i

The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium
Salt Lake City, Utah, June 1995.

One Time Passwords In Everything (OPIE):
Experiences with Building and Using Stronger Authentication

Daniel L. McDonald and Randall J. Atkinson
U.S. Naval Research Laboratory, Washington,D.C.

Craig Metz
Kaman Sciences Corporation, Alexandria, Virginia

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

One Time Passwordsin Everything (OPIE): Experienceswith Building
and Using Stringer Authentication

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Resear ch L abor atory,4555 Overlook Avenue, REPORT NUMBER
SW,Washington,DC,20375

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 11
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

One Time Passwords In Everything (OPIE):
Experiences with Building and Using Stronger Authentication

Daniel L. McDonald
Randall J. Atkinson
U.S. Naval Research Laboratory
Washington, D.C.
danmcd@itd.nrl.navy.mil
atkinson@itd.nrl.navy.mil

Craig Metz
Kaman Sciences Corporation
Alexandria, Virginia
cmetz@itd.nrl.navy.mil

Abstract

The U. S. Naval Research Laboratory’s OPIE (One-
time Passwords In Everything) Software Distribu-
tion is an enhancement of Bellcore’s S/Key™ 1.0
package. OPIE improves on S/Key in several areas,
including FTP service with one-time passwords, and
a stronger algorithm for generating one-time pass-
words. OPIE diverges from S/Key in select design
decisions and in the behavior of certain programs.
While not a total security solution, OPIE can be an
important part of one. OPIE and its evolutionary
predecessors have been used for over a year in parts
of NRL. Its use has taught the authors lessons on
implementation, usability, deployment, and future
directions for improvement.

1 Introduction

In the past decade, computer networks have grown
at an explosive rate [Lot92]. In a wide range of en-
vironments, such networks have become a mission-
Organizations are building networks
with larger scales than ever before, and many are
connecting these networks to the global Internet.
Along with this trend has come an explosion in the
use of computer networks as a means of gaining il-
licit access to computer systems. In the past, intrud-
ers have used flaws in network software such as older
versions of the BSD sendmail(8) program to gain en-
try into remote computer systems [Rey89]. As more
vendors and more sites fix the known flaws in their
network software, many crackers are now looking for

critical tool.

other weaknesses to exploit.

One particularly widespread attack is to passively
capture and replay passwords commonly used to au-
thenticate users [CER94b]. Since so many protocols
send their passwords in cleartext (that is, there is
no encryption of any sort done on the password be-
fore it is sent out over the network), anyone who
can read network traffic can gain access to whatever
is protected by cleartext passwords [HA94]. Many
UNIX™_based machines, as well as almost all PCs,
allow their network hardware to read any packet
transmitted on the attached network. Crackers ex-
ploit the ability to sniff packets to discover cleartext
passwords, thereby gaining unauthorized access to
systems using cleartext reusable passwords.

One solution to this problem is to encode the pass-
word in such a way that an encoded password can
only be used once and cannot be used to generate
any other encoded password. Such an encoded pass-
word is called a one-time password because it 1s us-
able exactly one time. If an attacker captures such
a password from a stream of data sent over a net-
work, he or she cannot use it to gain access to the
target system either by using it again (the first con-
dition) or by performing any new coding on it (the
second condition). In practice, the second condition
is guaranteed by computational infeasability rather
than by impossibility — it would take an attacker
an inordinately long time to discern any useful data
from the intercepted one-time password.

Such an encoding was first devised by Lamport
[Lam81], but one-time passwords gained popularity
only recently with the development of S/Key [Hal94]

by Bellcore. While the design of the S/Key system is
not specific to any particular platform, the reference
implementation released to the public as the Bellcore
S/Key 1.0 Distribution was very specific to 4.3BSD
UNIX systems. While it proved to be a valuable tool
that has gained wide use in many environments, it
left room for improvement.

In response to widespread passive attacks in the
Internet reported in early 1994 [CER94b], we started
refitting local UNIX machines with Bellcore S/Key.
Subsequent additions to S/Key evolved into NRL
OPIE (One-time Passwords In Everything). While
it is certainly a work derived from the S/Key 1.0
Distribution, the OPIE Version 2' Software Distri-
bution noticeably enhances its ancestor.

The development and testing of OPIE raised many
issues, both old and new. Classic issues such as se-
curity vs. ease-of-use, circles of trust, and mundane
portability headaches combined with problems like
questioning what is sent in the clear and what sub-
systems should be guarded with one-time passwords.
NRL has been using some form of one-time pass-
word (originally Bellcore’s S/Key, followed by tran-
sient steps to what is now NRL OPIE) for about
a year. The experience gained from use not only
within NRL, but also elsewhere, has helped shape a
better system.

2 What OPIE is Not

OPIE only defends against one specific type of at-
tack, passively listening for passwords. By itself,
OPIE does not provide a single login for a whole set
of machines, nor can it authenticate services. Al-
ternatives like Kerberos[SNS88] authenticate more
than just user identity on a single machine.? OPIE
i1s not secure against certain kinds of active attack,
such as dictionary attacks. OPIE has not yet been
specified using rigorous formal methods. The cur-
rent OPIE implementation is also not formally ver-
ified, though 1t was developed using good software
engineering methods.

OPIE should be used in combination with other
protective measures for maximum effectiveness. The
operating system itself still needs to be secure
against legitimate users improperly gaining privi-
leges or improper access to privileged parts of the
system. TCP Wrapper software can and should
be used to provide coarse-grained access controls to

INRL OPIE version 1 was sometimes colloquially called
NRL S/Key.

2Kerberos domains that allow entry from non-Kerberos
systems should use one-time passwords or other techniques to
protect incoming logins originating on non-Kerberos systems.

the Internet services provided by computer systems
[Ven92]. Routers within the same administrative do-
main should be configured to filter out source-routed
or obviously forged TP packets [CER95]. Stronger
authentication of distributed services, provided by
Kerberos or commercial products such as Sun’s
NIS+™ can also be important in risk reduction.
Encryption of IP packets or of telnet, ftp or rlogin
sessions might be desirable in some environments
where the confidentiality is considered to be worth
the consequent performance loss.

3 Specific Improvements

The fundamental concepts behind S/Key have not
changed in OPIE. A challenge still contains a se-
quence number and a public seed. A reply is com-
puted locally, and only the computed reply is sent
in the clear. The remote machine does not store any
keys. The details of S/Key (and OPIE) fundamen-
tals are left to Haller’s S/Key paper and the recently
released RFC on S/Key[Hal95].

3.1 Functional Improvements

Several improvements to the function of the S/Key
authentication system were made early on in the de-
velopment process. The most obvious is the replace-
ment of the default cryptographic checksum used in
S/Key, MD4 [Riv92a], with MD5 [Riv92b]. MD5
is believed to be cryptographically stronger, and is
definitely slower, than MD4. These two properties
decrease the feasibility of reverse-engineering or de-
feating the one-way function. This increases the
assurance that a system running OPIE will not be
compromised via brute force or cryptanalysis.

Another functional improvement is the restructur-
ing of the OPIE challenge. Under OPIE, a challenge
looks like:

[opie-md5 99 wi12351]

The entire challenge string 1s surrounded by square
brackets. These can serve as an indicator to a lo-
cal terminal emulator, or a co-resident challenge de-
tector (e.g. an MS-DOS TSR) that an OPIE pass-
word is expected. The first string inside the brack-
ets, opie-md5 indicates that one-time passwords are
required and which algorithm is in use. The com-
plete first string can be used by challenge detectors
to select the correct algorithm. It is also the correct
command-line syntax to invoke the one-time pass-
word calculator.® The last two strings are the famil-
iar S/Key-like sequence number and public seed.

30f course, only a LOCAL machine should be used to
generate one-time passwords. That issue is discussed later.

A source of password disclosure overlooked in
the original S/Key distribution was FTP sessions.
To address this, OPIE introduces an FTP dae-
mon which is a direct modification of the 4.3BSD
Net/2 release ftpd(8) program. We chose not
to use the more popular WUarchive ftp dae-
mon because its additional features and conse-
quent code complexity made it harder to deter-
mine if other unknown vulnerabilites were present
[CER94a][CER94c|[CER93a]. The current imple-
mentation merely adds the square-bracketed chal-
lenge into the normal FTP password response, 331
[PR85]. The current implementation also accepts
the reply using the standard PASS command. Most
existing FTP clients work without change.

3.2 User Interface Improvements

Along with improvements in function, OPIE sports
improvements in the way users interact with the
OPIE software. Several are simple, and merely
bring OPIE binaries up to the level of other UNIX
packages. For instance, every program related to
the OPIE software distribution starts with opie to
clearly distinguish them from other programs. Also,
every program has command-line flags to show the
software version number and a quick usage summary,
much like the Free Software Foundation’s suite of
tools.

The default configuration of the OPIE key cal-
culator on UNIX asks the user to retype the se-
cret password to help prevent typing errors. As a
compromise with the people who are either used to
older calculators, or who just cannot stand typing
the same thing twice, a user can also just press re-
turn when prompted again for the password. This
provides added protection to those who would like it
without adding significant burden to those who do
not. The double-password prompt can be removed
as a compile-time option.

The original S/Key password initialization pro-
gram keyinit(8) has undergone a facelift to become
opiepasswd(1). The name change brings it more in
line with its UNIX counterpart passwd(1), which
should make both programs easier to remember for
users. This program has also been modified to op-
erate, by default, in a mode where the password
change is done using a one-time password and a local
calculator instead of cleartext passwords; the oppo-
site was the old default. This new default was cho-
sen to reduce the risk of disclosing a secret password
over the network. Opiepasswd(1) now also gener-
ates an inital default sequence number and a seed
without prompting the user. This should prevent

confusion that could result in the re-use of a seed,
as well as giving the novice user one less thing to
think about. More experienced users can now spec-
ify both their seed and starting sequence number
from the command line, allowing more flexibility. A
shell script that behaves more like S/Key’s keyinit(1)
is included as a transition aid. The opiepasswd(1)
command employs simple checks, such as examining
the DISPLAY environment variable used by X11, to
try to reduce the likelihood of accidental misuse of
the command in “plaintext-mode” on a remote sys-
tem. It is, however, difficult to prevent all forms of
deliberate misuse.

The original Bellcore S/Key software supplied
an S/Key-enhanced keysu(1), but permitted one to
su(1) without using the one-time password scheme.
This is unwise in many environments because it
means that anyone who could eavesdrop on the net
could become root if they could get on the system
(e.g. a legitimate user who was not authorised root
privileges). Hence, OPIE’s user switching program,
opiesu(1), always asks for a one-time password. This
1s an annoyance to users who are truly on the con-
sole. Given the difficulty of determining whether a
particular tty or pty is trustworthy, security once
again prevailed over convenience. In practice, the
inconvenience is not that great because most users
have a windowing system and can use “cut and
paste” between the window that opiesu(1) is in and
another window where the key generator is executed.

As mentioned previously, the OPIE challenge it-
self can form a complete command in a trustwor-
thy command-line environment. An example of this
is demonstrated in Figure 1. Under trusted con-
ditions, logging in with OPIE differs from logging
in with cleartext passwords only by inserting two
copies-and-pastes, one before typing in the secret
password, one after.

3.3 Other Improvements

One of the most serious deployment problems with
the S/Key software was that it was very 4.3BSD-
centric. This made 1t widespread installation and
use difficult in heterogeneous computing environ-
ments. All of the 4.3BSD system dependencies have
been isolated and protected by suitable #ifdefs.
Many of the 4.3 dependencies involved ioctl(2)
calls that were easily replaced with highly portable
POSIX-compliant termios(4) calls. Other dependen-
cies, such as the utmp and wtmp logging schemes
have been rewritten in a very portable manner. Be-
haviors and features unique to particular dialects
of UNIX have been isolated into compile-time op-

Enter secret pazsword:
Again secret pazswords:
LED FOG BAM GOER VARY MOLD
garibaldi{~[01% []

loging danmcd

ﬁinclair(”)[ﬂ]ﬁ

1di{™3[0]% telnet sinclair

Trying 10,4,124,15
Conmected to sinclair
Ezcape character is

4.4 BSD UNIX (sinclairy (ttypl}

[opie-mdd 57 =iB9939]

{OPIE responze required}

Fazsword: {echo on?

Paszword;LED FOG BAW GOER YARY MOLD

Welcome to sinclair,

e

Figure 1: Using an OPIE challenge as a command.

tions. The software now works on most dialects of
the UNIX operating system. The software also im-
plements and fully supports many vendor extensions
to the system programs replaced by OPIE coun-
terparts. Furthermore, the OPIE source package
1s complete; no source licenses are needed for plat-
forms which do not include source. Unfortunately,
the software no longer supports a few older 4.3BSD
systems that are not POSIX conformant. We be-
lieve that this was the right tradeoff because it will
permit more systems to be protected with one-time
passwords.

Programmers can now add support for OPIE au-
thentication to their programs more easily. All of
the OPIE routines that are available to client pro-
grams are isolated in one library, 1ibopie.a, and all
start with the prefix opie to prevent namespace con-
flicts. Information about limits, such as the size of
a secret password, is explicitly provided along with
other useful constants in a header file and every pre-
processor symbol starts with the prefix OPIE to pre-
vent namespace conflicts.

4 Design Decisions

During the transition from S/Key to OPIE, several
design issues surfaced. Most of these issues received
the same treatment in OPIE as they did in S/Key.
With the addition of new features, new design issues
also came up. The OPIE approach to most design
decisions was to err on the side of increased security,
even sometimes at the cost of usability.

4.1 Direct replacement of /bin/login

The OPIE design requires replacement of the lo-
gin(1) program. Another approach to implement-
ing one-time passwords at login time involves not
directly replacing /bin/login. With the latter ap-
proach, a second level of authentication is introduced
by invoking the second-level authenticator as a lo-
gin shell after normal login with disclosing cleartext
passwords succeeds. This second-level authenticator
then invokes the normal user login sequence if the
user passes. In these schemes, one-time passwords
usually occur in the second-level authenticator.
The advantage of not having to replace an often
system-dependent /bin/login is obvious, and some
sites have implemented this two-level authentication
scheme. On the other hand, two pieces of code have

more potential for vulerabilities than one piece of
code. Also, this practice does disclose one of the
user’s passwords and this might be considered to in-
crease the security risk as compared with always us-
ing only the one-time passwords. Furthermore, it is
simpler for the user to perform only one task with a
replacement /bin/login. Hence, we believe replac-
ing /bin/login is a better approach.

4.2 Security vs. Ease-of-Use

Except for the direct replacement of the original
/bin/login with an OPIE login program, OPIE
tends to impede users in the name of greater secu-
rity. As mentioned in the Improvements section,
many of the OPIE binaries default to more paranoid
behavior. The opiesu(1) command will only accept
one-time passwords because of the difficulty deter-
mining the trustworthiness of a tty. The login(1)
command always forces the user to use a one-time
password except when executed with a saved uid of
root without the —h hostname flag, or when specif-
ically used on /dev/console. These two restric-
tions eliminate a potential risk with using login(1) to
switch user identities with cleartext passwords, but
are not a general solution.

In S/Key, there is a host equivalence file which
lists trusted remote machines that can log into a
machine using ordinary disclosing UNIX passwords
rather than S/Key one-time passwords. We have
made this into a compile-time option. The default
configuration in the NRL OPIE distribution does
not enable this capability because we believe that it
is generally an unacceptable security risk. However,
some user communities choose by policy to balance
security and convenience more in the direction of
convenience or have a different threat environment,
so we did not want to entirely remove the capability.

The opiepasswd(1) command defaults to a mode
of operation where what is entered for the new OPIE
password 1s an actual six-English-word response.
This makes the default operation of opiepasswd(1)
safe for use over the network, but assumes that the
user has a secure one-time password calculator. If a
user is sitting at a secure terminal (such as the con-
sole), however, there is a flag to override the default
behavior.

4.3 Internals

OPIE contains a deliberate effort to avoid inter-
nal coding practices that may make programs vul-
nerable. The Internet Worm of 1988 [Rey89] ex-
ploited a string bounds overrun bug caused by use

of gets(3) in fingerd(8). OPIE generally uses nu-
merically bounded string manipulations, such as
strnemp(3) and strncpy(3) rather than stremp(3)
and strepy(3) to reduce the risk of such subtle se-
curity problems.

5 Adding OPIE Authentication to
Services and Clients

One-time Passwords In Everything should be more
than a contrived acryonym. It should be a philos-
ophy for hosts that want to foil password sniffing
attacks. This section discusses how to add OPIE
authentication to both programs which allow access
(servers), and programs which take advantage of ac-
cess (clients).

5.1 Functions Needed for OPIE Au-
thentication

The OPIE library, libopie.a, offers two families
of functions. The functions opiechallenge(),
opieaccessfile(), and opieverify() are for au-
thenticating users. The functions opiekeycrunch()
and opiehash() are for generating one-time pass-
words, and opiebtoe() is for transmitting one-time
passwords in readable form.

int opiechallenge(struct opie #*mp, char
*name, char *cstring)

The first parameter references storage for a
stateful OPIE server-side structure, which contains
current OPIE login information for the user spec-
ified with name. Opiechallenge() initializes the
storage referenced by *mp. The third parameter
should point to enough memory to store an OPIE
challenge string of the form, "[opie-alg. number
seed]", which opiechallenge() writes out. 0 is
returned if the lookup of a name is successful. A
return value of 1 indicates a problem opening the
OPIE password file. -1 is returned if the lookup is
unsuccessful. If -1 is returned, a random challenge
will be issued, so that a potential cracker is at least
initally confused.

int opieaccessfile(char *hostname)

Opieaccessfile() looks in the host equivalence
file, if enabled, and sees if the the host name 1s
in this file.
otherwise, it returns 0.
empty string (""), 0 is also returned. This function

If so, opieaccessfile() returns 1,
If hostname points to an

always returns 0 if support for host equivalence is

disabled, which is the default.

int opieverify(struct opie *mp, char
*response)

After opiechallenge() returns successfully,
and a response has been issued to the server,
opieverify() verifies the response by using

the information in the OPIE server-side struc-
ture. The return values are 0 if successful, -1
if non-authentication errors occurs, and 1 if the
The data inside the OPIE
server-side structure is rendered invalid after this
call, regardless of return value. Invalidating the
server-side structure contents forces a call to
opiechallenge() before a call to opieverify(),
and also indicates that the OPIE response file has
been updated.

authentication fails.

int opiekeycrunch(unsigned algorithm, char
*result, char *seed, char *passwd)

int opiehash(char *x, unsigned algorithm)

The one-time password schemes implemented
in OPIE, as first described in [Hal94], compute
a cryptographic checksum over a secret password
and a public seed. The secret password and seed,
along with the algorithm identifier, are the fourth,
third, and first parameters of opiekeycrunch()
respectively. The results of this, folded into an
8-byte result, are stored where the second pa-
rameter references. This result is passed into the
opiehash() function, where the cryptographic
checksum 1s computed over the result referred by z,
and stored in the same location. Lamport’s one-way
function F(z)is what opiehash() implements. The
algorithm parameter to both of these functions
isolates algorithm dependencies so that new algo-
rithms can be added simply by modifying these
functions.

char *opiebtoe(char *bytes,char *engout)

A server accepts an OPIE response as six English
words. The opieverify() routine performs a con-
version into an 8-byte quantity internally. If a client
computes one-time passwords internally, it needs to
take the result from opiehash() and convert it into
six English words. Opiebtoe() does that, with the
8-byte quantity referenced by bytes, storing the re-
sult in engout, and returning a pointer to the result.

5.2 Example Server Code

Assuming a server is well-modularized, and has a
way of i1ssuing an OPIE challenge, 1t is relatively
painless to insert code to add OPIE authentication
to that service. Two places in a server need to be
modified. The first place 1s after user identification is
given. The server would then call opiechallenge()
and optionally opieaccessfile().

/* I have determined the user’s name. */

if opiechallenge(&cookie, name, challenge)
=0
if Access file allowed &&
opieaccessfile(hostname)
Allow cleartext password.

/* I have a challenge, either actual, or
random. I also know if I can allow
cleartext passwords or not. */

The second place would be after the password, or
OPIE response has been issued.

/* I have a valid user name, and a response
from that user. */

if opieverify(&cookie, response)
Allow entry

else if Cleartext is allowed && Cleartext is good
Also allow entry

else Deny entry

5.3 Example Client Code

It is possible for programs that interact with
authentication-granting services to compute OPIE
responses within the program itself. These programs
can send back the response to the server while hiding
some or all of the details from the user. The con-
vienence gained from not having to consult an out-
of-the-way calculator can both save time and reduce
frustration.

Unfortunately, adding OPIE calculation to a
client program can cause the very problem OPIE
tries to foil. If an OPIE-generating Telnet client is
run on a local machine, there is no problem. The in-
telligent Telnet client parses out the OPIE challenge,

the user types in his or her secret password, and the
local Telnet client sends the response to the remote
/bin/login program. If this intelligent Telnet client
is running on a remote machine, the remote Telnet
detects an OPIE challenge, and asks for the user’s
secret password. Since the Telnet is running on a
remote machine, the secret password is sent in the
clear. Any client program that adds built-in one-
time password generation should allow the one-time
password itself to be entered by the user, or if pos-
sible, check if the program is running locally or not.
These same safety tips apply to OPIE calculators
themselves. Future work will try to develop higher
assurance methods of determining whether an exe-
cutable (e.g. Telnet client running in an Xterm) is
local or remote so that we can improve ease-of-use
without increasing risk of disclosing the secret pass-
word.

Modifications to OPIE-aware clients need only be
made in one place, and that 1s immediately after a
challenge is issued by the OPIE-guarded server.

/* The server has issued a password request,
containing an OPIE challenge. */

/* These next two may have support in
libopie.a someday. */

Parse out string between [and].

Determine algorithm, sequence, and seed from

[opie-algorithm sequence seed].

printf("One-time password requested. ");
if Input stream not sniffable
printf ("Please calculate locally and
enter OPIE reply.");
Obtain words from user.
else
opiekeycrunch(algorithm, result, seed,
passwud);
while (sequence-- != 0)
opiehash(result, algorithm);
opiebtoe(result,words);
Send words.

6 Deployment

Every machine that has one-time passwords is one
less machine that can be broken into with a network-
based passive attack. Sometimes, however, not every
machine can run the one-time password software.

Several obstacles hinder large-scale deployment, but
even small uses of OPIE can significantly reduce the
risk of penetration from passive attacks.

6.1 Example Deployment - A Small
Cluster

Consider a small cluster of machines that allow a
central machine to have privileged access via rsh(1)
for the purpose of triggering backups. The central
machine, sinclair, must also allow privileged ac-
cess from every machine, because it has the tape
drive every machine writes to. Notwithstanding
other forms of attack, if any of these machines is
not protected by one-time passwords, then the other
machines can be compromised because of the trust
allowed by the tape backup scheme. Figure 2 helps
illustrate the circle of trust, and how the circle is
only as secure as its weakest machine.

All of the machines except for londo have OPIE
installed. If londo is compromised, a quick scan of
the /etc/hosts.equiv file will reveal equivalence
with sinclair. Using rsh(l), an intruder can ac-
cess sinclair, whose equivalence file contains all of
the other machines. All of the machines on the net-
work can now be compromised at the whim of the
intruder.

This phenomenon is not only restricted to one ma-
chine not having OPIE, or another form of one-time
passwords. If a machine in a circle of trust is missing
any security precaution that the others have, that
vulnerability can be exploited as shown in Figure 2.
The solution to this problem is to either not allow
trust at all, which means the convienience of this
backup scheme 1s lost, or ensure that all machines
in the circle take identical security precautions.

6.2 Example Deployment - Firewall

Another popular place to deploy one-time passwords
is in a firewall gateway. Some packages [AR94] in-
clude one-time password software for this purpose.
Figure 3 shows how a one-time password is installed
on a firewall gateway machine. Users from outside
the protected domain first log into the firewall with
one-time passwords, then use normal cleartext pass-
words from the firewall to reach machines inside the
domain.

The theory behind this approach is that even if the
internal machines’ passwords are sniffed, they will
not be usable because the firewall will prevent unau-
thorized access. If the firewall is compromised, how-
ever, any sniffed passwords immmediately become
useful as the intruder starts to play with the compro-

First one machine is compromised...

sinclair i vanova gari bal di
del enn kosh | ondo
(abold outline indicates
...then another... a compromised machine)
sinclair i vanova gar i bal di
del enn kosh | ondo
...then no machineis safe.
sinclair i vanova gari bal di
del enn kosh | ondo

Cleartext
passwords

Protected
Domain

Figure 2: Breaking the circle of trust in a small cluster.

Protected with
OPIE ¢

gat ekeeper

Figure 3: Firewall gateway with one-time passwords.

mised domain. There are known cases of corporate
firewalls being breached and havoc subsequently be-
ing wreaked on the internal systems. In part this is
because some sites place all of their trust in the se-
curity provided by the firewall. Defense in depth by
implementing appropriate security precautions even
on the internal machines 1s a wiser strategy.

6.3 Barriers to Deployment

Experience has shown three main issues with
widespread OPIE deployment. The first, hinted at
earlier, is introducing to users yet another level of
complexity to do a simple login. As with most secu-
rity, OPIE makes life somewhat less convenient for
users. This issue is compounded by some client pro-
grams which make 1t impossible to either obtain an
OPIE challenge, or give an OPIE response (which
can be as large as 29 characters). Even if client pro-
grams did not prevent OPIE from working, some
users might have to change which client program
they use, which 1s often a painful exercise.

The second problem is scaling. Currently, OPIE
has no good method for securely sharing its file of
next-challenges across a cluster of machines. This
implies that every machine has to have an individ-
ual password initialization. For a small cluster of
machines, this is not a problem. For a campuswide
system of workstations, individual password initial-
ization is intractable. A combination of Kerberos for
use among the campus machines and OPIE for ac-
cess from outside the campus machines might be a
good choice in such situations. Alternately, NIS+
using DES authentication could be used to share
OPIE challenges.

The third problem is that OPIE requires users to
always have a local computer system available for
them to generate one-time passwords on or to have
planned ahead and generated printed one-time pass-
words to carry around with them. This last issue 1s
not a technical problem but an economic one. It 1s
straightforward to build hand-held, battery-powered
S/Key-compatible one-time password generators. It
is not immediately clear whether there is a good
business case for building such a product.

7 Future Work

One of the issues in any useful application that gen-
erates one-time passwords, either a mere calculator
or in an intelligent client, is the determination of how
trustworthy an environment is for entering one’s se-
cret password. Besides the low-level determination
of a tty’s trustworthiness, other potential holes in

applications [CER93b] and environments may reveal
secret password keystrokes to crackers. This prob-
lem extends beyond the scope of work with OPIE or
other one-time password systems, but any solution
will increase the effective use of OPIE.

While an improvement of Bellcore S/Key 1.0,
OPIE can be improved further. Many of the dif-
ficulties mentioned earlier can be better addressed
in future work. Integration of OPIE or other one-
time password schemes into programs like terminal
emulators and FTP clients needs to be done. Some
have proposed Telnet or FTP options to hide the
details of one-time passwords and make it easier for
client programs to work well with either OPIE or
conventional UNIX passwords.

If the scaling problem 1s resolved, OPIE can be
deployed with greater ease on large campuses. As
noted earlier, a common OPIE key file can be shared
securely by using Sun’s Network Information Service
(NIS+) or the TIS Firewall Toolkit’s Authentication
Server. Another possible approach is to keep the key
file on some central fileserver, and use secure RPC
protocols to avoid tampering.

Another area of potential improvement i1s in the
method of calculating keys themselves. Currently
users have two choices, either MD4 or MD5 check-
sums over the public seed and secret password,
followed by continued MD4 or MD5 checksums
over a number of iterations. Marcus Ranum sug-
gested a method where the initial checksum (i.e.
opiekeycrunch()) be modified to use the secret
password to unencrypt a random file using DES, and
add that randomly decrypted file to what is initally
checksummed. Subsequent iterations work as be-
fore. This approach defeats dictionary brute-force
attacks, but requires that an auxilliary file be stored
with the one-time password calculator. This last
approach can also be enabled as a compile-time op-
tion in OPIE. Also, any new and stronger one-way
functions will strengthen OPIE. Support for NIST’s
Secure Hash Algorithm (SHA) will be added in a
future release of OPIE.

8 Summary

One-time Passwords In Everything should be a rule
for machines that wish to defeat password sniffing
attacks. The NRL OPIE distribution has improved
upon earlier work in one-time passwords, as well as
bringing it to more platforms. Experience with our
software has pointed out better ways of doing things,
as well as what still needs to be done. OPIE, while
not a complete security solution, precludes a widely

used class of attacks on networked computer sys-
tems.

9 Availablility

NRL OPIE version 1 is available now in the directory

ftp://ftp.nrl.navy.mil/pub/security/nrl-opie/.

NRL OPIE version 2 will be available at the same
directory soon.

10 Acknowledgments

We would like to thank Mike Harrison and Tim Mc-
Chesney of the Information Security Program Office
of the US Space and Naval Warfare Systems Com-
mand for sponsoring this work. Neil Haller has had
a strong influence on all of this work, not only in his
efforts with Bellcore S/Key that our work is derived
from, but also in ongoing discussions about open is-
sues, possible approaches, and future directions for
S/Key-compatible one-time password systems. We
would also like to thank two others who have been
particularly helpful, Marcus Ranum, for his work to
improve resistance to dictionary attacks, and Mar-
shall Rose, for showing us that putting basic support
for one-time password generation into client software
1s not difficult.

References

[AR94] Frederick Avolio and Marcus Ranum. A
Network Perimeter with Secure External
Access. In Proceedings of the Symposium
on Network & Distributed Systems Secu-

rity. Internet Society, February 1994.

[CER93a] WUarchive ftpd vulnerability. Computer
Emergency Response Team, April 1993.
CA-93:06.

[CER93b] xterm Logging Vulnerability. Computer

Emergency Response Team, April 1993.
CA-93:17.

CER94a| ftpd Vulnerabilities. Computer Emer-
[P P
gency Response Team, April 1994. CA-
94:08.

[CER94b] Ongoing Network Monitoring Attacks.
Computer Emergency Response Team,

February 1994. CA:94:01.

[CER94c] WUarchive ftpd Trojan Horse. Computer
Emergency Response Team, April 1994.
CA-94:07.

[CERO5]

[HA94]

[Hal94]

[Hal95]

[Lam81]

[Lot92]

[PRS5]

[Rey89]

[Riv92a]

[Riv92b]

[SNS88]

[Ven92]

IP Spoofing Attacks and Hijacked Termi-
nal Connections. Computer Emergency
Response Team, January 1995. CA-
95:01.

Neil Haller and Randall Atkinson. On
Internet Authentication, October 1994.
RFC-1704.

Neil M. Haller. The S/Key One-Time
Password System. In Proceedings of the
Symposium on Network € Distributed
Systems Security, San Diego, CA, Febru-
ary 1994. Internet Society.

Neil Haller. The S/KEY One-Time Pass-
word System, February 1995. RFC-1760.

Leslie Lamport. Password Authentica-

tion with Insecure Communication. Com-
munications of the ACM, 24(11):770-772,
November 1981.

Mark Lottor. Internet Growth (1981-
1991), January 1992. RFC-1296.

Jon Postel and Joyce K. Reynolds. File
Transfer Protocol, October 1985. RFC-
959.

Joyce K. Reynolds. The Helminthiasis of
the Internet, December 1989. RFC-1135.

Ronald L. Rivest. The MD4 Message-
Digest Algorithm, April 1992. RFC-1320.

Ronald L. Rivest. The MD5 Message-
Digest Algorithm, April 1992. RFC-1321.

Jennifer G. Steiner, Clifford Neuman,
and Jeffrey 1. Schiller. Kerberos: An
Authentication Service for Open Network
Systems. In Proceedings of the Win-
ter Useniz Conference, Dallas, TX, 1988.
USENIX Association.

Wietse Venema. TCP WRAPPER:
Network monitoring, access control and
booby traps. In Proceedings of the
Third Usenuz UNIX Security Symposium.
USENIX Association, September 1992.

