
© 1999, HCS Research Lab.  All Rights Reserved. 
 

    
Comparative Performance Analysis 

 of Parallel Beamformers 
 

Keonwook Kim, Alan D. George and Priyabrata Sinha 
HCS Research Lab, Electrical and Computer Engineering Department, University of Florida 

216 Larsen Hall, Gainesville, FL 32611-6200, USA 
 
 

Abstract 
Advancements in beamforming algo-

rithms are exceeding the computation and 
communication capabilities of traditional 
sonar array systems.  Implementing parallel 
beamforming algorithms in situ on distrib-
uted array systems holds the potential to 
provide increased performance and fault tol-
erance at a lower cost.  This paper compares 
three parallel algorithms for distributed ar-
rays in terms of execution throughput, result 
latency, scaled speedup, and parallel effi-
ciency. 
     
1. Introduction 

Passive sonar beamforming is a class of 
array processing that optimizes an array gain 
in a direction of interest to detect and locate 
objects in an undersea environment. Beam-
forming algorithms are particularly vital in 
radar and sonar applications. The parallel 
algorithms considered here are designed for 
a distributed array of sonar transducer 
nodes, each with its own processing element 
and interconnected by a network. The neces-
sity for parallel beamforming algorithms is a 
direct result of the development of advanced 
beamforming algorithms that are better able 
to cope with quiet sources and cluttered en-
vironments. These developments have re-
sulted in increased demands for real-time 
computation. Moreover, the use of larger 
sonar arrays has in turn led to larger problem 
sizes. Thus, a beamformer based on a cen-
tralized processing system may prove insuf-
ficient to meet these demands, and parallel 

processing in-situ on a distributed array is a 
promising alternative. 
 
2. Overview of Beamforming Algorithms 

The basic operation in most beamform-
ing algorithms is to sum the manipulated 
outputs from many spatially separated sen-
sors. The three parallel beamforming algo-
rithms discussed in this paper are based on 
Conventional Beamforming (CBF), Split-
Aperture Conventional Beamforming (SA-
CBF) [1] and an Adaptive Beamforming 
(ABF) algorithm for subspace projection [2], 
respectively.  

 
2.1  Conventional Beamforming  (CBF) 

In a sonar array, the determination of the 
direction of arrival relies on the detection of 
the time delay of the signal between sensors. 
In CBF, signals sampled across an array are 
linearly phased (i.e. delayed) assuming a 
configuration with uniform distance between 
elements in the array. Incoming signals are 
steered by complex-number vectors called 
steering vectors.  If the beamformer is prop-
erly steered to an incoming signal, the multi-
channel input signals will be amplified co-
herently, maximizing the beamformer output 
power.  Otherwise, the output of the 
beamformer is attenuated to some degree. 
Thus, peaks in the beamforming output indi-
cate directions of arrival for sources. The 
output power of CBF for each steering angle 
θ is defined as 

)()()( * θθθ sRspCBF ⋅⋅=                     (1) 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
1999 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1999 to 00-00-1999  

4. TITLE AND SUBTITLE 
Comparative Performance Analysis of Parallel Beamformers 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Florida,Department of Electrical and Computer
Engineering,High-performance Computing and Simulation (HCS)
Research Laboratory,Gainesville,FL,32611 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

5 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 2 

where s(θ) is the steering vector, R is the 
Cross-Spectral Matrix (CSM), and operator 
* indicates complex-conjugate transposition. 

 
2.2  Split-Aperture CBF (SA-CBF) 

SA-CBF is based on single-aperture 
conventional beamforming in the frequency 
domain.  The beamforming array is logically 
divided into two sub-arrays.  Each sub-array 
independently performs CBF using steering 
vectors on its own data.  The two sub-array 
beamforming outputs are cross-correlated to 
detect the time delay of the signal for each 
steering angle.  Interpolation is used to gen-
erate outputs for angles other than the steer-
ing angles (e.g. a ratio of 4-to-1 is used in 
this study). The cross-correlated data, with 
knowledge of the steering angles and several 
other parameters, will map the final 
beamforming output. Figure 1 shows the 
block diagram of the SA-CBF algorithm. 

 
Figure 1: Block diagram of SA-CBF 

 

2.3  Adaptive Beamforming (ABF) 

The ABF algorithm used in this study is 
a subspace-projection beamformer based on 
QR decomposition [2]. Subspace beamform-
ing algorithms for ABF such as MUSIC 
make use of the property that eigenvectors 
associated with noise are orthogonal to the 
space spanned by the incident signal mode 

vectors. The reciprocal of steered noise sub-
space indicates peak points at signal loca-
tions. However, subspace identification to 
separate noise and signal using the Singular 
Value Decomposition (SVD) is computa-
tionally expensive to perform and difficult to 
implement in a parallel algorithm due to the 
many dependencies between the computa-
tional tasks. Instead of using the eigenvec-
tors of CSM matrix, the columns of the Q 
matrix are used, which correspond to the 
noise subspace. The Q matrix is from the 
QR decomposition of the CSM matrix using 
elementary reflectors in this study. The out-
put of the subspace beamformer is defined 
as 

)()(
1)( ** θθ

θ
sEEs

p
NN

ABF =                   (2) 

where EN is the columns of Q matrix corre-
sponding to the noise space. 

 
3. Parallel Beamforming Algorithms 

In a distributed sonar array for parallel 
processing in situ, the degree of parallelism 
is linked to the number of physical nodes in 
the system. However, an increase in the 
number of nodes increases the problem size. 
The goal is to obtain minimum processor 
stalling through equal distribution of work 
and minimum communication overhead.  

The method of parallelization employed 
by the parallel algorithms in this paper, 
known as iteration decomposition [3,4], fo-
cuses on the partitioning of beamforming 
jobs across iterations, with each iteration 
processing a different set of array input 
samples. Successive iterations are assigned 
to successive processors in the array and are 
overlapped in execution with one another by 
pipelining. A single node performs the 
beamforming task for a given sample set 
while the other nodes simultaneously work 
on their respective beamforming iterations. 
At the beginning of every iteration, each 
node executes an FFT on data that has been 



 3 

newly collected by its sensor, and the results 
are communicated to other processors before 
the beamforming for that iteration com-
mences.  The block diagram in Figure 2 il-
lustrates the manner in which beamforming 
iterations are distributed across the nodes in 
the distributed array, in this case using 3 
nodes. 

FFTJob 1/3
iteration i

FFTJob 2/3
iteration i

FFTJob 3/3
iteration i

FFTJob 1/3
iter. i+3

Node 0

FFTJob 3/3
iter. i-2

FFTJob 1/3
iter. i+1

FFTJob 2/3
iter. i+1

FFTJob 3/3
iter. i+1

Node 1

FFTJob 2/3
iter. i-1

FFTJob 3/3
iter. i-1

FFTJob 1/3
iter. i+2

FFTJob 2/3
iter. i+2

Node 2

...

...

...

...

...

...

time

 
Figure 2: Iteration decomposition 

 
Each processor calculates an index based 

on its node number, the current job number 
and the number of nodes. This index tells 
the node from which point in its iteration it 
must continue after executing the FFT and 
communication stages and when it must 
pause to begin another iteration.  

The communication pattern that can be 
expected in the CBF and SA-CBF algo-
rithms is an ‘all-to-one’ pattern, as only one 
of the nodes needs to receive the data sam-
pled each cycle to perform a given 
beamforming iteration on data collected 
throughout the array.  However, ABF algo-
rithms require ‘all-to-all’ communication so 
that the cross-spectral matrix on each of the 
nodes is updated with each cycle of sam-
pling.  Thus, to provide a common frame-
work for comparisons, an ‘all-to-all’ type of 
communication is used with all the parallel 
algorithms, where each node sends its Fou-
rier transformed data to all other nodes.   

 
4. Parallel Performance Analysis 

 The parallel algorithms in this paper 
were implemented in MPI-C and executed 
on a cluster of SPARCstation-20 worksta-
tions connected by a 155 Mb/s ATM net-

work.  In the experiments described in this 
section, a sampling frequency of 1500Hz is 
assumed and the beamforming is performed 
for 200 frequency bins. The FFT length of 
the processed data is 2048 samples, and no 
frequency-bin averaging is performed.  Ap-
proximately 180 steering angles are resolved 
(i.e. 181 for CBF and ABF, and 177 for SA-
CBF), with a 4-to-1 ratio of interpolation 
used with SA-CBF. 

It is apparent from the results in Figure 3 
that the effective execution times of the par-
allel algorithms are much lower than their 
sequential counterparts. Moreover, the in-
crease in parallel execution time as the prob-
lem size increases is less pronounced than in 
the sequential case. Thus, the parallel algo-
rithms are seen to provide a higher through-
put of execution. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 E
xe

cu
tio

n 
Ti

m
e 

(m
s)

CBF
SA-CBF
ABF

CBF 263 490 790 78 97 123

SA-CBF 225 273 316 62 54 51

ABF 298 772 1731 90 158 266

Sequential 4 
nodes

Sequential 6 
nodes

Sequential 8 
nodes

Parallel 4 
nodes

Parallel 6 
nodes

Parallel 8 
nodes

Figure 3: Beamformer execution times 
  

The execution time for parallel SA-CBF 
is always less than that for both parallel CBF 
and parallel ABF.  Unlike SA-CBF, the CBF 
and ABF algorithms must directly process 
for all steering angles, no interpolation is 
performed, and hence they involve more 
computation. This characteristic is an inher-
ent strength of the SA-CBF algorithm. ABF 
requires a higher execution time than both 
CBF and SA-CBF because of the complex-
ity of the QR decomposition stage.  

Figure 4 shows the result latencies for 
the different algorithms. Result latency re-



 4 

fers to the time required for the final output 
to be available after the data has been read 
by the sensors. In the case of sequential al-
gorithms, result latency is the same as the 
execution time, as there is no pipelining in-
volved. 

0

500

1000

1500

2000

2500

R
es

ul
t L

at
en

cy
 (m

s)

CBF
SA-CBF
ABF

CBF 263 490 790 312 585 980

SA-CBF 225 273 316 249 326 409

ABF 298 772 1731 359 951 2131

Sequential 4 
nodes

Sequential 6 
nodes

Sequential 8 
nodes

Parallel 4 
nodes

Parallel 6 
nodes

Parallel 8 
nodes

Figure 4: Beamformer Result Latency 
 

Result latencies with the parallel algo-
rithms are slightly higher than those of their 
sequential counterparts. This difference can 
be attributed to the fact that each beamform-
ing job has been divided into pipeline stages 
and hence involves pipeline management 
overhead and communication time between 
successive stages. Thus, there is an obvious 
tradeoff between execution throughput and 
result latency when using parallel algorithms 
based on the technique of iteration decom-
position. 

Speedup is defined as the ratio of the se-
quential execution time versus the parallel 
execution time, where ideal speedup is equal 
to the number of processors employed.  
Scaled speedup recognizes that, in this case, 
an increase in the number of processors 
brings with it an increase in the problem 
size, since each node possesses both a proc-
essor and a sensor.  As seen in Figure 5, the 
scaled speedups for the three parallel algo-
rithms are observed to be near linear. How-
ever, for a higher number of nodes, parallel 
SA-CBF appears to provide a lower speedup 
compared to parallel CBF and parallel ABF. 

This outcome is a result of the presence of 
loops of different sizes, different number of 
steering angles and different number of out-
put angles, leading to a slight imbalance.  

4 nodes
6 nodes

8 nodes

CBF

SA-CBF

ABF

0

1

2

3

4

5

6

7

8

Sc
al

ed
 S

pe
ed

up

CBF 3.38 5.02 6.45
SA-CBF 3.62 5.01 6.17
ABF 3.32 4.87 6.5

4 nodes 6 nodes 8 nodes

Figure 5: Beamformer Scaled Speedup 
 
Parallel efficiency is defined as the ratio 

of speedup versus the number of processing 
nodes (i.e. the ideal speedup). As illustrated 
in Figure 6, the parallel algorithms achieve 
levels of parallel efficiency in the range of 
77-91%, with an average of approximately 
80% for the largest cases. Since communica-
tion overhead plays a more significant role 
as the size of the system increases, the effi-
ciencies decrease slightly with increase in 
the number of nodes. However, the rela-
tively flat nature of these results demon-
strates that scalability is achieved at least for 
arrays of moderate size and complexity. 

 
5. Conclusions 

This paper has presented a comparative 
analysis of the performance of several paral-
lel algorithms for in-situ beamforming on a 
distributed system.  Each of the algorithms 
is based on the same technique of pipelined 
decomposition, where consecutive iterations 
of the beamforming process are scheduled in 
a round-robin fashion to execute on con-
secutive processing nodes in the array.  
These algorithms were implemented as mes-
sage-passing parallel programs and executed 



 5 

on a cluster of workstations connected by 
ATM and their performance measured. 

4 nodes
6 nodes

8 nodes

CBF

SA-CBF

ABF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pa
ra

lle
l E

ffi
ci

en
cy

CBF 85% 84% 81%
SA-CBF 91% 84% 77%
ABF 83% 81% 81%

4 nodes 6 nodes 8 nodes

Figure 6: Beamformer Parallel Efficiency 
 
With respect to execution time, the par-

allel algorithms demonstrate a consistent 
relationship regardless of the system size, 
where split-aperture CBF performs the fast-
est, followed by the single-aperture CBF and 
lastly the ABF.  The sequential algorithms 
demonstrate this same trend.  However, de-
spite the increased complexity associated 
with ABF, the results in these experiments 
indicate that their execution throughput su-
persedes the simple CBF by at most only a 
factor of 2. 

One of the disadvantages of using a 
pipelined approach to parallel processing is 
an increase in result latency.  However, 
measurements indicate that the pipelining 
overhead that increases the latency in pro-
ducing results is marginal. 

Finally, the scaled speedup and parallel 
efficiency achieved with each of the parallel 
beamformers was found to be within ap-
proximately 80% of the ideal for systems of 
four, six, and eight nodes.  The general 
trends indicate that comparable performance 
can be expected for larger arrays, since the 
decrease in efficiency as system size in-
creases is relatively slow. 

The parallel beamforming algorithms 
compared in this paper present many oppor-
tunities for increased performance, reliabil-

ity, and flexibility in a distributed system for 
sonar signal processing.  Undertaking and 
coordinating the computations and commu-
nications to perform beamforming in situ is 
a challenging task, and is becoming more so 
as the beamformers themselves continue to 
become more sophisticated.  Some 
beamformers, such as Minimum Variance 
Distortionless Response (MVDR), exhibit 
an even larger degree of communication 
overhead and thus require a more elaborate 
scheme to achieve reduction and hiding of 
communication latency [5]. 

Future research activities on the subject 
of parallel algorithms for in-situ processing 
on distributed arrays will continue to focus 
on adaptive techniques in the near term.  
However, new studies and developments are 
underway to help address the tremendous 
challenges in computation and communica-
tion associated with advanced beamforming 
in the littoral environment using matched-
field processing. 

 
Acknowledgements 

This work was sponsored in part by the Office of 
Naval Research on grant N00014-99-1-0278. 
 
References 
[1] F. Machell, “Algorithms for broad-band proc-

essing and display,” ARL Technical Letter No. 
90-8 (ARL-TL-EV-90-8), Applied Research 
Laboratories, Univ. of Texas at Austin, 1990. 

[2] M.J. Smith and I.K. Proudler, “A one sided 
algorithm for subspace projection beamform-
ing,” SPIE Vol. 2846, 100-111, 1996. 

[3] A. George, J. Markwell, and R. Fogarty, 
“Real-time sonar beamforming on high-
performance distributed computers,” Parallel 
Computing, submitted Aug. 1998. 

[4] A. George and K. Kim, "Parallel Algorithms 
for Split-Aperture Conventional Beamform-
ing," Journal of Computational Acoustics, to 
appear. 

[5] A. George and J. Garcia, “A Parallel Algo-
rithm for Distributed MVDR Beamforming,” 
Journal of Computational Acoustics, submitted 
July 1999. 


