Award Number: DAMD17 03-1-0418

TITLE: ErbB4 Overexpression as an Antagonist of ErbB2/HER2/Neu Induced Human Breast Cancer Cell Proliferation

PRINCIPAL INVESTIGATOR: Weiwen Long
Tamika Duplessis

CONTRACTING ORGANIZATION: Tulane University
New Orleans, LA 70112

REPORT DATE: August 2006

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
To test the hypothesis that ERBB4 signaling suppresses ERBB2-mediated cell proliferation in breast cancer, we introduced ERBB4 into SKBR-3 and MCF-7 breast cancer cell lines, which overexpress and express normal levels of ErbB2, respectively. We found that ERBB4 induces apoptosis in over 40% of both SKBR-3 and MCF-7 cells. Significantly, the normal human mammary epithelial cell line hTERT-HME was resistant to ERBB4 induced apoptosis. Although ERBB4 apoptotic function requires kinase activity, neither MAPK nor PI3-K signaling is involved in ERBB4 induced apoptosis. Further studies indicate that ERBB4 couples to the intrinsic apoptotic pathway through the mitochondrial proapoptotic protein Bak. A search for proapoptotic domains in ERBB4 revealed a putative BH3 domain within ERBB4 intracellular domain (4ICD). We found that 4ICD exhibits equivalent level of apoptotic activity as holoreceptor of ERBB4 and, in contrast, does not require the kinase activity. Mutation of the BH3 domain of 4ICD significantly decreases 4ICD-induced apoptosis. Taken together, our data indicate that ERBB4 functions as a proapoptotic BH3-only protein. The specificity of ERBB4 cell-killing for malignant cells further supports a tumor suppressor function for ERBB4.

ERBB4 ERBB2 Cell proliferation breast cancer cells

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON USAMRMC</td>
<td></td>
</tr>
<tr>
<td>19b. TELEPHONE NUMBER (include area code)</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>U</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>U</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>U</td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION / AVAILABILITY STATEMENT</td>
<td>Approved for Public Release; Distribution Unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>Original contains colored plates: ALL DTIC reproductions will be in black and white.</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td>To test the hypothesis that ERBB4 signaling suppresses ERBB2-mediated cell proliferation in breast cancer, we introduced ERBB4 into SKBR-3 and MCF-7 breast cancer cell lines, which overexpress and express normal levels of ErbB2, respectively. We found that ERBB4 induces apoptosis in over 40% of both SKBR-3 and MCF-7 cells. Significantly, the normal human mammary epithelial cell line hTERT-HME was resistant to ERBB4 induced apoptosis. Although ERBB4 apoptotic function requires kinase activity, neither MAPK nor PI3-K signaling is involved in ERBB4 induced apoptosis. Further studies indicate that ERBB4 couples to the intrinsic apoptotic pathway through the mitochondrial proapoptotic protein Bak. A search for proapoptotic domains in ERBB4 revealed a putative BH3 domain within ERBB4 intracellular domain (4ICD). We found that 4ICD exhibits equivalent level of apoptotic activity as holoreceptor of ERBB4 and, in contrast, does not require the kinase activity. Mutation of the BH3 domain of 4ICD significantly decreases 4ICD-induced apoptosis. Taken together, our data indicate that ERBB4 functions as a proapoptotic BH3-only protein. The specificity of ERBB4 cell-killing for malignant cells further supports a tumor suppressor function for ERBB4.</td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td>ERBB4 ERBB2 Cell proliferation breast cancer cells</td>
</tr>
</tbody>
</table>
INTRODUCTION

The epidermal growth factor receptor (EGFR) or ERBB family consists of four receptors, EGFR, ERBB2, ERBB3, and ERBB4. The members of ERBB family play important roles during the development and progression of breast cancer. Both ERBB2 and EGFR oncoproteins are overexpressed in a large subset of breast tumors. Their overexpression is associated with poor prognosis and inversely correlates with estrogen receptor (ER) status (1). High ERBB2 expression levels predict reduced disease-free and overall survival in both lymph node negative and lymph node positive breast tumors (2-5). The activated ERBB2/neu oncogene is capable of initiating immortalization and transformation of transfected cells and inducing mammary tumors in transgenic mice (6-10).

In contrast to the other members of the ERBB family, ERBB4 is expressed at less than normal levels in up to 75% of breast cancers (11, 12). When expressed, ERBB4 is associated with favorable prognosis and a differentiating tumor phenotype. (13-15). In contrast to EGFR and ERBB3, ERBB4 is rarely coexpressed with ERBB2 in breast cancer (16). When ERBB4 is expressed with ERBB2, ERBB4 appears to antagonize the negative clinical influence of ERBB2 expression (17). Importantly, a recent paper reported that reintroduction of ERBB4 into human breast cancer cells expressing ERBB2 inhibited cell proliferation and triggers cell differentiation (18). In the normal breast, ERBB4 signaling induces epithelial differentiation (19). Taken together, these results suggest that ERBB2 mediated tumor progression can be antagonized by ERBB4 signaling.

One of the important mechanisms on antagonizing tumor progression is to initiate apoptosis. In mammalian cells, Bcl-2 family proteins are major regulators of apoptosis. On the basis of the organization of BH (Bcl-2 homology) domains and their functions in apoptosis (pro-apoptotic or anti-apoptotic), Bcl-2 family is divided into three groups (20). Group 1 are the anti-apoptotic Bcl-2-like proteins containing all the four BH domains such as Bcl-2 and Bcl-xL. They antagonize apoptosis by directly inhibiting Bax/Bak dimerization, or indirectly by inhibiting Bid’s function in facilitating Bax/Bak dimerization. Group 2 are the pro-apoptotic Bax/Bak-like proteins containing BH1, BH2, and BH3 domains. They induce apoptosis by forming dimers on the mitochondria membrane and endoplasmic reticulum to induce cytochrome C and Ca2+ release, respectively. Group 3 are the pro-apoptotic BH3-only proteins such as Bid and Bad containing only BH3 domain. Bid promotes apoptosis by facilitating Bax/Bak dimerization on mitochondria or ER membrane, whereas BAD promotes apoptosis by binding to Bcl-2 and rescuing Bid from Bcl-2 inhibition.

To test the hypothesis that ERBB4 signaling suppresses ERBB2 mediated cell proliferation in breast cancer and to identify the molecular mechanisms regulating ERBB4 anti-proliferative activity, we introduced ERBB4 into the SKBR-3 and MCF-7 breast cancer cell lines, which overexpress, or express normal levels of ERBB2, respectively. Our studies reveal that ERBB4 induces apoptosis in transformed breast epithelial cells, but not in normal breast epithelium, by acting as a BH3-only protein. These findings demonstrate that ERBB4 may be suitable as a potential target for pharmacological intervention in breast cancer.
The research accomplishments are outlined below in the context of the original Statement of Work.

Task 1. To test the hypothesis that reintroduction of ERBB4 suppresses growth of human breast cancer cell lines (Months 1-12).
 a. To determine if over-expression of ERBB4 suppresses colony formation of human breast cancer cell lines (months 1-3)
 b. To determine if ERBB4 induces apoptosis in human breast cancer cell lines (months 3-8)
 c. To identify the apoptotic signaling pathway coupled by ERBB4 (8-12)

The goals outlined in this Task were completed and are represented in the attached Cancer Research publication entitled: The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Specifically results from Tasks 1a and b are summarized in Figure 1 and results from Task 1c are shown in Figures 1, 3, and 5.

Task 2. To identify the underlying mechanisms of ERBB4-induced apoptosis (Months 12-24).
 a. To determine if ERBB4 translocates to mitochondria (12-15)
 b. To determine if ERBB4 interacts with Bcl-2 family proteins such as Bcl-2 and Bak (months 15-20)
 c. To determine if ERBB4 induces Bax and/or Bak dimerization and cytochrome c release (months 20-24)

The goals outlined in this Task were completed and are also represented in the attached Cancer Research publication entitled: The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Specifically results from Task 2a are summarized in Figure 4, results from Task 2b are shown in Figure 3, and results from Task 2c are shown in Figure 5.

Task 3. To identify the underlying mechanisms of the specificity of ERBB4-induced apoptosis in malignant breast cell lines (Months 24-36).
 a. To determine if ERBB4 induces cell differentiation in human normal breast epithelial cells (Months 24-30)
 b. To determine the expression profiles of genes involved in mitochondrial apoptotic pathway in human breast cancer cells and breast normal epithelial cells (Months 30-36)
Progress on Task 3 was disrupted following hurricane Katrina in August 2005. We lost all of our cell lines and were out of the lab from August to December 2005. The recovery process has been slow however we have begun to address the questions posed by Task 3b. Towards the goals of Task 3b, we found that transformed cells were susceptible to ERBB4 induced apoptosis while immortalized epithelial cells remained resistant to ERBB4 cell-killing. This work is in press at *Oncogene* with G Vidal as first author (21). Based upon these preliminary results we examined different breast cell lines for expression of key members of the BCL-2 family with the hopes of finding differences in the expression pattern between ERBB4 susceptible and resistant cell lines. The results indicate that BAK which is essential for ERBB4 induced apoptosis is expressed in cell lines susceptible to ERBB4 cell-killing but is absent in the ERBB4 resistant HME cell line (Figure 1).

Task 3a will be pursued but unfortunately not during this funding period.

KEY RESEARCH ACCOMPLISHMENTS

1. Identification of a pro-apoptotic function for ERBB4
2. Demonstration that ERBB4 apoptotic activity requires proteolytic processing
3. We show that ERBB4 cell-killing is tumor cell specific
4. First demonstration of a cell surface receptor translocating to the mitochondria
5. Identification of ERBB4 as a novel member of the BCL-2 family
6. Confirmation of ERBB4 cell-killing activity in human breast tumors

REPORTABLE OUTCOMES

Manuscripts

Presentations

“ERBB4’s Function in Breast: From Normal Development to Cancer”. May. 5, 2004, Department of Structural and Cellular Biology, Tulane University, New Orleans, Louisiana.

Abstracts

Weiwen Long and Frank Jones. ERBB4 is an obligate mediator of Stat5 activation and mammopoiesis. Tyrosine Phosphorylation and Cell Signaling. Aug. 7-11, 2002. Salk Institute, San Diego, California.

Degrees Obtained

Weiwen Long received his doctoral degree in May 2005 based upon the research supported in this grant.

CONCLUSION

In conclusion, we have demonstrated that ligand stimulation and subsequent proteolytic processing of ERBB4 results in membrane release and mitochondrial accumulation of 4ICD, a proapoptotic BH3-only protein. Furthermore, 4ICD directly initiates mitochondrial permeabilization through activation of the apoptotic “gateway” protein BAK, distinguishing ERBB4 from transmembrane “death receptors” which must recruit a BH3-only protein to initiate mitochondrial dysfunction (20). This unique apoptotic function for a cell surface receptor provides the first mechanistic description of a cell death pathway directly integrating an activated transmembrane receptor with the tumor cell mitochondrial apoptotic machinery. Moreover, the potent cell-killing activity of
4ICD provides a mechanistic explanation for the selective loss of ERBB4 expression during the metastatic progression of breast cancer and supports a novel tumor suppressor function for ERBB4.

REFERENCES

APPENDICES

Manuscript Reprint

Weiwen Long Curriculum Vitae

Tamika Duplessis Curriculum Vitae
SUPPORTING DATA

Included in text.
The ERBB4/HER4 Intracellular Domain 4ICD Is a BH3-Only Protein Promoting Apoptosis of Breast Cancer Cells

Anjali Naresh,1 Weiwen Long,2 Gregory A. Vidal,2 William C. Wimley,1 Luis Marrero,3 Carolyn I. Sartor,4 Sian Tovey,5 Timothy G. Cooke,6 John M.S. Bartlett,1,2 and Frank E. Jones1

Abstract
ERBB4/HER4 (referred to here as ERBB4) is a unique member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. In contrast to the other three members of the EGFR family (i.e., EGFR, ERBB2/HER2/NEU, and ERBB3), which are associated with aggressive forms of human cancers, ERBB4 expression seems to be selectively lost in tumors with aggressive phenotypes. Consistent with this observation, we show that ERBB4 induces apoptosis when reintroduced into breast cancer cell lines or when endogenous ERBB4 is activated by a ligand. We further show that ligand activation and subsequent proteolytic processing of endogenous ERBB4 results in mitochondrial accumulation of the ERBB4 intracellular domain (4ICD) and cytochrome c efflux, the essential and committed step of mitochondrial regulated apoptosis. Our results indicate that 4ICD is functionally similar to BH3-only proteins, proapoptotic members of the BCL-2 family required for initiation of mitochondrial dysfunction through activation of the proapoptotic multi-BH domain proteins BAX/BAK. Similar to other BH3-only proteins, 4ICD cell-killing activity requires an intact BH3 domain and 4ICD interaction with the antiapoptotic protein BCL-2, suppressed 4ICD-induced apoptosis. Unique among BH3-only proteins, however, is the essential requirement of BAK but not BAX to transmit the 4ICD apoptotic signal. Clinically, cytosolic but not membrane ERBB4/4ICD expression in primary human breast tumors was associated with tumor apoptosis, providing a mechanistic explanation for the loss of ERBB4 expression during tumor progression. Thus, we propose that ligand-induced mitochondrial accumulation of 4ICD represents a unique mechanism of action for transmembrane receptors, directly coupling a cell surface signal to the tumor cell mitochondrial apoptotic pathway. (Cancer Res 2006; 66(12): 6412-20)

Introduction
Regulation of cell death pathways represents an important mechanism, whereby tumor cells gain a selective growth advantage and evade therapeutic eradication. Death decisions within mammalian cells are primarily regulated by the interplay between proapoptotic and antiapoptotic members of the BCL-2 family (1). In general, malignant cell survival is favored with enhanced protein expression of antiapoptotic and oncogenic BCL-2 family members, including BCL-2, BCL-XL, and MCL-1. These antiapoptotic proteins have in common four conserved BCL-2 homology domains (BH1-BH4). In contrast, the proapoptotic BCL-2 family members belong to two distinct functional classes: the BH3-only and multi-BH domain proteins. The BH3-only proteins, including BID, BIM, BIK, HRK, NOXA, and PUMA, share a single BH3 domain that is essential for cell-killing activity. They are activated in response to diverse developmental and cell stress stimuli and converge their apoptotic signal at the mitochondria or endoplasmic reticulum through activation of the multi-BH domain proteins BAX and BAK. Likewise, BAX and BAK require a BH3-only protein signal to initiate mitochondrial membrane permeabilization and subsequent cytochrome c efflux, the essential and committed step of the intrinsic apoptotic pathway. Cytosolic cytochrome c activates a cascade of potent cytotoxic proteases, referred to as caspases, which degrade numerous substrates typical of apoptotic cells. Although the BCL-2 family clearly influences tumorigenesis, the exact molecular mechanisms that underlie the complex interplay between BCL-2 family members and ultimately regulate mitochondrial dysfunction in tumor cells remain elusive.

Three members of the epidermal growth factor receptor (EGFR) family, EGFR, ERBB2/HER2/NEU (referred to here as ERBB2), and ERBB3, are associated with mitogenic pathways directly contributing to aggressive tumor phenotypes (2); however, the final member of this family, ERBB4, suppresses tumor cell proliferation (3, 4), possibly through modulation of cell death pathways (4). The influence of the EGFR family on human cancer is most apparent in breast cancer where ERBB2 is a key player during the progression of primary tumors to widespread and often lethal metastatic disease (2). In contrast, the levels of ERBB4 protein expression in breast cancer inversely correlate with tumor grade (5, 6), disease recurrence (7), and overall worsening patient prognosis (8, 9). Paradoxically, ERBB4 expression is essential for normal breast function (10, 11), prompting us to investigate the molecular mechanisms underlying the loss of ERBB4 expression during breast tumor progression. Consistent with clinical observations, initial studies of ligand-activated ERBB4 in breast cancer cell lines identified an antiproliferative function for...
ERBB4 (3), and our most recent findings suggest that ERBB4 induces apoptosis when reintroduced into transformed cells (4).

In addition to its unique ability to suppress malignant cell growth, ERBB4 is also the only EGFR family member to undergo ligand induced proteolytic processing. Ligand activation of ERBB4 results in tumor necrosis factor-α converting enzyme (TACE) cleavage and shedding of the 120-kDa receptor ectodomain, whereas the 80-kDa intracellular domain remains tethered to the cell membrane (12). Subsequent intramembrane cleavage by presenilin-dependent γ-secretase activity results in release of the ERBB4 intracellular domain (4ICD; refs. 4, 13, 14). Interestingly, 4ICD accumulates within several subcellular compartments, including endosomes (15), the nucleus (16), and mitochondria (4). A physiologic role for 4ICD has been identified in the nucleus where 4ICD directly regulates gene expression (4, 16, 17) by functioning as a nuclear chaperone for the transcription factor signal transducers and activators of transcription 5A (STAT5A) followed by 4ICD binding to DNA at STAT5A target promoters (16). Although both ERBB4 transcriptional coregulation and cell-killing activity require proteolytic processing at the cell surface to release 4ICD (4), the molecular mechanisms underlying ERBB4 apoptotic activity remain to be established.

Here, we show that ligand activation and proteolytic processing of ERBB4 in multiple breast cancer cell lines results in mitochondrial accumulation of 4ICD, cytochrome c release from permeabilized mitochondria, and apoptotic cell death. We further show that 4ICD harbors a BH3 domain, which is essential for 4ICD proapoptotic activity. Thus, 4ICD represents a novel BH3-only protein member of the BCL-2 family, capable of directly coupling a cell surface signal to mitochondrial dysfunction.

Materials and Methods

Plasmid constructs. Generation of the plasmids pERBB4-EGFP and pERBB4-BD-EGFP has been described elsewhere (16). The plasmid pHCID-EGFP expressing 4ICD (residues 673-1309) fused at the COOH terminus to enhanced green fluorescent protein (EGFP) was created by replacing the 2.4-kb SalI-BclI fragment from pBBERBB4 (16), with the SalI-BclI digested PCR product generated with the oligonucleotide primers 5′-CCAGCGGTTCGACCACTGACATTTGCTGTT (nucleotides 2038-2052; NM005235) and 3′-GGATGTTGGGTGGCTCAAGC (nucleotides 2410-2392; pBHCID-Flag). The 2.9-kb SalI-BclI fragment of pERBB4-EGFP was replaced with the 0.8-kb SalI-BclI fragment from pBHCID-Flag, and the resultant SalI-Sacl fragment was replaced in the Kozak translational start sequence. The construct p4ICDmuBH3-EGFP containing base substitutions L986A and D991A was created by inserting the oligonucleotide linker 5′-TCGAGACCCCTCAGAGAATACCTAGTTATTCAGGGTGATGATCGTATGA (nucleotides 2967-3013) into the corresponding XhoI-HindIII sites of pHCID-EGFP. The construct p4ICDKD-EGFP was created by replacing the 0.6-kb KpnI-AclI fragment of p4ICD-EGFP with the same fragment from pERBB4-BD-EGFP. The construct pBH4CDelB1H3-Flag with an in-frame deletion (residues 740-1020) containing the putative BH3 domain was generated by collapsing the KpnI/Sacl sites of pBH4CDFlag.

Cell lines. The cell line H10T16-HME was purchased from Clontech (Palo Alto, CA), and the human breast cancer cell lines MDA-MB-231, MDA-MB-361, T47D, MCF-7, and SKBr3 were purchased from the American Type Culture Collection (Manassas, VA). All cell lines were maintained according to the manufacturer's recommendations. The MCF-7/Bcl2-2 cell line stably overexpressing human BCL-2 has been described elsewhere (18). Generation and growth conditions of the mouse embryonic fibroblast (MEF) cell lines overexpressing human BCL-2 has been described elsewhere (18). Generation and growth conditions of the mouse embryonic fibroblast (MEF) cell lines overexpressing human BCL-2 has been described elsewhere (18).

Apoptosis assays. Apoptosis was determined visually by examining cells at 40 hours after transfection using an inverted Leica DMIRB fluorescent microscope and calculating the percentage of EGFP-positive cells displaying morphologic signs of apoptosis following 4′,6-diamidino-2-phenylindole staining. All samples were prepared in duplicate, and each experiment was repeated at least three times. Significant differences between data sets was determined using the paired Student’s t test.

Apoptosis was also determined by Annexin V-APC/7-AAD (BD Pharmingen, San Diego, CA) staining of cells cotransfected with pEGFPN3 and pLXSN, pLXSN-ERBB4, or pLXSN-ERBB4KD exactly as described by the manufacturer. The level of apoptosis was determined by flow cytometry analysis of EGFP-positive cells using a Becton Dickinson FACSCalibur. Data was analyzed using CellQuest (Becton Dickinson, Mountain View, CA) software according to the manufacturer's instructions. All samples were prepared in duplicate and each experiment was repeated at least three times. Significant differences between data sets was determined using the paired Student’s t test.

Apoptosis induced DNA fragmentation of heregulin β1 (R&D Systems, Minneapolis, MN)–stimulated T47D cells was determined by terminal deoxynucleotidyl transferase–mediated nick-end labeling (TUNEL) assay. In these experiments, T47D cells were stimulated with 50 ng/mL of heregulin β1 for 24 or 48 hours, and DNA fragmentation was detected using ApoTag Fluorescein In situ Apoptosis Detection kit (Chemicon) exactly as described by the manufacturer. Where indicated, T47D cells were preincubated for 1 hour before heregulin β1 stimulation with 20 μM/L of the broad spectrum caspase inhibitor Z-VAD-FMK (zVAD; BD Pharmingen).

Suppression of ERBB4 expression. To suppress expression of endogenous ERBB4, T47D cells were transfected with erb-4-HER-4 siRNA SMARTpool or Nonspecific siRNA Negative Control Pool using siPORTER transfection reagent (Upstate Biotechnology, Lake Placid, NY) according to the manufacturer’s instructions. Suppression of ERBB4 was confirmed by Western blot analysis of total cell lysates as described previously (20) using antibodies directed against ERBB4 (Santa Cruz Biotechnology, Santa Cruz, CA) and α-tubulin (Upstate Biotechnology) as a loading control.

In vitro transcription/translation and pull-down assay. In vitro transcription/translation was done with linearized pBluescript II SK, pBH4CD-Flag, pBH4CDe1B3H-Flag, or pcDNA-Bcl2 (generously supplied by Stanley Korsmeyer, Harvard Medical School, Boston, MA) using the TriT Quick Coupled Transcription/Translation System (Promega, Madison, WI) supplemented with 20 μCi of Redivue L-[^35S]methionine (Amersham, Arlington Heights, IL) exactly as described by the manufacturer. The pull-down assay was done using standard procedures with ANTI-FLAG M2-Agarose (Sigma, St. Louis, MO) as the affinity reagent.

Mitochondrial staining in situ. Mitochondrial localization of ERBB4-EGFP in transfected SKBr3 cells was visualized at 24 hours after transfection by incubating transfected cells in growth media containing 250 nmol/L Mitotracker Red (Molecular Probes, Eugene, OR) for 30 minutes at 37°C. Cells were fixed in 4% paraformaldehyde, counterstained with Hoechst, and coverslipped with Prolong Antifade Media (Molecular Probes). The slides were analyzed by deconvolution microscopy on a Leica DMRXA automated upright epifluorescent microscope (Leica Microsystems, Bannockburn, IL).

Subcellular fractionation. Subcellular fractions were prepared from ca. 3 × 10⁷ cells using modifications of procedures described elsewhere (21,22). Cells were harvested by scraping and resuspended into 600 μL of hypotonic RSB buffer [10 mmol/L Tris-HCl (pH 7.5), 10 mmol/L NaCl, 1.5 mmol/L MgCl2, with Complete Protease Inhibitors (Roche Diagnostics, Indianapolis, IN)] and incubated on ice for 20 minutes. Cells were disrupted with 25 strokes of a Dounce homogenizer fitted with a B pestle followed by 20 passages through a 27-gauge needle. A 2.5 × 10⁷ MS buffer [12.5 mmol/L Tris-HCl (pH 7.5), 525 mmol/L mannitol, 175 mmol/L sucrose, 2.5 mmol/L EDTA (pH 7.5)] was added to the iso-osmotic concentration of 1× MS (400 μL). Cell lysates were centrifuged at 1,300 × g for 6 minutes at 4°C. In some experiments, this cleared lysate was processed, as described below, to assay for BAK oligomerization. A crude mitochondria pellet was obtained by centrifugation of the cleared lysate at 16,100 × g for 20 minutes at 4°C. The supernatant was centrifuged at 100,000 × g for 1 hour at 4°C. The supernatant from this spin was saved as the cytosolic fraction (Cyto), and the pellet was dissolved in 200 μL of radioimmunoprecipitation assay buffer.
elsewhere (20) using rabbit anti-PARP at 1:1,000 (Roche Diagnostics). Sample was separated by PAGE and analyzed by Western blot as described. Complete Protease Inhibitor (Roche Diagnostics). Fifty micrograms of total protein were separated by PAGE and analyzed by Western blot using antibodies directed against ERBB4 (Santa Cruz Biotechnology), BAX (Upstate Biotechnology), BAK (Upstate Biotechnology), calnexin (Stressgen Bioreagents), cytchrome c (BD Biosciences, San Jose, CA), and TOM40 (Santa Cruz Biotechnology).

Assay for BAK oligomerization. The cleared cell lysate from above was cross-linked with 1 mol/L β-mercaptoethanol for 15 minutes, and cross-linked mitochondria were pelleted by centrifugation at 16,100 × g for 20 minutes. BAK oligomerization was analyzed by Western blot.

Western blot analysis of poly(ADP-ribose) polymerase cleavage. Cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (PARP) was examined in heregulin ρ1-stimulated T47D cells by Western blot analysis. Briefly, T47D cells were mock stimulated or stimulated with 50 ng/mL heregulin for 12, 24, or 48 hours, and cell lysates were prepared in high salt extraction buffer [20 mmol/L HEPES (pH 7.9), 350 mmol/L NaCl, 1 mmol/L MgCl2, 0.1 mmol/L EDTA, 0.5 mmol/L DTT, 1% NP40, 20% glycerol, and supplemented with 1 mmol/L phenylmethylsulfonyl fluoride, and Complete Protease Inhibitor (Roche Diagnostics)]. Fifty micrograms of each sample were separated by PAGE and analyzed by Western blot as described elsewhere (20) using rabbit anti-PARP at 1:1,000 (Roche Diagnostics).

Tumor microarray construction. The tissue microarrays were generated from retrospectively identified, archival formalin-fixed, paraffin-embedded primary breast cancer cases diagnosed at the Glasgow Royal Infirmary between 1984 and 1993. None of the patients in this sample set received neoadjuvant therapy. Three 0.6-mm cores of primary human breast cancer tissue were removed from representative tumor areas on each paraffin block identified by a pathologist. These cores were used to construct tissue microarray blocks in triplicate (80-120 cores per block). Cores of normal skin, smooth muscle, testes, lymph node, placenta, and tonsil were also included in the tissue microarrays as controls.

Immunohistochemical and statistical analysis of primary human breast tumors. Immunohistochemical staining for ERBB4/HER4 was done on tissue microarray samples using an antibody directed against the ERBB4 COOH terminus (Neomarkers, Fremont, CA) exactly as described elsewhere (9). The in situ TUNEL assay was done using the ApoTag Plus Peroxidase In situ Apoptosis Detection kit (Chemicon International, Temecula, CA) exactly as described by the manufacturer. Membrane or cytosolic ERBB4 staining and TUNEL staining was scored by first determining the intensity of tumor cell staining on a scale of 1 to 4, with 4 being the most intense staining. This number was multiplied by the percentage of tumor cells in each tissue microarray exhibiting positive staining and then divided by 100. Using this criteria, staining was recorded on a scale of 1 to 4 with 4 being the most intense widespread staining (examples of TUNEL staining are presented in Supplementary Fig. S1). Samples with staining of 3 to 4 were considered to be unequivocal positives and used for statistical analysis. In addition, all samples were examined by a total of four observers with a consensus obtained on all staining of 3 to 4. Examples of apoptosis staining from 1 to 4 are included as Supplementary Data.

Results

ERBB4 induces apoptosis of breast cancer cell lines. ERBB4 expression seems to be selectively lost as primary breast tumors progress to a more aggressive phenotype (5, 6). In addition, established human breast cancer cell lines either express low levels of ERBB4 protein or fail to express ERBB4 altogether (23). We have previously shown that reintroduction of ERBB4 into a breast cancer cell line resulted in an antiproliferative response (3). To determine the molecular mechanism underlying this apparent ERBB4-mediated growth suppression, we determined the effect of ectopic ERBB4 expression on the viability of multiple breast cancer cell lines, each differing in their expression of the estrogen receptor, the ERBB2 breast oncogene, or endogenous ERBB4. Reintroduction of ERBB4 into each breast tumor cell line tested resulted in apoptotic cell death of >60% of ERBB4-EGFP expressing cells (Fig. 1A).

Figure 1. ERBB4 induces apoptosis of breast cancer cell lines. A, the indicated cell lines were transfected with ERBB4-EGFP or pEGFP/N3 vector control. The expression of estrogen receptor (ER), ERBB2, and ERBB4 in each cell line is indicated. The percentage of apoptotic EGFP-positive cells was determined by morphology and chromosomal condensation following 4′,6-diamidino-2-phenylindole staining at 40 hours after transfection. Columns, mean of three experiments; bars, SE. B, Annexin V assay for apoptosis. The indicated breast cancer cell lines were cotransfected with pEGFP/N3 and control, ERBB4, or ERBB4KD expression vectors. The percentage of apoptotic EGFP-positive cells was determined by flow cytometry analysis following Annexin V-7-AAD staining at 40 hours after transfection. Columns, mean of three experiments; bars, SE. The lower region of each column indicates percentage of 7-AAD-positive cells. †, significant differences in each data set as determined by Student’s t test. C, ligand activation of endogenous ERBB4 results in apoptosis. T47D breast cancer cells were stimulated with 50 ng/mL heregulin ρ1 for 24 or 48 hours, and apoptosis was assayed by TUNEL. In some experiments, cells were pretreated with zVAD at 20 μmol/L for 1 hour before addition of heregulin ρ1. To suppress ERBB4 expression, cells were pretreated for 72 hours with erbb8-4HER4 siRNA SMARTpool (ERBB4 RNAi) or Nonspecific siRNA Negative Control Pool (Control RNAi), and TUNEL assay was done after a 24-hour heregulin ρ1 stimulation. D, Western blot analysis showing RNA-mediated down-regulation of ERBB4. T47D cells were mock treated or treated with control or ERBB4 RNAi for 80 hours, and 50 μg of total cell lysate was analyzed by ERBB4 or α-tubulin Western blot.
to affect ERBB4 cell-killing activity. ERBB4 apoptotic activity was substantiated by examining Annexin V binding to ERBB4-transfected MCF-7 and SKBr3 breast cancer cell lines. Annexin V binds to cell surface phosphatidyl serine, a specific marker for early apoptosis. Ectopic expression of ERBB4, but not the ERBB4 kinase mutant ERBB4KD, induced Annexin V binding to ~40% and 80% of transfected SKBr3 and MCF-7 cells, respectively (Fig. 1B).

We next determined if ligand activation of endogenous ERBB4 induced breast tumor cell killing. Stimulation of the ERBB4 expressing T47D breast cancer cell line, a rare cell line that overexpresses ERBB4, with the ERBB4 ligand heregulin β1 resulted in over 90% of stimulated cells undergoing apoptosis after 24 hours with nearly 40% of the cells apoptotic following a 48-hour heregulin β1 stimulation (Fig. 1C). Heregulin β1 also induced apoptosis of the MCF-7 breast cancer cell line (Fig. 3C), another cell line that expresses ERBB4. Suppression of ERBB4 expression in the T47D cell line by RNA interference (RNAi; Fig. 1D) inhibited heregulin β1-induced apoptosis confirming that ERBB4 mediates the apoptotic response of T47D cells to heregulin β1 (Fig. 1C). Control RNAi did not affect apoptosis induced by heregulin β1 (Fig. 1C). Heregulin β1-induced apoptosis was dramatically suppressed by preincubating T47D cells with the broad spectrum caspase inhibitor zVAD (Fig. 1C). These latter results imply that heregulin β1-induced apoptosis involves activation of cellular caspasas.

Cell-killing activity of the ERBB4 intracellular domain (4ICD) requires an intact BH3 domain; however, intrinsic kinase activity is dispensable. Having identified a dominant apoptotic function for ERBB4, we next designed experiments to identify the cellular apoptotic pathway recruited by ERBB4. We identified a potential BH3 domain within 4ICD (Fig. 2A and B), raising the possibility that 4ICD functions as a proapoptotic BH3-only protein member of the BCL-2 family. Significantly, ectopic expression of 4ICD in SKBr3 cells exhibited apoptotic activity at levels equivalent to the ERBB4 holoreceptor (Fig. 2C). In contrast to the ERBB4 holoreceptor, which requires an intact kinase domain for cell-killing activity, 4ICD induced significant levels of apoptosis in the absence of kinase activity (Fig. 2C). Mutations of 4ICD predicted to inactivate the BH3 domain (Fig. 2B), however, abolished 4ICD-mediated apoptosis (Fig. 2C). These results provide evidence that 4ICD has independent apoptotic activity and raises the possibility that 4ICD functions as a proapoptotic BH3-only protein member of the BCL-2 family. Similar BH3 domain base substitutions in full-length ERBB4 inactivated the intrinsic kinase essential for ERBB4 cell-killing activity; thus, the contribution of the BH3 domain to apoptosis induced by the ERBB4 holoreceptor was uninterruptible (data not shown).

4ICD forms a functional interaction with BCL-2. Similar to other BH3-only proteins (24, 25), the 4ICD BH3 domain sequence (residues 975-1002) can be modeled to form an amphipathic α-helix, which threads into the hydrophobic binding pocket of BCL-XL (Fig. 3A). This interaction between BH3-only proteins and antiapoptotic BCL-2 family members suppresses BH3-only protein cell-killing activity (1). We, therefore, determined if the 4ICD BH3 domain mediated a functional interaction with BCL-2. Consistent with the idea that the 4ICD BH3 domain is a protein interaction motif, we communoprecipitated in vitro translated BCL-2 with 4ICD but not with a 4ICD deletion mutant lacking the BH3 domain (4ICDdelBH3; Fig. 3B). Overexpression of the antiapoptotic BCL-2 oncogene disrupts apoptosis, in part, by binding to and sequestering BH3-only proteins (26). Likewise, heregulin β1-induced apoptosis was suppressed by stable overexpression of BCL-2 in the MCF-7 cell line (Fig. 3C). Furthermore, BCL-2 overexpression also repressed apoptosis induced by ectopic expression of ERBB4 (Fig. 3D). ERBB4-induced cell killing was, however, restored in the presence of BCL-2 by coexpression with BAD (Fig. 3D). BAD also harbors a BH3 domain and regulates apoptosis by binding to BCL-2, thereby releasing BH3-only proteins with intrinsic cell-killing activity (27). Taken together, these results strongly implicate 4ICD as a proapoptotic BH3-only protein and

Figure 2. An intact BH3-domain is required for ERBB4 cell-killing activity. A, schematic of ERBB4 functional domains. The ERBB4 extracellular domain (4ECD) consists of an NH2-terminal ligand-binding region composed of two cysteine-rich regions (cys1 and cys2). Proteolytic processing by tumor necrosis factor-α converting enzyme (TACE) and γ-secretase results in membrane release of the ERBB4 intracellular domain (4ICD; residues 673-1309), which harbors a potential BH3 domain (residues 986-992). B, alignment of the BH3 domains between ERBB4 and regulatory BCL-2 family members. BH3 domain consensus residues are stippled, and residues altered in 4ICDmutBH3 are underlined. C, cell-killing activity of 4ICD requires an intact BH3 domain. SKBr3 cells were transfected with pEGFPN3 vector control, ERBB4-EGFP, 4ICD (residues 673-1309) fused to EGFP (4ICD-EGFP), the same construct harboring mutations within the kinase domain (4ICDKD-EGFP) or the BH3 domain (4ICDmuBH3-EGFP), and the percentage of apoptotic EGFP positive cells was determined at 40 hours after transfection by morphology and 6-diamidino-2-phenylindole staining. Columns, mean of three experiments; bars, SE. *, sample significantly different from 4ICD and 4ICDKD but not EGFP control as determined by paired Student’s t test. Equivalent levels of ectopic ERBB4 and 4ICD expression was confirmed by Western blot analysis (top) of 50 µg of total cell lysate.
show that 4ICD cell-killing activity can be regulated by members of the BCL-2 family.

Heregulin β1–induced mitochondrial accumulation of 4ICD results in mitochondrial permeabilization. We next determined the molecular mechanism(s) underlying ERBB4 cell-killing activity. An important functional characteristic of BH3-only proteins is their ability to regulate apoptosis by localizing to and integrating signals at the mitochondria (1). We, therefore, determined if ectopically expressed ERBB4 localized to the mitochondria of transfected SKBr3 cells. Mitochondria were stained with MitoTracker Red (CMXRos), and CMXRos colocalization with ectopic ERBB4-EGFP was determined by deconvolution microscopy. The results indicate that a substantial perinuclear population of ERBB4 localizes to the mitochondria of SKBr3 cells undergoing apoptosis (Fig. 4A). We have previously shown that a point mutation introduced into the juxtamembrane region of ERBB4 (V673I) abolished γ-secretase processing of ERBB4 and subsequent membrane release of 4ICD. Significantly, and in contrast to wild-type ERBB4, this ERBB4 processing mutant (referred to as ERBB4V673I) was not detected in isolated mitochondria and lacks cell-killing activity (4). ERBB4V673I was, therefore, used as a negative control in our mitochondrial localization experiments. Similar to ERBB4, ERBB4V673I also accumulates in the perinuclear region of transfected SKBr3 cells, but ERBB4V673I fails to colocalize with CMXRos (Fig. 4B), providing additional evidence that ERBB4V673I is excluded from mitochondria. We confirmed these observations by Western blot analysis of mitochondria isolated from SKBr3 cells ectopically expressing ERBB4 or ERBB4V673I each lacking an EGFP fusion. Consistent with our previous results (4), 4ICD was the predominant form of ERBB4 localizing to mitochondria of ERBB4-transfected cells, whereas both the ERBB4 holoreceptor and 4ICD were excluded from the mitochondrial fraction of ERBB4V673I-transfected cells (Fig. 4C). We next determined if heregulin β1 stimulation of endogenous ERBB4 promoted mitochondrial accumulation of 4ICD. Mitochondria were isolated from T47D cells following a 1-hour heregulin β1 stimulation, and ERBB4 was detected by Western blot analysis. Consistent with ectopic expression of ERBB4 in SKBr3 cells, heregulin β1 stimulation of T47D breast cancer cells resulted in ERBB4 proteolytic processing, 4ICD membrane release, and mitochondrial accumulation of endogenous 4ICD (Fig. 4D). Low but detectable levels of mitochondrial ERBB4 holoreceptor was also observed (Fig. 4D). These results show that the 4ICD BH3-only protein is the predominant form of ERBB4 localizing to mitochondria in response to heregulin β1.

We next determined the effect of heregulin β1 stimulation and mitochondrial accumulation of 4ICD on mitochondrial membrane integrity. During activation of the intrinsic apoptotic pathway, the outer mitochondrial membrane is permeabilized, resulting in the efflux of cytochrome c from the intermembrane space. Subsequent cytosolic accumulation of cytochrome c is a hallmark of mitochondrial dysfunction essential for activation of cellular caspases and the intrinsic cell death cascade (1). Significantly, heregulin β1 stimulation of T47D cells resulted in a dramatic increase in cytosolic cytochrome c (Fig. 4D) and cleavage of the caspase-3 substrate PARP (Fig. 4E). These results indicate that heregulin β1–induced mitochondrial accumulation of 4ICD promotes mitochondrial permeabilization, cytochrome c efflux, and caspase activation, culminating in cell death. Detection of the integral mitochondrial membrane protein TOM40 was used to confirm purity of subcellular fractions (Fig. 4C and D).

BAK is the essential mediator of 4ICD-induced apoptosis. Cell death signals that activate the intrinsic apoptotic pathway must converge at the mitochondria through the multiple BH domain proteins BAX and BAK (28). Activation and subsequent oligomerization of mitochondrial BAX or BAK results in mitochondrial permeabilization and is the essential and committed step of the intrinsic apoptotic pathway. We, therefore, determined the effect of heregulin β1 stimulation of ERBB4 in T47D cells on endogenous BAX and BAK activation. When activated, BAX monomers translocate from the cytosol and oligomerize within the endoplasmic reticulum (22) and mitochondrial membranes (29) to initiate mitochondrial permeabilization, whereas activated BAK monomers residing within the mitochondrial membrane oligomerize to induce mitochondrial dysfunction (30). Heregulin β1 stimulation of T47D cells failed to stimulate endoplasmic reticulum or mitochondrial accumulation of BAX (Fig. 5A), suggesting that BAX is not involved in the heregulin β1/4ICD apoptotic pathway. Calnexin and TOM40 were included as controls for endoplasmic reticulum and mitochondrial fractions, respectively. In contrast, heregulin β1 stimulation of T47D cells promoted a depletion of BAK monomers with a corresponding increase in BAK dimer formation (Fig. 5B, compare lanes 2 and 4).
ERBB4-specific RNAi, but not the nonspecific control RNAi pool, abolished heregulin h1–induced loss of BAK monomers and accumulation of BAK dimers (Fig. 5B, compare lanes 6 and 8). Taken together, these results strongly suggest that heregulin h1 activation of ERBB4 results in activation of the BAK pore-inducing complex, leading to mitochondrial permeabilization and cytochrome c release. To further substantiate a role for BAK as the exclusive mediator of ERBB4 cell killing, we transfected MEF cells or MEF cells lacking BAX, or BAK, or both with ERBB4-EGFP and determined the levels of apoptosis in each cell line. In direct concordance with our observations of heregulin h1–stimulated T47D cells, ERBB4 induced apoptosis in >90% of transfected MEF and BAX-null MEF cells but only 10% of transfected BAK-null or BAX/BAK-null MEF cells (Fig. 5C). Collectively, our results indicate that heregulin h1 activation of ERBB4 and subsequent mitochondrial accumulation of 4ICD promote mitochondrial

ERBB4-specific RNAi, but not the nonspecific control RNAi pool, abolished heregulin β1–induced loss of BAK monomers and accumulation of BAK dimers (Fig. 5B, compare lanes 6 and 8). Taken together, these results strongly suggest that heregulin β1 activation of ERBB4 results in activation of the BAK pore-inducing complex, leading to mitochondrial permeabilization and cytochrome c release. To further substantiate a role for BAK as the exclusive mediator of ERBB4 cell killing, we transfected MEF cells or MEF cells lacking BAX, or BAK, or both with ERBB4-EGFP and determined the levels of apoptosis in each cell line. In direct concordance with our observations of heregulin β1–stimulated T47D cells, ERBB4 induced apoptosis in >90% of transfected MEF and BAX-null MEF cells but only 10% of transfected BAK-null or BAX/BAK-null MEF cells (Fig. 5C). Collectively, our results indicate that heregulin β1 activation of ERBB4 and subsequent mitochondrial accumulation of 4ICD promote mitochondrial

ERBB4-specific RNAi, but not the nonspecific control RNAi pool, abolished heregulin β1–induced loss of BAK monomers and accumulation of BAK dimers (Fig. 5B, compare lanes 6 and 8). Taken together, these results strongly suggest that heregulin β1 activation of ERBB4 results in activation of the BAK pore-inducing complex, leading to mitochondrial permeabilization and cytochrome c release. To further substantiate a role for BAK as the exclusive mediator of ERBB4 cell killing, we transfected MEF cells or MEF cells lacking BAX, or BAK, or both with ERBB4-EGFP and determined the levels of apoptosis in each cell line. In direct concordance with our observations of heregulin β1–stimulated T47D cells, ERBB4 induced apoptosis in >90% of transfected MEF and BAX-null MEF cells but only 10% of transfected BAK-null or BAX/BAK-null MEF cells (Fig. 5C). Collectively, our results indicate that heregulin β1 activation of ERBB4 and subsequent mitochondrial accumulation of 4ICD promote mitochondrial
prominent in perinuclear regions (Fig. 6). In contrast, staining for ERBB4 was TUNEL positive (C, arrowheads) where the majority of tumors with membrane associated ERBB4 (B, arrowheads) was significantly associated with increased tumor cell apoptosis (χ² analysis, P < 0.0001). D, TUNEL-positive nuclei (arrows). Arrowheads in (A) indicate membrane staining of ERBB4. Arrowheads in (C) indicate perinuclear accumulation of 4ICD. Arrows in all panels indicate nuclei. Bar, 50 µm (C).

Cytosolic 4ICD is associated with breast tumor apoptosis. Our current results imply that cytosolic accumulation of 4ICD may suppress tumor cell proliferation by activating cellular apoptotic pathways; however, can these findings be translated to a clinically relevant setting? To address this question, we analyzed a cohort of 136 therapy naive archived primary human breast tumors prepared as tissue microarrays were stained by immunohistochemistry for (A and C) ERBB4 using an antibody directed against the ERBB4 COOH terminus or (B and D) apoptosis indicated by DNA fragmentation (TUNEL assay) using an ApopTag In situ Apoptosis Detection kit. A and B, the majority of tumors with membrane associated ERBB4 (A, arrowheads) were TUNEL negative (B, nuclei indicated by arrows). C and D, cytosolic 4ICD expression (C, arrowheads) was significantly associated with increased tumor cell apoptosis (χ² analysis, P < 0.0001). D, TUNEL-positive nuclei (arrows). Arrowheads in (A) indicate membrane staining of ERBB4. Arrowheads in (C) indicate perinuclear accumulation of 4ICD. Arrows in all panels indicate nuclei. Bar, 50 µm (C).

Discussion

The aberrant genetic milieu that contributes to tumor development and progression is highly variable and complex. One generalization that has gained recent experimental and clinical support, however, is that successful tumor development requires evasion of cellular apoptotic pathways. In breast cancer, several mechanisms may contribute to apoptotic resistance, including overexpression of the antiapoptotic proteins BCL-2 and BCL-XL (31, 32). Here, we present evidence that the EGFR family member ERBB4 functions as a unique proapoptotic protein. We propose that loss of ERBB4 expression during breast carcinogenesis disrupts an important apoptotic pathway and contributes to the ability of breast tumors to avoid apoptotic cell death.

Our findings provide evidence that ERBB4 suppresses breast cancer cell growth through activation of the intrinsic apoptotic pathway, by functioning as a proapoptotic BH3-only protein. Although members of the BH3-only protein class of the BCL-2 family are functionally diverse, these proteins share several critical mechanistic properties. For example, an intact BH3 domain is required to initiate apoptotic signals at the mitochondrial membrane through activation of BAX or BAK. The BH3-only protein apoptotic signal may however be disengaged at the mitochondria through interaction with antiapoptotic proteins including BCL-2, BCL-XL, or MCL-1. Likewise, ERBB4 cell-killing activity requires an intact BH3 domain and is inhibited by an interaction with BCL-2. Furthermore, ligand stimulation of endogenous ERBB4 results in mitochondrial accumulation of the BH3 domain–bearing 4ICD, oligomerization of BAK, and subsequent cytochrome c efflux from permeabilized mitochondria (Fig. 7).

As a transmembrane receptor, however, ERBB4 would represent a unique member of the BH3-only protein class. Indeed, our results describe a novel mechanism of action for a transmembrane receptor, with ERBB4 directly coupling an external stimulus to mitochondrial dysfunction and cell death through membrane release of 4ICD. Another mechanistic difference between ERBB4 and other BH3-only proteins is the essential contribution of BAK to ERBB4 cell killing. Other BH3-only proteins examined to date efficiently transmit their apoptotic signals through either BAX or BAK (19, 26, 33). Although the functional significance of a coupled ERBB4/BAK apoptotic pathway remains to be determined, clinical studies imply that the two proteins are coregulated in breast cancer cell death. See text for additional details.

Figure 6. Cytosolic accumulation of 4ICD is associated with increased apoptosis in primary human breast tumors. A cohort of 136 therapy naive archived primary human breast tumors prepared as tissue microarrays were stained by immunohistochemistry for (A and C) ERBB4 using an antibody directed against the ERBB4 COOH terminus or (B and D) apoptosis indicated by DNA fragmentation (TUNEL assay) using an ApopTag In situ Apoptosis Detection kit. A and B, the majority of tumors with membrane associated ERBB4 (A, arrowheads) were TUNEL negative (B, nuclei indicated by arrows). C and D, cytosolic 4ICD expression (C, arrowheads) was significantly associated with increased tumor cell apoptosis (χ² analysis, P < 0.0001). D, TUNEL-positive nuclei (arrows). Arrowheads in (A) indicate membrane staining of ERBB4. Arrowheads in (C) indicate perinuclear accumulation of 4ICD. Arrows in all panels indicate nuclei. Bar, 50 µm (C).

Figure 7. Model of ERBB4 cell-killing activity. Ligand-activated ERBB4 is proteolytically processed at the cell surface to release the 4ICD BH3-only protein. We propose that mitochondrial accumulation of 4ICD BH3-only protein may activate, cytochrome c release from permeabilized mitochondria, and cell death. See text for additional details.
cancer. Indeed, both ERBB4 and BAK are associated with estrogen receptor–positive (7, 31, 34) and low-grade breast tumors (6, 32). In contrast, BAX expression is associated with estrogen receptor–negative (31) and high-grade tumors (32). Another clinical study suggests that BAK is the multi-BH domain protein critical for regulating apoptosis in breast cancer (35). Thus, both experimental and clinical evidence support the notion that suppression of early-stage breast carcinogenesis is influenced by a 4ICD/BAK-coupled apoptotic program.

Critical for the appropriate function of BH3-only proteins is a mechanism to regulate apoptotic activity, thereby preventing deleterious apoptosis. The activities of several BH3-only proteins, including BIM, HKB, BBC3, NOXA, and PUMA, are transcriptionally regulated, whereas the apoptotic activities of BID, BAD, and BIK are regulated by different posttranslational mechanisms (36, 37). Posttranslational regulation of ERBB4 apoptotic activity seems to involve both activation of its intrinsic tyrosine kinase and subsequent proteolytic processing at the cell surface to release 4ICD. Interestingly, an intact kinase domain, essential for apoptosis induced by the ERBB4 holoreceptor, was dispensable for 4ICD-mediated cell killing, suggesting that signaling pathways coupled to the ERBB4 holoreceptor are not required for cell killing. In support of this contention, we have previously shown that an ERBB4 mutant that lacks γ-secretase processing, therefore failing to release 4ICD while retaining canonical signal transduction pathways, lacked cell-killing activity (4). Furthermore, here, we show that cytosolic 4ICD but not membrane-tethered ERBB4 was associated with tumor apoptosis, providing additional evidence that ERBB4 signaling from the cell surface has little, if any, effect on tumor apoptosis. Thus, we propose that the ERBB4 tyrosine kinase provides an essential contribution to apoptosis by supplying a mechanism for ERBB4 proteolytic processing, thereby releasing the apoptotic activity of 4ICD.

Although we show a significant association between cytosolic 4ICD and tumor apoptosis, the lack of apoptosis in some primary breast tumors expressing cytosolic 4ICD indicates that cytosolic accumulation of 4ICD is insufficient for tumor cell apoptosis. There exist several possible explanations for the lack of apoptosis in tumors with cytosolic 4ICD. Cytosolic staining of 4ICD indicates successful cleavage of ERBB4 by TACE; however, γ-secretase-mediated cleavage is required to release 4ICD from cellular membranes. Thus, cytosolic staining of 4ICD may represent endosome-tethered 4ICD in tumors lacking γ-secretase activity. Alternatively, these tumors may have altered expression of regulatory BCL-2 family members. For example, our results predict that tumor overexpression of BCL-2 or the absence of BAK would disengage the 4ICD apoptotic signal. Nevertheless, our results suggest that proteolytic processing of membrane-bound ERBB4 and subsequent mitochondrial accumulation of the 4ICD BH3-only protein represents a clinically important event contributing to tumor cell death.

In addition to 4ICD mitochondrial localization and apoptotic function, we have recently shown that 4ICD regulates gene expression as a nuclear protein (4, 16, 17). These divergent 4ICD functional activities can be reconciled in part because in the normal breast 4ICD seems to be retained in the nucleus (10) through interaction with the STAT5A transcription factor at target promoters (16). We propose that cellular transformation disrupts nuclear retention of 4ICD, leading to 4ICD mitochondrial accumulation and eventually apoptosis. This hypothesis is supported by recent experiments showing enhanced cell-killing activity of ERBB4 containing a mutated nuclear localization signal (4). In addition, disruption of 4ICD nuclear retention results in a 4ICD mechanistic switch from a transcriptional coregulator to a mitochondrial proapoptotic protein.6 We are currently investigating the exact molecular mechanisms regulating 4ICD subcellular localization and functional activities influencing normal breast function and transformation.

In conclusion, we have shown that ligand stimulation and subsequent proteolytic processing of ERBB4 results in membrane release and mitochondrial accumulation of 4ICD, a proapoptotic BH3-only protein. Furthermore, 4ICD directly initiates mitochondrial permeabilization through activation of the apoptotic “gateway” protein BAK, distinguishing ERBB4 from transmembrane “death receptors” that must recruit a BH3-only protein to initiate mitochondrial dysfunction (1). This unique apoptotic function for a cell surface receptor provides the first mechanistic description of a cell death pathway directly integrating an activated transmembrane receptor with the tumor cell mitochondrial apoptotic machinery. Moreover, the potent cell-killing activity of 4ICD provides a mechanistic explanation for the selective loss of ERBB4 expression during the metastatic progression of breast cancer and supports a novel tumor suppressor function for ERBB4.

Acknowledgments

Received 7/6/2005; revised 3/24/2006; accepted 3/30/2006.

Grant support: National Cancer Institute/NIH grants RO1CA95783 and RO1CA69717 (F.E. Jones) and U.S. Army Medical Research and Materiel Command grants W81XWH-06-1-0531 (A. Naresh), DAMD17-03-0-1418 (W. Long), and DAMD17-03-1-0395 (G.A. Vidal).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Diane Clark, Laura McDonald, and Lacey Sullivan for excellent laboratory management; other members of the Jones lab for providing intellectual and technical support; Nicolette Solano for outstanding administrative assistance; the late Stanley Korsmeyer and Anthony Letai for helpful and stimulating discussions during the evolution of this project; Stanley Korsmeyer for providing the MEF cell lines and BCL-2 cDNA; Charles Hemenway for helpful suggestions; and Amy Johnson for editing this article.

6. A. Naresh and F.E. Jones, unpublished observations.

References

receptors have different effects on survival. J Pathol 2002;196:17–25.
16. Zhou W, Carpenter G. Heregulin-dependent traf-
Curriculum Vitae

Weiwen Long
Department of Molecular and Cellular Biology
Baylor College of Medicine
One Baylor Plaza
Houston, TX 77030
Phone: 713-798-6281 (Lab)
713-454-3700 (Cell)
Fax: 713-790-1275-
E-mail: wlong@bcm.edu

Personal Information

Date of Birth: February 25th, 1975
Citizenship: P.R. China
Marital Status: Married

Education

2001-2005 Tulane University, USA, Ph.D., Structural and Cellular Biology
1999-2001 University of Scranton, USA, MA, Biochemistry
1996-1999 Huazhong Agricultural University, P. R. China, MS, Microbiology
1992-1996 Hunan Agricultural University, P. R. China, BS, Horticulture

Positions and Honors
2005.5-Present Postdoctoral Fellow, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. Dr. Bert W. O’Malley, principle investigator. Research Interest: The implication of steroid receptor co-activators’ (SRCs) phosphorylation in breast cancer.

2001.8-2005.5 Ph.D., Tulane University, School of Medicine, Department of Structural and Cellular Biology, New Orleans, LA, USA. Dr. Frank E. Jones, principle investigator. Research Interest: ERBB4 overexpression as an antagonist of ERBB2/HER2/Neu induced human breast cancer cell proliferation. Honors: Awarded with fellowship; Basic Research Award in Molecular Bioscience during Fourteenth Annual Tulane Health Sciences Research Days.

1999.8-2001.6 Graduate Student of MA, Research Assistant, University of Scranton, Chemistry Department, Scranton, PA, USA. Dr. Frank E. Jones, principle investigator. Research Interest: Identification of ERBB4’s normal function in breast development. Honors: Awarded with full scholarship.
Graduate Student of MS, Research Assistant, Huazhong Agricultural University, Department of Microbiology, Wuhan, P. R. China. Dr. Ping Wang, principle investigator. Research Interest: Interactions between *Pseudomonas Fluorescens* X16L2 and Arbuscular Mycorrhizal (AMF) *Glomus mosseae* in wheat rhizosphere.

Honors: Awarded with full scholarship

Grant Support

Memberships

American Association of Cancer Research
Endocrine Society
American Association for the Advancement of Science (AAAS)

Publications

Invited Oral Presentations

“ERBB4’s Function in Breast: From Normal Development to Cancer”. May. 5, 2004, Department of Structural and Cellular Biology, Tulane University, New Orleans, Louisiana.

Poster Exhibits

Weiwen Long and Frank Jones. ERBB4 is an obligate mediator of Stat5 activation and mammopoiesis. Tyrosine Phosphorylation and Cell Signaling. Aug. 7-11, 2002. Salk Institute, San Diego, California.

Tamika Tyson Duplessis
10911 Guildford Rd. New Orleans, LA 70127
ttysn@tulane.edu

Graduate Student Curriculum Vitae
Molecular and Cellular Biology Program, Tulane University Health Sciences Center
Dissertation Advisor: Brian Rowan, Ph.D., Department of Structural and Cellular Biology

RESEARCH EXPERIENCE

Graduate Research Assistant
Tulane University Health Sciences Center, Department of Biochemistry Aug. 2003-Mar. 2005
Advisor: Frank Jones, Ph.D.
- Transforming ability of a splice variant of ERBB2, ERBB2Δ16
- ErbB4 mediated apoptosis in breast cancer cells

Graduate Research Assistant
Tulane University Medical School, Department of Urology Mar. -May 2003
Advisor: A.B. Abdel-Mageed, Ph.D.
- Propagation of mammalian cell lines
- Isolation and purification of plasmid DNA
- Isolated and purified RNA from prostate cancer cell lines

Graduate Research Assistant
Tulane University Medical School, Department of Microbiology and Immunology Jan.-Mar. 2003
Advisor: Lucia Freytag, Ph.D.
- Tested transcutaneous vaccines against systemic C. Albicans infection in murine models
- Conducted systemic C. Albicans challenges in mice
- Analyzed extent of immune response by ELISA and Western blot analysis

Graduate Research Assistant
Tulane University Graduate School, Department of Structure and Cellular Biology Sept.-Nov. 2002
Advisor: Frank Jones, Ph.D.
- Synthesis of an RNAi expression vectors
- Isolated and purified RNA from breast cancer cell lines

Alliances for Graduate Education and the Professoriate Summer Scholar
Howard University Graduate School, Department of Biochemistry and Molecular Biology Summer 2001
- Conducted bioinformatic studies of expressed sequenced tags of available DNA sequences of fish
- Assisted in identifying three different genes for CaM present in fish and designated them as alpha, beta, and gamma
- Assisted in identifying and sequencing beta gene for the first time in Japanese flounder
- Helped confirm presence of alpha genes in Japanese flounder and Zebra fish and beta genes in perch and Zebra fish
- Helped isolate genomic DNA from live animal tissue
- Orally presented research results at summer research program symposium

Missouri’s Alliance for Graduate Education and the Professoriate
University of Missouri –Columbia, Department of Chemistry Summer 2000
- Studied various amino acid derivatives, and began synthesis of amino acid bifunctional chelate
- Organized and maintained reference database of research material
- Managed laboratory organization and glassware
- Presented research via poster presentation
TEACHING EXPERIENCE

Director of ChemStar Program May 2003-Aug. 2005
Xavier University of LA
1 Drexel Drive
New Orleans, LA 70125

Served as director for Xavier University’s Summer Science Academy’s ChemStar Program, which prepared students for their first high school chemistry course.

• Supervised as well as directed the preparation of the program’s group leaders
• Organized registration and conducted the orientation for parents and students
• Conducted lecture daily
• Supervised laboratories
• Managed general program administrative duties.

Teaching Assistant (TA) Aug. 2002-May 2004
Department of Cellular and Molecular Biology
Tulane University
New Orleans, LA 70112-2699

Taught several laboratory courses for undergraduate science and/or premedical majors at Tulane University including, the General Biology, Cell Biology and the Molecular Biology laboratory courses.

Teaching Assistant (TA) 2001-2002
Department of Chemistry
Xavier University of LA
1 Drexel Drive
New Orleans, LA 70125

Taught as an undergraduate student for the General Chemistry Laboratory where I instructed undergraduate science majors at Xavier University.

EDUCATION

Ph.D. Tulane University, Graduate School, Interdisciplinary Program in Molecular and Cellular Biology 2002-present

B.Sc. Xavier University of Louisiana, Department of Chemistry, New Orleans, LA 1998-2002
Major: Chemistry

HONORS AND AWARDS

• Molecular and Cellular Biology Program Scientific Retreat Best Poster Presentation Award 2003

FELLOWSHIPS

2006 Kirschstein-National Research Service Award (F31), National Cancer Institute
2001 Alliances for Graduate Education and the Professoriate Summer Research Fellowship, Howard University Graduate School, Department of Biochemistry and Molecular Biology, Washington, D.C.
2000 Missouri’s Alliance for Graduate Education and the Professoriate Summer Research Fellowship, University of Missouri –Columbia, Department of Chemistry, Columbia, MO
PUBLICATIONS

RESEARCH PRESENTATIONS AT MEETINGS
FASEB Growth Factor Receptor Tyrosine Kinases Summer Research Conference
“Oncogenic Isoform of ERBB2/HER2 expressed in metastatic breast cancer promotes independent tumor cell growth”
August 2005

Molecular and Cellular Biology Program Scientific Retreat
“Oncogenic signaling of ERBB2”
October 2004

Molecular and Cellular Biology Program Scientific Retreat
“ErbB4 functions as a tumor suppressor gene in the breast”
October 2003

SKILLS
Scientific:
Instrumentation:
Electrophoresis of nucleic acids and proteins including agarose and polyacrylamide gels, digital imaging of gels, UV spectrophotometer, centrifugation, NMR spectroscopy, IR spectroscopy, GC/Mass Spectroscopy, phosphoimaging

Recombinant DNA Techniques:
Plasmid and chromosomal DNA isolation and purification from animal tissues, amplification of DNA by polymerase chain reaction (PCR), PCR-mediated site directed mutagenesis, electrophoresis, molecular cloning, bacterial transformation, plasmid preparation

Cell Biology Techniques:
Human breast and prostate cells, propagation of mammalian cell lines, transient and stable transfection, apoptotic cell staining (Propidium iodide and Annexin V) and Green Florescent Protein (GFP) Assays

Computer:
Knowledge and experience in major applications for Macintosh and IBM-compatible computers including WordPerfect, Excel, Access and PowerPoint. Experience using automated databases (i.e. Medline and Pub Med) to search scientific literature as well as bioinformatic resource (i.e. Entrez and GenBank)

UNDERGRADUATE ORGANIZATIONS, AWARDS, AND HONORS
Phi Lambda Upsilon Chemistry Honor Society, Alpha Epsilon Delta Honor Society, Howard Hughes Biomedical Honor Corps, Louisiana TOPS Honors Scholar, Lettie Pate Whitehead Scholarship, American Chemical Society, Chemistry ACS Club, Vice President-Xavier Activity Board, SpringFest Co-Chair, Freshman Class Executive Board