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Abstract

The mechanics of the arterial wall is complex, due to its material structure and load conditions, which
influence the hemodynamic properties as well as the growth and remodeling process of the cardiovascular
system. Arterial remodeling can be found both locally and globally. Local remodeling is typically a
result of disease, while global remodeling can be found evenfor healthy arteries. In this study we have
analyzed how elastic and viscoelastic properties differ across 7 locations along the large ovine arteries
in 11 sheep. We combined the Kelvin model with experimental measurements of vessel diameter and
pressure obtained in-vitro at conditions mimicking the in-vivo dynamics. Elastic and viscoelastic wall-
properties were assessed by analyzing values of four model parameters across the 7 locations. To do so
we solved an inverse problem, resulting in computed estimates for each of the four parameter values that
minimize the residual between the data and the model. We usedsensitivity analysis to compute standard
errors, and confidence intervals for all model parameters. Results showed that while elastic properties
including Young’s modulus and the vessel wall thickness varied across locations (smaller arteries were
stiffer than larger arteries) viscoelastic relaxation parameters did not differ significantly across locations.
We also showed that for all locations, the inclusion of viscoelastic behavior, e.g., using the Kelvin model,
is important to capture pressure-area dynamics.

I. INTRODUCTION

The mechanics of the arterial wall is complex, due to its material structure and load conditions, which
influence the hemodynamic properties as well as the growth and remodeling process of the cardiovascular
system [1]. Remodeling can be found both locally and globally. Local remodeling is often the result of
disease, while global remodeling can be found even within healthy subjects. In particular, it is well known
that the composition of collagen, smooth muscle, and elastin vary along the vessels. Large arteries are
more distensible, thus they are better suited to dampen someof the pulsatile response, while smaller
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arteries are stiffer, but contain more collagen and smooth muscle fibers allowing them to constrict or
dilate to regulate blood flow [2]. One study [3], which examined wall properties in situ showed that
peripheral vessels (in particular femoral and carotid arteries) were stiffer than the abdominal aorta. This
was demonstrated experimentally, e.g., [3], by comparing simultaneous measurements of blood pressure
to the relative change in the vessel diameter. They determined the vessel distensibility by calculating the
slope of the diameter/pressure curve. While this apparent quantity gives some measure of compliance, it
does not provide any detailed information about Young’s modulus or viscoelastic properties of the vessel
wall, which we will consider by direct analysis of the experimental data using a viscoelastic mathematical
model.

Another important observation is that the mechanical properties of arteries are further modified by aging
and/or disease (e.g., hypertension or atherosclerosis). In particular responses to hypertension have been
studied extensively [2], [4], [5], [6], [7], [8], [9]). These changes in wall properties occur both locally and
globally. Typical local changes can be traced in areas proneto atherosclerosis, whereas global changes
can be observed in patients suffering from hypertension or diabetes.

The arterial wall is complex, it contains several distinct layers, and each of these layers (the intima, the
media, and the adventitia) play a role in determining the overall mechanics of the wall. Detailed studies
of the microscopic mechanics of each of these layers have been described in work by Humphrey [10] and
Holzapfel [11], [12]. These studies showed that the intima,the innermost layer, is a single endothelial
cell layer, and ensures that blood does not adhere to the wall. This layer is responsible for some of the
local biophysical control mechanisms, but it does not contribute significantly to the passive arterial wall
mechanics. Instead, the two outer layers, the media and adventitia, play the most important role in deter-
mining mechanical properties of the vessels under physiological flow conditions. The basic components
of these layers are smooth muscle cells, elastin, collagen,proteoglycans, nerves, and fibroblasts. Together,
these components make the vessels display both elastic and viscoelastic mechanical behavior [2], [13],
which will be studied in this work.

Improved knowledge of the mechanical properties of the vessel walls can also be used in the design of
better fluid dynamics models developed to predict flow and pressure in the systemic arteries. Typically
these models need some description of the dynamics of the arterial wall. Thus, if a more advanced
viscoelastic wall mechanics model can be developed, it may be of interest to researchers developing fluid
dynamic models, particularly if the wall mechanics model can be easily integrated into the fluid solver.
At present, most fluid mechanics models (e.g., [14], [15], [16], [17], [18], [19], [20], [21], [22]), assume
either that arteries are rigid or exhibit a purely elastic response. While more recent studies [23], [24], [25],
[26], have accounted for viscoelastic properties, they have not incorporated variations in wall properties
at different locations in the network. Consequently, a mathematical viscoelastic model considering the
regional differences among system arteries remains to be validated.

The goal of this study is to explore how a simple viscoelasticmodel such as the Kelvin model can
be used to predict simultaneous measurements of cross-sectional area and arterial blood pressure from
7 different locations in sheep arteries. In particular, we have studied how the elastic and viscoelastic
properties are modified across vessels proximal and distal to the heart. To study this, we have developed
a mathematical model that relates blood pressure and cross-sectional area, and validated this model against
data obtained from eleven Merino sheep. Using measured pressure data as an input, we used nonlinear
optimization to compute viscoelastic model parameters that minimized the difference between computed
and measured values of the cross-sectional area. With this optimization we obtained a high coherence
between our model and the data and, we demonstrated that the viscoelastic model captures essential
features of the data significantly better than a traditionalelastic wall model. This study also showed that
the elastic moduli change along the vessels, and in particular, we showed that peripheral vessels are more
rigid than proximal vessels, while the viscoelastic relaxation times cannot be distinguished across the
seven sites.
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Fig. 1. Scheme of the studied arterial segments. S1: ascending aorta; S2, S3 and S4: proximal, medial, and distal descending
aorta; S5: femoral artery; S6: brachiocephalic trunk; S7: carotid artery.

II. M ETHODS

A. Experimental methods

1) Surgical preparation and segment’s acquisition:Eleven healthy male Merino sheep, weighing 25
to 35 kg, were included in this study. All protocols were approved by the Research and Development
Council of the Universidad de la Republica, and were conducted in accordance with the Guide for the
Care and use of Laboratory Animals [27].

All animals were vaccinated and treated for skin and intestinal parasites. During 30 days before surgery,
they were appropriately fed, and assessed for optimal clinical status. General anesthesia was induced with
intravenous administration of pentobarbital (35 mg/kg). The respiration was maintained with a positive
respirator (Dragger SIMV Polyred 201, Madrid, Spain). Respiratory rate, tidal volume, and the inspired
oxygen fraction were adjusted to maintain arterial pCO2 at 35-45 [mmHg], pH at 7.35-7.4, and pO2

above 80 [mmHg].
Eleven arteries, from different regions were selected in order to evaluate their biomechanical properties:

carotid, brachiocephalic trunk, ascending aorta, proximal, medial and distal descending aorta, and femoral
artery, see Fig. 1. Arteries were exposed and dissected, anda 6 [cm] length segment of each artery was in
situ measured and marked with two suture references in the adventitia. In order to measure the external
diameter, a pair of ultrasonic crystals (5 [MHz], 2 [mm] diameter) was sutured to the adventitia (on
opposite sites). The transit time of the ultrasonic signal (1580 [m/s]) between the crystals was converted
into distance (arterial external diameter) by means of a sonomicrometer (1000 Hz frequency response,
Triton Technology Inc. San Diego, CA, USA). According to thespecifications of the Sonomicrometer
Operator Manual (Triton Technologies), the diameter signal was calibrated in [mm] using the sonomi-
crometer 1 [mm] step calibration facility. Optimal positioning of the dimensional gauges was assessed
by an oscilloscope (model 465B, Tektronix, Richardson, Texas, USA), according to the specifications of
the sonomicrometer Operator Manual (Triton Technologies,San Diego, CA, USA).
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After that, the animals were sacrificed with an intravenous overdose of pentobarbital followed by potas-
sium chloride. The correct position of the ultrasonic crystals was confirmed at necropsy. All procedures
were performed like in previous work [2], [28], [29], [30], [31], [32], [33], [34], [35].

2) In vitro studies: The segments were non-traumatically mounted (at in vivo length) in the organ
chamber of the circulation mock; immersed and perfused witha thermally regulated (37oC) and oxy-
genated Tyrode’s solution, with pH equal 7.4, see Fig. 2. Thecirculation mock, consisted in polyethylene
tubing powered by a pneumatic pump (Jarvik Model 5, Kolff Medical Inc., Salt Lake City, Utah, USA).
The pneumatic device was regulated by an air supply machine that allowed adjustments of hemodynamic
parameters values and waveforms. More details related to the circulation mock are available in previous
articles [28], [29], [33], [34], [35], [36]. Pressure was measured with a solid-state micro transducer (1200

RA
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Fig. 2. Circulating mock showing a pneumatic pump (PP) and a perfusion line with a chamber, a resistance modulator (R)
and a reservoir. Tyrode’s solution is thermally controlled(A). The pressure signal (P) is obtained using a solid transducer, and
the diameter (D) signals are obtained using a pair of ultrasonic crystals and a sonomicrometer. All signals are monitored on an
oscilloscope and stored in a personal computer (PC).

[Hz] frequency response, Konigsberg Instruments, Inc., Pasadena, CA, USA), inserted in each artery
through a little incision. Pressure sensors were previously calibrated using a mercury manometer. To
avoid signals interference, the pressure sensor was inserted 2 [mm] proximal to the diameter crystals [31],
a distance carefully measured, taking into account its importance for an adequate signal analysis [31],
[37]. Finally, a non-constricting ultrasonic perivascular flow probe (Model T206, Transonic Systems Inc.,
Ithaca, NY, USA) was positioned around each artery. The technique described has been used by members
of our group both in in vivo [2], [30], [31], [32] and in vitro studies [28], [29], [33], [34], [35].

Once placed in the organ chamber, the segments were allowed to equilibrate for a period of 10 minutes
under a steady state of flow and pressure at a stretching rate of 1.8 [Hz] (108 c.p.m). Then, the segments
were submitted to physiological hemodynamic conditions [31], [32], [36-38]. The segments’ pressure
and diameter signals were displayed in real time, digitizedevery 5 [ms] and stored for later analysis.
Approximately 10 consecutive cardiac cycles were sampled and analyzed.
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B. Mathematical Modeling

Two continuum models were used to study the physical behavior of the arterial wall: an elastic model
and a viscoelastic model.

Starting with the elastic model, we formulated a stress-strain relation using Hooke’s law based on work
by Fung [38], [39]. To determine stress, the artery was idealized as a thin walled tube, with circumferential
stress defined asσθθ = p(t)r(t)/h. Theσθθ stress term represents the average stress along a cross-section
of the arterial wall. In this equation,h [cm] is the thickness of the wall,p(t) [mmHg] is the pressure
andr(t) [cm] is the radius of the vessel.

Assuming that the axial length and tension on a cross-section are constant and obey Hooke’s Law,
the circumferential strain is given byeθθ = (σθθ − vσrr)/E, whereE [mmHg] is Young’s modulus and
v is Poisson’s ratio. Because of the thin wall approximation,σrr ≪ σθθ; henceσrr can be neglected.
Consequently, the straineθθ is then equal to the change of radius divided by the radius of the unstretched
vesselr0

eθθ =
r − r0

r0
,

which gives

r(t) =
eθθEh

p(t)
=

Eh(r(t) − r0)/r0

p(t)
⇔ p(t) =

Eh

r0

(

1 −

√

A0

A

)

, (1)

where the cross-sectional area of the arteryA(t) = πr(t)2 [cm2].
The elastic model in Equation (1) can be written in a quasi-static stress-strain form

p(t) =
Eh

r0
s(t), s(t) =

(

1 −

√

A0

A(t)

)

⇔ A(t) =
A0

(s(t) − 1)2
, (2)

where the stress is the pressurep(t), and the strains(t) is a measure of relative change in the cross-
sectional area,A(t). However, it is well known that the arterial wall possesses aviscoelastic behavior [40];
thus, we extend the stress-strain relation in Equation (2) to a viscoelastic model of flow-induced arterial
wall deformation. The Kelvin model idealizes the behavior of a viscoelastic material using a linear

µ

η µ1

µ0

Fig. 3. The Kelvin model is often displayed using an electrical circuit analog with a dashpot acting on a spring (top) incorporates
the time dependent viscosity property, in parallel with a spring (bottom), representing the elastic component of the material.

combination of springs and a dashpot in a mechanical circuitto represent elastic and viscous components
respectively as shown in Fig. 3. Mathematically, the stress-strain law for this viscoelastic model can be
written as

τǫ
ds

dt
+ s =

r0

Eh

(

p + τσ
dp

dt

)

, (3)

wherer0 is the radius of the unstretched vessel, ands(t) andp(t) are the strain and stress (represented
by pressure). In Equation (3),τǫ is a relaxation time for the strain andτσ is a relaxation time for the
stress. The two relaxation constants are related to the dashpot and resistors as follows

τσ =
η

µ1
, τǫ =

µ1

µ0

(

1 +
µ0

µ1

)

, µ0 =
Eh

r0
.
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When solving the viscoelastic model,which has the implicitform

F (s(t), ṡ(t), p(t), ṗ(t), θ) = 0, (4)

we chose to solve Equation (3) in terms of the strains(t) as a function of time, pressure history and the
parameters in study, i.e.,

s(t) = s(t, pt(·), θ), where θ = (Eh, r0, τσ, τǫ). (5)

The notationpt(·) is defined by
pt(·) = {p(ξ)|0 ≤ ξ ≤ t}. (6)

Note that this representation includes the hysteresis effects known to be present in viscoelastic materials.
To solve the viscoelastic model in Equation (3) numerically, it is advantageous to write the model as

an integral of the form is given by

s(t) = s(0)e−t/τǫ +
r0

Ehτǫ

(

τσp(t) − τσp(0)e−t/τǫ +
τǫ − τσ

τǫ

∫ t

0
e−(t−γ)/τǫ p(γ) dγ

)

. (7)

From this equation, the areaA at timet can then be expressed as a function of the pressure history using
the definition for strains(t) as a function ofA(t) introduced in the center of Equation (2).

The Kelvin viscoelastic model is preferred over the simplerMaxwell and Voigt models since it is
the simplest model that exhibits both creep and stress relaxation. While more advanced models can be
considered via a superposition Kelvin units, the approach in this study is to apply the simplest possible
model that captures fundamental viscoelastic properties of arterial wall in the analysis of a comprehensive
experimental data set for flow-induced viscoelastic arterial wall deformation.

1) Model validation:The model was validated using experimental data from elevensheep as described
previously. The data include in-vitro pressure and vessel diameter from seven locations along the large
arteries. In the following we denote pressure by{pj} and arterial diameters by{dj}, both of these
quantities are sampled at timestj at a frequency of 20 Hz. Approximately 10 consecutive cardiac cycles
were sampled and analyzed for each sheep. It is important to note that the measured valuespj anddj

provide information about vessel pressure and diameter, respectively, and the measured cross-sectional
area values were obtained byaj = π(dj/2)

2.
For our modeling study we have chosen to interpolate the measured pressure{pj} and use this

interpolation{p̃(t)} in (7) as a model input to predict cross-sectional area{A(tj)} as a function of
the parametersθ via Equations (2) and (7). The Kelvin viscoelastic model in Equation (3) relates vessel
strain to vessel stress (pressure), and involves the cross-sectional area via the definition of strain in
Equation (2). This particular definition of strain was obtained such that the Kelvin model reduced to
the simpler elastic model when the relaxation times are set to zero. We remark that we could have
alternatively expressed the pressurep(t) as a function of the historyst(·) of the strain, leading through
Equation (2) to the pressurep(t) at time t as a function of the historyAt(·) of the area.

The initial parameter values forEh in Table I were obtained from Fung’s estimates of wall thickness
h and Young’s modulusE [38], [39]. It should be noted that in principleE andh are two independent
parameters, but in this study we have no data to estimate these separately, thus they have been combined
into one parameter. We do not have significant knowledge about the relaxation factorsτσ and τǫ. We
assumed that they may be an order apart, thus we estimated thesame initial values for all locations in the
system. Initial values for the final parameterr0 was estimated for each sheep using an average diastolic
diameter from the area measurements.

However, it is known that the morphometry and tissue composition varies significantly among subjects
and among the locations in the arterial system. Hence, to obtain “subject” specific parameters we used the
nonlinear Nelder-Mead optimization method (a simplex method) to compute parameters that minimize
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TABLE I

INITIAL PARAMETER VALUES FOR Eh, τσ , AND τǫ IN HUMANS .

Eh [mmHg cm] τσ [sec] τǫ [sec]
Ascending aorta (S1) 234.200 0.025 0.05
Proximal descending aorta (S2) 180.153 0.025 0.05
Medial descending aorta (S3) 337.787 0.025 0.05
Distal descending aorta (S4) 375.319 0.025 0.05
Femoral artery (S5) 300.255 0.025 0.05
Brachiocephalic trunk (S6) 234.199 0.025 0.05
Carotid artery (S7) 202.672 0.025 0.05

the least squares error between the computed and measured values of cross-sectional area. The least
squares error is given by

J =
1

n

n
∑

i

|aj − A(tj)|
2. (8)

It is important to note that even though this method is used tosolve modeling problems, it is not a proper
least squares problem. Our prediction of the cross-sectional areaA(tj) based on the Kelvin viscoelastic
model used measured pressure values{pj} as an input. These values{pj} were interpolated and then
integrated to obtain values for the first strain, and subsequently provided computed values for cross-
sectional areaA(tj). In other words, we are integrating nonexact (noisy) pressure values obtained from
{pj}, which gives rise to noisy predictions of cross-sectional area {A(tj)}. Typical results of fitting
the viscoelastic model to the data using Equation (8) are shown in Fig. 4 and summarized in Table II.
From Fig. 4, it is clear that the viscoelastic model capturesthe dynamics significantly better than the
elastic model. In particular, the difference between the models is emphasized in the graph where area
is plotted against pressure, where the data shows a hysteresis loop, a characteristic of a viscoelastic
material. Given that the elastic model describes a proportional relationship with no relaxation factors, it
yields a straight line response that is unable to exhibit hysteresis. For a numerical representation, refer
to Table II that lists the optimized values found for the parameter in study, and Table III for the mean
values and standard deviations across the complete dataset. Without further analyzing the model, it is
not clear whether it is possible to uniquely identify all theparameters of the model given that pressure
is the input for prediction of cross-sectional area. One wayto investigate if all four model parameters
can be identified is by a sensitivity analysis, which determines if the model parameters are sensitive to
changes in cross-sectional area.

Sensitivity equations can be obtained using the basic differential equation analysis approach as de-
scribed by Eslami and Frank [41], [42]. For the Kelvin model there is only one stateA(t, θ) and four
parameters denoted byθ = (θ1, ..., θ4) = (r0, Eh, τǫ, τσ). In other words, sensitivities (absolute) provide
information about the change in the state variableA(t) with respect to each of the four parameters.
Mathematically, these absolute sensitivitiesSj can be defined by

Sj(t, θ) =
∂A(t, θ)

∂θj
, j = r0, Eh, τǫ, τσ. (9)

The absolute sensitivities defined above may lead to wrong conclusions regarding the degree of depen-
dence on various parameters. In particular, if the parameters have different orders of magnitude as is the
case for Kelvin’s viscoelastic model. Therefore, it is important to compute sensitivities that are normalized
by the nominal outputs and the parameter values as follows

Sj(t, θ) =
θj

A(t, θ)

∂A(t, θ)

∂θj
. (10)

It is easily seen that the relative sensitivities are invariant of changes in units ofA(t) or θ. This allows
the comparison of sensitivities across different parameter values.
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TABLE II

OPTIMIZED PARAMETER VALUES FOR ALL SHEEP. FIRST COLUMN IS THE SHEEP#, SECOND COLUMNr0 [CM], THIRD

COLUMN Eh [MM HG CM], FOURTH COLUMNτǫ [SEC] AND THE LAST COLUMN τσ [SEC].

# r0 Eh τǫ τσ # r0 Eh τǫ τσ # r0 Eh τǫ τσ

Ascending aorta Brachiocephalic trunk aorta Carotid artery
1 0.91 468.771 0.05 0.02 1 0.803 508.038 0.067 0.027 1 0.450 2939.569 0.105 0.044
2 1.02 646.974 0.06 0.02 2 0.825 487.788 0.153 0.061 2 0.404 3267.155 0.076 0.037
3 1.01 545.324 0.09 0.04 3 0.816 527.147 0.066 0.021 3 0.395 3026.771 0.033 0.007
4 0.97 540.081 0.07 0.02 4 0.876 638.347 0.063 0.016 4 0.436 3160.495 0.108 0.063
5 0.97 596.347 0.07 0.03 5 0.855 670.538 0.058 0.016 5 0.410 2383.031 0.132 0.065
6 0.93 569.198 0.04 0.01 6 0.916 667.225 0.062 0.017 6 0.418 2927.271 0.088 0.041
7 1.03 615.664 0.07 0.04 7 0.869 687.071 0.051 0.017 7 0.395 1840.021 0.251 0.113
8 0.92 499.564 0.06 0.03 8 0.896 734.648 0.049 0.013 8 0.391 2764.211 0.057 0.025
9 0.91 480.534 0.07 0.02 9 1.186 1319.727 0.041 0.007 9 0.413 2179.016 0.231 0.113
10 0.84 471.670 0.06 0.02 10 0.901 666.827 0.074 0.021 10 0.403 3203.954 0.046 0.017
11 0.86 410.182 0.06 0.03 11 0.883 573.871 0.065 0.019 11 0.349 2240.729 0.034 0.008

Femoral artery Medial descending aorta Distal descending aorta
1 0.254 467.110 0.057 0.008 1 0.825 584.212 0.085 0.014 1 0.809 1339.021 0.027 0.000
2 0.287 868.784 0.029 0.000 2 0.868 851.551 0.060 0.019 2 0.831 1749.407 0.046 0.016
3 0.275 633.869 0.024 0.000 3 0.859 699.499 0.085 0.022 3 0.821 1501.760 0.030 0.000
4 0.289 710.867 0.039 0.007 4 0.838 650.488 0.069 0.029 4 0.818 1506.283 0.029 0.000
5 0.275 557.173 0.056 0.015 5 0.833 661.712 0.055 0.026 5 0.822 1464.471 0.031 0.002
6 0.278 705.508 0.031 0.000 6 0.871 738.137 0.079 0.029 6 0.829 1568.171 0.028 0.000
7 0.264 665.543 0.032 0.007 7 0.828 702.763 0.068 0.039 7 0.848 1511.557 0.084 0.040
8 0.287 775.969 0.018 0.000 8 0.877 949.096 0.025 0.000 8 0.826 1076.808 0.234 0.113
9 0.287 758.730 0.034 0.000 9 0.870 727.716 0.084 0.035 9 0.824 1702.527 0.024 0.003
10 0.299 835.167 0.040 0.000 10 0.875 949.631 0.030 0.002 10 0.828 1511.236 0.093 0.044
11 0.314 836.095 0.021 0.000 11 0.833 595.933 0.068 0.037 11 0.441 81.464 5.546 0.261

Proximal descending aorta
1 0.888 681.721 0.041 0.006 5 0.916 857.673 0.039 0.003 9 0.876 739.620 0.057 0.023
2 0.902 805.161 0.058 0.025 6 0.879 765.712 0.053 0.016 10 0.903 915.101 0.039 0.003
3 0.852 698.828 0.035 0.007 7 0.876 689.512 0.065 0.021 11 0.863 620.584 0.067 0.032
4 0.885 739.959 0.036 0.004 8 0.856 646.061 0.058 0.027

TABLE III

MEAN AND STANDARD DEVIATION FOR EACH LOCATION.

r0[cm] Eh[mmHg cm] τǫ[sec] τσ [sec]
Ascending aorta (S1) 0.94±0.06 531.30±72.22 0.07±0.01 0.02±0.01
Proximal desc. aorta (S2) 0.88±0.02 741.00±89.50 0.05±0.01 0.02±0.01
Medial desc. aorta (S3) 0.85±0.02 737.34±127.43 0.06±0.02 0.02±0.01
Distal desc. aorta (S4) 0.83±0.01 1493.12±186.78 0.06±0.07 0.02±0.04
Femoral artery (S5) 0.28±0.02 710.44±123.96 0.03±0.01 0.00±0.01
Brachiocephalic trunk (S6) 0.89±0.10 680.11±227.07 0.07±0.03 0.02±0.01
Carotid artery (S7) 0.41±0.03 2721.11±482.20 0.11±0.07 0.05±0.04

In this study we have only one state variable, namely the cross-sectional areaA(t) and four parameters
r0, Eh, τǫ, andτσ. The cross-sectional area is found as a solution to a differential equation, that can be
obtained by rewriting Equation (3) as

dA

dt
=

2

Ehτǫ/r0

√

A0/A3

(

Eh

r0

(
√

A0

A
− 1

)

+ p + τσ
dp

dt

)

= 2
f

g
, (11)

where

f =
Eh

r0

(
√

A0

A
− 1

)

+ p + τσ
dp

dt
, g =

Ehτǫ

r0

√

A0

A3
.
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Fig. 4. Top graphs show elastic (left) and viscoelastic (right) models as a function of time, the center row shows the error
computed as|A(t)− aj | for the elastic (left) and the viscoelastic (right) models,and the bottom graphs show hysteresis effects
for the elastic model (left) and the viscoelastic model (right).

Given the system, four sensitivity equations can be derivedfor ∂A/∂r0, ∂A/∂Eh, ∂A/∂τǫ, and∂A/∂τσ .
To determine these sensitivities∂A/∂θj , we differentiate the differential equation with respect to each
parameter as

d

dt

∂A

∂θj
=

∂

∂θj

dA

dt
. (12)

Here, we assumed that the partial derivatives commute. Thisis guaranteed by Clairaut’s theorem, which
states that if continuous second partial derivatives existat a point, they commute at that point. These
four sensitivity equations can thus be solved simultaneously with Equation (11). Using this formulation,
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the sensitivity equations can be found by

d

dt

∂A

∂θj
= 2

[

g
∂f

∂θj
− f

∂g

∂θj

]

/g2,

where

∂f

∂r0
= −

Eh

r2
0

(
√

A0

A
− 1

)

+
Eh

r0

(

√

π

A
−

√

A0

A3

)

/2
dA

dr0

∂g

∂r0
= −

3Ehτǫ

2

√

π

A5

dA

dr0

∂f

∂Eh
=

1

r0

(
√

A0

A
− 1

)

−
Eh

2r0

√

A0

A3

dA

dEh

∂g

∂Eh
=

τǫ

r0

√

A0

A3
−

3Ehτǫ

2r0

√

A0

A5

dA

dEh

∂f

∂τǫ
= −

Eh

2r0

√

A0

A3

dA

dτǫ

∂g

∂τǫ
=

Eh

r0

√

A0

A3
−

3Ehτǫ

2r0

√

A0

A5

dA

dτǫ

∂f

∂τσ
=

dp

dt
−

Eh

2r0

√

A0

A3

dA

dτσ

∂g

∂τσ
= −

3Ehτǫ

2r0

√

A0

A5

dA

dτσ
.

The corresponding relative sensitivities are given by

∂A

∂Eh

Eh

A
,

∂A

∂r0

r0

A
,

∂A

∂τǫ

τǫ

A
,

∂A

∂τσ

dτσ

A
.

A typical solution (evaluated at the optimized parameter values θ = θ̂n) for the relative sensitivity
equations is shown in Fig. 5. Results from this figure shows that the sensitivities are periodic functions
that oscillate relative to the periodicity in the data. To rank the sensitivities we used a max norm computing
max relative sensitivities as

S̃(θj) =

(

max
t

∂A(t)

∂θj

θj

A

)

.

For the system of sensitivity equations we obtained:

max

(

∂A

∂r0

r0

A

)

, max

(

∂A

∂Eh

Eh

A

)

, max

(

∂A

∂τǫ

τǫ

A

)

, max

(

∂A

∂τσ

τσ

A

)

. (13)

For sheep 1, these max sensitivities are given by[S̃(r0) = 2.64; S̃(Eh) = 0.64; S̃(τǫ) = 0.087; S̃(τσ) =
0.042]; i.e., the most sensitive parameter with respect to the change in A(t) is r0 and the least sensitive
parameter isτσ, the stress relaxation constant.

Results discussed above all compare the model to the data assuming that the model is valid within one
dataset. Another use of the sensitivity analysis is to studyand compute the standard errors as a mean of
computing confidence intervals for each parameter within a dataset and to be able to predict how well
the model perform.

In order to compute standard errors and confidence intervals, we used standard asymptotic theory from
statistics. We assumed that each dataset predicting vesselarea containsn scalar longitudinal observations,
which can be represented by the statistical model

Ãj = fj(θ0) + ǫj, j = 1, 2, ...n, (14)
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Fig. 5. Relative sensitivity ofA(t) with respect to the parametersdA/dEh, dA/dr0, dA/τǫ, dA/dτσ, respectively. These
sensitivities are evaluated at the optimized parametersθ̂n.

wherefj is the model for the observations andθ0 ∈ R
M is a set of theoretical true parameter values for

r0, Eh, τσ , andτǫ. Furthermore, we assumed that measurement errorsǫj , j = 1, 2, ..., n, are independent
identically distributed(i.i.d.) random variables with meanE[ǫj ] = 0 and constant variancevar[ǫj ] = σ2

0,
whereσ2

0 is unknown.
We consider estimation of parameters using an ordinary least squares (OLS) approach as described

above. Thus we seek to use the area dataa = {aj} for the observation process{Ãj} with the model to
seek a valuêθn that minimizes

Jn(θ) = Σn
j=1 |fj(θ) − aj|

2 .

This definition differs from Equation (8) where the least squares differences were weighted by1/n, where
n is the number of observations; this only serves to scale the residual values.

Under the assumption that state variables and corresponding dynamics used to describe the model are
continuously differentiable and certain regularity assumptions on how the observations are made, the
standard nonlinear regression approximation theory [43],[44], [45], [46] for asymptotic (asn → ∞)
distributions can be invoked. This theory states that the sampling distribution θ̂n(Ã) for the estimate
θ̂n, whereÃ = {Ãj}

n
j=1, is approximately aM -multivariate Gaussian with meanE[θ̂n(Ã)] ≈ θ0 and

covariance
cov[θ̂n(Ã)] ≈ Σ0 = σ2

0 [χ
T (θ0)χ(θ0)]

−1.
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Hereχ(θ̂) = Fθ(θ) is then × M sensitivity matrix, which has the form

χ =









∂A
∂r0

(t1)
∂A
∂Eh(t1)

∂A
∂τǫ

(t1)
∂A
∂τσ

(t1)
∂A
∂r0

(t2)
∂A
∂Eh(t2)

∂A
∂τǫ

(t2)
∂A
∂τσ

(t2)

. . . . . . . . . . . .
∂A
∂Eh(tn) ∂A

∂r0

(tn) ∂A
∂τσ

(tn) ∂A
∂τǫ

(tn)









.

In other words, forn large, the sampling distribution approximately satisfies

θ̂n
OLS(Ã) ∼ NM

(

θ0, σ
2
0 [χ

T (θ0)χ(θ0)]
−1
)

:= NM (θ0,Σ0).

For the viscoelastic model the functionfj(θ) is sufficiently simple to derive analytical expressions for
the components of∂A/∂θ. However,θ0 and σ0 are not known, hence they must be approximated to
calculateΣ0 = σ2

0[χ
T (θ0)χ(θ0)]

−1. For this we follow standard practice and use the approximation

Σ0 ≈ Σ(θ̂n) = σ̂[χT (θ̂n)χ(θ̂n)]−1,

whereθ̂n is the parameter estimate obtained, and the approximationσ̂2 to σ2
0 is given by [46]

σ2
0 ≈ σ̂2 =

1

n − 4

n
∑

i=1

∣

∣

∣aj − fj(θ̂
n)
∣

∣

∣

2
.

Standard errors to be used in confidence intervals calculations are thus given by (see [46])

SEk(θ̂
n) =

√

Σkk(θ̂n),

which embodies uncertainty in the estimates forn large. Finally, the confidence intervals (at the100 (1 − α) %
level) for the estimated parameters, are given by

[θ̂n
k − t1−α/2SEk(θ̂

n), θ̂n
k + t1−α/2SEk(θ̂

n)],

where
P{θ̂n

k − t1−α/2SEk(θ̂
n) < θ0k < θ̂n

k + t1−α/2SEk(θ̂
n)} = 1 − α, (15)

for α ∈ [0, 1] and t1−α/2 ∈ R+. For a95% confidence intervals, the critical valuet1−α/2 is computed
from the Student’st distribution tn−4 with n− 4 degrees of freedom. The value oft1−α/2 is determined
by P{T > t1−α/2} = α/2 whereT ∼ tn−4. Given that in the data setn > 40, the degrees of freedom
was approximated to∞. Thust1−α/2 ≈ 1.96.

Below we have computed confidence intervals using all available data (10 cardiac cycles) from sheep
1. To compute the confidence interval, we used optimized parameters given in Table II. For this dataset
the error is

J =

n
∑

i

|aj − A(tj)|
2 = 5.860,

and the variance is

σ2
0 ≈ σ̂2 =

1

n − 4

n
∑

i=1

|aj − A(tj)|
2 = 0.005.

In Fig. 6 we plotted variance as a function of time and as a function of area. Using these values we
computed the covariance matrix

Σ0 ≈ Σ(θ̂n) = σ2[χT (θ̂n)χ(θ̂n)]−1 =









71.638 0.024 −0.041 −0.029
0.024 0.000∗ −0.000 −0.000

−0.041 −0.000 0.000∗ 0.000
−0.029 −0.000 0.000 0.000∗








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and the standard error

SEk(θ̂
n) =

√

Σkk(θ̂n) =









8.464
0.003
0.005
0.004









.

Finally, the confidence computed using Equation (15) gives

CIEh = [461.94, 495.12]

CIr0 = [0.904, 0.916]

CIτǫ
= [0.043, 0.063]

CIτσ
= [0.014, 0.030].
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Fig. 6. The left panel depicts the residual sum of squares as afunction of time and the right panel depicts the residual sum
of squares as a function of the model response (the areaA(t)).

III. R ESULTS

As discussed in the previous section our results clearly shows that the viscoelastic model is significantly
better than the purely elastic model. The elastic model cannot account for hysteresis which is clearly
observed in the data. Results from our statistical analysisand our sensitivity studies indicate that we
can identify all model parameters. Hence, we proceed to discuss computational results obtained from the
model.

From calculation ofp-values (see Table IV) we observe that it is easy to distinguish the caliber (radius)
for each vessel. We used the diastolic diameter as the initial value for the unstretched radius, but this
parameter was identified during optimization. Another conclusion we can make is that the ascending
aorta, the carotid artery, and the distal descending artery, have significantly different values forEh than
the other arteries. For example, the femoral artery, as wellas the medial and proximal descending aorta
all have p-values> 0.05. We also observed that the relaxation factors for the more distal femoral and
carotid arteries are significantly different from the more proximal vessels. This is reasonable since the
latter vessels should be stiffer than the major conduction arteries. Another interesting aspect to study is the
notion discussed in most physiology books (e.g., Guyton [40]) that arteries gets stiffer as they get smaller.
While stiffness has been studied using purely elastic models (see e.g. [15], [16]), it is not clear how the
relative stiffness (i.e.,Eh/r0) changes when viscoelastic properties are also considered. Furthermore,
results discussed in previous studies were compiled acrossspecies and were from a number of different
experiments. Given the large dataset presented from sheep,we were able to study how stiffness related to
the radius of the artery according to the different locations of the vessel. As shown in Fig. 7 it is clear that
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TABLE IV

P-VALUES COMPARING EACH LOCATION FOR EACH PARAMETER.

r0 B C D F M P Eh B C D F M P
A 0.21 0.00 0.00 0.00 0.00 0.01 A 0.05 0.00 0.00 0.00 0.00 0.00
B - 0.00 0.04 0.00 0.21 0.71 B - 0.00 0.00 0.70 0.47 0.41
C - - 0.00 0.00 0.00 0.00 C - - 0.00 0.00 0.00 0.00
D - - - 0.00 0.10 0.02 D - - - 0.00 0.00 0.00
F - - - - 0.00 0.00 F - - - - 0.62 0.50
M - - - - - 0.00 M - - - - - 0.93

τǫ B C D F M P τσ B C D F M P
A 0.77 0.09 0.33 0.00 0.95 0.01 A 0.57 0.05 0.44 0.00 0.76 0.04
B - 0.13 0.33 0.00 0.76 0.07 B - 0.04 0.38 0.00 0.81 0.26
C - - 0.37 0.01 0.09 0.02 C - - 0.85 0.00 0.04 0.01
D - - - 0.30 0.33 0.32 D - - - 0.11 0.41 0.26
F - - - - 0.00 0.01 F - - - - 0.00 0.00
M - - - - - 0.06 M - - - - - 0.15
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Fig. 7. Stiffness relative to radius as a function of the radius of the unstretched vesselr0. Results for each vessel segment are
represented by a different dot color.

our studies in sheep support the notion that the arterial wall stiffness, increases with decreasing vessel
diameter. To illustrate this finding we have fit an exponentially decreasing function to the corresponding
data. Similar to previous work [16], [15], [47] we have used an Equation of the form

Eh

r0
= k1 exp(−k2r0) + k3.

Note that for small arteries (the carotid arteries and the femoral arteries) it is not clear how the graph
should be weighted (compare solid, dashed, and dotted lines). From physiology it is known that carotid
arteries are less stiff than arteries in other parts of the body, hence, the graph likely should be weighted
towards points representing the femoral artery (dashed line).

IV. D ISCUSSION

The goal of this study was to develop a mathematical model that can be used to analyze experimental
pressure-area data and to understand how the associated model parameters vary across the large arteries.
The goal was not to develop the most sophisticated model, butto come up with a simple model, which
for example, could be incorporated into fluid dynamics models. The next question to address is weather
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the physical accuracy of the Kelvin viscoelastic model and the associated four model parameters can
be predicted with a high level of confidence. In the followingwe first discuss some experimental
considerations and then discuss limitations and further studies from a modeling perspective.

A. Methodological considerations

We studied sheep segments, taking into account the recognized similarity between human and ovine
cardiovascular systems [48]. We opted for vascular segments, instead of the most used strips or rings [49],
[50], since segments were better to reproduce the in vivo hemodynamic conditions, and to preserve the
shape and integrity of the vascular wall [33]. The in vitro stretch of the artery segment should be the same
with respect to in vivo condition. In our experiment, an arterial segment of 6 cm long was accurately
measured with a caliper and marked with two suture stitches.All arteries were excised at the level of the
suture stitches and, after vascular removal, were mounted preserving the in vivo length [33], [34], [35].

The technique employed to register pressure and diameter using the in vitro circulation mock has been
previously used and validated by members of our group [2], [31], [32], [33], [34], [35]. This methodology
allows accurate and reproducible pressure and diameter measurements due to the high frequency and
linearity of response of both dimension gauges and pressuretransducers. The 200 Hz sampling rate used
in the digitalization of the data was larger than the highestfrequency components in the pressure and
diameter spectra, enabling signal reconstruction withoutdistortion.

The arterial wall has a nonlinear and frequency-dependent mechanical behavior [2], [32]. Hence,
although static analysis allow the indirect evaluation of rate or frequency-dependent mechanical properties
(e.g., wall viscosity) [49], [50], an adequate characterization of the functional meaning and contribution of
these properties requires dynamic analysis. Consequently, in order to evaluate the arterial wall mechanical
behavior, we performed a dynamic analysis of the arterial wall, submitting the arteries to physiologi-
cal hemodynamic conditions. On the other hand, taking into account the pressure and frequency rate
dependence of the mechanical properties, we performed an isobaric and isofrequency analysis during
physiological flow condition for each artery [2], [32].

Diameter and pressure signals was conformed and processed using a single analogic electronic system
(System VI Triton Technology San Diego California) resulting in no delay between pressure and diameter
signals caused by the electronics circuits. Nevertheless,for a correct use of the pressure-area data or the
stress-strain loops to calculate the viscous properties, it is essential that both distension and pressure
waves should be recorded simultaneously at the same location, because the existence of misalignment
(yet of only a few millimeters) strongly affects the shape ofthe pressure-distension loop. However, as
was mentioned previously [37], and as was performed in previous work by members of our group [31],
[33], to calculate wall viscoelasticity based on the methoddescribed in the article, the diameter signal is
shifted to fit the pressure signal foot, to compensate the overestimation in the time delay corresponding
to the distance between sensors.

B. Modeling considerations

Results from this study indicates excellent agreement between predictions of our theoretical model
and the corresponding experimental data. This was evidenced by improvement of the Kelvin viscoelastic
model over the elastic model and, in particular, the incorporation of hysteresis into the wall mechanics
which lead to a substantial decrease in the computed least squares errorJ . Even though the hysteresis
loops exhibited by the Kelvin viscoelastic model more accurately represent the pressure-area data, it is
clear that the linear assumption in the Kelvin model is limiting, given the clear nonlinear trends in the data.
Nevertheless, the results from this study confidently allowus to pursue extended viscoelastic modeling
by studying, in greater depth, the viscoelastic propertiesof the arterial wall and potential variations in
model assumptions with vessel site.

Formulating the hysteresis dynamics in Equations (4)-(7) as we did, using part of the data (i.e.,{p(tj)})
to reduce the inverse problem involving Equation (8), and then using standard statistical techniques for



16

error analysis introduces some modeling and statistical inaccuracies of a nontrivial nature. Indeed we
have used interpolated data{pj} in evaluatings(t) in Equation (7) so our model in itself contains
measurement error of a type not treated in the standard representation given by Equation (14). This,
rather than a simple nonconstant longitudinal variance, ismost likely the origin of the somewhat strange
“residual versus model” plot shown in Fig. 6. A more proper formulation of the hysteretic dynamics
Equation (4) would be of the form

G (A(t), pt(·), θ) = 0, (16)

whereA(t), s(t), p(t) are related through Equations (2) and (3). One should then use the data{aj , pj}
for A(t), p(t) in a least squares criterion

J(θ) = Σ|(aj, pj) − (A(tj , θ), p(tj , θ))|2 (17)

subject to the constants in Equation (16). This leads immediately to a nonstandard least squares problem
with associated computational challenges as well as statistical questions that we are pursuing in a
continuing effort.
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