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INTRODUCTION 
 
Endocrine therapy is often the least toxic and most effective treatment for hormone receptor positive invasive 
breast cancer. Such therapy includes antiestrogens (tamoxifen, fulvestrant) and aromatase inhibitors 
(anastrozole, letrozole, exemestane). Tamoxifen (TAM) increases disease free and overall survival in the 
adjuvant setting, reduces the incidence of estrogen receptor positive disease (ER+; unless otherwise noted 
ER=ERα) in high-risk women, and reduces the rate of bone loss secondary to osteoporosis in postmenopausal 
women [1,2]. Aromatase inhibitors are effective only in the absence of functioning ovaries - TAM can be used 
regardless of menopausal status. Recent studies suggest that anastrozole may be superior to TAM in the 
adjuvant treatment of postmenopausal women with ER+ breast cancer; other studies report higher overall 
response rates with letrozole (LET) vs. TAM as first line therapy in the metastatic setting. Thus, a recent 
controversy in the management of patients with ER+ disease is whether an aromatase inhibitor or TAM should 
be given as first line endocrine therapy [3-9]. 
 
In this Clinical Translational Research award, we will build classifiers that accurately separate antiestrogen 
sensitive from antiestrogen resistant breast tumors and begin to assist in the direction of specific endocrine 
treatments (antiestrogen vs. aromatase inhibitor) to individual patients. We hypothesize that endocrine 
responsiveness is affected by a gene network, rather than the activity of only one or two genes or signaling 
pathways [10-12]. Since the key components of such a network are unknown, we must study 10,000s of genes. 
We will use Affymetrix GeneChips. We will not identify mutational events, the presence of mRNA splice 
variants, or post-translational protein modifications. However, these factors have major effects on the 
transcriptome and their "footprints" should be identified by expression microarrays. 
 
 

BODY 
 
Overview: We will build classifiers that separate antiestrogen sensitive from antiestrogen resistant breast 
tumors and begin to assist in the direction of specific endocrine treatments (antiestrogen vs. aromatase inhibitor) 
to individual patients. To achieve this goal, and consistent with a CTR award, we will complete a 4-year, 
prospective, neoadjuvant study with Letrozole (LET) or TAM as the only systemic therapy. We will obtain 
molecular profiles from Affymetrix GeneChips and further develop and apply our innovative bioinformatic and 
biostatistic methods to explore these high dimensional data sets and build/validate new classifiers. A more 
accurate predictor of endocrine responsiveness would have widespread clinical use, allowing women and 
physicians to make more individualized and appropriate treatment decisions. For example, patients with tumors 
predicted to be resistant to antiestrogens and/or aromatase inhibitors would be strong candidates for an early 
intervention with cytotoxic chemotherapy. 
 
In most predictive/prognostic marker studies investigators focus on a single factor and whether they obtain a p-
value that reaches conventional statistical significance. Our approach is different because we will determine 
whether we can find joint gene subsets that can separate patients into sufficiently distinct groups that should 
differ in their treatment. We will (1) analyze >33,000 genes on retrospective and prospective material, (2) apply 
new biostatistical and bioinformatic methods to identify ~40 potentially informative "biomarkers," (3) build 
neural network and biostatistical model classifiers, (4) evaluate the joint discriminant power of selected genes 
concurrently rather than as single biomarkers, (5) focus on prediction for individual patients where the 
assessment of a p-value is less important than the classification rate of our predictors, (6) validate the classifiers 
in independent data sets, and (7) explore the ability of predictors to refine the targeting of specific endocrine 
therapies. 
 
Evidence has begun to accumulate suggesting that an aromatase inhibitor might be a more effective first line 
endocrine therapy for some breast cancer patients than the current standard of care (Tamoxifen). These data 
have generated considerable interest and controversy, in part because unlike TAM, there are no long term 
studies with aromatase inhibitors where definitive survival data are available. Our study could provide new and 
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innovative insights into how to approach the more effective targeting of specific endocrine therapies to 
individual patients. 

 
 

Specific Aims (from the original application)  
We will complete two clinical studies and collect gene expression profiles from which to build predictors of 
endocrine responsiveness. Predictors will be built in Specific Aim 2 and validated in Specific Aim 3. 
 
AIM 1: Clinical Studies - Clinical Study-1 (retrospective) is of pretreatment, single, frozen samples where we 
will compare the molecular profiles of tumors that recurred on TAM with those of tumors that did not recur. 
Each resistant sample is matched with a TAM sensitive sample by age, stage, and duration of follow-up. We 
also have further, single (unmatched), frozen samples from patients already progressing on TAM. Clinical 
Study-2 is a prospective study of breast tumor samples from patients treated with neoadjuvant TAM or LET.  
 
AIM 2: We will apply novel bioinformatics and biostatistics to discover gene subsets that define the molecular 
differences between endocrine sensitive and resistant breast tumors. These genes will be used, in combination 
with established predictive/prognostic factors, e.g., ER, PgR, stage, to build innovative classifiers that can better 
predict an individual tumor’s endocrine responsiveness. 
 
AIM 3: We will test, optimize, and validate the performance of the classifiers from Aim 2 in retrospective 
studies of human breast tumors. We must measure each gene individually by IHC, in situ RNA hybridization 
(ISH), or real time PCR (RT-PCR). 
 
 

KEY RESEARCH ACCOMPLISHMENTS 
 
Progress on the clinical goals for this award was greatly delayed because of the time taken to obtain DOD 
approval of our preexisting institutionally approved IRBs at Georgetown University and at the University of 
Edinburgh. All institutionally approved protocols and requested material were submitted to the DOD in July 
2004; additional information was requested by the DOD several months later and submitted in November 2004. 
We did not receive final approval to proceed with the clinical studies until March 2005. Much of this delay 
seems to have been entirely unavoidable and due, in part, to major personnel changes at the DOD (within 
USAMRMC). Clearly, this has likely left us behind schedule in recruitment to the prospective studies. As noted 
in the previous report and as is again apparent in this report, this did not affect our ability to proceed with the 
informatics studies (algorithm development and optimization) and infrastructure development (database 
development and installation). We have now published the completed studies presented in our preliminary data 
and generated a novel optimization protocol for our multilayer perceptron-based classifiers (also now 
published). The in silico tissue heterogeneity correction method described in the application was developed 
sufficiently and submitted for publication – this is still in revision. We have been able to proceed with analysis 
of some of the retrospective studies and have obtained data and performed initial unsupervised analyses of the 
first 60 specimens. Publications supported since the commencement of this award are listed under “Reportable 
Outcomes”; these constitute some of our major accomplishments in the past year. These and other key research 
accomplishments are presented below.  
 

Statement of Work (from the original application) 
 

• TASK 1. Array breast tumor samples from Clinical Studies 1 (retrospective) and 2 (prospective)   
 
To perform this task we will obtain breast tumor samples and clinical information from University of 
Edinburgh, collect and quality test RNA using validated tissue acquisition and processing protocol, and array 
RNA samples on oligonucleotide chips (i.e., U133A Affymetrix GeneChips). Please note that we originally 
described analyses of approximately 12,000 genes in each sample and now indicate that we will measure 
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almost 3-times as many genes. The increase is possible because Affymetrix improved their technology and now 
produce single chips with 40,000 probe sets representing 39,000 transcripts, of which 33,000 are well-
substantiated genes. The cost of these chips, which essentially represent the probe sets previously included on 
two chips (U133A and U133B), is the same as the original U133A GeneChips described when the application 
was submitted. Since we were unable to start arraying in year 1 (see below), this proved very fortunate, since it 
greatly increases the power of our study to detect meaningful predictive patterns and genes or networks 
associated with the clinical outcomes. 
 
We have received a total of 480 breast specimens (to date) from our collaborators at the University of 
Edinburgh; these have arrived at different times and been banked so that they could be processed in the most 
effective and logical manner. Of these 480 specimens, we have (to date) had 173 processed as frozen sections 
and analyzed by the study pathologist. A further 67 have been processed as frozen sections and will be analyzed 
by the study pathologist within days of the submission of this report. We have successfully extracted total RNA 
from 172 specimens, and labeled 160 for analysis. We have also completed the hybridization and assessment of 
microarray data quality control on 72 specimens; 60 were done on U133 plus 2 GeneChips (the other 12 were 
used on older chips to test and optimize our methods for these specimens), representing sufficient data for our 
first TAM study. We requested that the specimens be sent independent of the clinical information, so that we 
could adequately and appropriately randomize the RNA preparation, labeling and hybridization and minimize 
any operator-induced or technology-induced bias. All specimens were processed using our standard operating 
procedures; each manipulation being performed by the same individual to further reduced inter-operator 
variability.  
 
Using industry-standard internal controls and spike-in controls as recommended by the manufacturer, the 
microarray data obtained appears to be of very high quality and reproducibility. In the absence of the clinical 
information required for supervised analysis these data, we have begun initial unsupervised analyses. These are 
only exploratory and the choice to publish the results of these ongoing (unsupervised) will largely depend on 
how well they capture treatment or recurrence status (when that information is available).  
 
We used the current standard RMA algorithms to achieve a log2-based normalization of the data from the first 
60 samples arrayed on the HU133 plus 2 Affymetrix GeneChip microarrays. The goal was to separate blindly 
(without supervision) the composite signatures. Samples were initially clustered (Sample Clustering) using two 
different methods – K-mean and Self Organizing Map (SOM) – and both methods produced consistent 
representations of the data as comprising three main clusters. Sample Clusters 1 and 3 each contained 14 
specimens, the remaining 32 specimens comprising Sample Cluster 2. We then performed Gene Clustering by 
SOM and identified 65 potential gene clusters. From within these gene clusters, we identified those in which the 
genes are highly expressed in one sample cluster and exhibit consistently low expression in the remaining two 
sample clusters. Thus, we identified Gene Clusters that best define (by these criteria) Sample Cluster 1 (gene 
clusters 49, 50), Sample Cluster 2 (gene cluster 19), and Sample Cluster 3 (gene clusters 58 and 59). Currently, 
we are attempting to explore further these clusters and we will be in a better position to do so once we obtain 
the clinical information. We have now requested this information on these samples, since there is no longer a 
need to remain blinded to these clinical data.   
 
We also attempted to apply the more common hierarchical clustering approach (also an unsupervised method) 
to this data set but this was entirely uninformative. We also tried clustering using only those genes previously 
reported to generate the groups commonly referred to as “luminal A”, “luminal B”, “basal-like”, “her2/neu2”, 
and “normal like”. None of these clusters were evident in our data set using this approach. To some degree, this 
may reflect the very high proportion of ER+ tumors, which would suggest that the “luminal A” and “luminal B” 
groups would be present (perhaps two major clusters), but these two clusters also were not immediately evident. 
However, this is a rather simplistic analysis method and is probably not capable of identifying what may be 
more subtle differences among the phenotypes represented in our data set.  
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• TASK 2. Store, process, and train/optimize classifiers from gene expression microarray data (modified 

to reflect our adoption of caArray) 
 

To perform this task we will install and modify the MIAME Compliant caArray database. We will also collect 
and store de-identified clinical information and process gene expression data with “in house” state of art 
algorithms (we will also further develop and optimize these algorithms throughout this award period). For the 
initial studies, we will train/optimize initial neural network RNA classifier (MLP), the final classifier for the 
microarray data will be built when we have completed arraying all samples.  
 
As noted in our previous report, we continue to make significant progress on addressing this task, largely as a 
consequence of our involvement in the National Cancer Institute Center for Bioinformatics (NCICB) led caBIG 
project. The PI (Dr. Clarke) leads the Lombardi Comprehensive Cancer Center’s caBIG team and we have been 
actively involved in the development of caArray (NCICB’s grid-enabled, MIAME compliant, microarray 
database). The caBIG program is open source-open access and is widely supported by NCICB and teams of 
collaborating scientists at other Cancer Centers across the country. We also have found the NCICB team highly 
responsive when we identify bugs or problems with the software. While NCICB has had some problems with 
the current version of caArray, we worked closely with their team and other Cancer Centers in caBIG to find 
and address some of these issues. A new version of caArray will likely be operational at our center before this 
report is fully reviewed, since we already are in the process of installation and testing. We anticipate that 
continued collaboration through the caBIG community will prove a more cost and time efficient approach to 
developing some components of the research infrastructure described in the original application. It is out intent 
to build any additional components in a manner consistent with the guidelines established by the caBIG 
community, since this will likely ensure long-term viability and the compatibility of our infrastructure. 
 
With respect to the further development and optimization of data analysis algorithms, we have recently 
completed and published a new method for optimizing the use of multilayer perceptron (MLP) classifiers. 
MLPs are one of the most widely used and effective machine learning methods currently applied to diagnostic 
classification using high-dimensional genomic data. Based on Fisher linear discriminant analysis, we designed 
and implemented an MLP optimization scheme for a two-layer MLP that effectively optimizes the initialization 
of MLP parameters and the MLP architecture. In comparison with a conventional MLP using random 
initialization, we obtained significant improvements in major performance measures including Bayes 
classification accuracy, convergence properties, and area under the receiver operating characteristic curve (Az). 
This work is now published in the journal Bioinformatics. 
 
We also continue to improve our existing algorithms. Our most recent studies in this regard have been to 
improve the VISDA algorithms described in the initial application and to begin developing novel approaches 
that will allow us to extract gene signaling networks from the microarray data. This will potentially allow us to 
obtain mechanistic insights from the data we are generating from the clinical specimens. While we had not 
included this possibility in the original application, which focused on classification, we see the potential to 
obtain novel mechanistic insights as a significant advantage to our ongoing studies. We will provide additional 
information in this regard in subsequent reports; relevant publications in this area are included below. 
 
 

• TASK 3. Retrain/reoptimize classifiers using IHC data from Series 1 (Archival Tissues) and Series 2 
(Scottish Adjuvant TAM Trial) for Validation    

 
To perform this task we will obtain clinical information and breast tumor samples from University of Edinburgh 
(formalin fixed/paraffin embedded). We will rank and prioritize selected joint genes from RNA classifier built 
and optimized in TASK 2 (above) and retrain/reoptimize the initial neural network IHC classifier (MLP). 
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Finally, we will validate IHC classifier on independent data sets (data sets not used to build and train the MLP 
classifiers). 
  
We will not be able to start this task on the timeframe as initially proposed here because of the delays in getting 
approval to work with the clinical specimens. However, we expect to receive clinical information on the 
samples already arrayed within the next 4-6 weeks. This will allow us to perform (and hopefully submit for 
publication) an initial analysis of the first retrospective TAM study. 
 

REPORTABLE OUTCOMES 
 
Papers and Meeting Reports* 
 
Updates (cited as “in press” in the last report and now in print) 
 

• Zhu, Y., Singh, B., Hewitt, S., Liu, A., Gomez, B., Wang, A. & Clarke, R. “Expression patterns among 
proteins associated with endocrine responsiveness in breast cancer: interferon regulatory factor-1, 
human X-box binding protein-1, nuclear factor kappa B, nucleophosmin, estrogen receptor-alpha, and 
progesterone receptor.” Int J Oncol, 28: 67-76, 2006. 

 
• Xuan, J., Dong, Y., Khan, J., Hoffman, E., Clarke, R. & Wang, Y. “Robust feature selection by 

weighted Fisher criterion for multiclass prediction in gene expression profiling.” Proc 17th Intl Conf 
Pattern Recon, 2: 291-294, 2004. 

 
• Riggins, R.B., Bouton, A.H., Liu, M.C. & Clarke, R. “Antiestrogens, aromatase inhibitors, and apoptosis 

in breast cancer.” Vit Horm, 71: 202-237, 2005. 
 
• Bouker, K.B., Skaar, T.C., Hamburger, D.S., Riggins, R.B., Fernandez, D.R., Zwart, A., Wang, A. & 

Clarke, R. “Tumor suppressor activities of interferon regulatory factor-1 in human breast cancer 
associated with caspase activation and induction of apoptosis.” Carcinogenesis, 26:1527-1535, 2005. 

 
 
New Publications (published and “in press” for the present reporting period) 
 

• Wang, Z., Wang, Y., Xuan, J., Dong, Y., Bakay, M., Khan, J., Clarke, R. & Hoffman, E.P. “Optimized 
multilayer perceptrons for molecular classification and diagnosis using genomic data.” Bioinformatics, 22: 
755-761, 2006. 

 
•  Zhu, Y., Wang, A., Liu, M.C., Zwart, A., Lee, R.Y., Gallagher, A., Wang, Y., Miller, W.R., Dixon, J.M. 

& Clarke, R. “Estrogen receptor alpha (ER) positive breast tumors and breast cancer cell lines share 
similarities in their transcriptome data structures.” Int J Oncol, 29: 15812-1589, 2006. 

 
• Ressom, H.W., Zhang, Y.,  Xuan, J., Wang, Y. & Clarke, R. “Inference of gene regulatory networks from 

time course gene expression data using neural networks and swarm intelligence.” Proc IEEE Symp Compl 
Intel Bioinformatics Comput Biol, in press. 

 
• Ressom, H., Xuan, J., Wang, Y. & Clarke, R. “Classification of microarray data using machine learning 

methods.” TIBETS, in press. 
 
• Xuan, J., Wang, Y., Clarke, R. & Hoffman, E.P. “Normalization of microarray data by iterative nonlinear 

regression.” 5th IEEE Symposium on Bioinformatics and Bioengineering, Minneapolis, Minnesota, pp. 
267-270, 2005 
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*We include in the appendix reprints of those papers that are already published. Manuscripts cited as “in press” 
will be included in the next annual report, once reprints are available. We do not list here or include in the 
appendices any published abstracts, but can do so if requested. Several other manuscripts related to our 
bioinformatic methods also are submitted and in preparation – these will be cited reported in the next report. 
Please note that the papers published in the engineering literature are different from most conference 
proceedings in the biomedical literature. These are not abstracts but fully peer-reviewed publications 
comparable to short communications in biomedical journals. 
 
Comment on Subcontracts: Please also note that the majority of our publications include coauthors from one or 
both of our subcontracts. Thus, our program is working very effectively and collaboratively, this also should be 
apparent in the development of new informatics methods (Catholic University of America – now Virginia 
Polytechnic and State University subcontract – Dr. Xuan recently moved to Virginia Tech) and the large 
number of high quality breast tumor specimens we have obtained from the University of Edinburgh.  
 

CONCLUSIONS 
 
We have made good progress on the research infrastructure goals and in the development or optimization of the 
methods needed for data analysis. We also have completed and published most of the data presented as 
preliminary data in the initial application. The clinical studies were held up by an unexpectedly long delay in 
obtaining final approval for our existing protocols but this is now taken care of and we are poised to begin 
analysis of our first series of breast cancer specimens. 
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ABSTRACT 
Motivation: Multilayer Perceptrons (MLP) represent one of the 
widely used and effective machine learning methods currently ap-
plied to diagnostic classification based on high dimensional genomic 
data. Since the dimensionalities of the existing genomic data often 
exceed the available sample sizes by orders of magnitude, the MLP 
performance may degrade due to the curse of dimensionality and 
over-fitting, and may not provide acceptable prediction accuracy.  
Results: Based on Fisher linear discriminant analysis, we designed 
and implemented an MLP optimization scheme for a two-layer MLP 
that effectively optimizes the initialization of MLP parameters and 
MLP architecture. The optimized MLP consistently demonstrated its 
ability in easing the cure of dimensionality in large microarray data 
sets. In comparison with a conventional MLP using random initializa-
tion, we obtained significant improvements in major performance 
measures including Bayes classification accuracy, convergence 
properties, and area under the receiver operating characteristic 
curve (Az). 
Contact: yuewang@vt.edu 

1 INTRODUCTION  
Diagnostic classification with genomic data refers to the assign-
ment of a particular unknown tissue sample to a known disease 
class based on its quantitative mRNA expression pattern from 
microarrays. This classification can be performed by a trained 
predictive classifier, such as a neural network classifier.  This ap-
proach is particularly helpful for diagnosing complex genetic dis-
ease subtypes or stages whose subtle differences may be difficult 
to recognize by traditional clinical and pathological approaches 
(Bittner et al., 2000; Brown et al., 2000; Khan et al., 2001; Mjols-
ness et al., 2001; Ramaswamy et al., 2001; Shipp et al., 2002; 
West et al., 2002; Linder, et al., 2004; O'Neill, et al., 2003; Wei, et 
al., 2005). A common type of neural network classifier applied to 
diagnostic classification is feed-forward back-propagation Multi-
layer Perceptrons (MLP) (Figure 1). Input vectors and the corre-
sponding target vectors are used to train an MLP, a process that 
updates the weights and biases until the MLP can approximate a 
mapping function that associates input vectors with specific output 
vectors. The generalization property makes it possible to train an 
MLP with a representative set of input/target pairs and get good 
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results for predicting unseen input samples. The ability of an MLP 
to learn complex (nonlinear) and multidimensional mapping from a 
collection of examples makes it an ideal classifier for diagnostic 
classification (Haykin, 1999; Khan et al., 2001; O'Neill, et al.,
2003; Wei, et al., 2005). 

Despite reported successful studies on applying MLPs to diag-
noses with genomic data, such as gene expression microarray data 
(Khan et al., 2001; Linder, et al., 2004; O'Neill, et al., 2003; Wei, 
et al., 2005), the most critical problem, that of the curse of dimen-
sionality, has not been effectively addressed. The curse of dimen-
sionality is caused by the finite amount of training data available 
relative to the large input feature space. Accordingly, when the 
dimensionality increases considerably and the available informa-
tion remains inadequate, the large number of model parameters in 
the classifier cannot be well-trained (Haykin, 1999, Jain et al. 
2000). Consequently, the classifier performance may degrade be-
yond a certain point with the increasing inclusion of features or 
dimensions.  In mRNA microarray experiments, there is typically 
an extremely ill-conditioned ratio of sample number (10’s to 
100’s) to dimension number (probe or probe sets typically 
>10,000), which greatly augments the impact of the curse of di-
mensionality (Fukunaga, 1990; Haykin, 1999). In current studies, 
the approaches to avoiding the curse of dimensionality are gener-
ally limited to directly reducing the number of inputs. The com-
monly applied methods include conventional dimensionality reduc-
tion methods, such as principal component analysis (Khan, et al. 
2001, Wei, et al., 2005), t-statistics (Golub, et al., 1999), correla-
tion measure (van't Veer, et al., 2002), and an MLP training-based 
gene selection procedure that selects genes with greater influence 
on the changes of outputs in an MLP (O’Neil et al., 2003).  

The design parameters in training an MLP include initial values 
of the model parameters (synaptic weights and biases), stopping 
rules, and MLP architecture, etc. Since no effective algorithms are 
available to search for a global optimum and traditional MLP ini-
tialization is done randomly, classification performance depends 
largely on the initial values of weights and biases. Furthermore, the 
higher complexity of the classifiers often results in more local 
minima in the error surface, and the classifier trainings can easily 
be trapped into such local minima (Raudys and Skurikhina, 1992; 
Raudys, 1994).  

We hypothesized that developing an optimization of MLP ini-
tialization will allow the reduction of the curse of dimensionality, 
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and therefore improve performance of the MLP.  Our goal was to 
find an effective nonrandom initialization scheme that places the 
initial state of an MLP closer to the optimal solution that is later 
sought by training (Wang, et al., 2004). This approach is bolstered 
by previous studies in statistical pattern recognition field, where it 
has been shown that nonrandom initializations of MLP weights 
and biases resulted in the MLP with small generalization error 
even when the number of samples is smaller than the number of 
features or dimensions (Raudys, 1994; Raudys, 1997; Raudys and 
Skurikhina, 1992).  

2 THEORY AND METHOD 

2.1 wFC-Based MLP Initializations 

2.1.1 Linear Dimension Reduction and MLP Feature Ex-
traction – Hidden Layer Initialization 
The MLP offers an integrated procedure for feature extraction and 
Bayes classification by learning the decision boundary (Haykin, 
1999). Its feed-forward auto-associative architecture can also be 
used to construct nonlinear subspaces in a supervised or unsuper-
vised mode (Haykin, 1999; Jain et al., 2000). The output of the 
hidden layer may be interpreted as a set of new features presented 
to the output layer for classification (Haykin, 1999). On the other 
hand, multi-class linear discriminant analysis provides a multivari-
ate prediction by estimating the density function. Its subspaces that 
are extracted based on the weighted Fisher Criterion (wFC), retain 
most closely the intrinsic Bayes separability (Loog, et al., 2001). It 
can be shown that the determination of the linear dimension reduc-
tion (LDR) transformation is equivalent to finding the maximum-
likelihood parameter estimates of a Standard Finite Normal Mix-
ture (SFNM) model (Loog, et al., 2001). This motivates an explo-
ration of the connections between MLP and LDR. A natural hy-
pothesis is that the class labels used as targets during supervised 
training force the outputs of the hidden layer to capture the most 
discriminatory components or subspaces for distinguishing the 
classes. Based on these theoretical observations, we suggest a 
wFC-based initialization mechanism for the MLP hidden layer 
(Wang, et al., 2004). To limit the complexity of the MLP, we as-
sume that the number of neurons in the hidden layer is smaller than 
the number of inputs.  

Given an m0-dimensional input t-space with K0 classes, the 
multi-class LDR searches for a linear transformation W that trans-
forms the original input space to a lower m1-dimensional feature x-
space (m1 < m0); the extracted x-space should preserve the maxi-
mum amount of class discriminatory information. Since it is too 
complex to directly use the Bayes error as a criterion, the most 
common technique for finding this transformation is LDR that is 
based on Fisher criterion (Jain et al., 2000; Haykin, 1999). This 
method maximizes the ratio of the between-class scatter matrix to 
the within-class scatter matrix, thereby guaranteeing maximal 
separability. In this paper, we apply the wFC to the multi-class 
classification problem (Loog et al., 2001), and the wFC is defined 
as, 

where W is the linear transformation matrix, kπ and lπ are the prior 
probabilities of classes k and l respectively, 0

1
K

w k kπ=∑t tS C is the 
total within-class scatter matrix, and ( )( )T

kl k l k l= − −t t t t tS µ µ µ µ is the 
between-class scatter matrix for classes k and l . ( )klω ∆ is the 
weighting function defined as, 

where T 1 1/ 2[( ) ( )]kl k l w k l
−∆ = − −t t t t tµ µ S µ µ is the Mahanalobis distance 

between classes k and l with class mean vector tµ and covariance 
matrix tC .

It has been shown that when there are more than two classes to 
be classified, the conventional multi-class Fisher criterion (cFC) 
for deriving dimension-reduced subspace is suboptimal with re-
spect to classification (Loog et al., 2001). The reason is that the 
cFC treats class pairs with various between-class distances equally. 
In contrast, the wFC incorporates a weight function that approxi-
mates the Bayes error rate between classes, and assigns larger 
weights to the closer class pairs and smaller weights to the distant 
pairs. Thus, in the extracted subspace found by wFC, the classes 
with heavy overlap gain adequate emphases, and the distant pairs 
remain well separated. 

Finding a solution W that maximizes the wFC is essentially a 
problem of eigenvalue decomposition of the total Fisher scatter 
matrix,  

By taking only the m1 eigenvectors corresponding to the m1 larg-
est eigenvalues (m1 < m0), we can form a transformation that not 
only reduces the dimensionality of the original input space, but 
also retains maximal class separability information. We call this 
procedure wFC-Discriminatory Component Analysis (wFC-DCA). 

With the transformation 0 1( )m m×W derived from LDR, the di-
mension-reduced feature subspace (x-space) with m1 dimensions 
becomes T

0( )i i= − tx W t b , for 1, ,i N= K , where N is the number of 
samples, ix is the representation of the sample vector it in the x-
space with T

, 0( )r i r ix = − tw t b for 11, ,r m= K , and 0tb is the global 
center of the data set. On the other hand, the outputs of the hidden 
layer in the MLP (Figure 1) can be acquired as, 1 T

1,( )n n na bϕ= −w p ,

where 1
nw is the set of synaptic weights connecting m0 inputs to 

neuron n at the hidden layer, na is the output of neuron n , p is the 
MLP input vector, 1,nb is the bias of hidden neuron n , and ( )ϕ ⋅ is 
an activation function (Haykin 1999). The connection between the 
LDR and the MLP feature extraction mechanism now becomes 
clearer, suggesting that the column vectors of the LDR matrix W
can be used to initialize the weights between the input and hidden 
layer of an MLP, 1

n n=w w , and their biases can be initialized as, 
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Figure 1.  The general 
architecture of a two-
layer MLP. The inputs 
and the layers of neurons 
are connected through 
sets of synaptic weights, 
e.g., 1

1,1w , and each 
neuron has an individual 
bias, e.g., 1,1b .
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T
1 0= tb W b . The new features are further scaled by the activation 

function ( )ϕ ⋅ that could be linear or nonlinear. It has been theoreti-
cally shown that the minimization of the Bayes error with respect 
to the synaptic weights and biases of the MLP is equivalent to 
maximizing the wFC (Eq. (1)), and it can be entirely determined 
by the hidden neurons (Haykin 1999).  

2.1.2 Linear Discriminant Analysis and Multi-class Percep-
trons – Output Layer Initialization 
Since the outputs of the hidden layer serve as new features, Fisher 
Linear Discriminant Analysis (LDA) determines a linear transfor-
mation for converting an m1-dimensional problem to a one-
dimensional problem (Haykin 1999).  Consider the vari-
able Ty b= −w x that is transformed from x-space to a one-
dimensional space via LDA, and the LDA is defined by 

that is known as the generalized Rayleigh quotient. The solution 
that maximizes ( )J w is simply ( )1

w k l
−= −x t tw S µ µ , which is also a 

generalized eigenvalue problem.  
The neuron in the output layer behaves similarly as a perceptron 

that can be considered as a decision making element that bears a 
close resemblance to the Bayes classifier, and has been generalized 
to multiple classes (Haykin 1999). Specifically, the outputs of the 
neurons in the output layer are computed as, 2T

2,( )i i iy bϕ= −w a for 
21, ,i m= K , where a is the output vector of the hidden layer, iw is 

the set of  weights connecting the hidden layer and the output neu-
ron i , 2,ib is the bias of output neuron i , and 2m is the number of 
the output neurons, i.e., the number of classes (Figure (1)). Con-
sider a two-class case with a linear activation function ( )ϕ ⋅ , we 

have Ty b= −w x  with ( )1
1 2w

−= −x t tw S µ µ and T
0b = xw b ,

where ( )0 1 2 / 2= +x t tb µ µ . We can use two output neurons to derive a 
class-dependent representation by rearranging the output as, 

T T T
1 1 2 2 1 2( ) ( )y b b b y y= − = − − − = −w x w x w x , where 1

1 1w
−= x xw S µ ,

1
2 2w

−= x xw S µ , T
1 1 0b = xw b , and T

2 2 0b = xw b , so we 
have T

1 1 1y b= −w x and T
2 2 2y b= −w x . Figure 2a illustrates such an 

interpretation. Based on the above derivation, the class-dependent 
Fisher linear discriminant transformation iw can be again used to 
initialize the weights between the hidden and output neurons as, 

2 1
i w i

−= x xw S µ , and the biases of the output neurons can be, 
2T

2, 0i ib = xw b for 1,2i = . Accordingly, for a three-class case, it is 
straightforward to have 2 1

1 1w
−= x xw S µ , 2T

2,1 1 0b = xw b , 2 1
2 2w

−= x xw S µ ,
2T

2,2 2 0b = xw b , and 2 1
3 3w

−= x xw S µ , 2T
2,3 3 0b = xw b , where 

0 1 2 3( ) /3= + +x x x xb µ µ µ . Figure 2b depicts this case. Notice that 
such an initialization is readily applicable to single-layer percep-
trons.  

2.1.3 Determining the size of the hidden layer 
The wFC-based MLP initialization method may also suggest a 
suitable number of hidden neurons, a key component of MLP ar-
chitecture. Neural networks, like other flexible nonlinear estima-
tion methods, are vulnerable to problems of under-fitting and over-
fitting (Haykin, 1999; Ripley, 1996). The over-fitting problem 
occurs more easily when the number of samples in the training set 
is small and the network is relatively large, which is the case for 
most genomic data. Therefore, it is important to use a network that 
is just large enough to provide an adequate fit. The resulting sub-
space represented by the outputs of the hidden layer should main-
tain as much class separability as possible (Haykin 1999): the re-
tained partial separability is given by wFC ( )J = W (Eq. (1)). Hence, it 
is appropriate to let the number of pseudo genes (i.e., 1m , the num-
ber of hidden neurons) be the number of significant eigenvalues 
derived from wFC-DCA because the eigenvalues represent class 
separability in feature space. In this study, we select the dominant 
eigenvalue subset that contains 99% of the total separability, and 
let the number of hidden neurons be equal to the number of se-
lected eigenvalues. 

2.2 Selection of MLP Inputs  
Input selection is a prerequisite for diagnostic classification using 
genomic data; we apply our newly developed two-step wFC-based 
input selection method (Xuan et al., 2004) that shares the same 
theoretical basis (wFC) with the proposed MLP initialization ap-

Figure 2.  The illustrations of the MLP output layer initialization 
approach. 
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Figure 3.  The classification rate curves of the oMLP and cMLP with various JDG sets as inputs, (a) LGMD, (b) leukemia, (c) CNS cancer. For all 
JDG sets, oMLP consistently outperformed cMLP. The classification rate for each JDG set is the average of the 100 iterations of 3-fold cross valida-
tions. The JDG set corresponding to the maximal classification rate of the oMLP is considered as the optimal JDG set. 
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proach. Firstly, we rank all genes based on their individual dis-
criminatory power measured by the one-dimensional wFC (Xuan 
et al., 2004); a gene will be selected as an Individually Discrimina-
tory Gene (IDG) if its discriminatory power is above an empirical 
threshold. Secondly, from the IDG pool, we select Jointly Dis-
criminatory Gene (JDG) subsets (with various sizes) whose joint 
discriminatory power is the maximum among all sets of the same 
size. The joint discriminatory power is also determined by the 
multi-dimensional version of wFC (Eq. (1)). Furthermore, the JDG 
sets are refined by testing on a trained MLP, which ultimately de-
termines the “optimal” diagnostic gene subset that minimizes the 
generalization error. From the curve of classification rate vs. JDG 
subsets, we pick the optimal JDG subset that corresponds to the 
maximal classification rate as the final inputs for the MLP. This 
step boosts the MLP performance, and also determines its number 
of inputs (m0, Figure 1).  

3 EXPERIMENTAL VERIFICATION 

3.1 Data 
To highlight the biological and clinical relevance, we chose diag-
nostic tasks that are difficult for standard clinical and pathological 
methods alone. The following list summarizes the microarray data 
sets tested in this study. 

(1) Limb-girdle muscular dystrophy (LGMD, provided by 

Children National Medical Center, Center for Genetic 
Medicine): 4 diagnostic groups, Fukutin related protein de-
ficiency (FKRP) (homozygous missense for glycosylation 
enzyme, limb-girdle muscular dystrophy sub-type, n = 7), 
Becker muscular dystrophy (BMD, hypomorphic for dys-
trophin, n = 5), Dysferlin deficiency (putative vesicle traf-
fic defect, n = 9), and Calpain III deficiency (n = 11), total 
32 samples, 22,283 genes. 

(2) Leukemia (Kohlmann et al. 2004): 3 diagnostic groups, T-
ALL (n = 9), MLL (n = 10), and BCR-ABL (n = 15), total 
34 samples, 312 genes. 

(3) Central nervous system (CNS) cancer (Pomeroy et al. 
2002): 5 diagnostic groups, Medulloblastomas (n = 60), 
Malignant glioma (n = 10), Rhabdoid tumours (n = 10), 
Normal cerebella (n = 4), Supratentorial PNET (n = 6), to-
tal 90 samples, 7129 genes. 

3.2 Results 
The experiments were designed to show the impact of the proposed 
MLP optimization method on two major aspects of MLP perform-
ance: prediction accuracy and training efficiency. For the predic-
tion accuracy, we examined classification rate and Az from Re-
ceiver Operating Characteristic (ROC) analysis; to probe the train-
ing property we recorded initial error (mean squared error, MSE) 

Figure 4.  The one-against-rest ROC curves of the 
oMLP and cMLP with the optimal JDG set as inputs, 
(a) LGMD, (b) leukemia, (c) CNS cancer.  Each data set
has several sets of ROC curves for the oMLP and 
cMLP, and the number of sets is equal to the number of 
classes in each data set. The corresponding Az values for 
the oMLP and cMLP are displayed with the curves. The 
oMLP consistently showed superior performance over 
the cMLP for all data sets with larger Az values. 

(a) (b)

(c)
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between target and output before training, final error (MSE) after 
training, total number of epochs needed for convergence, and per-
centage of converged training. 

In all experiments with MLP training and testing, we applied 
100 iterations of stratified 3-fold cross validations in order to en-
sure reliability, and all performance measures were calculated 
based on the results from the cross validations. In the stratified 3-
fold cross validation, the data set is randomly divided into three 
subsets of equal size, and the proportion of each class in each sub-
set remains the same as that in the entire set. In each fold, one of 
the subsets is used for testing and the rest are combined for train-
ing; in each iteration, the training is repeated until all subsets have 
been used for testing. 

The optimized MLPs (oMLP, wFC-based initialization) consis-
tently outperformed conventional MLPs (cMLP, conventional 
random initialization) for all different tested JDG subsets (Figure 
3). We selected 200 JDG subsets consisting of 1 to 200 genes as 
inputs of the MLPs. Figure 3 plotted the curves of the classification 
rate from the test set (those samples not used for MLP training) vs. 
JDG subsets, which is part of the step 2 in the two-step input selec-
tion procedure. To determine the optimal JDG subset among the 
200 candidate subsets, the oMLP and cMLP were trained with the 
same training set and tested with the same test set in each fold for 
fairness and reliability. The search of the optimal JDG subset was 
considered sufficient when the classification rate of the oMLP did 
not increase substantially and the classification rate of the cMLP 
decreased consistently over 20 JDG sets. The oMLP was able to 
maintain high classification rate as the size of the JDG increased, 
whereas the cMLP performance degraded. Moreover, the smaller 
standard deviation (STD) of the oMLP classification rate across all 
cross validations indicated that the oMLP provided more stable 
performance (Table 1).  

Additionally, as ROC analysis (Metz, 1986) has been widely 
recognized as the most meaningful assessment of medical diagnos-
tic performance (Metz, 1986), we also evaluated relative prediction 
performance of the oMLP and cMLP using a one-against-rest ROC 
analysis (Hand and Till, 2001) that was specifically designed for 
the multi-class classification. The ROC analysis offers a descrip-
tion of the tradeoffs between true positive fraction (TPF) and false 
positive fraction (FPF) of a detection test as the decision threshold 
varies. In the one-against-rest ROC analysis, the approximated 
posterior probabilities (the outputs of an MLP) of test samples 
were recorded, and a two-class ROC analysis was applied to all 

combinations of one class against the rest classes. For example, 
there will be n ROC curves for an n-class classification task. A 
ROC curve plots TPF vs. FPF; generally the larger the index, Az
(area under the curve), the better the prediction performance of the 
classifier. With the optimal JDG subset as inputs, the oMLPs had 
greater Az values for all one-against-rest combinations than the 
cMLPs, therefore showed better overall performance (Figure 4). 
Within each individual case, the larger difference between the 
prediction accuracies of the oMLP and cMLP corresponds to the 
larger differences in Az values (Figure 4 and Table 1). 

The evaluations of training properties on the oMLP and cMLP 
with the optimal JDG subset as inputs clearly demonstrated the 
effectiveness of the proposed initialization approach (Table 1 and 
Figure 5). The smaller averages of initial and final MSE and the 
smaller STD of the final MSE in the oMLP trainings, also shown 
by the training curves (Figure 5), provided clear evidence that the 
proper initialization offered a better starting training point so that 
the trainings were led to a better and less diverse convergence 
point. In addition, we monitored whether each training process 
converged by recording the percentage of converged trainings. 
Note that a training process is considered as converged only if it 
meets the error goal or is stopped by a standard early stop proce-
dure we applied in all MLP trainings to prevent over-training. The 
result showed that 100% of the oMLP trainings converged, but a 
number of cMLP trainings were eventually terminated by a preset 
maximal number of epochs (Table 1). Moreover, the smaller aver-
age and STD of the number of total epochs needed by the oMLP to 
achieve convergence further confirmed that the oMLP needed less 
computational resources to reach higher classification rate (Table 
1).  

The two-step input selection procedure is effective and computa-
tionally feasible in handling a large number of genes so that the 
curse of dimensionality problem is significantly reduced to a more 
manageable scale. The considerable change of the classification 
rate over the entire curve (Figure 3) confirmed that the content and 
size of the inputs strongly influenced MLP performance. Particu-
larly, since it shares the same theoretical criterion with the pro-
posed MLP initialization method (wFC), their joint influence is 
augmented.  

We further compared the oMLP to two of the most commonly 
applied classifiers, K-Nearest Neighbor (KNN) and One-vs-Rest 
Support Vector Machine (OVR-SVM) that is a typical type of 
multi-class SVMs (Ramaswamy et al., 2001; Statnikov et al.,

Figure 5.  The training curves of the oMLP and cMLP with the optimal JDG set as inputs, (a) LGMD, (b) leukemia, (c) CNS cancer. The training prop-
erties, e.g., the convergence speed, initial and the final errors, can be clearly observed from the figures. The trainings of the oMLP usually started from 
smaller initial errors and converged to smaller final errors, whereas the cMLP training started from and converged to larger and more diverse errors. All 
these improved properties supported the advantage of the wFC-based initialization over the conventional random initialization. 
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2005). Both KNN and OVR-SVM undertook rigorous optimiza-
tions for seeking optimal performance. We determined the parame-
ter K in the KNN model based on 100 iterations of 3-fold cross 
validations. Each SVM unit in the OVR-SVM was tested for seven 
different kernel functions (linear, second and third order polymo-
nials, and Gaussians with scale factors, 0.01, 0.1, 0.5, and 1.0), and 
five penalty values C = 0.001, 0.01, 0.1, 1.0, and 10.0. The KNN 
took the optimal JDG set as inputs; the OVR-SVM took two types 
of inputs, optimal JDG set and all genes. In summary, the OVR-
SVM with optimal JDG set as inputs and the oMLP provided ex-
cellent and comparable accuracies and the OVR-SVM demon-
strated small improvements, whereas the KNN and cMLP gener-
ally showed inferior performances. Detailed results of these com-
parative experiments can be found in Appendix A (all appendices 
are under http://www.cbil.ece.vt.edu/software). 

Table 2. The classification rate of the model with the best performance for 
the KNNs and OVR-SVMs. The results are listed as average (STD). 

 OVR-SVM 
Data KNN Optimal JDG set All genes 

LGMD 41.33 (12.66) 
K = 15 

100.00 (0.00) 
Linear, Gaussian 10.0 

50.94 (12.58) 
Gaussian 10.0 

Leukemia 88.39 (8.73) 
K = 6

98.37 (3.76) 
Linear 

95.34 (5.97) 
Linear 

CNS 
cancer 

86.59 (4.65) 
K = 4

95.59 (3.25) 
Gaussian 10.0 

89.13 (3.49) 
Linear 

4 CONCLUSIONS AND DISCUSSIONS 
By suggesting an initialization technique based on the wFC and the 
link between the MLP mechanism and Fisher LDA, together with 
the input selection procedure, we offer an efficient and practical 
MLP prototype that can ease the curse of dimensionality in multi-
class high dimensional genomic data classification and provide 
excellent generalization performance. The wFC-based initialization 
procedure initiates the MLP close to the optimal condition for de-
cision-making, which increases the likelihood that the MLP may 
converge to a better local or global optimum. The curse of dimen-
sionality is a significant problem because it can easily lead to poor 
predictions to test samples; classification using genomic data is 
more prone to this problem due to the small ratio of sample size to 
dimensionality. The reduction of curse of dimensionality in the 
oMLP is clearly shown by our experimental results: the oMLP was 
able to retain its classification rate to a very high level even when 

the number of the inputs significantly increased, while the cMLP 
performance degraded drastically. Besides, in the design of the 
wFC-based initialization, we discussed the close connection be-
tween the classification by MLP and by LDA, and made contribu-
tions in the theoretical insight and experimental validation on how 
the MLP actually works. 

The improved performance of our optimized MLP approach 
does not imply that this method will be effective for any multi-
class nonlinearly separable problem. Such a classification problem 
could be an intrinsically nonlinear problem, or may become a 
nonlinear problem after dimensionality reduction according to 
Cover’s theorem on the separability of patterns. Therefore, the 
hidden layer of the MLP needs to perform the additional function 
of transforming a nonlinearly separable problem into a linear clas-
sification. This may be achieved by the existing hidden layer 
through dual-purpose training, or one additional hidden layer may 
be required. An elegant yet simple method is to apply divide-and-
conquer principle to the data set and accordingly introduce some 
pseudo-classes to the output layer, such that all class-pairs become 
linearly separable. Notice that the discrete decision fusion can be 
readily and effortlessly done without using any combiner, since the 
pseudo-classes belong to some of the known classes a priori. It is 
important to note that a net reduction in MLP complexity can still 
be achieved when 0m is large, since the total number of weights in a 
two-layer MLP is 1 0 2( )m m m+ such that the reduction due to m1
surpasses the generally limited increase due to 2m . Refinements, 
allowing a co-determination of 1m and 2m , may further reduce the 
curse of dimensionality and improve the generalization perform-
ance.  

A complex multi-class classification task is beyond the capabil-
ity of a single classifier. It is remarkable that the single classifier, 
oMLP, can compete with the OVR-SVM built with a collection of 
single binary SVMs and show comparable outstanding perform-
ance when the number of classes is relatively small (<= 5, more 
experimental results in Appendix A). However, the OVR-SVM is 
generally expected to outperform most existing classifiers as the 
number of classes increases (Statnikov et al., 2005).  

As another verification of the effectiveness of the MLP initiali-
zation, we tested and compared the untrained oMLP and cMLP, 
and the results showed that the untrained oMLPs considerably 
outperformed the untrained cMLPs (Appendix B). Even without 
training, the hidden layer of an untrained oMLP is able to extract 
discriminant features derived from the wFC; then the neurons in 
the output layer can perform linear one-vs-rest classifications 

Table 1.  The performance evaluation of the oMLP and cMLP with the optimal JDG set as inputs. MLP structure indicates the numbers of inputs (optimal 
JDG set), hidden neurons, and output neurons. The transfer functions in hidden neurons and output neurons are linear and log-sigmoid respectively. 

 Prediction  
accuracy 

Initial error, MSE Final error, MSE Total epochs  

Data MLP structure 
(Input-hidden-output) 

Classifier Ave., 
%

STD, 
%

Ave. STD Ave. STD Ave. STD Converged 
training, % 

oMLP 98.69 4.39 0.1726 0.0796 0.0062 0.0146 761.0 131.4 100 LGMD 186-3-4 
cMLP 42.05 18.96 0.4803 0.0718 0.1521 0.0747 1633.2 514.6 50 
oMLP 96.96 5.27 0.3313 0.1086 2.3x10-16 2.1x10-17 726.9 41.5 100 Leukemia 7-2-3 
cMLP 87.37 15.77 0.4416 0.1085 0.0279 0.0465 981.0 368.9 93.3 
oMLP 89.82 4.46 0.2658 0.1076 0.0044 0.0057 873.4 227.3 100 CNS 

cancer 
19-4-5 

cMLP 86.86 7.19 0.4527 0.0896 0.0097 0.0125 1368.3 418.8 84.7 

http://www.cbil.ece.vt.edu/software
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based on these extracted features. We used linear transfer function 
in the hidden neurons and log-sigmoid transfer function in the 
output neurons. Hence, an untrained oMLP closely resembles 
LDA, and the initial condition of the oMLP (i.e., performance of 
the untrained oMLP) reflects the performance of LDA.  

Using simulated data, we demonstrated that the proposed MLP 
optimization method is not sensitive to the deviation of the distri-
bution of a diagnostic group from a standard single multivariate 
Gaussian to a mixture of Gaussian (Appendix C). Although the 
wFC may only find less precise discriminant components when the 
distribution of each class cannot be closely modeled by a single 
Gaussian distribution, such loss of information is expected to be 
small and can be well compensated by further training of weights 
and biases that offers extensive degrees of freedom in modeling 
decision boundary.  
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