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Abstract

The mechanics of the arterial wall is complex, due to its migtstructure and load conditions, which
influence the hemodynamic properties as well as the growdiremodeling process of the cardiovascular
system. Arterial remodeling can be found both locally andbglly. Local remodeling is typically a
result of disease, while global remodeling can be found dgehealthy arteries. In this study we have
analyzed how elastic and viscoelastic properties diffeosg 7 locations along the large ovine arteries
in 11 sheep. We combined the Kelvin model with experimentahsarements of vessel diameter and
pressure obtained in-vitro at conditions mimicking thevime dynamics. Elastic and viscoelastic wall-
properties were assessed by analyzing values of four ma@tahgeters across the 7 locations. To do so
we solved an inverse problem, resulting in computed eséisnftr each of the four parameter values that
minimize the residual between the data and the model. We sesegltivity analysis to compute standard
errors, and confidence intervals for all model parameteesuls showed that while elastic properties
including Young’s modulus and the vessel wall thicknessedhacross locations (smaller arteries were
stiffer than larger arteries) viscoelastic relaxationgmaeters did not differ significantly across locations.
We also showed that for all locations, the inclusion of vedestic behavior, e.g., using the Kelvin model,
is important to capture pressure-area dynamics.

. INTRODUCTION

The mechanics of the arterial wall is complex, due to its mtstructure and load conditions, which
influence the hemodynamic properties as well as the growdir@modeling process of the cardiovascular
system [1]. Remodeling can be found both locally and glgb&lbcal remodeling is often the result of
disease, while global remodeling can be found even withaithg subjects. In particular, it is well known
that the composition of collagen, smooth muscle, and elastry along the vessels. Large arteries are
more distensible, thus they are better suited to dampen séntige pulsatile response, while smaller
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arteries are stiffer, but contain more collagen and smoatisate fibers allowing them to constrict or
dilate to regulate blood flow [2]. One study [3], which exaednwall properties in situ showed that
peripheral vessels (in particular femoral and carotidre$g were stiffer than the abdominal aorta. This
was demonstrated experimentally, e.g., [3], by comparimulaneous measurements of blood pressure
to the relative change in the vessel diameter. They deteqnine vessel distensibility by calculating the
slope of the diameter/pressure curve. While this appareantify gives some measure of compliance, it
does not provide any detailed information about Young’s ahiasl or viscoelastic properties of the vessel
wall, which we will consider by direct analysis of the expeeintal data using a viscoelastic mathematical
model.

Another important observation is that the mechanical pritgseof arteries are further modified by aging
and/or disease (e.g., hypertension or atherosclerosigaiticular responses to hypertension have been
studied extensively [2], [4], [5], [6], [7], [8], [9]). Theschanges in wall properties occur both locally and
globally. Typical local changes can be traced in areas ptoraherosclerosis, whereas global changes
can be observed in patients suffering from hypertensioniaedes.

The arterial wall is complex, it contains several distiragtdrs, and each of these layers (the intima, the
media, and the adventitia) play a role in determining theraVenechanics of the wall. Detailed studies
of the microscopic mechanics of each of these layers have described in work by Humphrey [10] and
Holzapfel [11], [12]. These studies showed that the intithe, innermost layer, is a single endothelial
cell layer, and ensures that blood does not adhere to the Wa# layer is responsible for some of the
local biophysical control mechanisms, but it does not dbuate significantly to the passive arterial wall
mechanics. Instead, the two outer layers, the media anchéti@eplay the most important role in deter-
mining mechanical properties of the vessels under phygicdd flow conditions. The basic components
of these layers are smooth muscle cells, elastin, collggetgeoglycans, nerves, and fibroblasts. Together,
these components make the vessels display both elasticisomkiastic mechanical behavior [2], [13],
which will be studied in this work.

Improved knowledge of the mechanical properties of theelesalls can also be used in the design of
better fluid dynamics models developed to predict flow andsree in the systemic arteries. Typically
these models need some description of the dynamics of tleeiartvall. Thus, if a more advanced
viscoelastic wall mechanics model can be developed, it neagflinterest to researchers developing fluid
dynamic models, particularly if the wall mechanics modeat t& easily integrated into the fluid solver.
At present, most fluid mechanics models (e.qg., [14], [15],[117], [18], [19], [20], [21], [22]), assume
either that arteries are rigid or exhibit a purely elastgpase. While more recent studies [23], [24], [25],
[26], have accounted for viscoelastic properties, theyehast incorporated variations in wall properties
at different locations in the network. Consequently, a reathtical viscoelastic model considering the
regional differences among system arteries remains to lidated.

The goal of this study is to explore how a simple viscoelast@del such as the Kelvin model can
be used to predict simultaneous measurements of crogersdcarea and arterial blood pressure from
7 different locations in sheep arteries. In particular, veeéhstudied how the elastic and viscoelastic
properties are modified across vessels proximal and disthlet heart. To study this, we have developed
a mathematical model that relates blood pressure and semt®nal area, and validated this model against
data obtained from eleven Merino sheep. Using measuredyeslata as an input, we used nonlinear
optimization to compute viscoelastic model parametersrtiinimized the difference between computed
and measured values of the cross-sectional area. With fhisiiaation we obtained a high coherence
between our model and the data and, we demonstrated thatigbeelastic model captures essential
features of the data significantly better than a traditiarlastic wall model. This study also showed that
the elastic moduli change along the vessels, and in paaticwe showed that peripheral vessels are more
rigid than proximal vessels, while the viscoelastic reteratimes cannot be distinguished across the
seven sites.
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Fig. 1. Scheme of the studied arterial segments. S1: aswgrdirta; S2, S3 and S4: proximal, medial, and distal degstgnd
aorta; S5: femoral artery; S6: brachiocephalic trunk; Sfotid artery.

[I. METHODS
A. Experimental methods

1) Surgical preparation and segment’s acquisitioBteven healthy male Merino sheep, weighing 25
to 35 kg, were included in this study. All protocols were ap@d by the Research and Development
Council of the Universidad de la Republica, and were coretligt accordance with the Guide for the
Care and use of Laboratory Animals [27].

All animals were vaccinated and treated for skin and im@sparasites. During 30 days before surgery,
they were appropriately fed, and assessed for optimakelistatus. General anesthesia was induced with
intravenous administration of pentobarbital (35 mg/kg)eTrespiration was maintained with a positive
respirator (Dragger SIMV Polyred 201, Madrid, Spain). Respry rate, tidal volume, and the inspired
oxygen fraction were adjusted to maintain arterial pCf 35-45 [mmHg], pH at 7.35-7.4, and pO
above 80 [mmHg].

Eleven arteries, from different regions were selected iteoto evaluate their biomechanical properties:
carotid, brachiocephalic trunk, ascending aorta, prokimadial and distal descending aorta, and femoral
artery, see Fig. 1. Arteries were exposed and dissectedy &rfdm] length segment of each artery was in
situ measured and marked with two suture references in thenéitla. In order to measure the external
diameter, a pair of ultrasonic crystals (5 [MHz], 2 [mm] diet@r) was sutured to the adventitia (on
opposite sites). The transit time of the ultrasonic sigda&B0 [m/s]) between the crystals was converted
into distance (arterial external diameter) by means of asucrometer (1000 Hz frequency response,
Triton Technology Inc. San Diego, CA, USA). According to thgecifications of the Sonomicrometer
Operator Manual (Triton Technologies), the diameter digves calibrated in [mm] using the sonomi-
crometer 1 [mm] step calibration facility. Optimal positing of the dimensional gauges was assessed
by an oscilloscope (model 465B, Tektronix, Richardson,abgxJSA), according to the specifications of
the sonomicrometer Operator Manual (Triton Technolodszs) Diego, CA, USA).



After that, the animals were sacrificed with an intravenoterdose of pentobarbital followed by potas-
sium chloride. The correct position of the ultrasonic cajstvas confirmed at necropsy. All procedures
were performed like in previous work [2], [28], [29], [30131], [32], [33], [34], [35].

2) In vitro studies: The segments were non-traumatically mounted (at in vivgtl®nin the organ
chamber of the circulation mock; immersed and perfused withermally regulated (3C) and oxy-
genated Tyrode’s solution, with pH equal 7.4, see Fig. 2. ditmilation mock, consisted in polyethylene
tubing powered by a pneumatic pump (Jarvik Model 5, Kolff Néadi Inc., Salt Lake City, Utah, USA).
The pneumatic device was regulated by an air supply machateatlowed adjustments of hemodynamic
parameters values and waveforms. More details relatedetaitbulation mock are available in previous
articles [28], [29], [33], [34], [35], [36]. Pressure was aseired with a solid-state micro transducer (1200
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Fig. 2. Circulating mock showing a pneumatic pump (PP) ancrdupion line with a chamber, a resistance modulator (R)
and a reservoir. Tyrode’s solution is thermally control(@g. The pressure signal (P) is obtained using a solid traced and
the diameter (D) signals are obtained using a pair of ultr@secrystals and a sonomicrometer. All signals are monitare an
oscilloscope and stored in a personal computer (PC).

[Hz] frequency response, Konigsberg Instruments, IncsaBana, CA, USA), inserted in each artery
through a little incision. Pressure sensors were prewouaalibrated using a mercury manometer. To
avoid signals interference, the pressure sensor waseas2fimm] proximal to the diameter crystals [31],
a distance carefully measured, taking into account its mapoe for an adequate signal analysis [31],
[37]. Finally, a non-constricting ultrasonic perivasaulaw probe (Model T206, Transonic Systems Inc.,
Ithaca, NY, USA) was positioned around each artery. Thertigele described has been used by members
of our group both in in vivo [2], [30], [31], [32] and in vitrotsdies [28], [29], [33], [34], [35].

Once placed in the organ chamber, the segments were allavwemflitlibrate for a period of 10 minutes
under a steady state of flow and pressure at a stretchingfrat8 fHz] (108 c.p.m). Then, the segments
were submitted to physiological hemodynamic condition],[332], [36-38]. The segments’ pressure
and diameter signals were displayed in real time, digitizedry 5 [ms] and stored for later analysis.
Approximately 10 consecutive cardiac cycles were sampteblamalyzed.



B. Mathematical Modeling

Two continuum models were used to study the physical beha¥ithe arterial wall: an elastic model
and a viscoelastic model.

Starting with the elastic model, we formulated a stressistrelation using Hooke’s law based on work
by Fung [38], [39]. To determine stress, the artery was idedlas a thin walled tube, with circumferential
stress defined asyy = p(t)r(t)/h. Theoyy stress term represents the average stress along a créissrsec
of the arterial wall. In this equatior, [cm] is the thickness of the wall(¢) [mmHg] is the pressure
andr(t) [cm] is the radius of the vessel.

Assuming that the axial length and tension on a cross-seetie constant and obey Hooke’s Law,
the circumferential strain is given yy = (099 — vo,-)/E, where E [mmHg] is Young’s modulus and
v is Poisson’s ratio. Because of the thin wall approximatien, < ogg; henceo,,. can be neglected.
Consequently, the straiyy is then equal to the change of radius divided by the radiubelnstretched
vesselrq

r—7To
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which gives
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where the cross-sectional area of the artafy) = 7r(¢)? [cm?].
The elastic model in Equation (1) can be written in a quasicsktress-strain form

plt) = Zs(), s<t>=<1— %) & Al) = @

where the stress is the pressuie), and the strairs(¢) is a measure of relative change in the cross-
sectional aread(t). However, it is well known that the arterial wall possesseseoelastic behavior [40];
thus, we extend the stress-strain relation in Equationd) viscoelastic model of flow-induced arterial
wall deformation. The Kelvin model idealizes the behavidraoviscoelastic material using a linear
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Fig. 3. The Kelvin model is often displayed using an eleelr@rcuit analog with a dashpot acting on a spring (top) ipocates
the time dependent viscosity property, in parallel with &rgp(bottom), representing the elastic component of théers.

combination of springs and a dashpot in a mechanical citouiépresent elastic and viscous components
respectively as shown in Fig. 3. Mathematically, the stssain law for this viscoelastic model can be

written as d d
S To 14
€ 5, = 5 o, | > 3
gt Eh<p+T dt) ®)

whererg is the radius of the unstretched vessel, afid andp(t) are the strain and stress (represented
by pressure). In Equation (3}, is a relaxation time for the strain ang is a relaxation time for the
stress. The two relaxation constants are related to thepdasimd resistors as follows

_ _ M Ho _ En
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When solving the viscoelastic model,which has the impficim

F(s(t),s(t),p(t),p(t),0) =0, (4)
we chose to solve Equation (3) in terms of the str&i) as a function of time, pressure history and the
parameters in study, i.e.,
s(t) = s(t,p(+),0), where 6 = (Eh,ro, 75, Te). (5)
The notationp,(-) is defined by
pe() ={p(§)I0 <€ < t}. (6)

Note that this representation includes the hysteresistsfianown to be present in viscoelastic materials.
To solve the viscoelastic model in Equation (3) numericatlys advantageous to write the model as
an integral of the form is given by

)

— Te = To t —(t—~) /T,
i (raptt) = ropO 4 T [0y ) @)
Te 0

Te

s(t) = s(0)e ™ 4

From this equation, the are@ at timet can then be expressed as a function of the pressure histioiy us
the definition for strains(¢) as a function ofA(t) introduced in the center of Equation (2).

The Kelvin viscoelastic model is preferred over the simpaxwell and Voigt models since it is
the simplest model that exhibits both creep and stressattax While more advanced models can be
considered via a superposition Kelvin units, the approacthis study is to apply the simplest possible
model that captures fundamental viscoelastic properfiesterial wall in the analysis of a comprehensive
experimental data set for flow-induced viscoelastic atexiall deformation.

1) Model validation: The model was validated using experimental data from eletieep as described
previously. The data include in-vitro pressure and vesgghdter from seven locations along the large
arteries. In the following we denote pressure fgy;} and arterial diameters byd;}, both of these
quantities are sampled at timesat a frequency of 20 Hz. Approximately 10 consecutive cardigles
were sampled and analyzed for each sheep. It is importanbt® that the measured valugs and d;
provide information about vessel pressure and diametsperively, and the measured cross-sectional
area values were obtained by = 7(d;/2)%.

For our modeling study we have chosen to interpolate the umedspressurg{p;} and use this
interpolation {p(¢)} in (7) as a model input to predict cross-sectional afeldt;)} as a function of
the parameterg via Equations (2) and (7). The Kelvin viscoelastic model gugtion (3) relates vessel
strain to vessel stress (pressure), and involves the esexggnal area via the definition of strain in
Equation (2). This particular definition of strain was ohtd such that the Kelvin model reduced to
the simpler elastic model when the relaxation times are seteto. We remark that we could have
alternatively expressed the presspfeé) as a function of the history,(-) of the strain, leading through
Equation (2) to the pressuggt) at timet as a function of the historyl;(-) of the area.

The initial parameter values fdrh in Table | were obtained from Fung’s estimates of wall thiegs
h and Young’s modulug’ [38], [39]. It should be noted that in principle' and h are two independent
parameters, but in this study we have no data to estimate segmrately, thus they have been combined
into one parameter. We do not have significant knowledge tatheurelaxation factors, and .. We
assumed that they may be an order apart, thus we estimatsdriteinitial values for all locations in the
system. Initial values for the final parametgrwas estimated for each sheep using an average diastolic
diameter from the area measurements.

However, it is known that the morphometry and tissue contjmosvaries significantly among subjects
and among the locations in the arterial system. Hence, @ildgubject” specific parameters we used the
nonlinear Nelder-Mead optimization method (a simplex rodjhto compute parameters that minimize



TABLE |
INITIAL PARAMETER VALUES FOR Eh, 75, AND 7. IN HUMANS.

Eh [mmHg cm] 7, [sec] 7. [sec]
Ascending aorta (S1) 234.200 0.025 0.05
Proximal descending aorta (S2) 180.153 0.025 0.05
Medial descending aorta (S3) 337.787 0.025 0.05
Distal descending aorta (S4) 375.319 0.025 0.05
Femoral artery (S5) 300.255 0.025 0.05
Brachiocephalic trunk (S6) 234.199 0.025 0.05
Carotid artery (S7) 202.672 0.025 0.05

the least squares error between the computed and measuues vd cross-sectional area. The least
squares error is given by

J= %Z la; — A(t;)|*. (8)

It is important to note that even though this method is usexbtee modeling problems, it is not a proper
least squares problem. Our prediction of the cross-seditimreaA(t;) based on the Kelvin viscoelastic
model used measured pressure valfes as an input. These valugg;} were interpolated and then
integrated to obtain values for the first strain, and subsety provided computed values for cross-
sectional areal(t;). In other words, we are integrating nonexact (noisy) pressalues obtained from
{p;}, which gives rise to noisy predictions of cross-sectionalag A(¢;)}. Typical results of fitting
the viscoelastic model to the data using Equation (8) arevstio Fig. 4 and summarized in Table II.
From Fig. 4, it is clear that the viscoelastic model captuhes dynamics significantly better than the
elastic model. In particular, the difference between thele® is emphasized in the graph where area
is plotted against pressure, where the data shows a hyistévep, a characteristic of a viscoelastic
material. Given that the elastic model describes a prapmatirelationship with no relaxation factors, it
yields a straight line response that is unable to exhibitdrgsis. For a numerical representation, refer
to Table Il that lists the optimized values found for the paeter in study, and Table Il for the mean
values and standard deviations across the complete dat#d#iout further analyzing the model, it is
not clear whether it is possible to uniquely identify all tharameters of the model given that pressure
is the input for prediction of cross-sectional area. One wajnvestigate if all four model parameters
can be identified is by a sensitivity analysis, which detessiif the model parameters are sensitive to
changes in cross-sectional area.

Sensitivity equations can be obtained using the basicrdiiteal equation analysis approach as de-
scribed by Eslami and Frank [41], [42]. For the Kelvin modeére is only one statel(¢,0) and four
parameters denoted y= (61, ...,04) = (ro, Eh, 7, 7»). In other words, sensitivities (absolute) provide
information about the change in the state varialllg) with respect to each of the four parameters.
Mathematically, these absolute sensitivitigscan be defined by

S;(t,0) = M, j=ro, Eh, e, 7s. (9)
06,
The absolute sensitivities defined above may lead to wromglasions regarding the degree of depen-
dence on various parameters. In particular, if the paraméizve different orders of magnitude as is the
case for Kelvin’s viscoelastic model. Therefore, it is impat to compute sensitivities that are normalized
by the nominal outputs and the parameter values as follows

0; 0A(t,0)
A(t,0) 00,

It is easily seen that the relative sensitivities are iraatriof changes in units ofi(¢) or 6. This allows
the comparison of sensitivities across different parameties.

Si(t,0) =

(10)



TABLE Il

OPTIMIZED PARAMETER VALUES FOR ALL SHEEPFIRST COLUMN IS THE SHEER#, SECOND COLUMNTo [CM], THIRD
COLUMN Eh [MMHG CM], FOURTH COLUMN 7. [SEC] AND THE LAST COLUMN 7, [SEC].

# 1 o Eh Te ™ [[# ] ro Eh Te ™ [[# ] ro Eh Te To ]
Ascending aorta Brachiocephalic trunk aorta Carotid artery
1 0.91 468.771 0.05 0.02] 1 | 0.803 508.038 0.067 0.02ff 1 | 0450 2939.569 0.105 0.044
2 1.02 646.974 0.06 0.02] 2 | 0.825 487.788 0.153 0.06]l 2 | 0.404 3267.155 0.076 0.03[
3 1.01 545324 0.09 0.04/ 3 | 0.816 527.147 0.066 0.02 3 | 0.395 3026.771 0.033 0.00f
4 0.97 540.081 0.07 0.02| 4 | 0.876 638.347 0.063 0.016 4 | 0.436 3160.495 0.108 0.068
5 0.97 596.347 0.07 003 5 | 0.855 670.538 0.058 0.015 | 0.410 2383.031 0.132 0.06p
6 0.93 569.198 0.04 0.01] 6 | 0.916 667.225 0.062 O0.01f 6 | 0.418 2927.271 0.088 0.041
7 1.03 615.664 0.07 0.04] 7 | 0.869 687.071 0.051 0.01f 7 | 0.395 1840.021 0.251 0.11B
8 0.92 499564 0.06 0.03] 8 | 0.896 734.648 0.049 0.013 8 | 0.391 2764.211 0.057 0.025
9 0.91 480.534 0.07 0.02| 9 | 1.186 1319.727 0.041 0.00f 9 | 0.413 2179.016 0.231 0.118
10| 0.84 471670 0.06 0.02| 10 | 0.901 666.827 0.074 0.02]l 10 | 0.403 3203.954 0.046 0.01}
11| 0.86 410.182 0.06 0.03| 11 | 0.883 573.871 0.065 0.01% 11 | 0.349 2240.729 0.034 0.00B
Femoral artery Medial descending aorta Distal descending aorta
1 | 0254 467.110 0.057 0.008 1 | 0.825 584.212 0.085 0.014 1 | 0.809 1339.021 0.027 0.00p
2 | 0.287 868.784 0.029 0.000) 2 | 0.868 851.551 0.060 0.01% 2 | 0.831 1749.407 0.046 0.01p
3 | 0.275 633.869 0.024 0.000 3 | 0.859 699.499 0.085 0.022 3 | 0.821 1501.760 0.030 0.00p
4 | 0.289 710.867 0.039 0.00ff 4 | 0.838 650.488 0.069 0.02p 4 | 0.818 1506.283 0.029 0.000
5 | 0.275 557.173 0.056 0.01%5 | 0.833 661.712 0.055 0.026 5 | 0.822 1464.471 0.031 0.00R
6 | 0.278 705.508 0.031 0.000 6 | 0.871 738.137 0.079 0.02% 6 | 0.829 1568.171 0.028 0.00D
7 | 0.264 665.543 0.032 0.00ff 7 | 0.828 702.763 0.068 0.03% 7 | 0.848 1511.557 0.084 0.04D
8 | 0.287 775.969 0.018 0.000 8 | 0.877 949.096 0.025 0.000) 8 | 0.826 1076.808 0.234 0.118
9 | 0.287 758.730 0.034 0.0009 | 0.870 727.716 0.084 0.03% 9 | 0.824 1702.527 0.024 0.008
10 | 0.299 835.167 0.040 0.000 10 | 0.875 949.631 0.030 0.00p 10 | 0.828 1511.236 0.093 0.044
11 | 0.314 836.095 0.021 0.000p 11 | 0.833 595933 0.068 0.03]f 11 | 0.441 81.464 5546 0.261
Proximal descending aorta
1 | 0.888 681.721 0.041 0.006 5 | 0.916 857.673 0.039 0.008 9 | 0.876 739.620 0.057 0.02B
2 |1 0902 805.161 0.058 0.02%6 | 0.879 765.712 0.053 0.01f 10 | 0.903 915.101 0.039 0.008
3 | 0.852 698.828 0.035 0.00f 7 | 0.876 689.512 0.065 0.02{1 11 | 0.863 620.584 0.067 0.03R
4 | 0.885 739.959 0.036 0.004 8 | 0.856 646.061 0.058 0.02}
TABLE 11l
MEAN AND STANDARD DEVIATION FOR EACH LOCATION.
rolcm] Eh[mmHg cm] T[sec] T-[s€ec]

Ascending aorta (S1) 0.94+0.06  531.3@72.22  0.040.01 0.02:0.01

Proximal desc. aorta (S2)| 0.88+0.02 741.08-89.50 0.05-0.01 0.02£0.01

Medial desc. aorta (S3) | 0.85+0.02  737.34127.43 0.06:0.02 0.02-0.01

Distal desc. aorta (S4) 0.83+0.01 1493.12186.78 0.06:0.07 0.02:0.04

Femoral artery (S5) 0.28+0.02  710.44123.96 0.03:0.01 0.06:0.01

Brachiocephalic trunk (S6) 0.89+-0.10 680.1%#227.07 0.040.03 0.02-0.01

Carotid artery (S7) 0.41+0.03 2721.1%4482.20 0.1#0.07 0.05:0.04

In this study we have only one state variable, namely thesesestional areal(¢) and four parameters
ro, Eh, 17, andr,. The cross-sectional area is found as a solution to a diffidleequation, that can be
obtained by rewriting Equation (3) as

dA 2
dt EhTE/?”()\/A()/A?’
where
Eh
f=—
o

Ao dp
(VI - 1> trttoo, 9

Eh
To

(\/%—1) +p+ 75

_ Eht

To

dp

t
e
=5

f

= 2L
g

(11)
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Fig. 4. Top graphs show elastic (left) and viscoelastichfjignodels as a function of time, the center row shows thererro
computed asA(t) — a;| for the elastic (left) and the viscoelastic (right) modelad the bottom graphs show hysteresis effects
for the elastic model (left) and the viscoelastic modelH(t)g

Given the system, four sensitivity equations can be defieedA/0ry, 9A/OFEh, 0A/01., anddA/O7,.
To determine these sensitivitiésd /06;, we differentiate the differential equation with respeztetach

parameter as
doA 0 dA

406, 06, di
Here, we assumed that the partial derivatives commute. i$lgsaranteed by Clairaut’s theorem, which

states that if continuous second partial derivatives eadist point, they commute at that point. These
four sensitivity equations can thus be solved simultanigough Equation (11). Using this formulation,

(12)



10
the sensitivity equations can be found by

d0A [ 0f 0]
atoo;, ~ ~|Yo0; ~ ' 6,

of _ _E_h<‘/@_1> h(ﬁ_‘/ﬁyg%
87‘0 7‘(2) A To A A3 dT‘Q
dg 3Eht. | m dA

oo~ 2 \ Ddr

of 1(/@_1>_@ Ay dA

OFh A 2rg V A3 dEh

where

g Ay 3Eh. \/fT0
OEh F_ 270 5 dEh
of Ao dA

8_7'6 - 2?”0 dTe

dg \//TO 3EhT. \//TO
ar. A3 2r0 A5 dr,
of dp Eh [Ag dA

ar,  dt  2rg ABE

dg  3Ehr, \//To dA

ar,  2rg V APdr,

The corresponding relative sensitivities are given by
0A E_h 0A rg 0A 7. %d&
OFh A’  0Org A or. A 91, A
A typical solution (evaluated at the optimized parametduest = é”) for the relative sensitivity

equations is shown in Fig. 5. Results from this figure shows the sensitivities are periodic functions
that oscillate relative to the periodicity in the data. Tokahe sensitivities we used a max norm computing

max relative sensitivities as DA(t) 0
Soan o5
5(05) = <m?X a6, A> '

For the system of sensitivity equations we obtained:
0A 19 0A Eh 0A T, 0A 7,
e (8TOA> e (@7)’ e <8T€A> (aTU A) (13)
For sheep 1, these max sensitivities are giveridty,) = 2.64; S(Eh) = 0.64; S(.) = 0.087; S(7,) =
0.042]; i.e., the most sensitive parameter with respect to theghamA(¢) is ro and the least sensitive
parameter ig,, the stress relaxation constant.

Results discussed above all compare the model to the datenegsthat the model is valid within one
dataset. Another use of the sensitivity analysis is to sty compute the standard errors as a mean of
computing confidence intervals for each parameter withiratmget and to be able to predict how well
the model perform.

In order to compute standard errors and confidence intewalsised standard asymptotic theory from

statistics. We assumed that each dataset predicting \egsetontaing scalar longitudinal observations,
which can be represented by the statistical model

Ai=fi(60) + ¢, j=1,2,..n, (14)
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Fig. 5. Relative sensitivity ofA(¢) with respect to the parametedsi/dEh,dA/dro,dA/Te,dA/dTs, respectively. These
sensitivities are evaluated at the optimized paramétérs

where f; is the model for the observations afigle R is a set of theoretical true parameter values for
ro, E'h, 7o, and .. Furthermore, we assumed that measurement etfoys= 1,2, ...,n, are independent
identically distributeds.i.d.) random variables with meaHi[e;] = 0 and constant varianceir|e;] = o3,
wherea? is unknown.

We consider estimation of parameters using an ordinant lEgsares (OLS) approach as described
above. Thus we seek to use the area data{a,} for the observation procegsi;} with the model to
seek a valug” that minimizes

Jn(0) = 51 |£3(0) — 0

This definition differs from Equation (8) where the leasta@s differences were weighted byn, where
n is the number of observations; this only serves to scaledhilual values.

Under the assumption that state variables and corresppuigimamics used to describe the model are
continuously differentiable and certain regularity asptions on how the observations are made, the
standard nonlinear regression approximation theory [#B]], [45], [46] for asymptotic (as1 — o0)
distributions can be invoked. This theory states that thapsag distribution 9”(A) for the estimate
6", where A = {AJ}]:l, is approximately a\/-multivariate Gaussian with meah[0"(A)] ~ 6, and
covariance o

cov[6™(A)] & Do = oF[x" (60)x(60)]
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Herex(0) = Fy(0) is then x M sensitivity matrix, which has the form

o4 (tl)aEh(tl) 94(4) LA(t)
Y = gff (t2) 5 (t2) g—é(h) i —(t2)
2 @) M) 2,

In other words, fom large, the sampling distribution approximately satisfies
05 1.5(A) ~ Nas (60,53 [x" (00)x(00)] ") := Nar (6o, Zo).

For the viscoelastic model the functigf(#) is sufficiently simple to derive analytical expressions for
the components 0§ A/00. However,6, and oy are not known, hence they must be approximated to
calculateXo = o2 [x* (60)x(60)]~!. For this we follow standard practice and use the approxamat

o & 2(0") = 6[x"(0")x(6™)] ",
wheref™ is the parameter estimate obtained, and the approximéafido o3 is given by [46]

2

Standard errors to be used in confidence intervals calonktire thus given by (see [46])

SER(6™) = \/Spr(67),

which embodies uncertainty in the estimatesifdarge. Finally, the confidence intervals (at 8 (1 — «) %
level) for the estimated parameters, are given by

[0F — t1 02 SEL(0"), 0} + t1_a/SELOM)],

where K ) ) R
P{OF —t1_a/2SER(0") < Oor < OF +1t1_a2SER(0")} =1—q, (15)

for a € [0,1] andt,_,/» € Ry. For a95% confidence intervals, the critical valug_, » is computed
from the Student’s distributiont”~* with n — 4 degrees of freedom. The value if /> is determined
by P{T > t|_/2} = a/2 whereT ~ t"=4, Given that in the data set > 40, the degrees of freedom
was approximated teo. Thust;_, /, ~ 1.96.

Below we have computed confidence intervals using all avigildata (10 cardiac cycles) from sheep
1. To compute the confidence interval, we used optimizednpeters given in Table II. For this dataset
the error is

J = Zia] t)|* = 5.860,

and the variance is

2 N
2 = 0.005.
Op ~ ~ 67 T h_4 ZMJ

In Fig. 6 we plotted variance as a function of time and as atfanoof area. Using these values we
computed the covariance matrix

71.638  0.024 -0.041 —-0.029
A A A 0.024 0.000* —0.000 —0.000
| —-0.041 —0.000 0.000*  0.000
—0.029 —0.000  0.000 0.000*
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and the standard error
8.464

0.003
0.005
0.004

Finally, the confidence computed using Equation (15) gives

SEp(0") = \/Sek(07) =

Clg, = [461.94,495.12]
Cl,o = [0.904,0.916]
CIL. = 10.043,0.063
CI., = 10.014,0.030].

18210 ‘ 1 gx10”
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Fig. 6. The left panel depicts the residual sum of squares fasaion of time and the right panel depicts the residual sum
of squares as a function of the model response (the A(ep.

I1l. RESULTS

As discussed in the previous section our results clearlystltbat the viscoelastic model is significantly
better than the purely elastic model. The elastic model @aancount for hysteresis which is clearly
observed in the data. Results from our statistical analgsis our sensitivity studies indicate that we
can identify all model parameters. Hence, we proceed tadscomputational results obtained from the
model.

From calculation op-values (see Table IV) we observe that it is easy to distsigthe caliber (radius)
for each vessel. We used the diastolic diameter as thelindilae for the unstretched radius, but this
parameter was identified during optimization. Another dosion we can make is that the ascending
aorta, the carotid artery, and the distal descending attenye significantly different values farh than
the other arteries. For example, the femoral artery, as agethe medial and proximal descending aorta
all have p-values> 0.05. We also observed that the relaxation factors for the mostaldfemoral and
carotid arteries are significantly different from the moreximal vessels. This is reasonable since the
latter vessels should be stiffer than the major conductitarias. Another interesting aspect to study is the
notion discussed in most physiology books (e.g., Guytof) @t arteries gets stiffer as they get smaller.
While stiffness has been studied using purely elastic nso@se e.g. [15], [16]), it is not clear how the
relative stiffness (i.e.Eh/rp) changes when viscoelastic properties are also considérgthermore,
results discussed in previous studies were compiled asmsses and were from a number of different
experiments. Given the large dataset presented from sthveepere able to study how stiffness related to
the radius of the artery according to the different locagiohthe vessel. As shown in Fig. 7 it is clear that
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TABLE IV
P-VALUES COMPARING EACH LOCATION FOR EACH PARAMETER

ro | B C D F M P Eh ] B C D F M P
A [ 021 0.00 0.00 0.00 0.00 0.00 A 0.05 0.00 0.00 0.00 0.00 0.0p
B - 0.00 0.04 000 021 071 B - 0.00 0.00 0.70 0.47 041
C - - 0.00 0.00 0.00 0.00| C - - 0.00 0.00 0.00 0.0d
D - - - 0.00 0.10 0.02| D - - - 0.00 0.00 0.00
F - - - - 0.00 0.00|| F - - - - 0.62 0.50
M| - - - - - 000| M - - - - - 093
Te B C D F M P I 7o B C D F M P
A | 077 009 033 000 09 o0.00A 0.57 0.05 0.44 0.00 0.76 0.04
B - 0.13 0.33 0.00 0.76 0.07 B - 0.04 0.38 0.00 0.81 0.26
C - - 0.37 0.01 0.09 0.0z C - - 0.85 0.00 0.04 0.01
D - - - 0.30 0.33 0.32| D - - - 0.11 0.41 0.26
F - - - - 0.00 0.01|| F - - - - 0.00 0.00
M - - - - - 0.06 || M - - - - - 0.15
12000
10000 1
8000+ 1
=
T
€
E. 6000} 1
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Fig. 7. Stiffness relative to radius as a function of the wadif the unstretched vessel. Results for each vessel segment are
represented by a different dot color.

our studies in sheep support the notion that the arterial stiffiness, increases with decreasing vessel
diameter. To illustrate this finding we have fit an expondiytidecreasing function to the corresponding
data. Similar to previous work [16], [15], [47] we have usedEquation of the form

Eh

— = ]Cl exp(—kgro) + ]Cg.

To
Note that for small arteries (the carotid arteries and timaofal arteries) it is not clear how the graph
should be weighted (compare solid, dashed, and dotted).lifesm physiology it is known that carotid
arteries are less stiff than arteries in other parts of trdybbence, the graph likely should be weighted

towards points representing the femoral artery (dasheg.lin

IV. DISCUSSION

The goal of this study was to develop a mathematical mode¢ldda be used to analyze experimental
pressure-area data and to understand how the associated paoameters vary across the large arteries.
The goal was not to develop the most sophisticated modeltobcdme up with a simple model, which
for example, could be incorporated into fluid dynamics med&he next question to address is weather



15

the physical accuracy of the Kelvin viscoelastic model amel associated four model parameters can
be predicted with a high level of confidence. In the following first discuss some experimental
considerations and then discuss limitations and furthetiss from a modeling perspective.

A. Methodological considerations

We studied sheep segments, taking into account the reaysimilarity between human and ovine
cardiovascular systems [48]. We opted for vascular seggnerstead of the most used strips or rings [49],
[50], since segments were better to reproduce the in vivodagmamic conditions, and to preserve the
shape and integrity of the vascular wall [33]. The in vitreesth of the artery segment should be the same
with respect to in vivo condition. In our experiment, an delesegment of 6 cm long was accurately
measured with a caliper and marked with two suture stitchBsirteries were excised at the level of the
suture stitches and, after vascular removal, were mouneskpring the in vivo length [33], [34], [35].

The technique employed to register pressure and diamedteg thee in vitro circulation mock has been
previously used and validated by members of our group [4]}, [B2], [33], [34], [35]. This methodology
allows accurate and reproducible pressure and diametesurezaents due to the high frequency and
linearity of response of both dimension gauges and pressamsducers. The 200 Hz sampling rate used
in the digitalization of the data was larger than the highesquency components in the pressure and
diameter spectra, enabling signal reconstruction wittdistortion.

The arterial wall has a nonlinear and frequency-dependerthanical behavior [2], [32]. Hence,
although static analysis allow the indirect evaluationagéror frequency-dependent mechanical properties
(e.g., wall viscosity) [49], [50], an adequate charactgran of the functional meaning and contribution of
these properties requires dynamic analysis. Consequantdyder to evaluate the arterial wall mechanical
behavior, we performed a dynamic analysis of the arteridl, wabmitting the arteries to physiologi-
cal hemodynamic conditions. On the other hand, taking imtwoant the pressure and frequency rate
dependence of the mechanical properties, we performeddars and isofrequency analysis during
physiological flow condition for each artery [2], [32].

Diameter and pressure signals was conformed and procesggpausingle analogic electronic system
(System VI Triton Technology San Diego California) resudtin no delay between pressure and diameter
signals caused by the electronics circuits. Neverthefess correct use of the pressure-area data or the
stress-strain loops to calculate the viscous propertteis, €ssential that both distension and pressure
waves should be recorded simultaneously at the same locdterause the existence of misalignment
(yet of only a few millimeters) strongly affects the shapetlid pressure-distension loop. However, as
was mentioned previously [37], and as was performed in ptevivork by members of our group [31],
[33], to calculate wall viscoelasticity based on the metdedcribed in the article, the diameter signal is
shifted to fit the pressure signal foot, to compensate theestienation in the time delay corresponding
to the distance between sensors.

B. Modeling considerations

Results from this study indicates excellent agreement éetwpredictions of our theoretical model
and the corresponding experimental data. This was evidemgeémprovement of the Kelvin viscoelastic
model over the elastic model and, in particular, the incaapon of hysteresis into the wall mechanics
which lead to a substantial decrease in the computed leastes) error/. Even though the hysteresis
loops exhibited by the Kelvin viscoelastic model more aately represent the pressure-area data, it is
clear that the linear assumption in the Kelvin model is ling{ given the clear nonlinear trends in the data.
Nevertheless, the results from this study confidently all@smo pursue extended viscoelastic modeling
by studying, in greater depth, the viscoelastic propeniethe arterial wall and potential variations in
model assumptions with vessel site.

Formulating the hysteresis dynamics in Equations (4)-¢Ava did, using part of the data (i.€p(t;)})
to reduce the inverse problem involving Equation (8), arehthising standard statistical techniques for
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error analysis introduces some modeling and statisticadaracies of a nontrivial nature. Indeed we
have used interpolated dafa;} in evaluatings(t) in Equation (7) so our model in itself contains
measurement error of a type not treated in the standard semiaion given by Equation (14). This,
rather than a simple nonconstant longitudinal variancenast likely the origin of the somewhat strange
“residual versus model” plot shown in Fig. 6. A more propemialation of the hysteretic dynamics
Equation (4) would be of the form

G (A(t)vpt(')>9) =0, (16)

where A(t), s(t), p(t) are related through Equations (2) and (3). One should therthesdata{a;, p;}
for A(t),p(t) in a least squares criterion

J(0) = Bl(aj, ;) — (Alt;,0), p(t;, 0) (17)

subject to the constants in Equation (16). This leads imatelyi to a nonstandard least squares problem
with associated computational challenges as well as stalisquestions that we are pursuing in a
continuing effort.
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