirements Repository
- Excel CSV File of Requirements
- Link Data
- Kennedy-Carter iUML Development Tool

MITRE
Metrics and Reports

- Measuring the Goodness of Traceability
 - Completeness of Architecture Views
 - Completeness of Requirements Set

- Traceability Statistical Reports
 - Used to Assess Architecture and Requirements Traceability
 - Requirements Traced into the Architecture
 - Architecture Elements Aligned with a Requirement

- HTML Reports from System Architect and DOORS
 - Provides Access to Architecture and Requirements Information without Requiring Expertise in Tools
 - Permits Wide Review Without need for Special Tools

Reports used to Improve Overall SIAP Development Process
Requirements Traceability Reports

- Reports Built in MS Access using Data Extracted from System Architect Encyclopedia (MS SQL Server)
 - Architecture and Requirements Traceability
 - Requirements Accounted for in the Architecture
 - Architecture Elements with Assigned Requirement
HTML Reports

1. Diagram
2. Diagram Symbol
3. System Requirement
4. Operational Requirement

- Can be viewed in any Browser
- Hyper-Linked Data
 - Symbols to Symbol Definition (Includes Assigned Requirements)
 - Requirement Name to Corresponding Definition
 - Requirements to Requirements
Future Work

- Comprehensive Hyper-linking
 - VB Scripts used to create hyper-linked Integrated Architecture
 - Linkages with HTML from DOORS and iUML Tools
 - Complete Requirements Trace From Source Documents to IABM Domain Classes

- Additional Reporting & Analysis Features

- Direct Database Exchanges to Minimize need for File Export/Import to Move Data between Tools
Summary

- Presented the Approach for Linking Architecture and Requirements.
 - Architecture Views Serve to Place Requirements in Context
- Demonstrated the Current State of JSSEO Products, Metrics, Reports
- Metadata Structure, Configuration Data in the usrprops.txt file, is U.S. Government Owned, and Releasable (through JSSEO)
- Requirements Must Be Developed By All, Integrated With Architecture

Requirements, Design, or Behavior that is not Part of an Integrated Architecture is not Defensible