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ABSTRACT 
 
Naval air defense is a critical facility for ship survivability and has been subject of a number of studies.  We 
investigate here three different approaches to modeling it with computer software.  One approach focuses 
on the problems of information processing and communication for the air-defense team, and is good for 
analyzing its efficiency.  Another approach focuses on the inference of the nature of observed tracks, and is 
based on the novel psychological theory of conceptual blending.  A third approach uses an expert-systems 
approach that can learn from experience and be more substantially automated than the other two 
approaches.  Each approach has its own advantages: The first provides insights for organizing and 
managing air-defense personnel, the second provides insights into cognitive biases in analysis that should 
be examined during training, and the third suggests a way to mostly automate the air-defense process to 
save money.  This work suggests the value of multiple simulations of the same process when that process is 
important to understand. 

 
Naval air warfare is rapid and serious, and is a major focus of the operations of ships (Mairorano, Carr, and 
Bender, 1996).  Air-defense teams of "watchstanders" must train extensively in search, detection, and 
classification of all aircraft and surface vessels within the operational area of a ship's "battle group" 
(coordinated group of ships).  Actions taken are constrained by strict "rules of engagement".   However, 
continued advances in speed, maneuverability, and accuracy of anti-ship missiles mean watchstanders can 
get confused about the identity of tracks or be unable to communicate and react quickly and correctly.  Two 
incidents in the 1980s highlighted this: The USS Stark was attacked by anti-ship missiles, and the USS 
Vincennes mistakenly shot down a civilian airliner.  Air defense does require human judgment because of 
widely varying geographical, environmental, and tactical conditions.  However, it can certainly be aided by 
automated decision aids that summarize information (Noh & Gmytrasiewicz, 1998).  And good simulations 
help in training air-defense personnel since exercises with real ships, aircraft, and weapons are very 
expensive. 
 
In a U.S. Navy battle group, the Air-Defense Commander is responsible for the coordination of the force’s 
ships and aircraft. This includes surveillance, detection, identification, intercept, and engagement of aircraft 
within the operational area (“contacts”) with the primary objective of defending the group’s high-value unit 
such as an aircraft carrier.  Air defense is done in the Combat Information Center (CIC), which contains 
consoles for activating weapon systems, configuring sensor systems, displaying contact tracks, and 
communicating with other ships and aircraft.   
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A number of computer games such as the Harpoon series have simulated naval air defense, and some are 
quite realistic in depicting the environment and the effects of weapons.  However, their primary concern is 
entertainment, and their psychological modeling is simple. 
 
The Tactical Decision-Making under Stress study explored the causes of the USS Vincennes incident 
(Morrison et al, 1996).  Some problems were identified with the short-term memory limitations, such as 
forgetting and confusing track numbers, forgetting and confusing kinematic data, and confusing tracks of 
contacts.  Other problems were related to decision bias, such as carrying initial threat assessment 
throughout the scenario regardless of new information, and assessing a contact from past experiences.  This 
work also suggested how to improve command center display consoles. 
 
Other work examined the cognitive aspects of the threat-assessment process used by naval air-defense 
officers during battle group operations (Liebhaber and Smith 2000).  This indicated that watchstanders had 
possible-track templates, derived from a set of twenty-two identifying factors, which they used to classify 
contacts and calculate threat assessments.  The most important factors were observed to be signal 
emissions, course, speed, altitude, point of origin, Identification Friend or Foe (IFF) responses, flight 
profile, intelligence information, and distance from the detector.  Each factor had a range of values 
associated with each category of Friendly, Neutral, and Hostile.  This research was very helpful in 
developing all three of our simulations. 
 
(Liebhaber & Feher, 2002) built a cognitive model of "cues" in air defense.  This work showed that users 
definitely created templates to define which cues will be evaluated and the permissible range of data for 
each cue.  Cues were evaluated in a fairly consistent order, weighted, and processed in sets reflecting their 
weights.  Air-defense threat evaluators relied only the data associated with cues in their active template, did 
not change templates in the face of conflicting data, and were influenced by conflicting data in specific 
cues rather than in the overall pattern.  Situational awareness in particular was identified as a primary 
concern during task analysis for the Joint Maritime Command Information System (Eddy, Kribs, and 
Cohen, 1999).  It was affected by (1) capabilities, (2) training and experience, (3) preconceptions and 
objectives, (4) and ongoing task workload.  This work suggested that watchstanders lost site of the "big 
picture" as task workload increased. 
 
(Amori, 1992) presented a plan recognition system for airborne threats that does three-dimensional spatial 
and temporal reasoning.  It exploited physical data and changes to this data, known air tactics and 
behaviors, and likely primary and secondary goals.  One module analyzes the data associated with each 
track while another module analyzes coordinated activity between tracks.  Reasoning is done both 
"backward" (about observed tracks) and "forward" (predicting the future).   (Delaney, 2001) developed a 
system for more effective coordination of air-defense planning and execution for multi-service (i.e. Army, 
Air Force, Navy, and Marines) and international operations.  It develops and executes a theater-wide air-
defense plan providing an integrated view of the battlespace.  Its focus is threats, not the personnel 
responding to them.  Other work on classification of contacts in air defense (Barcio et al, 1995; Bloeman 
and Witberg, 2000; Choi and Wijesekera, 2000) explored a variety of mathematical techniques. 
 
(Osga et al, 2001) built specialized watchstation consoles with improved human-computer interface 
designs.  Research conducted extensive interviews and console evaluations with air-defense subject matter 
experts.  The consoles corrected interface problems in the current AEGIS consoles which caused errors, 
information overload, and loss of situational awareness.  These consoles reduced the needed size of the air-
defense team by two or three people while increasing performance. 
 
As for air-defense training, the Battle Force Tactical Trainer System (Federation of American Scientists, 
2003) was designed for the fleet-wide training of naval units by providing each ship with a system using 
the existing CIC console architecture.  High-fidelity scenarios can inject actual signal information into the 
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ship combat systems to simulate reality.  The system can simulate an entire fleet of ships and their staffs 
and support war-gaming exercises. 
 
Air defense also can be viewed as a problem in data fusion, the collecting of data from multiple sources and 
combining them to achieve more accurate results than could be achieved from a single sensor alone.    
Techniques that have applied to data fusion problems include expert systems and blackboard-based 
distributed systems (Hall & Llinas, 1997).  Data fusion can involve raw data, features extracted from data, 
or decisions made separately on each piece of data.  The first is the most accurate but requires the most 
processing bandwidth; the last requires the least bandwidth but is the least accurate.  Our simulations have 
generally used raw data because the total information available in air defense is not especially large. 

 
Our first simulation was the AEGIS Cruiser Air-Defense (ADC) Simulation, discussed in more detail in 
(Calfee & Rowe, 2004).  It models the operations of CIC watchstanders for a U.S. Navy battle group, using 
multi-agent system technology (Ferber, 1999).  Conceived to assist training and doctrine formulation, the 
simulation provides insight into the factors (skills, experience, fatigue, aircraft numbers, weather, etc.) that 
influence performance, especially under intense or stressful situations.  It simulates air contacts as well as 
the actions and mental processes of the watchstanders.  All simulated events are logged to permit 
performance analysis and reconstruction for training. 
 
The watchstanders modeled by the ADC Simulation were: 
• The Force Tactical Action Officer who controls air defense for the battle group and is responsible for 
major decisions such as contact classifications and weapons releases. 
• The Force Anti-Air Warfare Coordinator who coordinates the movement and assignment of friendly 
aircraft and orders the weapons employment by ships in a battle group. 
• The Ship Anti-Air Warfare Coordinator who directs aircraft detection and classification for a single 
ship in support of the air-defense effort and manages the identification process. 
• The Ship Tactical Action Officer who leads the CIC watch-team air-defense effort for a single ship. 
• The Missile Systems Supervisor who fires (under orders) the ship’s surface-to-air missiles and the self-
defense Close-In Weapon System. 
• The Red Crown watchstander who monitors friendly aircraft for the battle group. 
• The Electronic Warfare Control Officer who is responsible for the operation of the electronic-
emissions detection equipment. 
• The Identification Supervisor who does Identification Friend or Foe (IFF) challenges on unknown 
aircraft and, when directed, initiates query or warning procedures for contacts. 
• The Radar Systems Controller who operates the SPY-1A/B radar systems, the primary means by which 
aircraft are detected and tracked. 
• The Tactical Information Coordinator who operates the Tactical Digital Information Links which 
communicate data among the ships and aircraft in the battle group. 
• The Combat Systems Coordinator who monitors the status of the combat systems that support the CIC 
and repairs them as necessary. 
 
To build the simulation, interviews were conducted with five air-defense subject-matter experts from the 
AEGIS Training and Readiness Center Detachment in San Diego, California, and the Fleet Technical 
Support Center Pacific.  They had five to fifteen years of naval air-defense experience.  The materials of 
the simulation (agents, objects, and attributes) were determined from these interviews, relationships 
between agents and between agents and objects were explicitly defined, and tasks and actions for each 
agent and object were defined.  The simulation was then built from this information, debugged, and some 
minor adjustments were done. 
 
The ADC Simulation is implemented in Java.  The center of the screen (exemplified by Figure 1) shows the 
locations and statuses of the contacts; the Persian Gulf in 2002 was used for the prototype.  Contacts are 
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Friendly (U.S. aircraft), Neutral (commercial aircraft), Unknown, Suspect (potentially hostile), and Hostile 
(known Iranian and Iraqi aircraft).   A contact with a green background means it has not been processed by 
the Radar Systems Controller, and yellow means the simulated Force Tactical Action Officer has classified 
the aircraft incorrectly.  Other information obtainable but not shown in the Figure includes details of the 
contact currently in focus, details of the watchstanders, and controls for the simulation. 
 
 
 

 
Figure 1: Example view of user interface to ADC Simulation. 

 



 
CONTACTS AND AGENTS 
 
Friendly aircraft are generated by orders of the Force TAO or Force AAWC agents; others are generated at 
random based on the attributes of Contact Density and Hostile Contact Level.  Surface-to-air missile and 
anti-ship missile contacts are created by orders from either the CIC or hostile aircraft.  Neutral aircraft fly 
directly between two points.  The Friendly aircraft depart and return from Friendly bases and carriers, and 
conduct visual intercept, identification, and possible engagement of other aircraft.  The Hostile aircraft start 
in either Iran or Iraq, and have varied flight profiles including reconnaissance, low-altitude behavior, and 
approach and attack profiles.   
 
Aircraft and missile contacts have a track number, point of origin, course, speed, altitude, radar cross-
section, electronic signal emissions (based on radar type), and IFF (Identify Friend or Foe) mode. 
Simulated contacts are created by the ADC simulation as it runs.  All contacts fly piecewise-linear paths 
with landing and descent behavior at the ends.  They may respond to queries and warnings from the CIC, 
and may retreat or alter their courses accordingly.  They may also experience loss of their radar or IFF 
systems with a certain probability. 
 
The simulated watchstanders were implemented as agents with personal attributes and ways to 
communicate with one another to coordinate tasks.  Methodology for modeling teams of people has 
become increasingly sophisticated in recent years (Weaver et al 1995), and our approach exploited this.  
Each action has a probability of success based on the skill attribute of the watchstander: Basic (zero to six 
months experience), Experienced (six months to a year), and Expert (more than a year).  Skill and 
experience are separate: Skill affects the probability of success of an action, and experience affects the time 
to complete it and the degree of confidence in its results.  The experience levels were Newly Qualified, 
Experienced (10% faster), and Expert (20% faster).  For watchstanders that evaluated contacts, an 
Evaluation Confidence attribute is increased for each contact.  The initial value is 30 and is increased at a 
different rate for Newly Qualified, Experienced, and Expert levels (by 2, 4, and 6 respectively), to a 
maximum of 95 for Newly Qualified, 90 for Experienced, and 85 for Expert. 
 
The fatigue attribute controls the readiness of the watchstander (Burr, Palinkas, & Banta, 1993).  We used 
values of Fully Rested (having had a minimum of five hours of rest without having performed heavy 
physical labor or stood any watch), Tired (a minimum of three hours of sleep or at most six hours without 
rest in a fairly demanding environment), and Exhausted (less than three hours of sleep, or having performed 
heavy physical labor, or having performed duties over six hours in a demanding environment).  Fatigue 
decreased the success probability for an action and increased the length of time to do it.  Many of the 
interviewed experts also argued for a "decision-maker" attribute to reflect the differences among the 
watchstanders in how long they took to reach a decision.  The values proposed were Cautious (for a 
maximum of 30 seconds), Balanced (20 seconds), and Aggressive (10 seconds), with a uniform distribution 
of times up to these maxima. 
 
EQUIPMENT, ENVIRONMENTAL, AND DOCTRINE ATTRIBUTES 
 
The simulation modeled seven key items of equipment (though simplifying their characteristics to avoid the 
use of classified information).  Equipment had four readiness levels with associated probabilities of 
successful operation: Fully Operational (1.0), Partially Degraded (0.75), Highly Degraded (0.50), and Non-
operational (0.0).  In addition, if the user has activated the Scenario Equipment Failure Option, any of the 
systems could randomly fail during the scenario, requiring the watchstander agents to troubleshoot them 
until successful. 
 
To model the SPY-1B radar system, receiver operating characteristics from Swerling II statistics were used 
(Alvarez-Vaquero 1996).  Data was obtained from the AEGIS SPY-1B Radar Sphere Calibration Test 
Procedure of the Naval Sea Systems Command.   The SLQ-32 radar detects and classifies electronic signals 
emitted by aircraft and shipboard radar systems.  The Identification Friend or Foe (IFF) System recognizes 
friendly and neutral aircraft in five categories or modes.  Link 11 and Link 16 rapidly disseminate 



information about aircraft and ship contacts in the operational area, and maintain situational awareness 
about the battlespace. 
 
In the simulation, surface-to-air missiles were simulated with a 0.70 probability of intercepting their target 
and a range of eighty nautical miles.  To maintain realism, only two missiles can be launched against a 
target; if they fail, two additional missiles can be fired.  The Close-In Weapons System is a twenty-
millimeter shipboard self-defense system that contains its own radar and fire control system.  In the 
simulation, it has a range of one nautical mile and a 0.50 probability of hitting its target.   
 
The simulation has three options for the Environment attribute: clear weather, heavy rain, and heavy 
clutter.  Their primary effect is on detection and communications systems.  The Contact Density attribute 
controls the number of contacts (low, medium, or high).  The Scenario Threat Level attribute (white, 
yellow, or red) affects classification of aircraft contacts: The higher the threat level, the more likely the 
team is to classify aircraft as Suspect or Hostile, and the more numerous and aggressive are the hostile 
contacts. 
 
An AEGIS Doctrine defines additional procedures and situational parameters for the CIC.  The simulation 
implemented just the Auto-Special Doctrine, a weapons doctrine used to reduce reaction time and human 
errors when a fast-moving anti-ship cruise missile is detected very close to the ship.  It directs that the 
ship’s combat systems will automatically engage the hostile missile with surface-to-air missiles.   
 
WATCHSTANDER PROCEDURES 
 
Air defense has three phases: (1) contact detection and reporting, (2) contact classification, and (3) action 
response.  Each has assigned watchstanders and a defined flow of information (Figure 2).  The simulation 
agents follow this plan of action.  To model human processing limitations, there are input-message 
reception queues, message-priority processors, priority queues, action processors, and output-message 
transmission queues.  Watchstander agents place order/request messages into other watchstander’s input-
message queues.  15 kinds of reports and 6 kinds of orders are handled in the implementation. 
 
Watchstanders must prioritize contacts.  Their criteria are newness of the contact, closeness to the ship, 
whether it is approaching, and duration since the last examination.  But not all watchstander agents in the 
simulation rate these criteria the same way.  Furthermore, watchstanders must periodically reevaluate the 
same contacts.  To model the cognitive and decision-making aspects of contact classification, linear models 
were used that take a weighted sum of six numeric factors: closing course, speed, altitude, signal, origin, 
and mode.  Different weights are used for each Scenario Threat Level (White, Yellow, and Red).  Four 
thresholds are used to distinguish the conclusions Hostile, Suspect, Neutral, Unknown, and Friendly based 
on the advice of the experts as well as their actual usage by operating naval forces (see Table 1).  Initial 
contacts are usually Unknown. 
 
LOGGING 
 
Five simulation logs are kept: the Scenario Events Log, the Watchstander Decision History Log, the CIC 
Equipment Status Log, the Watchstander Performance Log, and the Parse/Analyzer Log.  The Scenario 
Events Log maintains a high-level record of all events.  From the logs, values are calculated for average 
initial detection time of aircraft, average initial classification time of aircraft, and average correct 
classification time of aircraft.  For the individual watchstanders, values are calculated for the number of 
errors, number of total actions attempted, percentage of errors in attempted actions, average action 
durations, and average communications time. 
 



 
 

Figure 2: Communications between the watchstander agents. 
 

Table 1: Default classification thresholds. 
 
Contact 
Classification 

Threat Level White 
Thresholds 

Threat Level Yellow 
Thresholds 

Threat Level Red 
Thresholds 

Hostile ≥ 600 ≥ 500 ≥ 450 
Suspect 500 to 599 450 to 499 400 to 449 
Neutral 400 to 499 300 to 449 200 to 399 
Unknown -399 to 399 -399 to 301 -399 to 199 
Friendly ≤ -400 ≤ -400 ≤ -400 
 
EVALUATION OF THE ADC SIMULATION 
 
We asked nine air-defense experts at the ATRC Detachment in San Diego to evaluate the simulation.  On a 
scale of 1 to 5, where 1 meant "strongly disagree" and 5 meant "strongly agree", the experts were 
reasonably satisfied with the user interface (Table 2).  They were also queried as to the realism of the 
simulation's variation in performance with key parameters on a scale of 1 to 7 (Table 3).  For instance, one 
question (the upper left of the table) asked whether it was realistic for the Radar Systems Controller that 
performance time improved and the number of errors decreased when the Experience level increased. 
These survey results were also encouraging. 
 
As for the predictive power of the simulation, five factors were selected as the focus of experiments: team 
skill, experience, fatigue, and the operational status of the SPY-1B radar.  For each factor value, ten 
scenario runs were conducted, for 170 individual runs.  The experts suggested that the most useful 
performance metrics were the duration of the actions of the watchstanders and their error rate.  Unless 
otherwise indicated, tests assumed the watchstanders were Experienced in both the skill and experience 
factors, were fully rested, were balanced decision-makers, and had fully functional equipment.  It was 
assumed that the external environment had medium contact density and threat level White; the hostile 



contact number was low; and it was clear weather.  To simplify comparisons between tests, kinematic 
attributes of the contacts were constant, starting locations were constant, destination points were the same 
for the same starting point, no new contacts were created, defensive measures were disallowed, and IFF 
was always present for Neutrals.  Table 4 shows the average percentage change in performance when 
varying the four test parameters from one extreme to the other; the error rate is significantly more affected 
than the other metrics. 
 

Table 2: Mean results for survey questions on the interface. 
Property Survey result mean Property Survey result mean 
Agent pop-up menu 4.2 Contact pop-up menu 4.2 
Simulation logs menu 4.0 Doctrine setup menu 4.0 
Scenario external 
attribute menu 

4.2 Equipment setup 
menu 

4.0 

Watchstander attribute 
menu 

4.0 File menu 4.4 

Submenu items  
logically organized 

3.8 Menus logically located 
by functional area 

3.8 

Menus easy to  
understand 

3.8 Pop-up menus arranged 
logically 

4.2 

Menus arranged 
logically 

4.0 Menus are intuitive 3.8 

Methods for tasks are 
reasonable 

3.8 Tasks are 
understandable 

4.0 

 
Table 3: Mean results for survey questions on the simulation realism. 

Issue as to realism Survey result 
mean 

Issue as to realism Survey result 
mean 

RSC skill change 6.11 RSC experience change 6.00 
RSC fatigue change 5.33 RSC SPY radar change 5.00 
Team interaction with RSC 
performance 

5.00 EWCO skill change 6.22 

EWCO experience change 5.89 EWCO fatigue change 5.44 
EWCO SLQ-32 change 5.44 Team interaction with 

EWCO performance 
5.44 

FORCE TAO skill change 6.00 FORCE TAO experience 
change 

5.78 

FORCE TAO fatigue change 5.56 FORCE TAO decision-
maker change 

4.33 

Team interaction with FORCE 
TAO performance 

5.22 Team interaction with 
FORCE TAO decision-
maker type 

4.44 

Realism of Trial #1 5.00 Realism of Trial #2 4.67 
 
 

Table 4: Average percentage change in task time, communications time, and error rate of three 
watchstanders, when varying key parameters over their range. 

 Skill Experience Fatigue SPY Radar Status 
RSC (Radar Systems 
Controller) 

3, 27, 47 5, 6, 14 5, 6, 14 7, 16, 11 

EWCO (Electronic Warfare 
Control Officer) 

5, 2, 35 12, 9, 34 5, 4, 41 2, 10, 15 

FORCE TAO (Force Tactical 
Action Officer) 

2, 11, 63 2, 2, 23 4, 5, 67 7, 17, 15 

 



A variety of additional experiments were conducted.  One interesting one compared a scenario where the 
FORCE TAO’s skill and experience were Expert while the fatigue attribute was Exhausted (Trial #1) with 
a scenario in which the FORCE TAO’s skill and experience were Basic and Newly Qualified, respectively, 
while the fatigue attribute was Well Rested (Trial #2).  For the other watchstanders in Trial #1, the skill and 
experience attributes were Basic and Newly Qualified, respectively, while their fatigue attributes were 
Fully Rested; in Trial #2, their skill and experiences attributes were Expert while their fatigue attributes 
were Exhausted.  Trial #1 showed better performance than Trial #2 except in the initial radar detection 
time, suggesting that the status of the team is more important than the status of their commander. 

 
Our second simulation was the Air Defense Laboratory (ADL) Simulation (Ozkan, 2004).  It focused on 
modeling how the Anti-Air Warfare Coordinator (AAWC) reasons during threat assessment for a frigate 
performing air defense.  It also provides a simulation environment that allows users to create realistic air-
defense scenarios and examine automated reasoning about the tracks.  It is written in Java and uses multi-
agent system technology to model the components of reasoning (as opposed to the agents in the previous 
ADC Simulation, each of which modeled a person).  Agents include both track-generator agents that 
control aircraft activities based on the type of the aircraft, and track-predictor agents that receive data about 
the aircraft and generate predictions about their identity and possible intent.  The simulation program uses a 
multi-threaded environment: More than 100 threads run in a five-track scenario.  XML files are used to 
store data logs. 
 
CONCEPTUAL BLENDING 
 
The ADL Simulation differs from previous research in that it uses "conceptual blending theory" for the 
cognitive model.  This model should permit better modeling of the way watchstanders reason about 
contacts.  This model is implemented using the CMAS Library, a set of utilities for implementing 
conceptual blending, developed by the IAGO (Integrated Asymmetric Goal Organization) project at our 
school.   
 
Conceptual blending theory is a general psychological theory of reasoning (Fauconnier & Turner, 2004) 
focused on reasoning by analogy in "mental spaces".  In a simplest blend operation, there are input, generic, 
and blend mental spaces.  Generic space contains the common input elements of the input spaces as well as 
the general rules and templates for the inputs.  Blend space is the place where the emergent structure 
occurs.  The projected elements from each input space and generic space create a new structure in the blend 
space.  Such blend operations can be cascaded in an "integration network" (Turner & Fauconnier, 1998).   
 
Blending involves composition, completion, and elaboration.  Composition involves relating an element of 
one input space to another with “vital relations”; this matching generally occurs under a "frame".  
Completion is pattern completion in which generic space is involved in the blending operation.  If the 
elements from both input spaces match the information stored in the generic space, reasoning by analogy is 
done.  Elaboration is an operation that creates a new "emergent" structure in the blend space after 
composition and completion.  Not all elements of the input spaces are projected into blend space, since 
processes use "selective projection".  For example for air contacts, one input space holds aircraft 
parameters and one holds the air-defense concept; the blend space need not include the color of the aircraft.   
 
Finding the relations between spaces becomes the most important issue in constructing new concepts in 
integration networks.  Turner and Fauconnier propose change, identity, time, space, cause-effect, part-
whole, representation, role, analogy, disanalogy, property, similarity, intentionality, and uniqueness as 
relations.  They also propose four kinds of topology for integration networks: simplex networks, mirror 
networks, single-scope networks, and double-scope networks.  Simplex networks have an "organizing 
frame" in one input space and relevant data in the other; mirror networks share the same organizing frame.  
The ADL Simulation uses only the simplex and mirror networks; simplex networks are used to assign 
properties to air tracks, and mirror networks are used to recognize coordinated activities between tracks. 

 
THE ADL SIMULATION 



Implementation of the ADL Simulation 
 
Like the ADC simulation, the ADL simulation has a user interface with menu options, an output panel, a 
toolbar, and a tactical display (Figure 3).  The user can specify the environment, create and delete airbases, 
air routes, and joint points, create user-derived aircraft, load a predefined scenario, save a prepared 
scenario, and create an Air Tasking Order message for friendly activity in the environment.  An output 
panel shows data of the selected track and the ratings of the competing identities for the track (Figure 4).  
Logging options can also be specified.   
 
A user can specify the number of randomly generated tracks and the percentages of the types of aircraft.  
They can also specify particular aircraft and track parameters for testing purposes.  They can specifically 
create snoopers (hostile aircraft collecting intelligence while circling a location), coordinated detachment 
attacks (tracks that split when two closely adjacent aircraft diverge), and missile firings (tracks that diverge 
from a firing aircraft). 
 
Our implementation of conceptual blending uses “connectors” and “tickets” (Hiles, 2002).   Connectors are 
like procedure calls in a programming language, and are a way to communicate and coordinate agents.  
Tickets are like conditional rules in a programming language, and trigger actions when a set of data 
matches some predefined criteria.  Tickets can be complete or incomplete, sequential or non-sequential. 
 
TRACK-GENERATOR AGENTS 
 
Track-generator agents control simulated aircraft including their waypoints, turning, speed changes, 
altitude changes, radar and IFF transponder usage, and attack tactics.  There are seven types.  Their 
implementation was based on our experience, tactical-procedure publications, and air-warfare game 
documents (Prima Games, 2004).   
 
Track agents find routes by searching across waypoints by using a combination of A* search and depth-
first search.  At each step in calculating a route, the track agent measures the distance to the next waypoint 
and determines the course to reach it.  When the aircraft comes to the turning point, it turns to a new 
waypoint with its "turning angle" (the amount the aircraft turns in one tenth of a second).  Based on the 
speed and course, new location points are calculated and track position is set to these points.  On the last 
waypoint the aircraft starts decreasing altitude and speed, and subsequently finishes its mission by landing 
at the destination airport.  This modeling was more accurate and sophisticated than that of the ADC 
Simulation.  
 
Typical parameter values for Civilian, Friendly, and Hostile aircraft are shown in Table 5.  The Civilian 
aircraft take off from an airport and follow air routes to the destination airport.  Takeoff and destination 
airports are picked randomly.  Civilian aircraft fly exclusively between a set of predefined waypoints.  
Besides this behavior, Friendly and Hostile aircraft also have specialized assigned tasks.  Friendly aircraft 
in our simulation can do offensive counter-air missions, offensive counter-air sweeping to shoot down 
enemy aircraft, reconnaissance, close-air support, barrier combat air patrol, deep missions, battle damage 
assessment, suppression of enemy air defense, defensive counter-air missions, and escort missions.   
Friendly aircraft originate from a friendly country and end in a friendly country, and their IFF-4 values are 
true with very high probability.  Hostile aircraft in our simulation can do high-altitude dive bomb attacks, 
regular dive-bomb attacks, popup attacks, and masquerading as a civilian aircraft.  All hostile aircraft take 
off from the "threat expected" sector except for the aircraft that have chosen a masquerade attack mission.  
These aircraft use randomly picked IFF-1, 2, and 3 settings; the IFF-4 value is false for Enemy aircraft with 
very high probability.  
 
 



 
 

Figure 3: ADL Simulation interface. 

 
 
 

 
Figure 4: Output panel for the ADL simulation. 

 
 
Besides these main track-generator agents, there are several others.  A Coordinated Detachment Attack 
track agent at first shows only one aircraft; at about 30 nm from the ship, the track splits and two aircraft 
fly 20° away from the previous course in different directions.  The Missile Attack track agent’s mission is 
to lead the aircraft toward the ship and release its missile about 40 nm away from the ship.  Then they turn 
away and leave the area.  Finally, there are missile track agents of two kinds.  The sea-skimming missile 
flies just over the sea with an 80ft altitude; the pop-up missile increases altitude suddenly at close range to 
the ship and then dives into ship. 



Table 5: Aircraft attributes. 

Attribute Civilian Friendly Hostile 
Takeoff and 
destination 
airbases 

Randomly chosen Randomly chosen Randomly chosen 

Initial speed 100 100 100 
Maximum speed 400 + random number      

(1-100) 
500 + random number             
(1-100) 

500 + random number           
(1-100) 

Max Acceleration 10-12 10-17 10-17 
Maximum altitude Around 30000 Around 20000 but varies 

with mission 
Around 20000 but varies 
with mission 

IFF-2 0 Determined by ATO Randomly chosen 
IFF-2 0 Determined by ATO Randomly chosen 
IFF-3 Random number 1-9999 Determined by ATO Randomly chosen 
IFF-4 False True False 
Radar Status On On On 
Radar Emission Civilian type Military type Military type 
Turning angle 2 degrees 4 degrees 4 degrees 
IFF Transponder 
Status 

On On On 

Origin Neutral sector Safe sector Threat-expected sector 
 
 
REACTIVE TRACK-PREDICTOR AGENTS 
 
For each factor we defined as being important for air defense, we implemented a reactive agent to monitor 
its relevant data and inform higher-level “reasoning” agents of changes.  We identified 17 reactive agents, 
all implemented as individual threads.  We used the factors in (Liebhaber and Smith, 2000) plus a few 
additional ones. 
 
The Airlane agent continuously compares the aircraft’s location to airlanes, standard commercial routes 
that civilian aircraft must follow; being in an airlane increases the probability that an aircraft will be 
civilian.  The Origin agent compares the origin of the aircraft with the threat-expected sectors; friendly 
aircraft originate with a very high probability from the friendly-country sectors while hostile aircraft 
originate from the threat-expected sectors. 
 
Naval ships have Electromagnetic Support Measurement (ESM) equipment to detect radar emissions.  
Civilian and military aircraft have specific navigation radars; military fire-control radars and missile-seeker 
radars are higher frequencies than navigation and surveillance radars.  (Liebhaber & Smith, 2000), cites 
radar detection as a major identification clue.  We defined five different ESM reports in the simulation: 
civilian, military, military fire-control, military seeker, and no radar emission.  The IFF agent reports 
Identification Friend or Foe information; IFF Mode 1 shows the mission of a military aircraft, Mode 2 the 
squadron, Mode 3 the air-traffic control controlling the aircraft (also used by civilian aircraft), Mode 4 
encrypted information friendly forces, and Mode C the altimeter value of the aircraft.  Similarly, a radar 
status agent follows radar emissions.  
 
Other agents monitor the contact heading change (since military aircraft turn more), maximum acceleration 
(since military interceptors and fighter aircraft can accelerate more than civilian aircraft), altitude (military 
aircraft fly at varied altitudes), maximum altitude, maximum speed (military aircraft have larger maximum 
speed than civilian aircraft), and speed variation (civilian aircraft maintain a steadier speed than military 
aircraft).  A Snooper-Detector agent identifies snooping activities by tracking reported locations in a two-
dimensional array.  If the number of locations in a given time within a sufficiently small bounding polygon 
exceeds a certain number, the agent identifies this as a snooper. 
 



Random errors are added by the agents into the parameters they report to make the simulation more 
realistic.  Errors increase with the range of the contact because of free-space loss, attenuation, distortion, 
fading, and multi-path propagations.  We used a formula for the error percentage which was the natural 
exponent of the range times a constant, for which we used 0.033 as a reasonable guess (the actual formula 
is classified).  This means that at a 128 nm range, the kinematics values received from the air track are 
wrong 71% of the time in the simulation with a random variation.  
 
REASONING TRACK-PREDICTOR AGENTS 
 
Each contact has an associated higher-level track-predictor agent which infers the identity and the potential 
intention of the aircraft.  These “reasoning” agents uses messages from the reactive track-predictor agents 
described above.  Each reasoning agent has two kinds of tickets, identity and independent.  We define an 
identity ticket for each aircraft identity; each identity has a weight and the weights are changed from the 
information transmitted with connectors from the reactive agents.  Initially, the Unknown has a 0.5 weight 
and all other models have 0.0001.   
• A Civilian identity ticket contains six data frames: a ESM frame, an altitude frame, a speed frame, an 

airlane frame, an IFF evaluation frame, and an origin frame 
• A Friendly identity ticket has an ESM frame, an IFF evaluation frame, an origin frame, and an ATO 

frame. 
• The Hostile identity ticket has an ESM frame, a range frame, an altitude frame, an airlane frame, a 

CPA frame, an origin frame, an IFF evaluation frame, a speed frame, a maximum-speed frame, and a 
combination of a altitude, range and CPA frames.   

• A Suspect identity ticket has an IFF evaluation frame, an altitude frame, an origin frame, a speed 
frame, and a maximum-speed frame. 

• An Unknown identity ticket has an IFF evaluation frame and an ESM frame.  
 
The Predictor track agent calculates the weights of each identity ticket by adding or subtracting 
contributions from the reactive agents in support of each identity.  Two weighting methods were explored: 
analog, where the weight change is a continuous variable, and digital, where the weight change is constant 
once the reactive-agent result is over a threshold.  For instance, for altitude change and the Civilian ticket, 
the analog approach adds Ae 0001.05 where A is the altitude to the weight, while the digital approach adds 
100 to the weight if the aircraft is between 25,000 feet and 35,000 feet.  Similarly, we add 

))400(81.1sin(100 −S where S is the speed with the analog approach, and 100 with the digital approach 
if the speed of the aircraft is between 0.76 and 0.89 mach. 
 
The track-predictor agents also have some independent tickets: 
• The ATO Evaluation ticket has frames for IFF-1, IFF-2, IFF-3, heading, location, and time. 
• The CPA calculator ticket has a frame for heading change. 
• The IFF Evaluation ticket has frames for IFF-1, IFF-2, IFF-3, and IFF-4.   
• The Split-Identity Detector ticket has two frames for location. 
• The Combination independent ticket has three frames for altitude, CPA, and range.  If aircraft is 

inbound, its range is close, and its altitude is low, a combination ticket sets the combination frame of 
the hostile ticket to true to provide extra weight to the hostile identity. 

 
The ATO ticket sets the ATO frame of the Friendly identity ticket by comparing the IFF, location, and 
heading of the contact to that of known air-tasking orders.  The CPA ticket calculates the closest point that 
the air track will pass by the ship.  The IFF Evaluation ticket combines data from four IFF frames.  IFF 
Mod I and IFF Mod II may be set or not set; if they are set, they may be right or wrong.  That makes total 
of three possibilities for each IFF Mod I and IFF Mod II.  IFF Mod III and Mod IV have two possibilities 
each.  Thus there are 36 different combinations for IFF Evaluation ticket.  We defined a table for these 
combinations giving a weight value for each identity ticket for each combination, based on standard 
procedures for air-defense teams.  Finally, the split-activity detector ticket has two location frames, one set 
by another track-predictor agent’s location connector when that track is first created, the other is set by 



track-location data.  If the other track location is found close to the first track location, a split connector is 
extended. 
Besides these, there are “regional” agents which combine information from tracks.  They look for snooper 
activity, coordinated detachment activity, and merge activities.  When a snooper is detected, the threat level 
is increased to yellow. The coordinated detachment detector ticket finds two correlated contracts that are 
close to the home ship.  The merge agent looks for nearby tracks at a similar altitude. Figure 5 shows how 
merge detection can be viewed as form of the “mirror network" form of conceptual blending. 
 
 

 
 

Figure 5: The merge detector blending operation. 
 

EVALUATION OF THE ADL SIMULATION 
 
Our tests used a range threshold  of 25 nm, a speed threshold of 500 knots, and a CPA threshold of 15 nm.  
We ran the simulation 10 times for each test, which resulted in 190 runs.  10 runs tested the level of reality 
of the ADL Simulation, 90 runs tested analog decision-making, and 90 runs tested digital decisionmaking.  
We limited each scenario time period to 5-6 minutes. We used a uniform distribution when selecting 
random numbers.  The scenarios tested are listed in Table 6. 
 
The ADL Simulation was tested by two air-warfare officers (AAWOs), two principal warfare officers 
(PWOs), and three Air Force pilots.  We ran the simulation ten times with different scenarios for each 
subject.   We asked the PWOs and one AAWO to assess the closeness of the decisions of the model to 
decisions of the real air-warfare personnel.  We asked them to talk continuously while they made decisions 
to catch the factors affecting the decisionmaking process, and recorded their voices on a tape recorder in 
addition to logging the runs they viewed.  In general the experts confirmed the realism of the simulation, 
but: 
 



Table 6: Test scenarios. 

Scenario  Scenario 
1 5 civilian aircraft with/without threat intelligence  
2 3 civilian aircraft and 1 friendly aircraft with/without threat intelligence 
3 3 civilian, 1 friendly, and 1 hostile aircraft with/without threat intelligence 
4 2 civilian, 1 hostile, 1 snooper, and 1 friendly aircraft with/without threat intelligence 
5 3 civilian aircraft and a coordinated detachment attack with/without threat intelligence 
6 3 civilian aircraft and a missile attack with/without threat intelligence 
7 3 civilian aircraft and a terrorist attack with/without threat intelligence 
8 3 civilian aircraft, 1 missile, and a coordinated attack with/without threat intelligence 
9 3 civilian aircraft and a terrorist attack with/without threat intelligence 
 
 
• One expert criticized the lack of issued warnings to air contacts.   
• Two experts stated that it would be more realistic if the ship had movement capability.   
• Two experts criticized the lack of tasking for air-defense missions.  We restricted the simulation to 

only one ship and ignored Link services, but real-world air defense involves coordination between 
ships.   

• Three experts criticized the Cartesian coordinate system used in the simulation. 
• Four experts declared that the civilian, snooper, coordinated detachment attack, and missile-attack 

agents behaved as they should, but that the behaviors of the friendly and hostile aircraft could be made 
more realistic.  Some of this is due to our use of necessarily unclassified models from game 
technologies.   

 
We recorded the actual identities of the aircraft in each simulation and compared them with the track-
predictor identities.  We ran the simulation ten times for each of nine different scenarios.  Tables 7. 8, and 9 
show the average time in seconds for the model to identify the contacts correctly.  It can be seen that analog 
evidence fusion performed better than digital fusion. 
 

Table 7: Average identification time for civilian contacts. 

Time to Identify 
Civilian 

Analog process 
without Threat 
Intelligence 

Analog Process 
with Threat 
Intelligence 

Digital Process 
without Threat 
Intelligence 

Digital Process 
with Threat 
Intelligence 

Mean 17.33 18.38 17.98 20.479 
Standard 
Deviation (s) 

5.68 7.315 4.665 5.157 

Variance (s²) 32.269 53.519 21.77 26.597 
 
 

Table 8: Average identification time for friendly contacts. 

Time to Identify 
Friendly 

Analog process 
without Threat 
Intelligence 

Analog Process 
with Threat 
Intelligence 

Digital Process 
without Threat 
Intelligence 

Digital Process 
with Threat 
Intelligence 

Mean 11.139 10.74  13.09  12.599 
Standard 
Deviation (s) 

5.324 4.135  4.722  4.606 

Variance (s²) 28.347 17.1  22.301  21.222 
 
 
The results also confirmed that the factors used by the subjects were a subset of the factors defined in the 
ADL Simulation.  However, the ADL Simulation was ten times faster than human decisionmaking on the 
average.  No differences were found between the final identifications made by the simulation and experts. 



 
 
 
 

Table 9: Average identification time for hostile contacts. 

 
6 Minute Scenario  
1 Hostile Track 

Analog process 
without Threat 
Intelligence 

Analog 
Process with 
Threat 
Intelligence 

Digital Process 
without Threat 
Intelligence 

Digital Process 
with Threat 
Intelligence 

Mean 11.3 11.52 13.3 11.059 
Standard 
Deviation (s) 

0.82 1.541 1.232 0.482 
Time to 
Identify Hostile 
(sec) 

Variance (s²) 0.674 2.376 1.519 0.233 
Mean 180.66 

(51.21%) 
274.66 (76.3%) 195.959 (56%) 114.16 (31.7%) 

Standard 
Deviation (s) 

17.093 89.879 61.245 57.047 

Total Time 
aircraft is 
identified as 
Hostile (sec) 

Variance (s²) 313.069 8078.37 3751.05 3254.452 
Mean 157.836 

(44.74%) 
63.44 (17.62%) 135.94 (38%) 227.16 (63.1%) 

Standard 
Deviation (s) 

16.807 89.882 59.459 55.257 

Total Time 
aircraft is 
identified as 
Suspect (sec) 

Variance (s²) 282.501 8078.89 3535.427 3053.343 
 

 
Our third approach was to build a relatively simple Bayesian model of the reasoning in naval air defense, a 
model that could learn from experience.  The analysis of the factors used by experts in (Liebhaber & Smith, 
2000) is surprisingly simple, since the air-defense environment has few clues and the way the clues are 
combined is not complex.  So rather than studying human performance by hand-coding a detailed model as 
the previous two simulations did, it might make more sense to code a relatively simple model and have it 
adjust a few parameters from training using the classic techniques of Bayesian analysis.  Another advantage 
could be that people have difficult trusting a model they cannot follow, and Bayesian methods often 
provide understandable simple models. 
 
The factors identified in (Liebhaber & Smith, 2000) fall into two categories: Those affecting the time a 
contact could take to reach the home ship, and the intrinsic suspiciousness of the contact.  The first 
functions like a negative cost, and the second like a probability for a decision-theoretic model.  It thus 
makes sense to segregate the factors affecting these two metrics and then combine their influences.  For 
time to reach the ship, speed, maximum speed, heading, turn radius, and bearing to the ship are the key 
factors.  As a first approximation, we can add the time for an aircraft to turn in a circle to a bearing facing 
the ship and the time to reach the ship from there.  Assuming the aircraft is distance D from the ship at a 
bearing of B from the ship and a heading of H with turn radius in the azimuth (map) plane of R, the 
distance it will need to travel to reach the ship by the shortest route is: 

)sin(2))cos(1(2)||,min(| 22 DHDRBHRDHBBHR −−−−++−− . 
As for the relationship between time to potential attack and perceived seriousness of the threat, it makes 
sense, on the average, that the more time available to counter a threat, the more options are available to 
counter that threat and the more effective those countermeasures will be.  So we will assume that the 
seriousness of the threat is a decreasing sigmoid function of the time to reach the ship. 
 

 
A BAYESIAN SIMULATION



As for the intrinsic suspiciousness of the contact, (Lieberhaber & Smith, 2000) cite the following factors 
from their interviews with experts, most of which we implemented for our simulation:  

• Low-altitude level flight 
• Significant distance from a civilian airlane 
• Hostile or unknown airport of origin 
• Sharp turn made 
• High speed 
• Aircraft over water 
• Not heading toward a civilian airport 
• Military-type electronic emissions 
• Nonzero or nonexistent IFF response 
• Weapons systems apparent 
• Missile launches 
• Coordination with other aircraft 
• Air support apparent (not implemented) 
• Intelligence reports indicating hostilities (not implemented) 

 
These factors are close to independent of one another when spurious, so a Naive Bayes formula is an 
appropriate approximation.  We use the odds form of Naive Bayes to handle better the occurrence of both 
positive and negative evidence, and only try to estimate the degree to which an aircraft is hostile (the most 
important conclusion about a track).  We use: 

)(*)](/)|([*...*)](/)2|([*)](/)1|([))&...&2&1(|( HoHoEnHoHoEHoHoEHoEnEEHo =
where o represents odds or p/(1-p), H represent the hypothesis that the aircraft is hostile, "|" means "given 
that", and E1, E2, through En represent pieces of evidence. 
 
We maintain counts for each of four counts for a hostility factor: (1) the number of occurrences of the 
factor with hostile contacts, (2) the number of occurrences with nonhostile contacts, (3) the number of 
times the factor did not occur with hostile contacts, and (4) the number of times the factor did not occur 
with nonhostile contacts.  Initial counts were assigned from intuition.  Then every time a track terminates 
during the simulation, we add its weighted counts to the current counts.  Weightings were based on the 
final assessed probability that the contact was hostile, not the probability when the clue was observed.  For 
instance, if the final probability of track 17 is that it was 80% likely to be hostile, and the track was within 
an airlane 20 times and outside 70 times, we add to the count for “hostile when in an airlane” the number 
20*0.8 = 16, to the count for “hostile when not in an airlane” the number 70*0.8 = 56, the count “not 
hostile when in an airlane” 20*0.2 = 4, and the count “not hostile when not in an airlane” 70*0.2 = 14. 
 
Figure 6 shows an example display from the simulation, which was also written in Java.  The ship is the 
yellow circle; the shaded area is water; blue circles are friendly airports; green circles are neutral airports; 
red circles are hostile airports; and red rectangles are air contacts displayed with identification numbers and 
current altitude.  Eight regions within each rectangle represent the presence or absence of eight main clues 
used in the odds multiplication: The first row shows (left to right) the occurrence of low-altitude level 
flight, being outside an airlane at some time, hostile origin, and a significant turn at some point not near an 
airport; the second row shows (left to right) high speed at some time, that the aircraft was over water at 
some time, the aircraft is not heading toward a neutral or friendly airport, and some military-suggestive 
event occurred (weapons presence detected, a launch, nonzero IFF, or coordinated activity with another 
track).  The right side of the display shows the current estimated probability that the contact is hostile and 
the current estimated danger level for the ship from that contact.  In the display shown, the system has 
correctly recognized all of the hostile aircraft from their behavior, although the probabilities will be 
improved as more evidence accumulates.  Several kinds of aircraft tracks are created randomly for 
scenarios, including point-to-point travel, arrival from outside the view area, snooping, coordinated attacks, 
and hijacked civilian aircraft.  The simulation can easily track hundreds of aircraft well in excess of human 
capabilities and appeared to better handle large numbers of aircraft than the other two simulations. 
 
 



 
Figure 6: View of the Bayesian simulation. 

 
We measured performance as the root-mean-square error in identification (with 1.0 being the perfect 
probability for a hostile contact and 0.0 for a nonhostile contact).  Learning definitely improved 
performance in distinguishing hostile contacts.  For instance, after running four times on the same scenario 
with 100 randomly generated aircraft tracks and a conservative value for the learning rate, performance 
improved from a 0.377 root-mean-squared error over the entire run to 0.369.  Performance after running on 
four different randomly generated 100-aircraft scenarios went from 0.377 to 0.383.  However, when run on 
a fifth different scenario of 100 tracks, performance of it was 0.398 whereas performance on the fifth 
scenario when trained four times on the first scenario was 0.411, demonstrating the importance of variety in 
training.  All these scenarios involved around 12,000 error terms for 12,000 platform-time data points. 
 
We also showed the system could learn to some extent a new idea, that hijacked civilian aircraft could be 
used to attack the ship.  We excluded the hijacked tracks from four scenarios, and trained on those four in 
succession; the performance went from 0.345 to 0.341.  Then performance was 0.411 on a scenario with 
hijacking.  We then trained it on the four previous scenarios which included hijacking, and performance 
ended at 0.403, so it was able to readjust, and more successfully than having just trained on one scenario 
with hijacking, albeit less successfully than with more-restricted scenarios.  In general, the system can be 
misled into incorrect learning by a cleverly deceptive adversary, as for instance if hostile aircraft head 
repeatedly toward hostile airports until one attack when they head toward the ship.  But human air-defense 
experts would be misled in much the same way.  The simulation, however, can handle much more complex 
situations than a human could without becoming confused.  It requires only 47 kilobytes of source code. 
 
 
 



 
All three simulations should be useful in training air-defense personnel.  The ADC Simulation (1.004 
megabytes in its JAR or executable file, including images) focused on the social interaction of an eleven-
member CIC air defense team.  It was particularly useful in analyzing the effects of watchstander skill, 
experience, fatigue, type of decision-maker, and environmental attributes on the performance of the 
individual as well as the overall CIC watch team, and showed bottlenecks and other inefficiencies.  
Assessment by air-defense experts suggested that it was quite realistic.  However, it is tailored to the way 
air defense is conducted today and would need redesign to model new methods. 
 
The ADL simulation (3.137 megabytes of source code and images including 1.987 megabytes for JAR files 
for the CMAS Library) focused on decision-making about contacts.  It seemed to perform well in modeling 
the results of human air-defense assessment as judged by experts.  However, it is a complex program 
because of its "conceptual blending" and the complexity does not appear justified by any significant 
improvement in performance over the Bayesian simulation which was 60 times smaller not even counting 
the CMAS Library.  (To be fair, it was more user-friendly for training needs than the Bayesian simulation.)  
While the tickets and connectors of the ADL simulation should in principle be better able to model the 
process by which evidence is considered by air-defense experts, we could not prove it did.  So Occam's 
Razor applies and we should prefer a simpler simulation.  Since air defense is far from the usual linguistic 
domains to which conceptual blending has been applied, and is not especially complex, air defense either 
may not be an appropriate application for conceptual blending or more work on details may be needed to 
apply it better. 
 
The Bayesian simulation (0.047 megabytes of source code with no images, resulting in 0.023 megabytes of 
Java-class code) showed that naval air defense can be learned by a relatively simple program.  This 
suggests that eleven people are not necessary to do it, and careful design of an initial air-defense program 
may not be critical.  Does this mean that naval air defense is “solved”?  Not be any means, because there 
are still difficult issues in the interaction between software and air-defense personnel.  But the simplicity of 
the Bayesian model suggests that judicious use of software support will enable air-defense tasks and their 
training to be simplified, to enable better human and human-system performance. 
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Why isn’t one simulation enough?
Different simulations can focus on different features 
of a problem.
Combining all features of a problem into one 
simulation may be too confusing to understand.
Simulations can (1) simulate ordinary people, (2) 
simulate experts, (3) simulate good learners.
We built three agent-based simulations of naval air 
defense of those kinds.
Primary architects were Calfee for (1), Ozkan for (2), 
and Rowe for (3).



Naval air defense

Goal is to protect a naval ship from air attack.
Inputs are locations of “contacts” (platforms) 
obtained from radar and their observed properties.
Outputs are orders for defensive measures.
For U.S. Navy, air defense is done in the Combat 
Information Center (CIC) by 11 or more people.
Thorough training is important, so all simulations 
logged results and replay of scenarios for use in a 
training tool.
(Liebhaber & Smith, 2000) gives an excellent list of 
clues for evaluating contacts as reported by human 
experts from the U.S. Navy.  So we used that.



Track factors cited in (Liebhaber & Smith, 2000)

Low-altitude level flight
Significant distance 
from civilian airlane
Hostile or unknown 
airport of origin
High speed
Sharp turn
Aircraft over water
Not heading to civilian 
airport
Military-type electronic 
emissions

Nonzero or nonexistent 
IFF response
Weapons system 
apparent
Missile launch
Coordination with other 
aircraft
Air support
Intelligence reports 
suggesting hostilities



The ADC (Calfee) simulation interface



Information flow between simulated people



More about the Calfee simulation

Modeled human imperfections too: Workload limits, 
lack of training, fatigue, equipment failure, situation 
criticality, weather.
A neural network aggregated clues to classify 
contacts as Hostile, Suspect, Unknown, Neutral, and 
Friendly (at different thresholds of a single metric).
Details were obtained from interviews with air-
defense personnel.
Subsequent tests at SPAWAR confirmed the realism 
of the simulation.
The simulation is excellent for answering “what if” 
questions about the effect of factors like fatigue and 
training.



The ADL (Ozkan) simulation

Focused on modeling the reasoning about air contacts 
done by the Anti-Air Warfare Commander (AAWC).
Used “conceptual blending” to model these 
inferences, a form of reasoning by analogy.
Used agents to represent the pieces of reasoning, not 
people.
Modeling was done by interviews and documents.
Experts confirmed the accuracy of the simulation.



The ADL simulation interface



Agents in the ADL Simulation



Principles of Blending
Conceptual blending is a set of operations for combining 

cognitive models in a network of mental spaces.



Operations of Blending

Composition
Completion
Elaboration

Element

Element

Element

Element

Element

Element

Generic Space

Rules

Common Elements

Blend Space



Air Defense Laboratory Simulation

Reactive agents
Reactive Space

Track agent Local
Space

Track Predictor
Agent

Regional
Agent

Regional Space



Air Defense Laboratory (ADL) Simulation

• Location
• Heading
• Speed
• Altitude
• Range
• CPA

• ESM 
• IFF values
• IFF transponder status
• Radar status
• Intelligence
• Geopolitical situation
• Origin
• ATO
• Detachment
• Split
• Merge

Used continuously Used once and then
only used if changed 

Reactive Agent Factors



Predictor Agent Competing Models

Models Friend

Civilian

Unknown

Suspect

Hostile

Weight

•Each identity is defined as a ticket.
•Tickets find a weight for each identity.
•Highest-weighted identity becomes the active 
model.
•Reactive agent connectors set the frames of these 
tickets.
•Also there are independent tickets: CPA calculator, 
IFF Evaluation, split detector, etc.



Regional Agent Activities

Detecting merge activity

Detecting coordinated detachment activity

Detecting snooper coordinated attack activity

Determining threat level



ADL Simulation and Blending



Is air defense too simple for conceptual blending?

This is pretty far from the original use of conceptual 
blending to explain linguistic metaphors.
In particular, you need to blend rather different 
mental spaces to get some power -- here we're 
blending the same kind, track data.
Thus it's more appropriate to view this as inheritance 
rather than reasoning by analogy (which is what 
blending is).
Inheritance: For every X and Y and for some Z, 
p(X,Y) <- r(X,Z), p(Z,Y).



The Bayesian (Rowe) simulation

Neither of the previous simulation learn much from 
experience.
A simulation could keep statistics from exercises to 
learn what clues signal hostile behavior.  Use final 
assessment of a track and find what clues appeared in 
the course of the track.
Such a simulation could be quite simple since it 
wouldn’t need a lot of initial knowledge.
Bayesian reasoning is the simplest way to implement 
such a learning system.



Naïve-Bayes odds calculation

This gives a formula for the odds that an aircraft is 
hostile (H) given evidence E1, E2, etc.

Here o represents odds or p/(1-p) and “|" means "given 
that".

Improvement if there are many time steps: Take to 1/M 
power each of the bracket ratios, where M is the 
"time window".  This means updates don't change 
values as fast.
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The Bayesian simulation interface



Testing of the Bayesian simulation

We generated a variety of test scenarios involving 
civilian, friendly, and hostile aircraft.  We can easily 
do > 100 aircraft at one time.
Tracks could be scheduled flights (some originating 
outside radar range), military reconnaissance, 
"snoopers", outright attacks, and hijacked civilian 
aircraft.
Results showed the system could improve with 
experience as it learned clues.
Results showed it could learn how to respond to a 
new threat it had not seen before, the hijacked civilian 
aircraft, when first trained on scenarios without it.



Conclusions
Occam’s Razor applies: Bayesian simulation seems to 
do almost everything the Ozkan simulation does, in 60 
times less code.  Thus we should prefer the former to 
automate air defense (but not to study it).
Air defense may be too far from linguistics, the original 
domain for conceptual blending.
The Calfee simulation addresses a different problem, of 
modeling personnel.  But Bayesian simulation suggests 
automating much of what those 11 people do.
Bayesian simulation requires good training of program, 
which may be hard to set up.
Bayesian simulation can be fooled by deliberately 
deceptive enemies, but so can people.



Automation reduces the need for training
If we can significantly automate parts of air defense, 
it simplifies the tasks of the remaining personnel.
That means less training is required.
Thus the goal of Mike Zyda’s USC-ISI group is self-
contradictory: If we can develop wonderful virtual 
environments for training, we can usually automate 
the tasks taught and have no need for training.
Exceptions would be skills requiring human judgment 
-- human vanity exaggerates their extent.
But human judgment shows many suboptimal biases.
The USS Stark and USS Vincennes incidents 
illustrate that people can have poor decision-making 
in air defense -- a computer might manage it better.


