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Adaptive Visual Servo Regulation Control for Camera-in-Hand

Configuration with a Fixed-Camera Extension

Enver Tatlicioglu⋆, Darren M. Dawson, and Bin Xian

Abstract: In this paper, image-based regulation control of

a robot manipulator with an uncalibrated vision system is dis-

cussed. To compensate for the unknown camera calibration

parameters, a novel prediction error formulation is presented.

To achieve the control objectives, a Lyapunov-based adaptive

control strategy is employed. The control development for

the camera-in-hand problem is presented in detail and a

fixed-camera problem is included as an extension.

I. INTRODUCTION

The use of computer vision data to control the motion

of a robot manipulator is commonly referred to as visual

servo control. For single camera systems, the vision data

may be acquired from the camera which is mounted at the

end-effector of the robot manipulator (camera-in-hand) or

the camera may be fixed in the workspace (fixed-camera)

so that it can observe the motion of the end-effector of

the robot manipulator. For both camera-in-hand and fixed-

camera systems, the two dominant control architectures are

image-based visual servo control and position-based visual

servo control [1]. For image-based control schemes, the

Jacobian matrix, which maps the image errors onto the

joint space of the manipulator is commonly referred as

the interaction matrix. The interaction matrix is a nonlinear

function of the intrinsic and extrinsic camera calibration

parameters. Hence, the performance of the controller depends

on the accurate knowledge of the camera parameters [2].

However, camera calibration is tedious, difficult and costly

[2], [3]. On the other hand, a control scheme with off-line

identification of the camera calibration parameters is usually

not robust to the change of parameters, disturbances, and

unknown environments [4].

Beginning from the early 1990’s, the focus of much of the

research on visual servoing has moved to uncalibrated vision

systems. Yoshimi and Allen [5] utilized the geometric effect

of rotational invariance to estimate the interaction matrix.

Hosoda and Asada [4] presented an extended least squares

algorithm with exponential data weighting for estimating the
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interaction matrix. In [6], Fakhry and Wilson presented mod-

ifications of the resolved acceleration controller for visual

servoing. Jagersand et al. [7] proposed an adaptive visual

servoing controller. In [7], a nonlinear least-squares opti-

mization method using a trust region method and Broyden

estimation is utilized. The method proposed in [7] is similar

to the ones in [6] and [4]. Bishop and Spong [8] presented

a sampled-data controller for uncalibrated monocular visual

servo systems with an online calibration extension. In [9],

Ruf et al. proposed an online calibration algorithm for

position-based visual servo control. In [10] and [11], Pa-

panikolopoulos et. al. proposed an algorithm based on online

estimation of the relative distance of the target with respect to

the camera. In [12], Malis proposed a visual servo controller

which is robust to changes in the intrinsic camera calibration

parameters. Piepmeier et al. [13] proposed a dynamic quasi-

Newton method for visual servo control of uncalibrated

robotic systems. In [13], where a recursive least squares

algorithm is utilized to estimate the unknown interaction

matrix. In [14], Lu et al. presented an online algorithm using

the least square method to calculate the extrinsic orientation

matrix. In [15], Hespanha et al. developed theoretical anal-

ysis for uncalibrated stereo systems. In [16], a visual servo

controller is presented for end-effector regulation tasks in

the presence of uncertain camera calibration parameters. In

[17], Kelly et al. suggested two controllers based on the

transpose Jacobian control philosophy. However, the first

controller requires the depth information for all the feature

points, and the second controller depends on the approximate

Jacobian method which utilizes the best available information

on the depth and the camera calibration parameters. Recently,

Liu et al. [2] presented adaptive controllers for uncalibrated

fixed-camera systems. The first controller tracks only one

feature point and the second controller can track multiple

feature points. However, with a six degree-of-freedom robot

manipulator, the proposed controller can track at most three

feature points. This constitutes a problem based on the well-

known fact that four coplanar feature points on an object are

needed to determine its posture from their projection in the

image plane. Similar to [2], the development in [18] is also

for tracking control of one feature point.

In this paper, image-based regulation control of a robot

manipulator with an uncalibrated vision system (i.e., the

intrinsic and extrinsic camera parameters are unknown) is

addressed. To compensate for the unknown camera calibra-

tion parameters, a prediction error formulation is presented.

For all the feature points, the interaction matrix and the depth

are both linearly parameterized, which is then followed by



a novel prediction error formulation to design the nonlinear

estimation law. The novelty of this formulation over the past

research is its unique method to linearly parameterize the

interaction matrix and the depth simultaneously. To develop

the error system, the image error signals for four feature

points are combined to form the final error signal which

is followed by the Lyapunov-based stability analysis. The

novelty of this analysis is the design of the Lyapunov func-

tion which incorporates the depth informations for all feature

points. Satisfaction of persistent excitation (PE) conditions

allows the image and the estimation error signals to be driven

to zero. The control development for the camera-in-hand

problem is presented in detail and a fixed-camera problem

is included as an extension.

II. ADAPTIVE CONTROL FOR CAMERA-IN-HAND

CONFIGURATION

A. Geometric Model

To make the subsequent development more tractable, four

coplanar target points located on a static object, denoted

by Oi ∀i = 1, .., 4 are considered. In order to develop

a geometric relationship between the fixed object and the

moving camera, an inertial coordinate frame, denoted by

I, attached to the object, an orthogonal coordinate frame,

denoted by F , whose origin coincides with the optical center

of the moving camera, an inertial coordinate frame, denoted

by W , attached to the base frame of the robot manipulator,

and an orthogonal coordinate frame, denoted by E , attached

to the end-effector of the robot manipulator are defined (see

Figure 1). Let the 3D coordinates of the ith feature point on

the object be denoted as the constant xpi ∈ R
3 relative to

the base frame W , and m̄i (t) ∈ R
3 relative to F , which is

defined as follows

m̄i ,
[

xi yi zi

]T

. (1)

Fig. 1. Geometric relationships between the fixed object, robot manipulator,
and the camera attached to its end-effector.

In the subsequent development, it is assumed that the

object is always in the field of view (fov) of the camera,

hence the distances from the origin of I to all feature

points remain positive (i.e., zi (t) > ε where ε ∈ R is an

arbitrarily small positive constant) and bounded. To relate

the coordinate systems, let R (t) ∈ SO (3) and xf (t) ∈
R

3 denote the rotation matrix and the translation vector

respectively, between F and I. Let mi (t) ∈ R
3 denote the

normalized Euclidian coordinates for the ith feature point,

which is defined as follows

mi ,
1

zi

m̄i. (2)

In the image captured by the camera, each of these feature

points have projected pixel coordinates expressed relative to

I, denoted by pi (t) ∈ R
2, defined as follows

pi ,
[

ui vi

]T

(3)

where ui (t), vi (t) ∈ R. The projected pixel coordinates of

the feature points are related to the normalized Euclidian

coordinates by the pin-hole model of [19] such that

pi , Āmi (4)

where Ā ∈ R
2×3 is the unknown truncated camera calibra-

tion matrix [20] which is assumed to be of the following

form

Ā ,

[

fku fku cotφ u0

0 fkv

sin φ
v0

]

(5)

where ku, kv ∈ R denote camera scaling factors, u0, v0 ∈ R

represent the pixel coordinates of the principal point, φ ∈ R

is the angle between the camera axes, and f ∈ R is the

camera focal length.

B. Open-Loop Error System

To facilitate the open-loop error system development,

image error for the ith feature point, denoted by ei (t) ∈ R
2,

is defined as follows

ei , pi − pdi (6)

where pdi ∈ R
2 is the constant desired image coordinates

for the ith feature point. The dynamics of the image error is

found as follows

ėi = ṗi (7)

=
1

zi

Āei

.
m̄i (8)

where Āei (t) ∈ R
2×3 is a function of camera intrinsic cal-

ibration parameters and image coordinates of the ith feature

point as shown below

Āei , Ā −

[

0 0 ui

0 0 vi

]

(9)

and from Figure 1,
.
m̄i (t) can be found to be of the following

form

.
m̄i= Rc

[

−Rr S [Rr (xpi − xr)]
]

Jrq̇ (10)



where the forward kinematics of the robot manipulator was

utilized [21]. In (10), Rc ∈ SO (3) is the camera extrinsic

calibration matrix, Rr (t) ∈ SO (3) is the orientation matrix

of the end-effector of the robot manipulator, Jr (q) ∈ R
6×6

is the Jacobian matrix of the robot manipulator, xr (t) ∈ R
3

is the end-effector position of the robot manipulator relative

to W , q (t) ∈ R
6 represents the joint positions of the robot

manipulator, and S (·) ∈ R
3×3 is the skew-symmetric matrix

form of its argument defined as follows

S (ξ) ,





0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0



 , ∀ξ =





ξ1

ξ2

ξ3



 . (11)

The joint velocity vector q̇ (t) ∈ R
6 is assumed to be the

kinematic control input such that

u , q̇. (12)

After utilizing (10) and (12), the dynamics for the image

error of (8) can be rewritten as follows

ziėi = ĀeiRc

[

−Rr S [Rr (xpi − xr)]
]

Jru. (13)

Remark 1: In [22], it was shown that four non-collinear

object feature points are sufficient to determine the end-

effector frame pose with respect to the base frame. Based on

this fact, the analysis in this paper will be based on regulation

of four feature points.

Remark 2: In the subsequent analysis, it is assumed that

the end-effector position of the robot manipulator xr (t),
the orientation matrix of the end-effector of the robot

manipulator Rr (t), and the Jacobian matrix of the robot

manipulator Jr (q) are known, and the camera intrinsic and

extrinsic calibration matrices (i.e., Rc and Ā) are constant

and unknown.

Remark 3: In the subsequent analysis, it is assumed that

the joint positions of the robot manipulator are bounded (i.e.,

q (t) ∈ L∞) provided that the projected pixel coordinates of

all feature points are bounded (i.e., pi (t) ∈ L∞ ∀i = 1, .., 4).

Remark 4: In the subsequent analysis, it is assumed that

the orientation matrix of the end-effector of the robot

manipulator Rr (t) and the Jacobian matrix of the robot

manipulator Jr (q) are bounded signals provided that the

joint positions of the robot manipulator are bounded.

After utilizing (1) and (10), the dynamics of zi (t) are

obtained as follows

żi = rT
c3

[

−Rr S [Rr (xpi − xr)]
]

Jru (14)

where rT
c3 ∈ R

1×3 is the third row vector of the extrinsic

camera calibration matrix. To facilitate the subsequent anal-

ysis a diagonal matrix, denoted by Z (t) ∈ R
8×8, with its

entries being zi (t) ∀i = 1, .., 4, and a combined error signal

e (t) ∈ R
8 are defined as follows

Z , diag {z1, z1, z2, z2, z3, z3, z4, z4} (15)

e ,
[

eT
1 eT

2 eT
3 eT

4

]T

. (16)

We can see from (15) and (16) that the product Z (t) e (t) is

equal to the following expression

Ze =
[

z1e
T
1 z2e

T
2 z3e

T
3 z4e

T
4

]T

. (17)

After utilizing (13), (15) and (16), the following expression

can be obtained for Z (t) ė (t)

Zė =
[

z1ė
T
1 z2ė

T
2 z3ė

T
3 z4ė

T
4

]T

(18)

= B1Jru. (19)

where B1 (t) ∈ R
8×6 is defined in Appendix I. After adding

and subtracting the term 1
2 Ż (t) e (t) to the right-hand-side

of (19), the following expression can be obtained

Zė = −
1

2
Ż (t) e (t) + Πu (20)

where Π(t) ∈ R
8×6 is defined in Appendix I. Since, the

auxiliary matrix Π(t) has unknown constant parameters, the

product Π(t)u (t) can be linearly parameterized as follows

Πu = W3Θ (21)

where W3 (t) ∈ R
8×p is a known regressor matrix, and Θ ∈

R
p is an unknown constant parameter vector1. The estimation

form of (21) can be defined as follows

Π̂u = W3Θ̂ (22)

where Π̂ (t) ∈ R
8×6 is the estimate of Π(t), and Θ̂ (t) ∈ R

p

is the yet to be defined dynamic estimate of Θ. After adding

and subtracting Π̂ (t)u (t) to the right-hand-side of (20), the

following open-loop error system is obtained

Zė = −
1

2
Ż (t) e (t) + Π̂u + W3Θ̃ (23)

where the following expression was utilized

Π̃u = W3Θ̃ (24)

with Π̃ (t) ∈ R
8×6 being defined as follows

Π̃ , Π − Π̂ (25)

and Θ̃ (t) ∈ R
p is the estimation error defined as follows

Θ̃ , Θ − Θ̂. (26)

C. Closed-Loop Error System

Based on the subsequent stability analysis, the control

input u (t) is designed as follows

u , −kΠ̂T e (27)

where k ∈ R is a positive constant control gain. After

substituting (27) into the open-loop error system in (23), the

following closed-loop error system is obtained

Zė = −
1

2
Ż (t) e (t) − kΠ̂Π̂T e + W3Θ̃. (28)

1The reader is referred to [23] for the derivation of W3 (t) and Θ.



D. Prediction Error Formulation

In this section, a prediction error formulation for the

unknown parameters will be introduced. From Figure 1,

m̄i (t) can be written as follows2

m̄i = Rc

[

RT
r (xpi − xr) + pc

]

(29)

where pc ∈ R
3 is the position of the origin of frame F with

respect to frame W expressed in frame F . After utilizing (1),

(2), and (4), the pixel coordinates for the ith feature point can

be written as follows

pi =
1

zi

ĀRc

[

RT
r (xpi − xr) + pc

]

(30)

where the corresponding depth can be written as follows

zi = rT
c3

[

RT
r (xpi − xr) + pc

]

. (31)

where rT
c3 ∈ R

3 is the last row of Rc. It should be noted

that, in (30) and (31), Ā, Rc, xpi, pc are unknown constant

parameters, and xr (t), Rr (t) are measurable signals (see

Remark 2). Based on these facts, pi (t) can be linearly

parameterized as follows

pi =
W1Θ1i

W2Θ2i

(32)

where the following linear parameterization of zi (t) was

utilized

zi = W2Θ2i. (33)

We note that zi (t) are assumed to satisfy the following

inequalities

ρi (·) ≥ zi (t) = W2 (t)Θ2i ≥ εi > 0 (34)

where ρi (mi) ∈ R ∀i are positive functions and εi ∈ R ∀i

are positive constants. In (32) and (33), W1 (t) ∈ R
2×r1 ,

W2 (t) ∈ R
1×r2 are measurable regression matrices, and

Θ1i ∈ R
r1 , Θ2i ∈ R

r2 are unknown constant parameter

vectors3. After multiplying both sides of (32) with the term

W2 (t)Θ2i the following expression can be obtained

piW2Θ2i = W1Θ1i. (35)

The estimation forms of (32) and (35) can be defined as

follows

p̂i =
W1Θ̂1i

W2Θ̂2i

(36)

p̂iW2Θ̂2i = W1Θ̂1i (37)

where Θ̂1i (t) ∈ R
r1 and Θ̂2i (t) ∈ R

r2 are the estimates

for Θ1i and Θ2i, respectively4. Subtracting (37) from (35)

2For the derivation of the expression for m̄i the reader is referred to
Appendix VII.

3The reader is referred to [23] for the derivation of W1 (t), W2 (t), Θ1i,
and Θ2i, ∀i = 1, ..,4.

4In the subsequent analysis, a projection algorithm will be utilized to

make sure that W2 (t) Θ̂2i (t) is always greater than some arbitrarily small
positive constant.

and adding and subtracting the term p̂i (t)W2 (t)Θ2i to the

right-hand-side results in the following expression

p̃i =
1

W2Θ2i

W̄i

[

Θ̃T

1i Θ̃T

2i

]T

(38)

where W̄i (p̂i (t) , t) ,
[

W1 −p̂iW2

]

∈ R
2×(r1+r2) is

a measurable signal, Θ̃ji (t) ∈ R
rj is the estimation error

defined as follows

Θ̃ji , Θji − Θ̂ji ∀j = 1, 2, ∀i = 1, .., 4 (39)

and the prediction error for the ith feature point p̃i (t) ∈ R
2

is defined as follows

p̃i , pi − p̂i. (40)

The combination of the pixel coordinates for all the feature

points, denoted by p (t) ∈ R
8, is defined as follows

p ,
[

pT

1 pT

2 pT

3 pT

4

]T

. (41)

The prediction error p̃ (t) ∈ R
8 is defined as follows

p̃ , p − p̂ (42)

where p̂ (t) ∈ R
8 is the estimation of p (t). Based on (38)

the prediction error p̃ (t) can be written as follows

p̃ = F1W̄ Θ̃ (43)

where F1 (·) ∈ R
8×8 is an auxiliary matrix defined in

Appendix I, and W̄ (·) ∈ R
8×p is a measurable signal,

Θ ∈ R
p is the combination of the unknown constants,

Θ̂ (t) ∈ R
p is the estimation of Θ, and Θ̃ (t) ∈ R

p is the

estimation error.

Remark 5: It should be noted that, when obtaining (43)

from (38), there were common unknown constants for dif-

ferent feature points. As a result of this fact, an unknown

vector Θ with the exact same size as in (26) is obtained.

Based on the subsequent stability analysis, the estimation

law

.

Θ̂ (t) is designed as follows
.

Θ̂, Proj
{

αΓW̄T p̃ + ΓWT
3 e

}

(44)

where Proj{·} is defined in Appendix VI, and α (t) ∈ R is

a positive scalar function defined as follows

α , 1 +
1

ε̄
ρ̄ (·) (45)

where ρ̄ (·) ∈ R is a positive function defined as follows

ρ̄ (·) , max
i

{

ρ2
i (·)

}

(46)

and ε̄ ∈ R is a positive constant defined as follows

ε̄ , min
i

{εi} . (47)

In (44), Γ (t) ∈ R
p×p is a least-squares estimation gain

matrix designed as follows

d

dt

(

Γ−1
)

, 2W̄T W̄ . (48)

Remark 6: It should be noted that if Γ−1 (t0) is selected to

be positive definite and symmetric then Γ (t0) is also positive



definite and symmetric. Therefore it follows that both Γ−1 (t)
and Γ (t) are positive definite and symmetric. From (48), the

following expression can be obtained

Γ̇ = −2ΓW̄T W̄Γ. (49)

From (49), it is clear that Γ̇ (t) is negative semidefinite;

therefore, Γ (t) is always constant or decreasing, and hence,

it follows that Γ (t) is bounded (for more details, the reader

is referred to [24] and [25]).

E. Stability Analysis

Theorem 1: The control law defined in (27) and the up-

date law defined in (44) ensure that ‖e (t)‖,

∥

∥

∥
Θ̃ (t)

∥

∥

∥
→ 0 as

t → +∞ provided that the following persistent excitation

conditions [26] hold

γ1I8 ≤

∫ t0+T

t0

Π̂(τ )Π̂T (τ )dτ ≤ γ2I8 (50)

γ3Ip ≤

∫ t0+T

t0

W̄T (τ )W̄ (τ )dτ ≤ γ4Ip (51)

where γi ∈ R ∀i = 1, .., 4 are positive constants, I8 ∈ R
8×8

and Ip ∈ R
p×p are identity matrices.

Proof: See Appendix II.

F. Conclusion

The image-based regulation control problem of a robot

manipulator with an uncalibrated vision system was ad-

dressed. The depth information which is in the denominator,

and the rest of the interaction matrix were simultaneously

linearly parameterized for the first feature point. After utiliz-

ing a novel prediction error formulation the estimation law

was designed. To avoid the singularity issue which might be

caused by the depth signal appearing in the denominator,

a parameter projection algorithm was utilized. Lyapunov-

based analysis techniques were utilized to achieve the control

objectives. The Lyapunov function was designed to embody

the depth information of all feature points. This design

of the Lyapunov function allowed us to have a depth-free

stability analysis. Upon satisfaction of persistent excitation

(PE) conditions, it was proven that both the image and the

estimation error signals are driven to zero. As an extension,

a fixed-camera configuration was presented.
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APPENDIX I

AUXILIARY DEFINITIONS

The auxiliary matrix B1 (t), introduced in (19), is defined

as follows

B1 ,









Āe1Rc

[

−Rr S [Rr (xp1 − xr)]
]

Āe2Rc

[

−Rr S [Rr (xp2 − xr)]
]

Āe3Rc

[

−Rr S [Rr (xp3 − xr)]
]

Āe4Rc

[

−Rr S [Rr (xp4 − xr)]
]









. (52)

After utilizing (16) and the time derivative of (15), the

product Ż (t) e (t) can be written as follows

Że = E1
d

dt

[

z1 z1 z2 z2 z3 z3 z4 z4

]T

(53)

where the diagonal matrix E1 (t) ∈ R
8×8 is defined as

follows

E1 , diag {e11, e12, e21, e22, e31, e32, e41, e42} (54)

with eij (t) being the jth entry of ei (t). The second term on

the right-hand-side of (53) can be written as follows

d

dt

[

z1 z1 z2 z2 z3 z3 z4 z4

]T

= C1Jru

(55)

where (14) was utilized, and the auxiliary matrix C1 (t) ∈
R

8×6 is defined as follows

C1 ,

























rT
c3

[

−Rr S [Rr (xp1 − xr)]
]

rT
c3

[

−Rr S [Rr (xp1 − xr)]
]

rT
c3

[

−Rr S [Rr (xp2 − xr)]
]

rT
c3

[

−Rr S [Rr (xp2 − xr)]
]

rT
c3

[

−Rr S [Rr (xp3 − xr)]
]

rT
c3

[

−Rr S [Rr (xp3 − xr)]
]

rT
c3

[

−Rr S [Rr (xp4 − xr)]
]

rT
c3

[

−Rr S [Rr (xp4 − xr)]
]

























. (56)

The auxiliary signal Π(t), introduced in (20), is defined as

follows

Π ,

(

B1 +
1

2
E1C1

)

Jr (57)

where (19), (20), (53)-(55) were all utilized. The auxiliary

matrix F1 (t) ∈ R
8×8, introduced in (43), is defined as

follows

F1 , diag

{

1

W21Θ21
,

1

W21Θ21
,

1

W22Θ22
,

1

W22Θ22
,

1

W23Θ23
,

1

W23Θ23
,

1

W24Θ24
,

1

W24Θ24

}

. (58)

APPENDIX II

PROOF OF THEOREM

Proof: To facilitate the proof, a nonnegative Lyapunov

function V1 (t) ∈ R is defined as follows

V1 ,
1

2
eT Ze (59)

where Z (t) was defined in (15). The time derivative of (59)

is given as follows

V̇1 = eT Zė +
1

2
eT Że. (60)

The expression in (60) can be written as follows

V̇1 = −keT Π̂Π̂T e + eT W3Θ̃. (61)

where the closed-loop error system given in (28) was utilized.

To facilitate the analysis another nonnegative Lyapunov

function, denoted by V2 (t) ∈ R, is defined as follows

V2 ,
1

2
Θ̃T Γ−1Θ̃. (62)

After taking the time derivative of (62) and substituting (44)

and (48), the following expression is obtained

V̇2 = −Θ̃T Γ−1Proj
{

αΓW̄T p̃ + ΓWT
3 e

}

+ Θ̃T W̄T W̄ Θ̃.

(63)

After utilizing the property of the projection (see (116) in

Appendix VI), V̇2(t) can be upper bounded as follows

V̇2 ≤ −αΘ̃T W̄T p̃ + Θ̃T W̄T W̄ Θ̃ − Θ̃T WT
3 e. (64)

The expression in (64) can be rewritten as follows

V̇2 ≤ −αp̃T F−T
1 p̃ + p̃T F−T

1 F−1
1 p̃ − Θ̃T WT

3 e (65)

where (43) was utilized. The right-hand-side of (65) can be

upper bounded

V̇2 ≤ −αε̄p̃T p̃ + ρ̄p̃T p̃ − Θ̃T WT
3 e (66)

where the definition of F1 (t) in (58) is utilized along with

(34), (46), and (47). After utilizing the definition of α (t) in

(45) the expression in (66) can be written as follows

V̇2 ≤ −ε̄ ‖p̃‖
2
− Θ̃T WT

3 e. (67)

To prove the theorem, the following nonnegative Lyapunov

function, denoted by V (t) ∈ R is defined

V , V1 + V2 (68)

where V1 (t) and V2 (t) were defined in (59) and (62) respec-

tively. The time derivative of (68) can be upper bounded as

follows

V̇ ≤ −keT Π̂Π̂T e − ε̄ ‖p̃‖
2

(69)

where (61) and (67) were utilized. From (69), the following

inequalities can be written

V̇ ≤ −keT Π̂Π̂T e (70)

V̇ ≤ −ε̄ ‖p̃‖
2
. (71)

After integrating (70) and (71), following expressions can be

obtained

k

∫ +∞

t0

∥

∥

∥
Π̂T (τ ) e (τ )

∥

∥

∥

2

dτ < V (t0) − V (+∞). (72)

ε̄

∫ +∞

t0

‖p̃ (τ )‖
2
dτ < V (t0) − V (+∞) (73)

After utilizing (72), (73) and the fact that V (t) is nonneg-

ative, it can be concluded that V (t) < V (t0) for ∀t. Hence,



V (t) is bounded (i.e., V (t) ∈ L∞). Then, from (68) it

can be concluded that V1 (t), V2 (t) ∈ L∞. Since V (t) is

bounded then from (72) and (73), it is clear that Π̂T (t) e (t),
p̃(t) ∈ L2. Since zi (t) are bounded for ∀i = 1, .., 4 then

from (15) it follows that Z (t) ∈ L∞. After utilizing the

facts that V1 (t), Z (t) ∈ L∞ along with (59), it follows that

e (t) ∈ L∞. From the definition of e (t) in (16), it is clear

that ei (t) ∈ L∞ ∀i = 1, .., 4. After utilizing the fact that

the desired image coordinates pdi ∀i = 1, .., 4 are constant

along with the fact that ei (t) ∀i = 1, .., 4 are bounded,

then from (6), it is clear that pi (t) ∈ L∞ ∀i = 1, .., 4.

Based on Remark 3, it follows that q (t) is bounded. Since

pi (t) ∀i = 1, .., 4 are bounded then from (9) it is clear that

Āei (t) ∈ L∞ ∀i = 1, .., 4. Since zi (t) are bounded, from

(33) it is easy to see that W2 (t) ∈ L∞. After utilizing the

facts that pi (t), W2 (t) ∈ L∞ along with (35), it is clear

that W1 (t) ∈ L∞. By using (34) along with (38), it can

be proven that W̄i

[

Θ̃T

1i Θ̃T

2i

]T

∈ L2. From (34), it is

clear that F1 (t) is bounded. After utilizing the above facts

along with (43), it can be concluded that W̄ (t) Θ̃ (t) ∈ L2.

The fact that V2 (t) is bounded can be used along with

(62) to show that Θ̃T (t)Γ−1(t)Θ̃(t) ∈ L∞. Since Γ−1 (t)
is always positive definite (see Remark 6), then from (62),

it is clear that Θ̃(t) ∈ L∞. From (26), it is easy to see

that Θ̂(t) ∈ L∞. After utilizing the above boundedness

statements along with (37), it is clear that p̂i (t) ∈ L∞, then

from (40), it is easy to see that p̃i(t) ∈ L∞. The above

mentioned boundedness statements can be used to prove

that W̄ (t) is bounded. After utilizing the above mentioned

boundedness statements, Remarks 3 and 4, along with (52),

(54), and (56); then from (57), it is clear that Π(t) ∈ L∞.

Since Π̂ (t) is a function of Θ̂(t) and bounded signals, then

it is bounded. The above boundedness statements can be

utilized along with (27) to show that u (t) ∈ L∞. Then,

from (21), it is clear that W3 (t) ∈ L∞. Since the projection

algorithm provides bounded outputs then from (44), it can be

concluded that

.

Θ̂ (t) ∈ L∞, then the time derivative of (26)

can be used to show that
.

Θ̃ (t) ∈ L∞. After utilizing the

above boundedness statements along with (13), it is clear that

ėi (t) ∈ L∞ ∀i = 1, .., 4. From (7), it is clear that ṗi (t) ∈
L∞. Since ṗi (t) ∀i = 1, .., 4 are bounded then, from the time

derivative of (9), it is clear that d
dt

Āei (t) ∈ L∞ ∀i = 1, .., 4.

After utilizing the above boundedness statements, along with

the fact that it is a function of

.

Θ̂ (t) and bounded signals,

it is easy to see that d
dt

Π̂ (t) ∈ L∞. Now, it follows that
d
dt

(

Π̂T (t) e (t)
)

∈ L∞. Since Π̂T (t) e (t) ∈ L2 ∩ L∞, it

can be concluded that [27]
∥

∥

∥
Π̂T (t) e (t)

∥

∥

∥
→ 0 as t → +∞. (74)

After utilizing Remarks 3 and 4 along with (14), it is clear

that żi (t) ∈ L∞ ∀i = 1, .., 4; hence, from the time derivative

of (33), it is clear that Ẇ2 (t) ∈ L∞. After utilizing the above

boundedness statements along with the time derivatives of

(32) and (36), it can be proven that Ẇ1 (t),
.

p̂i (t) ∈

L∞, hence proving that
.

W̄ (t) ∈ L∞. The previously

mentioned boundedness statements can be utilized to prove

that d
dt

(

W̄ (t)Θ̃(t)
)

∈ L∞. Since W̄ (t)Θ̃(t) ∈ L2 ∩ L∞, it

can be concluded that [27]
∥

∥

∥
W̄ (t)Θ̃(t)

∥

∥

∥
→ 0 as t → +∞. (75)

As shown in Appendices III and IV, if the signals Π̂(t)
and W̄ (t) satisfy the persistent excitation (PE) conditions

given in (50), (51), then from (74) and (75) it can further be

concluded that

‖e (t)‖ → 0 as t → +∞ (76)

∥

∥

∥
Θ̃ (t)

∥

∥

∥
→ 0 as t → +∞. (77)

APPENDIX III

PE PROOF FOR e (t)

An auxiliary function Ω1 (t0, t) ∈ R
8×8 is defined as

follows

Ω1 ,

∫ t

t0

Π̂(τ )Π̂T (τ )dτ . (78)

To facilitate the proof the following expression is considered

d

dτ

{

eT (τ )Ω1 (t0, τ) e (τ )
}

= ėT (τ )Ω1 (t0, τ) e (τ )

+eT (τ )
d

dτ
{Ω1 (t0, τ )} e (τ ) + eT (τ )Ω1 (t0, τ) ė (τ ) .

(79)

From (79), the following expression can be obtained after

integrating from t0 to t and rearranging the terms

∫ t

t0

eT (τ )Ω1 (t0, τ ) ė (τ ) dτ = eT (t) Ω1 (t0, t) e (t)

−eT (t0)Ω1 (t0, t0) e (t0) −

∫ t

t0

ėT (τ )Ω1 (t0, τ ) e (τ ) dτ

−

∫ t

t0

eT (τ )
d

dτ
{Ω1 (t0, τ)} e (τ) dτ . (80)

After utilizing the following facts

Ω1 (t0, t0) = 08×8 (81)

ΩT
1 (t0, τ ) = Ω1 (t0, τ)

d

dτ
{Ω1 (t0, τ )} = Π̂ (τ ) Π̂T (τ ) ,

the expression in (80) can be rearranged as follows

eT (t)Ω1 (t0, t) e (t)

= 2

∫ t

t0

eT (τ) Ω1 (t0, τ ) ė (τ) dτ

+

∫ t

t0

eT (τ ) Π̂(τ )Π̂T (τ )e (τ ) dτ (82)

where 08×8 ∈ R
8×8 is a matrix of zeros. To further facilitate

the proof, the following lemma is stated [28]:



Lemma 1: Let f (t) be a uniformly continuous function

[27]. Then,

lim
t→+∞

f (t) = 0 ⇔ lim
t→+∞

∫ t+t
′

t

f (τ) dτ = 0 (83)

for any positive constant t
′

∈ R.

To utilize Lemma 1, a change of variables is applied to

(82) by substituting t with t0 +T , where T ∈ R is a positive

constant. The following expression is obtained after applying

a limit operation to the resulting equation

lim
t0→+∞

eT (t0 + T )Ω1 (t0, t0 + T ) e (t0 + T )

= 2 lim
t0→+∞

∫ t0+T

t0

eT (τ )Ω1 (t0, τ ) ė (τ) dτ

+ lim
t0→+∞

∫ t0+T

t0

eT (τ ) Π̂ (τ ) Π̂T (τ ) e (τ ) dτ . (84)

Remark 7: The right-hand-side of (18) can be written as

follows

Zė = −kB1JrΠ̂
T e (85)

where (27) was utilized. After utilizing (74), it is easy to see

that the right-hand-side of (85) goes to zero. After utilizing

this fact along with the fact that Z (t) is positive definite,

then it is clear that

‖ė (t)‖ → 0 as t → +∞. (86)

After utilizing (50), (86), Lemma 1, and the fact that e (t)
is bounded, then it is clear that the first term at the right-hand-

side of (84) is equal to zero. After utilizing (74), Lemma 1,

and the facts that Π̂ (t), e (t) are bounded, then it is clear

that the second term at the right-hand-side of (84) is equal to

zero. Thus the following expression can be obtained based

on (84)

lim
t0→+∞

eT (t0 + T )Ω1 (t0, t0 + T ) e (t0 + T ) = 0. (87)

After utilizing the fact that γ1I8 ≤ Ω1 (t0, t0 + T ) it is clear

that

‖e (t)‖ → 0 as t → +∞. (88)

APPENDIX IV

PE PROOF FOR Θ̃ (t)

An auxiliary function Ω2 (t0, t) ∈ R
p×p is defined as

follows

Ω2 ,

∫ t

t0

W̄T (τ )W̄ (τ )dτ . (89)

To facilitate the proof the following expression is considered

d

dτ

{

Θ̃T (τ )Ω2 (t0, τ ) Θ̃ (τ)
}

=
.

Θ̃
T

(τ)Ω2 (t0, τ) Θ̃ (τ )

+Θ̃T (τ )
d

dτ
{Ω2 (t0, τ)} Θ̃ (τ)

+Θ̃T (τ )Ω2 (t0, τ)
.

Θ̃ (τ ) . (90)

From (90), the following expression can be obtained after

integrating from t0 to t and rearranging the terms
∫ t

t0

Θ̃T (τ )Ω2 (t0, τ )
.

Θ̃ (τ ) dτ

= Θ̃T (t)Ω2 (t0, t) Θ̃ (t) − Θ̃T (t0)Ω2 (t0, t0) Θ̃ (t0)

−

∫ t

t0

.

Θ̃
T

(τ) Ω2 (t0, τ ) Θ̃ (τ) dτ

−

∫ t

t0

Θ̃T (τ )
d

dτ
{Ω2 (t0, τ)} Θ̃ (τ) dτ . (91)

After utilizing the following facts

Ω2 (t0, t0) = 0p×p (92)

ΩT
2 (t0, τ ) = Ω2 (t0, τ)

d

dτ
{Ω2 (t0, τ )} = W̄T (τ )W̄ (τ ),

the expression in (91) can be rearranged as follows

Θ̃T (t)Ω2 (t0, t) Θ̃ (t)

= 2

∫ t

t0

Θ̃T (τ)Ω2 (t0, τ )
.

Θ̃ (τ) dτ

+

∫ t

t0

Θ̃T (τ) W̄T (τ )W̄ (τ )Θ̃ (τ ) dτ (93)

where 0p×p ∈ R
p×p is a matrix of zeros. A change of

variables is applied to (93) by substituting t with t0 + T .

The following equation is obtained after applying a limit

operation to the resulting equation

lim
t0→+∞

Θ̃T (t0 + T )Ω2 (t0, t0 + T ) Θ̃ (t0 + T )

= 2 lim
t0→+∞

∫ t0+T

t0

Θ̃T (τ)Ω2 (t0, τ )
.

Θ̃ (τ ) dτ

+ lim
t0→+∞

∫ t0+T

t0

Θ̃T (τ) W̄T (τ) W̄ (τ) Θ̃ (τ ) dτ . (94)

Remark 8: The right-hand-side of (44) can be written as

follows
.

Θ̂= Proj

{

αΓW̄T 1

W2Θ2
W̄ Θ̃ + ΓWT

3 e

}

(95)

where (38) was utilized. From (75), it is clear that the first

term inside the bracket on the right-hand-side of (95) goes

to zero, and from (88) the second term inside the bracket

goes to zero. So, both

.

Θ̂ and
.

Θ̃ (t) go to zero as t → +∞.

After utilizing (51), (95), Lemma 1, and the fact that Θ̃ (t)
is bounded, it is clear that the first term at the right-hand-side

of (94) is equal to zero. After utilizing (75), Lemma 1, and

the facts that W̄ (τ ), Θ̃ (τ ) are bounded, it is clear that the

second term at the right-hand-side of (94) is equal to zero.

Thus the following expression can be obtained based on (94)

lim
t0→+∞

Θ̃T (t0 + T )Ω2 (t0, t0 + T ) Θ̃ (t0 + T ) = 0. (96)

After utilizing the fact that γ3Ip ≤ Ω2 (t0, t0 + T ) it is clear

that
∥

∥

∥
Θ̃ (t)

∥

∥

∥
→ 0 as t → +∞. (97)



APPENDIX V

EXTENSION TO FIXED-CAMERA CONFIGURATION

In this section, an extension to fixed-camera configuration

is presented. The analysis for the fixed-camera configuration

varies from the camera-in-hand configuration only for the

open-loop error system development. The rest of the analysis

are same for both configurations. The error system develop-

ment for the fixed-camera case is presented below.

In order to develop a geometric relationship between

fixed-camera and moving object, an orthogonal coordinate

frame, denoted by F , attached to the object, an inertial

coordinate frame, denoted by I, whose origin coincides

with the optical center of the fixed-camera, and an inertial

coordinate frame, denoted by W , attached to the base frame

of the robot manipulator are defined (see Figure 2). Let

the 3D coordinates of the ith feature point on the object

be denoted by the constant si ∈ R
3 relative to the object

reference frame F , and m̄i (t) ∈ R
3 relative to the inertial

coordinate frame I, which is defined in (1).

Fig. 2. Geometric relationships between the fixed-camera, robot manipu-
lator and the object attached to its end-effector.

The image error for the ith feature point, denoted by

ei (t) ∈ R
2 is defined in (6). To facilitate the error system

development the dynamics of the image error is found as

follows

ėi =
1

zi

ĀeiRc

[

Rr RrS (si)
]

Jru. (98)

In (98), Āei (t) ∈ R
2×3 is a function of camera intrinsic cal-

ibration parameters and image coordinates of the ith feature

point, defined in (9), Rc ∈ SO (3) is the camera extrinsic

calibration matrix, Rr (t) ∈ SO (3) is the orientation matrix

of the end-effector of the robot manipulator, Jr (q) ∈ R
6×6 is

the Jacobian matrix of the robot manipulator, and u (t) ∈ R
6

represents the kinematic control input. It should be noted

that Remarks 2, 3, and 4 are satisfied for the fixed-camera

configuration.

Remark 9: In the subsequent analysis, it is assumed that

si ∈ R
3 are known (see [29] for the precedence of this kind

of assumption).

After utilizing (1) and (98), the dynamics of zi (t) is

obtained as follows

żi = rT
c3

[

Rr RrS (si)
]

Jru (99)

where rT
c3 ∈ R

1×3 is the third row vector of extrinsic camera

calibration matrix.

To facilitate the subsequent analysis a diagonal matrix,

denoted by Z (t) ∈ R
8×8 with its entries being zi (t) ∀i =

1, .., 4, and a combined error signal e (t) ∈ R
8 are defined

as in (15) and (16). After utilizing (15), (16), and (98), the

following expression can be obtained

Zė = B1Jru (100)

where auxiliary signal B1 (t) ∈ R
8×6 is defined as follows

B1 ,









Āe1Rc

[

Rr RrS (s1)
]

Āe2Rc

[

Rr RrS (s2)
]

Āe3Rc

[

Rr RrS (s3)
]

Āe4Rc

[

Rr RrS (s4)
]









. (101)

After utilizing (16) and the time derivative of (15), Ż (t) e (t)
can be written as follows

Że = E1
d

dt

[

z1 z1 z2 z2 z3 z3 z4 z4

]T

(102)

where diagonal matrix E1 (t) ∈ R
8×8 is defined as follows

E1 , diag {e11, e12, e21, e22, e31, e32, e41, e42} (103)

with eij (t) being the jth entry of ei (t). The second term on

the right-hand-side of (102) can be written as follows

d

dt

[

z1 z1 z2 z2 z3 z3 z4 z4

]T

= C1Jru

(104)

where auxiliary signal C1 (t) ∈ R
8×6 is defined as follows

C1 ,

























rT
c3

[

Rr RrS (s1)
]

rT
c3

[

Rr RrS (s1)
]

rT
c3

[

Rr RrS (s2)
]

rT
c3

[

Rr RrS (s2)
]

rT
c3

[

Rr RrS (s3)
]

rT
c3

[

Rr RrS (s3)
]

rT
c3

[

Rr RrS (s4)
]

rT
c3

[

Rr RrS (s4)
]

























(105)

where (99) was utilized.

A prediction error formulation for the unknown parameters

will be introduced. From Figure 2, m̄i (t) can be written as

follows5

m̄i = Rcxr + RcRrsi + pc (106)

where pc ∈ R
3 is the position of the origin of frame I with

respect to frame W expressed in frame W . After utilizing

5For the derivation of the expression for m̄i the reader is referred to
Appendix VII.



(1), (2), and (4), the pixel coordinates for the ith feature point

can be written as follows

pi =
1

zi

Ā [Rcxr + RcRrsi + pc] (107)

where the corresponding depth can be written as follows

zi = rT
c3xr + rT

c3Rrsi + pc3 (108)

where rT
3 (t) ∈ R

3 is the last row of R (t). It should be noted

that, in (107) and (108), Ā, Rc, si, pc are unknown constant

parameters, and xr (t), Rr (t) are measurable signals (see

Remark 2). The rest of the prediction error formulation is

same as the camera-in-hand configuration.

APPENDIX VI

PROJECTION ALGORITHM

The positiveness of the term W2 (t) Θ̂2 (t) is ensured by

a projection operator on

.

Θ̂ (t) [24]. To facilitate the subse-

quent development, an auxiliary scalar function is defined as

follows

P
(

Θ̂
)

, ε − W2Θ̂2 (109)

where its gradient is computed as follows

∇bΘP
(

Θ̂
)

=
[

01×r1
−W2

]

(110)

where ε being an arbitrarily small positive constant and

01×r1
∈ R

1×r1 being a vector of zeros. Two convex sets

based on the function P
(

Θ̂
)

are defined as follows

R ,

{

Θ̂ ∈ R
p : P

(

Θ̂
)

≤ 0
}

(111)

Rδ ,

{

Θ̂ ∈ R
p : P

(

Θ̂
)

≤ δ
}

(112)

where δ ∈ R is a positive constant that is very close to zero.

Let the boundary and the interior of set R be defined

by ∂R and
◦

R , respectively. Based on these definitions, the

projection of τ (t) is defined as follows

Proj {τ} ,







τ Θ̂ ∈
◦

R or ∇Θ̂P
T τ ≤ 0

Pτ Θ̂ ∈ Rδ\
◦

R and ∇Θ̂P
T τ > 0

(113)

where Pτ (t) ∈ R
p is defined as follows

Pτ =

(

I − c
(

Θ̂
)

Γ
∇Θ̂P∇Θ̂P

T

∇Θ̂P
T Γ∇Θ̂P

)

τ (114)

where the auxiliary scalar function c
(

Θ̂
)

is defined as

follows

c
(

Θ̂
)

, min







1,
P

(

Θ̂
)

δ







. (115)

It is helpful to note that c (∂R ) = 0 and c (∂Rδ) = 1. The

suggested projection operator satisfies the following property

(reader is referred to [24] for the proof)

−Θ̃T Γ−1Proj {τ} ≤ −Θ̃T Γ−1τ , ∀Θ̂ ∈ Rδ, Θ ∈ R.

(116)

APPENDIX VII

DERIVATION OF m̄i (t)

A. Camera-In-Hand Configuration

In Figure 1, let the vector representing the distance be-

tween the origin of E and Oi be denoted as x̄i (t) ∈ R
3.

From the triangle formed by Oi and the origins of F and E ,

it is easy to see that

m̄i = Rcx̄i + pc. (117)

Similarly, from the triangle formed by Oi and the origins of

W and E , the following can be obtained

x̄pi = Rrx̄i + xr. (118)

After solving (118) for x̄i (t) and substituting the resulting

expression into (117), we obtain

m̄i = Rc

[

RT
r (xpi − xr) + pc

]

. (119)

B. Fixed-Camera Configuration

In Figure 2, from the triangle formed by Oi and the origins

of F and I, it is easy to see that

m̄i = RcRrsi + xf . (120)

Similarly, from the triangle formed by the origins of W , I
and F , the following can be obtained

x̄f = Rcx̄r + pc. (121)

After substituting x̄i (t) found in (121) into (120), we obtain

m̄i = Rcxr + RcRrsi + pc. (122)


