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Abstract— An approach for the 3D segmentation and
reconstruction of human left coronary arteries using angio-CT
images is presented in this paper. Each voxel in the 3D dataset
is assumed to belong to one of the three homogeneous regions:
blood, myocardium, and lung. A priori knowledge of the
regions is introduced via Bayes’ rule. Posterior probabilities
obtained using Bayes’ rule are anisotropically smoothed, and
the 3D segmentation is obtained via MAP classifications of the
smoothed posteriors. An active contour model is then applied
to extract the coronary arteries from the rest of the volumetric
data with subvoxel accuracy. The geometric model of the left
coronary arteries obtained in this work may be used to provide
accurate boundary conditions for hemodynamic simulations,
or to provide objective measurements of clinically relevant
parameters such as lumen sizes in a 3D sense.

Index Terms— Active contours, Bayes’ rule, computerized
tomography (CT), coronary arteries, segmentation

I. INTRODUCTION

In this paper we present an approach for segmenting human
left coronary arteries using computerized tomography (CT)
images. The conventional way of imaging coronary arteries
is by using invasive coronary angiography, but effective as it
is, this technique brings complicated clinical procedures and
risks to the patient. With the development of CT imaging,
more details of anatomical structures can be observed, and
CT is being considered as an attractive alternative for imaging
coronary arteries. The advantages of CT are clear because as
a non-invasive imaging technique, it also provides information
of the whole 3D volumetric data with high resolution (isotropic
voxels on the order of 0.5mm) rather than 2D projections in
conventional angiography.

With the 3D volumetric data at hand, it is certainly useful
to reconstruct a geometric model and create a 3D view of the
coronary arteries. By using contrast enhancing agents, regions
filled with blood exhibit higher intensities in CT images, which
provide the possibility of extracting these regions from the rest
of the given image. In some recent papers, CT images have
been used to build geometric models of carotid arteries [1]
and cerebral arteries [2]. They also have been used to track
the central axis of coronary arteries [3]. The segmentation of
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coronary arteries is challenging because coronary arteries are
narrow tubular structures winding in-between and around heart
chambers with branchings and complex curvatures, and due to
the large size of image data, a fast and accurate segmentation
approach is desired.

In this work, we first use a knowledge-based segmentation
algorithm, analogous to what has been used to segment SAR
data [4] and MRI brain images [5] based on Bayes’ rule to
classify the volumetric data into three homogeneous regions,
and find the region that filled with blood (this region includes
aorta, pulmonary trunk, heart chambers, and coronary arteries).
An active contour model is then applied on the results of
the first step, to extract the coronary arteries and obtain a
3D geometric model of the coronary arteries with subvoxel
accuracy. The method is described in Section II, and the results
are presented in Section III and discussed in Section IV.

II. METHODOLOGY

A. Region Probability Estimation and Region Classification

With the assumption that only three regions - blood-filled
region, myocardium region, and lung region - exist in the im-
ages, we first roughly cluster the voxels of the 3D volumetric
data and learn the mean value (μc) and the standard deviation
(σc) of each class. This can be done via a k-means clustering
method, where the voxels are first split into two groups and
the one with a larger standard deviation is further split into
two other groups. Then the probability density functions can
be approximated using Gaussian functions with the learned
mean values and standard deviations in each class, which
implies that the likelihood of a particular voxel having a
certain intensity value v given that it is in class c ∈ {blood,
myocardium, lung} is

Pr(V (x) = v|x ∈ c) =
1√

2πσc

exp(− (v − μc)2

2σ2
c

), (1)

where V (x) is the intensity value of the voxel at position x =
(x, y, z). We assume that the prior probability that a particular
voxel will belong to a certain class (blood, myocardium or
lung) is equal and homogeneous, i.e., Pr(x ∈ c) is the same
for each class and for all voxels. We can then apply the Bayes’
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rule to calculate the posterior probability that a given voxel
belongs to a particular class, given its intensity:

Pr(x ∈ c|V (x) = v) =
Pr(V (x) = v|x ∈ c)Pr(x ∈ c)∑
γ Pr(V (x) = v|x ∈ γ)Pr(x ∈ γ)

(2)
The classification of the voxels is then obtained using the

maximum a posteriori (MAP) probability estimation:

C(x) = arg max
c∈{blood,myocardium,lung}

Pr∗(x ∈ c|V (x) = v),

(3)
where C(x) is the class that voxel x belongs to, and Pr∗ is a
smoothed version of the posterior probability obtained using
the anisotropic smoothing [6] described by the following affine
invariant flow:

∂Pr

∂t
= sign(H)κ1/4

+
�N , (4)

where H and κ are the mean curvature and Gaussian curvature
of Pr, and κ+ := max{κ, 0}. �N is the inward unit normal.
Fig. 1 shows an example of the smoothed posterior probabili-
ties of blood, myocardium and lung in a cross-sectional slice
of the volumetric data. Fig. 2 (b) shows the MAP labels of
the classification result of this slice, with white corresponding
to the blood, gray to the myocardium and dark to the lung.

B. Extraction of the Coronary Arteries: Active Contours

After we have obtained a classification of the 3D data, we
can create the binary data by setting the blood-filled region
to nonzero and the other two regions to zero. At this point
we want to extract the coronary arteries and discard the
other blood-filled regions, such as the aorta and the heart
chambers. This can be done by running a bubble-growing
algorithm starting from the root of the coronary arteries,
namely the geodesic active contour models. This model has
been described thoroughly in literature (e.g., [7], [8], [9]), and
we simply give the level set version of the governing equation
used here, which is:

∂Ψ
∂t

= φ‖∇Ψ‖(div

( ∇Ψ
‖∇Ψ‖

)
+ ν) + ∇φ · ∇Ψ, (5)

where Ψ(x, y, z, t) is the level set function of the propagating
surface, and φ is a stopping term that slows down the surface
evolution when near an edge. ν is an inflationary constant that
determines the direction and speed of the evolving surface. The
final surface can be obtained from the zero-level set of Ψ.

Since we are applying the flow to binary data, the method is
fast and robust, and it can effectively trace the coronary arteries
and extract them from the rest of the data. The only site that
could be problematic is the place where the left main (LM)
coronary artery bifurcates from the aorta, and the propagating
surface may leak into the aorta. This can be prevented by
adjusting the weight between the curvature and the inflationary
constant in (5), or by manually cutting the linking sites of the
LM and the aorta in a few slices of the data where the linkage
exists, and evolve the surface solely inside the coronary tree.
Fig. 2 (c) shows the segmented blood-filled region using the

(a) (b)

(c) (d)

Fig. 1. Smoothed posterior probabilities of a cross-sectional slice. (a) The
original gray scaled image. (b)-(d) Smoothed posterior probabilities of blood,
myocardium and lung respectively.

MAP classifications with marked white boundaries, and Fig. 2
(d) is the segmented LM coronary artery using active contours
based on what is shown in (c).

III. RESULTS

We tested our algorithm on a 3D CT data set of cardiac
images. The images were acquired using a GE Lightspeed16
CT scanner with a slice spacing of 0.625mm and a in-plane
resolution of 0.6mm. The person being imaged was a normal
female volunteer without any clinical heart problems. The
original data had a size of 512×512×209, and the images
were cropped to focus on coronary arteries and interpolated
to achieve better coherency in the three spacial directions.

By applying the methods described in Section II to this data
set, we obtained a 3D model of the left coronary arteries, and
the 3D rendering of the model is shown in Fig. 3. In this
figure, the LM coronary artery, the left anterior descending
(LAD) coronary artery and the left circumflex (LCX) coronary
artery are segmented and reconstructed in 3D. Moreover, the
first bifurcation of the LAD is also captured and a long section
of its branches are captured at the same time.

IV. DISCUSSION AND FUTURE WORK

In this work we proposed a method for segmenting and
reconstructing human left coronary arteries in 3D, and we
tested the method on a data set of cardiac CT images.
The 3D geometric model of coronary arteries can provide a
comprehensive view of the vessels, thus helping to achieve
more accurate clinical diagnoses. The model can also be used
to provide boundary conditions for CFD (Computational Fluid
Dynamics) simulations of blood flow and find out the relation
between wall shear stress distribution and atherogenesis. This
has been done and described in another note [10].
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Fig. 2. Segmentation of the left main (LM) coronary artery. (a) The original
gray scaled image. (b) Classification result with MAP labels. (c) Blood region
marked with boundaries. (d) Segmented left main coronary artery with marked
boundaries

Fig. 3. 3D rendering of the reconstructed left coronary arteries

Future work involves measuring clinically significant pa-
rameters from the 3D models, such as the diameters and cross-
sectional areas of vessels at different locations, so that a quan-
titative estimation of stenoses or aneurysms can be provided.
We would also need a way of validating the segmentation
algorithm by comparing these parameters obtained from the
computer generated models either with the results of manual
segmentation, or a real cast of vessels.
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