
Verification of an Autonomous Reliable Wingman Using CCL

Stephen Waydo†

Control and Dynamical Systems
California Institute of Technology

Pasadena, CA 91125, USA
waydo@cds.caltech.edu

Eric Klavins∗

Department of Electrical Engineering
University of Washington
Seattle, WA 98195, USA

klavins@ee.washington.edu

Abstract— We present a system of two aircraft, one human-
piloted and one autonomous, that must coordinate to achieve
tasks. The vehicles communicate over two data channels, one
high rate link for state data transfer and one low rate link for
command messages. We analyze the operation of the system
when the high rate link fails and the aircraft must use the
low rate link to execute a safe “lost wingman” procedure to
increase separation and re-acquire contact. In particular, the
protocol is encoded in CCL, the Computation and Control
Language, and analyzed using temporal logic. A portion of
the verified code is then used to command the unmanned
aircraft, while on the human-piloted craft the protocol takes
the form of detailed flight procedures. An overview of the
implementation for a June, 2004 flight test is also presented.

I. INTRODUCTION

In modern autonomous systems such as Uninhabited
Aerial Vehicles (UAV’s), the implementation of the com-
mand and control code is an integral part of the control
system and as such needs to be analyzed as part of the
system. Control algorithms and decision logic are often
designed and analyzed using one set of tools (i.e. hybrid
systems theory) and then implemented in a language such
as C/C++ that may not be well-suited to analysis. At some
point in this process a “leap of faith” is required to believe
that the real system actually implements the system as ana-
lyzed. As these systems become more complex and operate
in more uncertain environments it is becoming increasingly
desirable to narrow or eliminate the gap between algorithms
as analyzed and software as implemented and thus reduce
this leap of faith. An appropriate analytical framework
is needed to consider these problems, particularly in the
context of understanding behavior under failures.

To demonstrate a method for approaching these tasks,
we use the Computation and Control Language (CCL) to
analyze a realistic example problem, that of the operation
of a UAV as a “reliable wingman” in conjunction with a
human-piloted craft. We envision a scenario in which a
human-piloted lead aircraft and an autonomous following
aircraft must operate in concert, flying in formation to
achieve some objective. To coordinate their actions the
aircraft share two data channels: a high-rate link for the
exchange of state information and a low-rate link along
which they can pass more limited data. In an analogy to
fully human flight, the high-rate link is the visual contact
the pilots share and the low-rate link is the radio voice

† Support provided by the Fannie and John Hertz Foundation
∗ Support in part by AFOSR grant number F49620-01-1-0361

(e)

UAV

Leader

(a)

(b)
(c)

(d)

Fig. 1. Lost wingman scenario. At point (a) aircraft are flyingin
formation. At (b) the data link is lost and the UAV begins executing the
lost winman maneuver. At (c) the UAV receives a confirmation message
from the leader and turns to match heading. At (d) the data linkis restored
and at (e) normal operation resumes.

communications channel. We analyze the situation shown
in Fig. 1 in which the high-rate link is lost and the aircraft
must coordinate using the low-rate link to achieve a safe
separation in absense of detailed shared state information.

CCL is a specification and implementation language
for the operation of concurrent systems that interact both
through dynamics and logical protocols. The advantages of
this approach are several:

• The formalism of CCL and the analysis techniques
allow us to analyze the dynamical behavior and the
logical behavior each in an environment naturally
suited to them.

• CCL is both a specification and implementation lan-
guage, meaning that the protocols we analyze and the
code we implement are nearly identical; in come cases
they are one and the same.

• Reasoning about CCL specifications is done using
standard logical tools amenable to the application of
automated theorem proving software.

• We can model and reason about portions of the system
using CCL specifications even if they will not be
implemented as such.

This example will culminate with a flight experiment in

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Verification of an Autonomous Reliable Wingman Using CCL

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
California Institute of Technology,Control and Dynamical
Systems,Pasadena,CA,91125

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

June, 2004 in which a human-piloted F15 fighter aircraft
will lead an autonomous T33 UAV surrogate in a formation
flight exercise. The T33 will simulate loss of the state
exchange data link and the lost wingman protocol will be
tested. Section VI provides an overview of this implemen-
tation.

A. Related Work

CCL and the analysis techniques presented here were
inspired by UNITY [1] and applications of such ideas
to real-time systems. The UNITY formalism is used to
specify and reason about concurrent reactive systems [2],
but the application of UNITY-like formalisms to dynamic
control problems has not been well-developed. Temporal
logic has been used to specify and reason about concurrent
and distributed systems [3]; with CCL we extend this to
include an implementation language.

Provably safe conflict resolution between aircraft has
been extensively studied in the context of air-traffic control
[4], [5]. The distinction here is that in addition to verifying
the safety of the lost wingman maneuver, we reason about
the operation of the underlying decision mechanism (the
software) to ensure that the assumptions behind the conflict
resolution safety proofs are correct.

A great deal of work exists on formation flight [6],
[7] and high-performance maneuvering [8] of autonomous
aircraft. We are interested in the provably correct and safe
implementation of such systems, especially in the presence
of faults, requiring an examination of the low-level software
in addition to the algorithm specification.

II. CCL: THE COMPUTATION AND CONTROL
LANGUAGE

In this paper we use CCL as both a modeling environ-
ment for the complete system and as our implementation
language for a portion of the software. We summarize here
a few important points about CCL; this material has been
described in considerably more detail in previous work [9],
[10].

A. Structure and Semantics of a CCL Specification

A CCL specification, orprogram, P consists of two
partsI and C. I is a predicate on states called the initial
condition. C is a set ofguarded commandsof the form
g : r whereg is a predicate on states andr is a relation
on states. In a rule, primed variables (such asx′

i) refer to
the new state and unprimed variables to the old state. For
example,

x < 0 : x′ > y + 1

is a guarded command stating: Ifx is less than zero, then
set the new value ofx to be greater than the current value
of y plus 1. If x is not less than zero, do nothing.

Programs are composed in a straightforward manner:
If P1 = (I1, C1) and P2 = (I2, C2) then P1 ◦ P2 =
(I1 ∧ I2, C1 ∪ C2). This type of composition allows us
to modularize our specifications into separate programs

such as one for a finite state machine and one to model
the dynamics. In an real system, then, we can implement
only the state machine and as long as the real dynamics
satisfy the CCL specification any proofs about the original
specification will remain valid.

In addition to the initial condition and the collection
of guarded commands, we need to specify thesemantics
we will use to interpret the specification. The semantics
determine how commands are picked for execution, i.e. in
what order and with what relative frequency. In general
commands are picked in a nondeterministic way to model
the uncertainty in how they may be interleaved in the actual
system; the semantics we choose place restrictions on this
nondeterminism. For the purposes of this paper, where the
commands are picked at very close to the same rate, the
EPOCH semantics will be sufficient. Informally EPOCH
semantics can be described as follows:

CCL EPOCH Semantics:Commands are chosen
non-deterministically fromC, but each command
must be chosen once before any command is
chosen again.

Thus, the execution of a system is divided intoepochs
during which each command is executed exactly once. This
is an attempt to capture the small-time interleaving that may
occur between processors that are essentially synchronized,
as well as the nondeterministic ordering of commands
that can occur when some are picked by some event-
driven process while others are picked by a deterministic
process. We generally view epochs as occurring at some
fixed frequency, although that has not yet been explicitly
modelled. In Section III-A we discuss one way to include
time in our specification.

The EPOCH semantics are just one of several interpre-
tations of CCL that we are exploring. Other possibilities
are that each command executes at approximately the same
frequency or each command executes equally many times
in any interval; these may be more appropriate when the
specification under consideration is executing across multi-
ple processors or agents.

B. Implementation of CCL Specifications

While we may reason about specifications in which the
rules are abritrary relations on states, any code we write will
be deterministic, meaning that all rules will be assignments.
In this case there exists a CCL interpreter known as CCLi
[10], [11] that can be used to execute CCL code. The
implementation code for all of the programs described here
is available online [12].

C. Reasoning about CCL Specifications

We present here a brief overview of the formalism used
to reason about CCL specifications, described in more detail
in previous work [9]. The definitions ofstate, state function,
action, andbehaviorare taken from [3].

1) States, Variables, and Actions:We begin with a setV
of variable symbolsand a setval of values that the variables
may take (natural numbers, real numbers, sets, etc.). Astate
s is a function fromV to val, and the set of all states is
denotedS. The value of a variablev ∈ V with respect to a
states is denotedsJvK. A state function f is an expression
over symbols inV and constant symbols. Themeaning of
a state functionf , denotedJfK, is a function from states
into values and is defined by

sJfK , f (∀v : sJvK / v),

that is, the value obtained by replacing all (free occurrences
of) variables inf by their values under the states. A
predicate is simply a boolean valued state function.

We denote byV ′ the set{v′ : v ∈ V }, that is, the
set of all primed variables symbols fromV . An action is
a boolean valued expression over variables inV , primed
variables inV ′ and constant symbols. Themeaning of an
actiona, denotedJaK, is a function fromS ×S into values
and is defined by

sJaKt , a (∀v : sJvK / v, tJvK / v′),

that is, the value obtained by replacing all unprimed vari-
ables ina by their values under the states and replacing
all primed variables ina by their values undert. Note that
we generally regard variables not appearing primed in an
action as not changing. A guarded command is simply a
particular kind of action. For technical reasons we also
allow the actionskip in which no values are altered.

We will need to reason about the effect of an action on
the set of all states satisfying a predicate. For this, we use
the Hoare triple notation (standard in Computer Science).
If P andQ are predicates anda an action, the Hoare triple
relatingP to Q by a is defined in CCL as

{P}a{Q} , ∀s, t . sJP K ∧ sJaKt ⇒ tJQK.
2) Behaviors and Temporal Logic:A behavior σ : N →

S of a programP = (I, C) is a sequence of states such that
σ(0)JIK and there exists a sequence{ci}

∞

i=0 of commands
in C satisfying the semantics ofP such thatσ(k)JckKσ(k+
1).

We reason about entire CCL programs using standard
temporal logic [13], [3], which we summarize here. Briefly,
temporal logic formulasare constructed from predicates,
actions, basic connectives (such as∨, ∧, ¬ and⇒) and the
special operators¤ (always) and♦ (eventually). Given a
temporal logic formulaF , we defineJF K to be a function
from behaviors to{true, false} and say that a states
satisfiesF if sJF K. If p is a predicate,a an action, and
F a temporal logic formulas, then

1) σJpK , σ(0)JpK,
2) σJ¤F K , ∀n.〈σn, σn+1, ...〉[[F]].

The formula♦F is equivalent to¬¤¬F . We also find the
co operator, similar to one introduced in [1] and [2], to be
useful. If p andq are predicates, then

p co q , ¤ (p ⇒ [(q′ ∨ skip) ∧ ♦q′])

Thus,p co q (read “p constrainsq”) means that whenever
p is true, then after the next time the state changes,q will
be true.

We will generally be interested in when all possible
behaviors allowed by a programP and its accompanying
semanticsM satisfy a temporal logic formulaF . If this is
the case we write

P |=M F,

which we read “P modelsF under M .” If this property
is true for the UNITY semantics (which require only that
all commands are chosen infinitely often), we simply write
P |= F .

D. Dynamics and Time

When reasoning about a real-time system it will be nec-
essary to keep track of time and update the dynamics. We
can accomplish these tasks simultaneously with a program
that updates the state according to a discrete model of the
dynamics of the system and increments the time. Consider
a general control system

q̇ = f(q,u), (1)

whereq ∈ Q, u ∈ U , and assume that the controlu is held
constant over time intervals∆t. Let Φ∆t : Q× U → Q be
the map of the dynamics through time∆t. To model the
flow of time we keep track of two variables, the current
time t and the time of the next state updatetn. Each time
we update the dynamics usingΦ∆t we set the current time
to tn and incrementtn by ∆t. As a specification for a CCL
program, we have

Program Pdyn(t0,∆t)
Initial q ∈ Q ∧ u ∈ U ∧ t = t0 ∧ tn = t0 + ∆t

Commands true : q
′ = Φ∆t(q,u)

∧t′ = tn
∧t′n = tn + ∆t

Now to model the facts that each command takes some
time to execute and there may be time in between the
execution of the commands, we append the rulet′ ∈ (t, tn)
to each rule of the system (for space reasons we omit this
from the specifications in the remainder of the paper and
assume it is present). If we wish to bound the amount of
time any command may take byδt, we canrefine this rule
to obtaint′ ∈ (t, tn) ∩ (t, t + δt). Assuming no other rules
modify t or tn, we have the following property:

Proposition 1: Let Q = (IQ, CQ) be any program such
that for all commandscq ∈ CQ and any statess1 and s2,
s1JcqKs2 ⇒ s1Jt′n = tn∧t′ ∈ [t, tn)Ks2. That is, a command
cq may not modifytn and may only modifyt by a rule that
implies t′ ∈ [t, tn). Let P1 = (I, C) = Pdyn(t0,∆t) ◦ Q.
Then

P1 |= ¤(tn − ∆t ≤ t < tn).

Proof: Let Π ≡ (tn − ∆t ≤ t < tn) be the property
in question. Letc ∈ C be any command and lets1 ands2

be any two states such thats1JcKs2. We proceed by cases
to show that{Π}c{Π}:

1) s1JcKs2 ⇒ s1Jt′n = tn ∧ t′ = tKs2:
In this case{Π}c{Π} trivially.

2) s1JcKs2 ⇒ s1Jt′n = tn ∧ t′ ∈ [t, tn)Ks2:
Firsts1Jt′n = tnKs2, sos1JΠK ⇒ s2Jt < tnK. We have
s1Jt′ ≥ tKs2 by assumption ands1JΠK ⇒ s1Jt ≥
tn − ∆tK, so s1Jt′ ≥ tn − ∆tKs2. Then alsos1Jt′ ≥
t′n − ∆tKs2 or simply s2Jt ≥ tn − ∆tK. Finally we
haves2Jtn −∆t ≤ t < tnK, or equivalentlys2JΠK so
{Π}c{Π}.

3) s1JcKs2 ⇒ s1Jt′ = tn ∧ t′n = tn + ∆tKs2:
By simple algebras2Jt = tn − ∆tK, so s2JΠK
regardless ofs1 and{Π}c{Π}.

By assumption on the commands ofQ we have covered
all possible commands, so for allc ∈ C we have{Π}c{Π}.
By Lemma 5.2 of [9] thenP |= Π co Π. By the Initial
section ofPdyn we see thatI ⇒ Π. Then by Lemma 5.3
of [9] we haveP |= ¤Π, the desired result.

III. SYSTEM DESCRIPTION

We now turn to the task of specifying the demonstration
system. This system consists of two aircraft, a human-
piloted F15 fighter and an autonomous T33 jet trainer
serving as a UAV surrogate.

A. Dynamics and Semantics

We will first describe the dynamics of the aircraft in
continuous time, then using the technique outlined in
Section II-D we will convert this description to a CCL
specification and accompanying semantics. We use a simple
planar kinematic model to describe each aircraft,

ẋ = v cos ψ,

ẏ = v sin ψ, (2)

where(x, y) ∈ R
2 is the position of the vehicle,v ∈ R

+ is
the speed, andψ ∈ S1 is the heading. For the vehicles we
analyze, inner-loop controllers regulate the dynamics and
we can assume outer-loop actuation of the form

ψ̇ = u1,

v̇ = u2. (3)

Thusq = (x, y, ψ, v) andQ = R
2 × S1 × R

+.
We assume that the aircraft share similar performance

charactaristics. While this may not be the case in practice
(for example, an F15 has dramatically higher capabilities
than a T33), it will be necessary to limit the performance
of one aircraft to suit the other in order to safely fly in
formation. In fact, it may often be most realistic to think of
the performance limit as imposed by operating procedures

rather than physical limitations. Let the maximum turn rate
be ψ̇max and the maximum acceleration bev̇max so that

U = {(u1, u2) : −ψ̇max ≤ u1 ≤ ψ̇max,

− v̇max ≤ u2 ≤ v̇max}.

Using the technique described in Section II-D, we specify
two programs,Fdyn andTdyn, to keep track of the dynamics
of the F15 and T33, respectively, using the subscript1 to
denote the F15 (so for example the position of the F15
is (x1, y1)) and2 to denote the T33. We also constrain the
execution to obey the EPOCH semantics, with the additional
requirement that each epoch begin with the execution of the
command describing the dynamics. In the actual system the
execution of each epoch is triggered by an accurate software
timer every ∆t seconds and each epoch will complete
before the next trigger, so this is a realistic model.

B. Controllers

Each aircraft runs a controller that at each update uses
its own data plus what is known about the other aircraft to
generate controlsu. We envision that this is accomplished
by some functioncontrol : Q×Q → U that we will leave
unspecified aside from assumptions about safety properties
to be defined later. This allows us to use any number of
control techniques in the system to be implemented while
retaining the correctness of the safety proofs, provided the
implemented controller satisfies the safety specification.

Program Pc

Initial u = (0, 0)
Commands true : u′ = control(x1,x2)

As with the dynamics we denote the F15 controller by
Fc and the T33 controller byTc.

C. Formation Flight

Under normal operation the two aircraft will be flying in
formation with one another, with the F15 as a leader and
the T33 as a follower. This can be specified by creating a
coordinate system with the origin at the F15 and thex-axis
oriented with the F15. We then require that the T33 remain
within a ball of radiusd of some desired tracking point
(x0, y0) and with an orientation withinδψ of that of the
F15.

D. Communication

We suppose there are two communications links between
the two aircraft, a “high-speed” data connection for state
information and a less freqently used “low-speed” connec-
tion. The high-speed link is implemented by the lower-
level command and control software, and because the CCL
program on the T33 interacts with this subsystem only
to check if new data have arrived we abstract it into a
commandcdata that updatesTs, the next time data will
be sent by the F15, andT , the next time data will be
received by the T33. The send timeTs is incremented by

∆T whenever data are sent, reflecting the fact that the F15
sends data at a regular rate, while the receive timeT can be
anything in the interval(Ts, Ts+τd], reflecting the uncertain
time delay in the system. We keep track of the status of the
data link using the boolean variabledata on.

We model the low-speed communications link using a
mailbox with a queue and a nondeterministic time delay
of up to τc. When a message is sent, a record is added to
the end of the queue containing a scheduled arrival time
ta ∈ (t, t + τc]. We write send(i, y) as shorthand for

t̃′a ∈ (t, t + τc]

∧queue′i = queuei#[data = y, ta = t̃′a],

where# is infix notation for concatenation of an element
to the end of a list andi is the index of the mailbox. We
then have the predicatein(i) which is true if a message
has arrived:

in(i) ≡ t ≥ (head queuei).ta.

As will be seen below, the nature of the messages we send is
such that we are only interested in the most recent message
received. We usemsg′ = recv(i) to denote setting the new
value of msg to the data field of the most recent record
in queuei for which t ≥ ta and then deleting fromqueuei

all messages for whicht ≥ ta. We use the index1 for the
mailbox of the F15 and2 for the mailbox of the T33.

All of these communications are specified by the program
Pcomm:

Program Pcomm

Initial Ts = t0 ∧ T ∈ (Ts, Ts + ∆T]
Commands cdata ≡ t > T ∧ data on :

T ′ ∈ (Ts + ∆T, Ts + ∆T + τd]
∧T ′

s = Ts + ∆T
cmsg,1 ≡ in(1) : msg′1 = recv(1)
cmsg,2 ≡ in(2) : msg′2 = recv(2)

IV. LOST WINGMAN PROTOCOL

The lost wingman protocol consists of two parts: a
CCL state machine managing the T33 and a detailed flight
procedure for the pilot of the F15. The flight procedure can
also be written as a state machine, and so for purposes of
analysis we can model the pilot’s behavior using CCL as
well.

A. T33

The state machine running on the T33 is depicted in Fig.
2. The system has four modes denoted by the variablem2

in the programs:

• normal, for normal formation flight, abbreviatedn
• lost1, for the case where the T33 has ceased receiving

state data from the F15 and has not yet received a
confirmation of lost status, abbreviatedl1,

• lost2, for the case where lost confirmation has been
received from the F15, abbreviatedl2, and

1

lost2

found

normal

’ = msg .ψref 2
ψ

v’ = msg .vref 2

2msg .m = "lost"

true

2msg .m = "normal"

t’ = tlost

"lost"send(1,)

t − T > T + d∆ τ

t’ = tlost

"lost"send(1,)

t − T > T + d∆ τ

t − T < T + d∆ τ
true

t − T < T + d∆ τ
true

lost

Fig. 2. T33 state machine.

• found, for the case where the state data link has
been reacquired but normal formation flight has not
resumed, abbreviatedf .

In this paper we will examine what happens when the
T33 enterslost1 mode fromnormal mode. The portion
of the state machine specification involving this portion of
operation is:

Program Tsm

Initial m2 = n
Commands clost ≡ m2 ∈ {n, f} ∧ t − T > ∆T + τd :

m′

2 = l1 ∧ t′lost = t
∧send(1, “lost”)

cfound ≡ m2 ∈ {l1, l2} ∧ t − T < ∆T + τd :
m′

2 = f
clost2 ≡ m2 = l1 ∧ msg2.m = “lost” :

m′

2 = l2 ∧ v′

ref = msg2.v

∧ψ′

ref = msg2.ψ

...

1) Normal mode: In normal mode the aircraft are in
a formation flight condition. The only transition out of
normal mode is tolost1 mode, which occurrs when F15
data has not been received by the latest expected arrival
time, i.e. whent − T > ∆T + τd. In this mode we place
the formation flight requirement on the T33 controller. Let
(x̃, ỹ, ψ̃) be the position and orientation of the T33 relative
to a coordinate system centered at the desired tracking point
with thex-axis in the direction of the F15’s orientation. We
then require

Fdyn ◦ Fc ◦ Tdyn ◦ Tc ◦ Pcomm |=EPOCH

¤(m2 = n ⇒ ‖(x̃, ỹ)‖2 < d ∧ |ψ̃| < δψ). (4)

We see here how CCL lets us abstract portions of the
problem into specifications that can be reasoned about
separately. We can use tools from control theory to show
that a pair of controllers meet the above specification and
then use the results derived below to show safety of the
complete system.

2) Lost 1 mode: In lost1 mode, the T33 has ceased
receiving state information from the F15. In this mode it
commands the controller to execute a pre-specified open-
loop escape maneuver. Transitions out of this mode are to
the found mode, if state data is reacquired, or tolost2
mode, if an acknowledgement message is received from the
F15.

3) Lost 2 mode:In lost2 mode the T33 has received a
messsage from the F15 that acknowledges the lost wingman
status and includes a reference speedvref and heading
ψref . The software then commands the controller to track
these references. The transition out of this mode is tofound
mode when state data is reacquired.

4) Found mode:In found mode the T33 has reaquired
the state data link and will command the controller to
maintain a safe distance from the F15. The T33 will then
periodically send a message to the F15 indicating the found
status and thereby requesting to rejoin the formation. The
transitions out of this state are back tolost1 mode if data
is once again lost or tonormal mode if the F15 approves
the rejoin request.

B. F15

The F15 state machine consists of just two modes (de-
noted by m1 in the specifications),normal, for normal
formation flight, andlost, for the lost wingman scenario.
In normal mode the pilot is free to fly at will within a
performance envelope that ensures safe formation flight is
possible. If the pilot receives a lost message from the T33,
the procedure is to transition to straight and level flight and
transmit to the T33 the resulting speed and heading. Upon
receiving and acknowledging a rejoin request and observing
that the T33 has rejoined formation safely, the pilot can
resumenormal operation.

V. VERIFICATION

We constrain the CCL software on the T33 to satisfy
the EPOCH semantics, and further require that each epoch
begin with the execution of the command updating the
dynamics and time. This is a model of the real system
in which the execution of an epoch is triggered by a
software timer. We then have a simple result stating that
for a programP1 as defined in Proposition 1 the maximum
increment in time between subsequent executions of a given
command is less than2∆t:

Proposition 2: Let σ be any behavior ofP1 and let
{ki}

∞

i=1 be the sequence of steps at which a commandc
is chosen for execution (i.e.σ−1(c) taken as an ordered
list). Then

σ(ki)Jt′ − t < 2∆tKσ(ki+1).

Proof: By Proposition 1 we know thatσ(ki)Jtn −
∆t ≤ t < tnK. By the constraint that each epoch begin
with the state update command we know thatσ(ki)Jtn ≤
t′ < tn + ∆tKσ(ki+1). Together this gives usσ(k1)Jtn −

∆t ≤ t < tn ∧ tn ≤ t′ < tn + ∆tKσ(ki+1), which implies
σ(ki)Jt′ − t < 2∆tKσ(ki+1).
A simple corollary is that for any timet1 and clausec there
exists ak such thatσ(k)Jt ∈ (t1 − 2∆t, t1) ∧ cKσ(k + 1).

A. Lost Wingman Scenario

We examine here a bound on the amount of time since
receipt of the last state data packet it takes for the T33 to
recognize that it is lost and enter lost mode.

Proposition 3: Let P2 = Tdyn ◦ Tsm ◦ Pcomm and letσ
be a behavior ofP2. Suppose there exists ak1 such that
σ(k1)Jt− T > ∆T + τd + 2∆tK, i.e. the time is more than
2∆t greater than the latest possible packet arrival time. Then
σ(k1)Jm2 ∈ {l1, l2}K. Formally,

P2 |=EPOCH ¤(t−T > ∆T +τd +2∆t ⇒ m2 ∈ {l1, l2}).

Proof: We examine the commandclost = glost :
rlost from the programTsm. By Proposition 2 there exists
a k2 < k1 such thatσ(k2)Jt > t′ − 2∆tKσ(k1) and
σ(k2)JclostKσ(k2+1), that is the clauseclost was chosen for
execution when time time was larger thanσ(k1)JtK− 2∆t.
Thus σ(k2)Jt − T > ∆T + τdK, and we examine the two
possible cases form2 whenclost was chosen:

1) If σ(k2)Jm2 ∈ {n, f}K then σ(k2)JglostK and so
σ(k2 + 1)Jm2 = l1K.

2) If σ(k2)Jm2 ∈ {l1, l2}K then σ(k2)J¬glostK and so
σ(k2)Jm′

2 = m2Kσ(k2 + 1).

Thus we see that{t − T > ∆T + τd}ccheck{m2 ∈
{l1, l2}}. Now the only command transitioning out of
{l1, l2} is cfound which has as part of its guard the predicate
t − T < ∆T + τd, so for all commandsc ∈ C, {t − T >
∆T + τd ∧ m2 ∈ {l1, l2}}c{m2 ∈ {l1, l2}}. Now for all
k3 ∈ [k2 + 1, k1] we haveσ(k3)Jt− T > ∆T + τd ∧m2 ∈
{l1, l2}K and so the result holds.

It will be impossible to prove that the two aircraft can
never collide if the F15 is never made aware that the T33
is in a lost state. Instead we will need to reason about how
soon the F15 receives the “lost” message and responds to it
and ensure that the aircraft cannot collide within that time.
Let the maximum time required for the F15 to roll level and
send a reply (thereby enteringlost mode) after receiving a
“lost” message beτr. The following proposition then gives
us a bound on the amount of time between the T33 entering
lost1 mode and the F15 enteringlost mode:

Proposition 4: Let k1 be such thatσ(k1) is the state im-
mediately after the T33 transitions tol1 mode, soσ(k1)Jt >
tlostK and σ(k1)Jm2 = l1K. Suppose there existsk2 > k1

such thatσ(k2)Jt > tlost + τc + τrK and for allk ∈ [k1, k2]
we haveσkJm2 ∈ {l1, l2}K. Thenσ(k2)Jm1 = lK.

Proof: We again examineclost, and see that the T33
sends a “lost” message when it transitions tol1 mode. The
F15 receives this message no more thanτc seconds later,
and itself transitions tol mode no more thanτr seconds

after that by assumption. Thus at some point in the interval
(tlost, tlost + τc + τr) the F15 enterslost mode, or

∃k3 . σ(k3)Jt ∈ (tlost, tlost + τc + τr) ∧ m1 = lostK.

Because time is increasing, i.e.t = t1 co t > t1, we see
that k3 ∈ [k1, k2].

By assumptionσ(k)Jm2 ∈ {l1, l2}K for all k ∈ [k1, k2],
and so in particular this is true fork3. The F15 only
transitions out oflost mode when it receives a “found”
message from the T33, which is only sent when the T33
transitions tofound mode, so

(m2 ∈ {lost1, lost2} ∧ m2 = lost) co m2 = lost.

Thus

∀k ∈ [k3, k2] . σ(k)Jm2 ∈ {lost1, lost2} ∧ m1 = lostK

and the result holds.
Proposition 5: Let tm be the time when the T33 receives

a “lost” message from the F15 andtl2 be the time when
the T33 transitions tol2 mode. Thentl2 − tm < 2∆t.

Proof: The proof is immediate from the application
of Proposition 2.

B. Lost Wingman Dynamics

In this section we use the underlying continuous-time
dynamics of the aircraft to determine bounds on the po-
sitions of the aircraft as they evolve in discrete-time. Let
Γ(x, y, ψ, ϕ) be the cone with vertex(x, y) oriented in the
directionψ and with half-angleϕ.

Proposition 6: Consider an aircraft with dynamics given
by Pdyn, whereΦ∆t is the map of (2) and (3) through time
∆t, and letσ be a behavior ofPdyn. Then for anyτ > 0
andk1, k2,

σ(k1)

t
t′ = t + τ ⇒ (x′, y′) ∈ Γ

(

x, y, ψ,
ψ̇maxτ

2

)|
σ(k2)

Proof: BecausePdyn is equivalent to a discrete-time
sampling of (2) and (3) it is sufficient to show that

(x, y)(t + τ) ∈ Γ

(

x(t), y(t), ψ(t),
ψ̇maxτ

2

)

.

The geometry of the system for a constant turn rateψ̇ is
shown in Fig. 3. After timeτ the angle∆ψ = ψ − ψ0 is
equal toψ̇τ . The two dotted lines in the figure are radii of
the same arc, so their lengths are equal. The angleγ is then
π−∆ψ

2
, so the angleϕ = π

2
− γ = ∆ψ

2
= ψ̇τ

2
. This angle

will be maximized forψ̇ = ψ̇max. Thus the aircraft must
remain inside the given cone.

Now we examine a sufficient condition that guarantees
the aircraft cannot collide.

Proposition 7: Suppose that at timet0 the F15 is located
at (0, 0) with orientation in the+y direction and the T33
is within a ball of radiusD of the point (x0, y0), where
|x0| > D (so the T33 can only be on one side of the F15),
with orientation equal to that of the F15 and at this time

(x,y)(t)

τ

r

r
ϕ

γ ∆ψ

(x,y)(t +)

Fig. 3. Geometry of Proposition 6. The aircraft starts at the lower-left
corner with orientation straight up and turns at a constant rate ψ̇.

the T33 begins executing the lost wingman maneuver (set
|ψ̇| = ψ̇max, with direction away from the F15). Then if

y0 sin
ψ̇maxτ

2
− x0 cos

ψ̇maxτ

2
+ D < 0 (5)

is satisfied for all0 ≤ τ ≤ t− t0, there can be no collision
between the aircraft before timet.

Proof: Assume thatx0 > 0; the rest of the result
follows from symmetry. We show that the path of the
T33 must lie behind the cone defined byϕ determined
in Proposition 6. The line defined byϕ can be written
as y = x

tan ϕ
, with points behind the line then given by

y < x
tan ϕ

. The position of the T33 whent − t0 = τ is

(x̃ + v

ψ̇max

(1 − cos ψ̇maxτ), ỹ + v

ψ̇max

sin ψ̇maxτ), where
(x̃, ỹ) is the actual starting position of the T33. This point
is behind the cone boundary if

ỹ + r sin ψ̇maxτ <
x̃ + r(1 − cos ψ̇maxτ)

tan ϕ
.

Thus if this inequality is satisfied for all0 ≤ τ ≤ t − t0,
the T33 is always outside the region reachable by the
F15 by time t0. The worst case is given by(x̃, ỹ) =
(x0−D cos ϕ, y0+D sinϕ). Substituting this into the above
inequality, noting from Proposition 6 thatϕ = ψ̇maxτ

2
, and

applying trigonometric identities yields the result.
We now extend this result to the case where the T33’s

initial orientation may differ from that of the F15.
Proposition 8: Suppose that at timet0 the T33 is within

a ball of radiusd of the point(x0, y0), where|x0| > d, with
orientation withinδψ of the F15 and at this time the T33
begins executing the appropriate lost wingman maneuver.
Then if

y0 sin
ψ̇max

2
− x0 cos

ψ̇max

2

+ d + δψ
v

ψ̇max

√

2 − 2 cos ψ̇maxτ < 0 (6)

is satisfied for all0 ≤ τ ≤ t− t0, there can be no collision
between the aircraft before timet.

Proof: We make the same assumptions as in Propo-
sition 7. Let the actual position of the T33 at timet0
be (x̃, ỹ). If the orientation matches that of the F15, the
position at timet0 + τ is again(x̃+ r(1− cos ψ̇maxτ), ỹ +
r sin ψ̇maxτ). The distance between this point and(x̃, ỹ)

is v

ψ̇max

√

2 − 2 cos ψ̇maxτ . If the initial orientation is per-
turbed byδψ, the resulting perturbation in the final position

is then df = δψ v

ψ̇max

√

2 − 2 cos ψ̇maxτ . Thus we can
bound the error caused by perturbing the initial orientation
by considering it instead as a perturbation ofdf in the
initial condition. The total effective perturbation in initial
condition is thenD = d + df . Substituting this into (5)
yields the result.

For the experimental system,v = 150m/s and ψ̇max =
0.1rad/s. If the T33 is attempting to track a point150m
away from the F15 andπ

6
radians behind it, Proposition

8 says that if the T33 begins executing the lost wingman
procedure while within a5m radius of the desired operating
point and within 5 degrees of alignment, collision-free
operation is guaranteed for11s.

We are now ready to attack the main safety result:
Theorem 1:Suppose data is generated at the F15 every

∆T seconds and received at the T33 with maximum la-
tency τd. Suppose the controller is such that under normal
operation, if a final packet arrives att = T , then at
t = T + ∆T + τd + 2∆t the T33 is within a ball of radius
d around the actual desired tracking position and withinδψ
of the F15’s orientation. Then if the condition in (6) holds
for d and δψ for 0 ≤ τ ≤ 2∆t + 2τc + τr, the T33 will
safely pass throughlost mode in the event of a packet loss.

Proof: If a packet arrives at timeT , the next packet
is expected by timeT + ∆T + τd. If this packet does not
arrive, the T33 will enterlost mode within 2∆t seconds
by Proposition 3. Thus by assumption on the controller, the
T33 enterslost mode while within a ball of radiusd of the
desired tracking point andδψ of the orientation of the F15.
By Proposition 4, the F15 will send a “lost” message and
transition tolost mode no more thanτc + τr seconds later.
This message will arrive at the T33 after no more thanτc

seconds, and by Proposition 5 the T33 will enterlost2 mode
no more than2∆t seconds later. The total time between the
T33 enteringlost mode and enteringlost2 mode is then
bounded by2∆t + 2τc + τr. By Proposition 8 the T33 and
the F15 cannot collide within this time. The other possible
transition out oflost1 mode is tofound mode if new data
is received; if this transition occurrs within this time then
the result holds trivially.

VI. EXPERIMENTAL IMPLEMENTATION

The software described here will be implemented on a
F15 and T33 testbed for a flight test in June, 2004. Low-
level control aboard the T33 will be carried out within
the framework of Boeing’s Open Control Platform (OCP).
The OCP will also incorporate a module that executes a
portion of the verified CCL code at scheduled intervals. The
programTsm and a portion ofPcomm will be implemented
in CCL, while the other programs discussed here serve as
specifications for the control code currently under develop-
ment. The CCL specifications for the F15 will provide the
basis for the detailed flight procedures given to the pilot.

VII. CONCLUSIONS AND FUTURE WORK

The results given by Theorem 1 rely on very conservative
assumptions about when a collision may occur. The problem
of minimal time for the F15 and the T33 to have a
possibility of collision is treated more precisely by the two-
car problem of differential game theory [14], and so one
avenue of future work is to apply results as in [4] to reduce
this conservatism.

A major focus of future work will be developing auto-
mated tools for the design and analysis of CCL specifica-
tions. Opportunities include the development of a graphical
design environment for state machines with automated CCL
code generation and the use of automated theorem proving
assistants such as Isabelle [15] when reasoning about speci-
fications. Such tools will become critically important as the
systems we analyze become more complex.

VIII. ACKNOWLEDGMENTS

This work was supported in part by DARPA under the
Software Enabled Control program, John Bay program man-
ager, and the Fannie and John Hertz Foundation. We thank
Brian Mendel and Jim Paunicka at Boeing for developing
the flight test platform and helping us transition this work to
the OCP framework. We also thank Richard Murray, John
Hauser, Jason Hickey, and Mani Chandy for influencing the
ideas described in this work.

REFERENCES

[1] K. Chandy and J. Misra,Parallel Program Design: A Foundation.
Reading, MA: Addison-Wesley, 1988.

[2] J. Misra, “A logic for concurrent programming: Safety and Progress,”
Journal of Computing and Software Engineering, vol. 3, no. 2, pp.
239–300, 1995.

[3] L. Lamport, “The temporal logic of actions,”ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, pp. 872–923,
May 1994.

[4] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verificationof conflict
resolution maneuvers,”IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 2, no. 2, pp. 110–120, 2001.

[5] Z.-H. Mau, E. Feron, and K. Billimoria, “Stability of intersecting
aircraft flows under decentralized conflict avoidance rules,” in AIAA
Conference on Guidance, Navigation, and Control, 2000.

[6] W. B. Dunbar and R. M. Murray, “Model predictive control of
multi-vehicle formations,” in41st IEEE Conference on Decision and
Control, Las Vegas, NV, December 2002.

[7] J. A. Fax and R. M. Murray, “Information flow and cooperative
control of vehicle formations,” in2002 IFAC World Congress, 2002.

[8] J. Hauser and R. Hindman, “Aggressive flight maneuvers,” in36th
IEEE Conference on Decision and Control, San Diego, CA, Decem-
ber 1997.

[9] E. Klavins, “A formal model of a multi-robot control and commu-
nication task,” in42nd IEEE Conference on Decision and Control,
Maui, HI, December 2003.

[10] ——, “A language for modeling and programming cooperative
control systems,” inProceedings of the International Conference on
Robotics and Automation, 2004, to Appear.

[11] “The Computation and Control Language (CCL).” [Online].
Available: http://sveiks.ee.washington.edu/ccl/

[12] “Verification of an autonomous reliable wingman using CCL.” [On-
line]. Available: http://www.cds.caltech.edu/∼waydo/lostwingman/

[13] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992.

[14] R. Isaacs,Differential Games. Mineola, NY: Dover, 1965.
[15] Isabelle: A generic theorem prover, ser. LNCS 828. Springer-Verlag,

1994.

