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Abstract

Effects-based operations (EBO) has become an increasingly important doctrinal con-
cept used in the prosecution of war, most especially against terrorist organizations and
the rogue states which support them. As a philosophy, EBO reaches beyond the realm
of the propagation of simple physical effects. EBO encompasses the full spectrum of
military activities, including psychological operations (PSYOPS). While a number of
different accounts of EBO have been documented (Warden 1995, Barlow 1994), alarm-
ingly little work has been conducted concerning the application of effects-based opera-
tions to organizations of human entities. Herein, we present a formal model of nth-order
cascading belief revision in the style of Warden’s model. The considered approach is
motivated by the theory of dynamic systems, and is able to be generalized through the
manipulation of beliefs via information-theoretic (Shannon & Weaver 1949) metrics.
We shall conclude with a simple example, and some future directions for research in
this area.
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1 Introduction

Understanding organizational behavior has traditionally occupied an important place in the
conduct of warfare. In light of the tragedies of September 11th 2001, gaining knowledge
pertaining to the infiltration of terrorist networks has become critical to maintaining our
national security posture. Warden’s model of the enemy as a system (Warden 1995) provides
a general framework for the modelling of organizations. Other theories of organization, such
as Simon’s theory of administrative behavior (Simon 1997), can be applied on top of Warden’s
model to produce reasonable flexible models of goal-directed agent interaction via means-
ends planning. While the goal-directed aspect of organizational design isn’t central to our
discussion, it can be seen as a logical next step in designing decision-aids for effects-based
analysis of organizational behavior models. This paper is organized into three sections: a
brief introduction to the effects-based modelling paradigm, our mathematical formulation of
system-of-systems organizational modelling, and some promising new research directions in
which to extend our methodology.

2 Effects-Based Operations and Military Rationality

Effects-based operations has been defined in a number of different ways, serving a number
of different purposes. Rather than attempt to define a synthesis of all of these descriptions,
we shall adopt the following:

Effects-based operations adopt a systemic view of both the environment and
agents which act within it. As such, EBO focuses on the analysis of direct, in-
direct, and cascading (nth-order) effects. The effects-based analysis framework
incorporates the application of the full spectrum of politico-military resources to
conflict situations. Effects-based planning is outcome-centric, focusing primar-
ily on the achievement of a desired end-state through the application of these
resources in a fashion consistent with the concepts of operations defined in (H.
Shelton. General, Chairman - Joint Chiefs of Staff 2000).

An excellent discussion of effects-based operations can be found in (Davis 2002), which
provides a taxonomic description of potential effects-based evaluation methodologies.
One of the major sticking points in most of the documents concerning current conceptions
of effects-based operations is the relative lack of success in defining how the EBO method-
ology can be construed formally, and most especially, how these formal models operate at
the sociocultural level. As the reader will notice in figure 1, the negative y-axis denotes
the “cognitive dimension” in terms of affecting targets. Unfortunately, the cognitive aspects
of effects-based operations are at best, ill-defined. Attacking all of the problems associated
with cognition (perception, affect, memory, learning, reasoning, decision-making, and so on)
will be the grand challenge for a new generation of artificial intelligence researchers who are
gradually looking at human intelligence (through the seminal empirical research) to answer
questions about the limitations of rationality and cognitive capacity. It is our feeling that we
can leverage some prior work done at the level of organizations in order to better understand
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Figure 1: Characterization of Baselines, State of the Art, and Goal (Courtesy of P.K. Davis)

some of the salient issues in modelling the cognitive dimensions of effects-based operations.
One of the authors (PB) has developed a conception of the individual decision-maker based
on a concept inspired by Warden’s five-rings model which is called cognitive effects-based
operations (CEBO). The CEBO paradigm was inspired by the following question: “What
happens when an entity belongs to multiple systems, with (potentially) conflicting value struc-
tures?” Figure 2 provides a clearer conception of the issue at hand:

Figure 2: Context-Dependent Decision Making via CEBO
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In this case, the decision-maker in question is Saddam Huseyn al-Tikriti, the former president
of Iraq. While we make no claims about what Saddam was actually thinking when making
the numerous decisions that he made during his tenure, it seems reasonable to suppose that
he certainly had to take the many different organizational contexts that he was connected
to into consideration while doing so. In concordance with other formal models of decision-
making (Von Neumann & Morgenstern 1944, Savage 1964), we may loosely characterize the
military decision-maker in the following way:

• A: The set of foreseeable alternatives.

• KB: Heterogeneous knowledge base (syntactic knowledge, semantic (model-theoretic)
knowledge, explicit beliefs, explicit deontic knowledge, et cetera)

• (ci ∈ C) ⊆ KB: a set of “contexts” C.

• %c: a preference ordering over the contexts.

• fπ(A, ci,%c) : Aci −→ A′

ci
: a context-sensitive permissibility function.

• Å =
⋃

ci∈C fπ(A, ci,%c) = {A′

c0
, A′

c1
, ...A′

cm
} for each of the m contexts.

• Up(x): A nonlinear prospective utility function which returns the perceived utility for
a given alternative.

This conception of “military man” stands in stark contrast to the normative theory posed in
(Von Neumann & Morgenstern 1944). While some have called Von Neumann’s creation “the
economic man”, or “economic rationality”, we refer to this formal incarnation of the military
decision-maker as being inspired by the “military rationality” framework under development
by Bello, Yang, et al.

A context, in our terminology, can be construed as a set of deontic principles (ethical rules,
social norms, etc) which act as a meta-property of the organization it is associated with. The
context defines permissibility of action in the presence of various conditions which compose
the decision-maker’s mental representation of the situation at hand. For the sake of brevity,
we shall not go into the formal mechanisms for representing and computing over information
of this variety, but a full characterization shall appear in (Bello 2005). Military rationality is
the confluence of several different intellectual traditions, ranging from Bayesian epistemology
(on the nature of truth and probability in decision theory) (Jeffrey 1965) to research in
the psychology of higher-order cognitive processes (Tversky & Kahneman 1990, Johnson-
Laird 1983, Braine 1990). In the opinion of the authors, the defining distinction to be
made here is the following: should a theory of decision/cognition be based on desirability of
a particular outcome, or the probability that said outcome will occur. The evidence seems
overwhelmingly in favor of the former. Kahneman’s Nobel-prize winning experimentation on
this issue seems to be a remarkable vindication of the fact that behaviorally, humans display
marked inability to deal with probability in a normative way while processing contextual
cues. Taking this as a starting point, the development of a new theory of decision-making
should, in turn, be more sensitive to conceptions of desirability, rather than the strictures
of a purely probabilistic world-view. A full discussion of these issues is warranted, and will
also appear in (Bello 2005).
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3 Organizational Theory and Dynamic Systems

The interdisciplinary nature of multi-agent systems modelling theory (Woolridge 2002) nat-
urally lends itself to effects-based analysis. The agent-based paradigm has proven to be
a rich testbed for looking at so-called “emergent” properties of collections of agents. The
question laying at the heart of this research is in regards to how the beliefs (and subse-
quent intentions) of organizations change when they are related through multi-resolution
hierarchical groupings of agents. Are these beliefs related purely to the sharing of (pos-
sibly incomplete/uncertain) information, or do exogenous factors influence the intentions
of an organization? For the sake of computational convenience, we shall represent beliefs
and ethics as simple probability distributions displaying Gaussian characteristics. A more
complex development of belief and deontic statements is currently under development as a
quantified modal logic. We take the liberty of modelling organizations in an extraordinarily
simplified way, focusing on the representations of belief and ethics in the generalized guise
of “information”. Let us start with a few definitions:

Def: Let B be the set of belief functions for a given organizational domain O.

Def: Let E be the set of ethical concern functions for O.

Def: Let an information parameter α̃i be an indexed value, associated with the sets {B,E}
which describes the relevant belief or ethical concern function.

Def: Let φ ∈ Φ be an alphabet, which is the set of α̃i which defines an interaction space
completely, and let Φ be the set of all information parameters relevant to O.

Def: Let the In-space be an n-dimensional interaction space over which all agents of identical
alphabets are defined.

Def: An agent a is defined by a set of {αb, αe} which specifies the distributions defined for
each parameter.

Axiom: All agents A defined in In contain values for each α̃i in φ.

Theorem: A system can be changed by either changing the value of an information param-
eter directly, or by allowing two agents to interact with one another.

Def: Let an interaction Iij be a sharing of information between two agents ai and aj with
the intention of altering a belief. Let this interaction formally be defined as the following:

Iij =
m

∑

1

n
∑

1

αi
bn

α
j
bm

λα
j
em

, (1)

where the parameter λ is defined as the Kullback-Leibler Distance (Kullback & Leibler 1951,
Mackay 2003) between two belief functions α1

b and α2
b (shown in Figure 3 for three belief-type

information parameters):

λ = α1
bn

log

[

α1
bn

α2
bn

]

, (2)

and where an individual interaction relative to a specific belief is given by:

4



Figure 3: Interaction space

Iij(α
1
bn

) =
m

∑

1

αi
bn

α
j
bm

λα
j
em

(3)

In interactions such as these, the ethical concern function αen
is always constant, assuming

organizations and their constituents rarely ever change their ethics. In the context of the
interaction equation (1), αen

serves as a weight representing the strength of the relevant
belief, or the difficulty to change the belief of the relevant agent.

Corollary: Iij 6= Iji (Interactions are asymmetric).

The change in α1
bn

as two agents interact can be described by the differential equation:

V (α1
bn

) =
∂Iij

∂t
(α1

bn
) (4)

To analyze a system of agents in a single interaction space In, we must solve a system of
differential equations:

solution(i) =































V (αi
bi
) =

∂Iij

∂t
(α1

bp
)

V (αi
bi
) =

∂I1j+1

∂t
(α1

bp
)

...

V (αi
bp

) = ∂I1m

∂t
(αi

bi
)

where p = 1...n is the length of the alphabet φ, and m is the number of agents in the
interaction space. This set of equations must be solved completely with the set of initial
conditions being the values of φ(α̃p) at the time of interaction for agent i. Interactions such
as these generate a 3-dimensional tensor T with dimensions m×m× i, since similar systems
such as the above must be solved for each agent beyond the first.
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The complete solution for a set of such equations yields an equation for each αb in terms of
λ, which may be optimized using standard optimization techniques for n-dimensional spaces
or through non-linear analysis techniques.

3.1 Multi-Resolution Organizational Modelling

Possible mechanisms behind multi-space interaction: any space Inprime can be though of as
an individual agent in the supervening space Ij:

Figure 4: Multi-Resolution Space

an αb in φIj
is proportional to the corresponding αb in the lower level spaces which compose

it:

αIj

en
=

1

m

m
∑

i=1

α
I′nm
ei (5)

and

α
Ij

bn
=

1

m

m
∑

i=1

α
I′nm

bi
(6)

and φIj
= {α

Ij

en , α
Ij

bn
}

4 Example

As a very simple example (possibly the most simple example worth studying with this model),
two agents interact with each other concerning a two beliefs alpha(b1) and alpha(b2). For
simplicity, we will assume that only agent 1 will be affected by the interaction, emphasizing
the asymmetry of the interaction as a whole. Therefore, alpha 1 and 2 will be held constant
for agent 2. This system produces two first order differential equations, the solutions of
which produce functions for the changes in alpha 1 and alpha 2 in terms of time:
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∆α1 =





b1(t)
(

be1 · ln
(

a1(t)
b1(t)

))



 +





b2(t)a1(t)
(

be2 · ln
(

a2(t)
b2(t)

)

· a2(t)
)



 (7)

∆α2 =





b1(t)a2(t)
(

be1 · ln
(

a1(t)
b1(t)

)

· a1(t)
)



 +





b2(t)
(

ae2 · ln
(

a2(t)
b2(t)

))



 (8)

It may seem that this model behaves very much like a physical system of point masses inter-
acting via a gravitational force (or similarly, two charged particles interacting via a Coulomb
force). The analogy is not complete, but still worth discussing. The factor of lambda rep-
resents a distance in interaction space between two agents. The space is defined over the
alphabet, so the coordinate system for the space is represented by the alphabet. Unfortu-
nately the relationship between lambda and alpha is logarithmic, so the “distance” analogy
is not perfect. Solutions to the differential equations above are analogous to the“velocities”
of the alphas in interaction space. They represent the rate at which alpha changes with
time. The interaction function (1) itself, then, is analogous to a force acting on the agents
in interaction space.

It is important to realize that “time” in the context of this model is not even completely
analogous to “real” time. It acts as a system parameter which increments independently of
the system. It can be used as an independent variable to parameterize the alphas by, but
certainly does not correspond to any change in “seconds,” per se.

The solutions to the above system of differential equations are best represented in a phase
(or solution) space. Figure 5 shows the solution space for two agents with very different
ethical concern functions, and figure 6 shows the solution space for two agents with identical
ethical concern functions.

5 Conclusions and Future Work

When analyzing the above phase portraits, it is important to realize that the trajectories
represent changes in alphas rather than alphas themselves. All relevant information can still
be extracted from such plots, but without the expense of solving systems of second order
differential equations. Most importantly, unstable equilibria (example is identified by the
rectangle in figure 5) represent regions that are most easily perturbed from their equilibrium.
These regions correspond to specific values of the belief functions that are most easily, or
most effectively, changed.

Even with an example as simple as this, it begins to become apparent how valuable such
a model may be. Potentially, such systems could provide analysts or scientists with data
concerning what beliefs or intentions of certain individuals or groups of people might easily
be changed, allowing for advantage in insight against our opponents.

The authors would like to emphasize that this research is in its infancy. There are several
research directions to pursue in the immediate future, mostly in relation to empirical data
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Figure 5: Solution Space: Different Ethics

on methods for coercion, a more suitable representation for belief, and new methods for the
visualization and analysis of this sort of data.
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Figure 6: Solution Space: Identical Ethics
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System-On-System Engagement:
Objectives

• To better understand, and subsequently model the 
vast number of interactions between entities in the 
battlespace.

• To produce a theoretical framework able to capture 
those interactions, bridging the realms of the physical 
(environment) and the cognitive (agent).

• To predict unintended consequences of action (both 
bad and good), and learning stimulus-response 
patterns of agents for exploitation (PSYOPS).

• To better understand organization in large-scale 
systems in order to more effectively disrupt our 
enemies while reinforcing our own organizations.
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Effects-Based Operations

Forces

Resources

Transportation

Transformation

Leadership
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Systems-Level Modeling

Field 
Officers

COMMAND

Commander

Tank Operator

Tank
Military entities are not 
always directly responsible 
for the decisions made in the 
battlespace.  Much larger 
picture to be considered, 
and potentially influenced.
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Why is Systems-Level Modeling
So Important?

Field 
Officers

COMMAND

Commander

Tank Operator

Tank
Broader options in conflict.  
Avoidance of casualties.  
Effects propagate 
throughout the system. 



7

Why is Systems-Level Modeling
So Important?

Field 
Officers

COMMAND

Commander

Tank Operator

Tank
Physical Effects… Isolate 
and destroy.

?



8

Why is Systems-Level Modeling
So Important?

Field 
Officers

COMMAND

Commander

Tank Operator

Tank
Cognitive Effects: Indirectly 
influence.

???

!!!

Misinformation



New Challenges

• Can impacting one agent’s beliefs have an 
effect on other agents who are “close” to him?

• Can this be modeled using a “system-of-
systems” model?

• What kind of mathematical locutions shall we 
resort to?

• What does all of this buy us in the end?



Lexicon

• Information Parameters: describe belief and 
ethical concern functions.

• Alphabet: collection of information parameters 
for an organization.

• Agents: specified by an alphabet.
• Organization: Collection of agents sharing the 

same alphabet.



Interaction Space





=

bn

bn
bn

j

i
i

α
ααλ log

• “Distance” between two agents 
belief in a certain proposition.

• Agents defined in this space 
are assumed to have knowledge 
of all beliefs which define the 
dimensionality.

• Modeled after the Kullback-
Leibler information-theoretic 
metric.



Defining Interactions

∑∑=
m n

j

ji
ij

em

bmbnI
1 1 λα

αα

∑=
m

j

ji
iij

em

bmbn
bnI

1
)(

λα
ααα

• Interactions defined as 
multiplicative relation.

• Normalized by ethical 
consideration, and by 
“closeness” between 
agents beliefs.

• Interaction wrt an 
individual belief is shown 
on the bottom left.



Solution Concept

)()(

)()( 11

bpbp

bb

i
im

i

i
ij

i

t
I

t
I

αα

αα





∂
∂

=∆





∂
∂

=∆

Μ

)()( bnbn i
ij

i
t
I αα
∂
∂

=∆ • First-order differential equation 
describing the change in belief 
with respect to other beliefs.

• Solution concept is a set of these 
equations.

• Very similar to the infamous 
“three-body problem” in physics.



Simple a1/a2 Interaction

• Two beliefs: 
alpha(b1) and 
alpha(b2).

• Interaction only 
affects agent 1 (alpha 
1 & 2 held constant 
for agent 2).

• Model the change in 
alphas with time as 
two first-order 
diffeq’s.
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Some Preliminary Results

• This plot shows the 
change in alphas given 
different ethical 
parameters for each 
agent.

• The boxed region 
represents the most 
unstable regions (where 
equilibrium could be 
most easily broken).



Some Preliminary Results

• This plot shows the 
changes in alpha given 
similar ethical 
parameters for each 
agent.

• In general, much more 
stable.



Discussion

• Higher-order interactions are easy to model through 
supervenience, but makes the equations significantly 
more complex.

• Successfully modeled “system-of-systems” cascading 
belief revision for agent organizations.

• As soon as computing power catches up, and 
assuming our intelligence is reasonably accurate, we 
hope to be able to:
– Isolate important figures in the organization by exploiting 

“closeness” parameters.
– Influence those figures, and have a reasonable idea of how 

organizational dynamics may be altered.



The End

Questions?


