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INTRODUCTION

ATK Mission Research was sponsored by DARPA’s Virtual Soldier program to analytically
simulate residual wound tracts and tissue dynamics associated with a survivable wound from an
explosively driven fragment penetrating the left ventricular wall of the human heart. The resulting
ATK Mission Research wound description was used in the DARPA/University of Michigan Virtual
Soldier program asinitial conditions for describing blood loss and occurrence of hemorrhagic
shock. The DARPA/ATK Mission Research Statement of Work (SOW) isincluded as Appendix A.

The Mission Research effort consisted of three related tasks. In the first task entitled Analytical
Smulation of Projectile Trajectory, Mission Research divided up fragments into three geometric
categories — platelet, “chunky” fragment, and slender high aspect ratio projectile — with different
governing parameters. For each fragment geometry, algorithms were developed that describe
interaction of the fragment with human tissue and resulting projectile kinematics through different
tissue layers of the human left ventricular wall. Prof. Andrew McCulloch, Ph.D. (University of
California, San Diego — UCSD) and his team assisted Mission Research in executing the UCSD
Continuity code to develop quasistatic constitutive models for the various layers of tissue through
the left ventricular wall. From these quasi static models, high strain rate tissue property datawas
developed by Mission Research for input into projectile retardation models. The retardation models,
which are specific to the various fragment geometry classes, describe projectile deceleration during
tissue penetration and were also devel oped by Mission Research in thisfirst task.

In the second task entitled Analytical Smulation of Wound Tract, Mission Research used the
projectile velocity retardation and trajectory models developed in Task 1 as input conditionsto a
transient tissue response model devel oped in subtask 2.1 to simulate tissue displacement lateral
to the projectile trajectory in subtask 2.2. The permanent tissue displacement was used to
simulate the residual wound tract which was then integrated into the Human Holomer devel oped
by the University of Michigan for DARPA’s Virtual Soldier project.

In the final technical task entitled Ballistic Experiments on Tissue and Surrogate Materials,
ballistic impact experiments were conducted with custom designed launchers and projectiles on
instrumented homogeneous and non-homogeneous ordnance gelatin targets. The data from these
experiments were correlated with output from Task 1 and 2 models.

Two additional tasks, unrelated to the base effort described above, were added to the Mission
Research SOW. Thefirst of these tasks included using a modified Nail Gun developed by the US
Army Institute of Surgical Research (ISR) on ordnance gelatin targets and comparing residual
damage produced in the gelatin by the ISR Nail Gun as compared to the residual damage from
ballistic experiments. A separate letter report and a DV D with high-speed digital video of al
experiments were sent under separate cover for this task. The second task included conducting
hydrocode analysis of body armor SAPI plates subject to non-penetrating projectiles and blast and is
discussed in Appendix O.
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TASK 1
PROJECTILE RETARDATION AND TRAJECTORY MODELING

The principal activity in this task was to develop amodel that describes velocity retardation and
trajectory of the projectile center-of-mass as it penetrates human tissue. The model must use
independently measured target mechanical properties that is typically available for human tissue
asinput. Thisisimportant since ballistic test datawill not be available for human subjects and
only limited, quasistatic human tissue mechanical property datais available. We therefore
formulated a projectile retardation model where given data relative to penetration depth versus
striking velocity derived from ballistic experiments on a known projectile target combination,
where the penetration physics are phenomenologically similar to human tissue, asimilar relation
can be derived for an unknown projectile-target combination (in this case human tissue) provided
that projectile properties, striking conditions, and target material properties are known. We
successfully validated the methodol ogy by conducting ballistic penetration experiments on
different formulations of gelatin and predicting velocity retardation and projectile kinematics
where only quasistatic mechanical properties where known for the gelatin formulations.

In this task three categories of fragments were modeled (cf. Figure 1). Thefirst category isa
platelet with length to diameter ratio (L/D) — ¢ (i.e., fragment thickness dimension is very
small). The mean amplitude,s, of theirregular boundary about the platelet is user specified. The
second category isa“chunky fragment” that is symmetrical with length to diameter ratio (L/D) =
1. In general this projectile can be represented as an “equivalent sphere” in terms of its
penetration characteristics. The third category is a non-symmetric fragment with a user specified
L/D where 1 < L/D < 2. We have used as anomina example of this fragment category a cylinder
with aleading edge geometry that is a wedge where the angle of the wedge is user specified. An
example of thisfragment is shown in Figure 2 and is being used in the Task 3 ballistic

experiments.
L Lo>0o e
E Platelet D —¢&
E “Chunky” Equivalent Sphere L
E “Slender” High Aspect Ratio

— Symmetric L
— Asymmetric ‘

8

©
3

— =1
D
L>1

&

FIGURE 1. Models for three fragment categories
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FIGURE 2. 30 Caliber “Wedge Projectile” used in Task 3 Ballistic Experiments

1.1 ESTIMATION OF RETARDATION COEFFICIENTS FROM EXPERIMENTAL DATA AND ITS
EXTENSION TO UNKNOWN PROJECTILE-TARGET PAIR

When a projectile enters atarget medium at a known velocity, the projectile velocity decreases as
penetration depth increases. For analysis, the associated penetration mechanicsisidealized as
occurring in two phases. Thefirst phaseistheinitial entry phase when the projectile is not fully
embedded in the target. The discussion of thisinitial phaseis deferred until Sections 1.1.2 and
1.1.3. The second phase is the projectile motion after the projectile is fully embedded in the
target. Note that for agiven projectile-target pair, there is threshold striking vel ocity below which
no penetration takes place and the motion of the pair can be predicted by linear elastic analysis.

Initialy, our effort focused on the second phase of the penetration process. To understand the
second phase of motion, experimental datafrom Task 3 relative to penetration of spherical
projectiles into 20% gelatin targets was employed. We used three sizes of spherical projectiles; a
0.34 gram, 0.17 inch diameter steel sphere (referred to asa‘BB’), a 1.0 gm, 0.25 inch diameter
stedl sphere, and thereis also some limited 0.375 inch diameter steel sphere data.

Experimental data was collected on the depth of penetration, &(v), at different striking velocities,
v,. We call this data“experimental 6(v) versusVv’ data. Thisdatais presented in the Task 3
discussion. Using the kinematics of apoint mass m under aretarding force, R(v) , we can relate

R(v) and 6 (v) through the following equations.

—10 -
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\
8(v) ::J' %dv R(V) = — Equation (1-1)

d
— (V)
0 dv

where the mass term have been dropped from the equations. From physical considerations,
R(v) = o + Bv +yv?, then the first term corresponds to very low velocity or a‘ static’ retarding
force, the second term correspond to the Stokes frictional drag while the last term isthe fluid

drag term with a % pv? scaling. Frictional drag is scaled to the viscosity o of the target medium

and the first term is scaled with the elastic modulus of the target.

To develop aretardation force agorithm, Equation (1-1) is used to determine «, 5,y for the
projectile target pair used in the experiments. These are called “reference” values. Equation 1-1
can be used to derive the low velocity and high velocity characteristics of the 6 (v) function. It
can be shown that §(v) ~v* asv = 0 for low velocitiesand §(v) = In(v) for high velocities.
Expanding 6 (v) as

v¥(a+bv+cv?), low v

o) = - ' Equation (1-2
) a'|n(v)+3+c—2, high v a (-2
v v

And using the experimental data, we can get the coefficients in Equation 1-2 by curve fitting, and
matched asymptotic expansions. Once 6(v) isknown, R(v) and its coefficients can be
calculated from Equation 1-1. For 0.25-inch diameter steel balls, experimental data and
estimation of the retardation force using Equation 1-1 isshownin Figure 2. In Figure 2, v isin
ft/sec, 6 isininches, and R2 isin consistent units.

15 4-10

83(v) R2(v)210° _

I I
0 1000 2000 0 1000 2000

\% \%

FIGURE 3. Penetration Depth and Retardation forces versus Velocity

- 11 -
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To extend these equations to unknown projectile target pairs, we make some fundamental
assumptions. We assume that the force of retardation is normal to the projectile surface. That is,
the retardation depends only on the normal component of velocity, v, for arepresentative point

on the projectile surface. If this component is negative, then the force of retardation is zero. Thus,

R{,)ifv, >0
Oifv, <0 '

the normal forceis R =

The projectileis assumed to be rigid as it moves through the target. Thisis agood approximation
if the target is " soft” asisthe case for biological tissue and surrogate materials of interest. The
scaling laws applied to the various coefficients «, 3,7 are done using the physical relations

between the respective terms discussed above. Scaling parameters are shown below in Table 1,
page 13.

The scaling in the text box was used for the spherical penetration datain the 20% gelatin targets
shown in Figure 4. So in this example, the target mechanical properties are unchanged while the
projectile properties are different and the scaling for different diameter spherical projectilesis
shown. As previously mentioned, a correlation between the theoretical predictions using the
method above and experimental data for various spherical projectiles are also shown in Figure 4.

L
1.1.1 APPLICATION TO NON-SPHERICAL PROJECTILESWITH ASPECT RATIOS 0< B <2

Using the above approximations, we have devel oped models to predict the motion of two
completely different types of projectiles. Thefirst oneisaflat fragment with very low L/D while
the second oneisacut cylinder with 1 <L/D < 2. These models with the associated theoretical
development are briefly discussed below.

1.1.1.1 Flat Fragment (Platelet). A schematic of the fragment and loading is shown in Figure 5.
Equations of Motion

The motion of the center of mass G and the motion about G are governed by
mV, = R(v,)ids
S

Hg =—[r'xR(v,)AdS
S

Equation (1-3)

—12 —
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TABLE 1. SCALING METHODOLOGY FOR PENETRATION DEPTH AS FUNCTION OF STRIKING

VELOCITY

Use Scaling Laws for Retardation
Coefficients

Enter Projectile/Target Data

Target Young's Modulus E:= 4.5 104 (psi)

Target Viscosity 1 :=0.1 (poise)

Projectile Diameter or
Diameter of Projected Area D :=0.375

Target Density p := 1.0 (gm/cc)

Projectile Density pp:=8.0 (gm/cc)

Reference Values: Change when Different
Experimental Data is used as Reference
Values

Reference or Experimental Data Values
Reference Target Young's ModulusEr:= 4.5 104 (psi)

Reference Target Viscosity ur:=0.1 (poise)

Reference Projectile Diameter or
Diameter of Projected Area Dr:=0.25 (in)

Reference Target Density pr:= 1.0 (gm/cc)

Reference Projectile Density ppr:=8.0 (gm/cc)

mp=3.62 (9gm)

Scale Retardation Coefficients

Projectile Mass mp:= %~1r~(D~2.54)3-pp (gm)

r( D 2 E 4 4

on:=ar—:,— | -— an=27x 10 a =4.049x 10

mp\ Dr,) FEr

mr ( D n
Bn:=pr - Bn = 34.951 B =52.427

mp \ Dr/ ur

2
D

= yr.ﬂ.(_) P yn = 0.032 y =0.048

mp \ Dr/) pr

Reference Projectile Mass mr:= E-n-(Dr-2.54)3~ppr
6

mr=1.073 (gm)

— 13 -
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PENETRATION DEPTH VERSUS IMPACT VELOCITY
Analysis and Ballistic Data for Normal Impact Into Gelatin of Different Diameter Steel Spheres

0.375" Sphere 0.25" Sphere

Ty

10 / | // b
_ I} / //
yd

e
e

Penetration Depth (inches)
» (o]
o
\

L vt vt vt vt vt vt L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Velocity (ft/sec)

FIGURE 4. Correlation between analytical predictions and ballistic test data for three
different diameter spheres shot into 20% ordnance gelatin

In Equation 1-3, H, istheangular momentum of the fragment about the center of mass G and

r' = GP . Equation 1-3 represents six nonlinear, second order, coupled differential equations that
can be solved using a Runge-K utta method. Solution to these equations will predict the motion of
the center of mass and the rotation of the projectile as it moves about its center of mass. This
solves the motion of aflat fragment through the target.

1.1.1.2 FRAGMENT REPRESENTED BY A CUT CYLINDER. The schematic of a“cut-cylinder” and
associated loading is shown in Figure 6.
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P Representative Point
OXYZ Inertid Frame
Body-fixed Frame
G Center of Mass
Vs Velocity of G
n- Normd to the
Fragment surface

FIGURE 5. Schematic of Loading on a Flat Fragment

OXYZ Inertial Frame

Cxyz-Body-fixed Frame

G Center of Mass

Vs Velocity of G

O n- Normal to the
Fragment surface

), Cutting Angle

FIGURE 6. Schematic and Loading on a Cut Cylinder
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The equations of motions are identical to Equation 1-3 except that the mass moment of inertia
matrices are different. The projectile surface has been subdivided into three areas shown by the
different colorsin Figure 6. Two of these surfaces are flat and have simple normals and
representative points while the other oneis flat and has more complicated normal orientations at
various representative points.

1.1.2 DETERMINING TI1SSUE THRESHOLD PENETRATION VELOCITY

For agiven projectile-target pair, there exists a minimum velocity below which no visible
penetration occurs. For elastic targets, this means that the deformation produced during impact is
mostly recoverable and virtually no or only avery small indentation is visible. Thus, for a non-
penetrating ballistic impact, the input kinetic energy is lost through elastic wave radiation in the
target.

While the determination of this characteristic threshold velocity is difficult, some observations
are made from experimental data generated in Task 3 for spherical projectiles. For the cases of
0.17in. and 0.25 in. diameter projectiles, it has been observed that indentation/penetration in the
target equivalent to at least one projectile diameter is necessary in order for full penetration to
occur. Using this observation, we can use the penetration depth versus incident velocity data for
these two cases and determine penetration thresholds. Since penetration threshold data for these
two projectile cases is known, we can compare our prediction with experimental results. For the
above models, the relation between the penetration depth 6 and the incident velocity v isgiven
by 5(v) =v?(a+bv +cv?) where the coefficients a, b, and ¢ can be obtained by data fitting. For
the 0.25 inch diameter spherical projectile, these constants are given abovein Table 1. Thus, the
theoretical penetration threshold v, can be calculated from v, = *(d) where d isthe

projectile diameter and & *isthe inverse function of § . Since this result depends on the lower

end of the velocity field, v,;, can be approximated from asimpler equation,v,, = \/E .Fora
a

0.25 inch diameter steel ball, thisyields v, =143£ which is very close to what was

experimentally observed.
1.1.3 SwMmALL DEPTH OF PENETRATION M ODEL

Models describing the penetration of projectiles of various aspect ratios have been devel oped
earlier using the retardation formula given by a quadratic function in the instantaneous projectile
velocity, v . The coefficients used in this formula are determined from the analytical inversion of
experimental datafor cases where such datais available. Extension of this model to cases where
no such experimental datais available has also been developed earlier. The early phase of
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penetration, when the incident velocity is at or near the threshold velocity of penetration, has not
been explored in detail before, however. Some simple particle kinematics can yield insight
relative to the mechanics of penetration during these early phases of penetration prior to the stage
when the projectileis fully embedded inside the target and does not rebound elastically. We refer
to thisanalysis as the small depth of penetration model. This model can be used for two
problems; first to predict the penetration threshold, v, , as described in Section 1.2,for agiven

projectile and second, to determine the small depth of penetration for impact velocities near v, .

The nature of the force of retardation (FR) changes for impact velocities below and above v, .

Such differences in the nature of FR can be obtained from simple one-dimensional motion of a
lumped particle mass that represents the projectile. The equation of motion of the projectile of
mass m impacting atarget with aincident velocity v, is

dv )
v—=-F Equation (1-4
my— (x) q (1-4)

where F(x) isthe FR when the surface displacement is x.

If d isthefinal displacement, then integrating Equation 1-4 above, we have
T 1
'[ F(x)dx = 5 muv? Equation (1-5)
0

If D isthe diameter of the average projected area of the projectile on the target, then F(x) can
be written as

F(x) = %DZG(X) Equation (1-6a)
If EistheYoung s modulus of the target and / is the effective depth, then

X . .
E=f I t
R or elastic displacemen Equation (1-6b)

o, for penetration

In (1-6b), o, isthethreshold stress for penetration and is amaterial constant. Substituting (1-6)
in (1-5), we have
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oc v for eastic deformation

= o _ Equation (1-7)
oc v° for projectile penetration

Equation (1-7) is consistent with the observed nature of the small depth of penetration for
incident velocities near the penetration threshold velocity v, .

Using (1-7) and areference projectile identified by a subscript r, we can write down the formula
that givesthe functional relation d =d(v) between theincident velocity v and the depth of

penetration d for asmall depth of penetration. The derivation of thisresult for a spherical or
sphere-like projectile of diameter D and density, p , is given below. From (1-4) and (1-7), we
have, using

1 3
m=—npD",
6/0

Writing (1-7) explicitly, we have

d(v) = ( /; i jD Equation (1-8)

c

when penetration occurs. The effective spring constant, k , of the target material can be
calculated from the following formula

_F(x) =ED?
X 40

k Equation (1-9)

Thus, the spring stiffness increases asD?.
Determine Penetration Threshold Velocity, v, , Revisited
To determine the penetration threshold velocity, v, , we postulate, asin Section 1.1.2, that the

penetration depth should be at least the radius (or the effective radius) of the spherical or sphere-
like projectile so that v, satisfiesthe condition

d(v,) = % Equation (1-10)

From (1-8) and (1-10), we have
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2 5
O, = 5 oo
Equation (1-11)
UC = vCT &
Jo,

Plot of Penetration Depth (in) of BB (Reference)
and Polypropelene vs Entry Velocity (fps)
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FIGURE 7. Penetration Depth of Steel Spherical Reference Projectile compared with
Polypropylene Spherical Projectile

We have experimental data on penetration of small (D, =0.17 in.) diameter spherical steel ball
impacting gelatin blocks. From this data, we derived the penetration threshold velocity v, =175
fps which is consistent with Equation (1-10). Applying Equation (1-11) to 32 caliber

polypropylene spherical ball (p =1 gm ), we get the predicted threshold velocity v, = 495 fps.
cc

Thisresult is very close to the experimentally observed minimum velocity needed for full
penetration. In Figure 7, we compare the penetration depth of the reference ‘BB’ projectile and a
polypropylene projectile using the small-depth penetration model. It should be recalled that for a

large depth of penetration, penetration depth is proportional to In(v) instead of v* shown in
Equation (1-8) for the small depth of penetration model.
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Analysis of New Penetration Data

Using high speed digital video with aframe rate of the order of microseconds, new experimental
data on ballistic penetration has been obtained by ATK Mission research as part of the Virtual
Soldier effort. Two types of projectiles were used; oneisa¥ain. steel projectile and the other isa
Yain steel cylinder with an aspect ratio of 2 (See Tables 6, 7, and 8 in Section 3).

Run No. 0506-07
Yain steel sphereimpacting 20% gelatin target at 1,170 fps

Experimenta data derived from video images by manual cursor placement is shown in Table 2.
The wavy nature of the velocity profile is due to manual data extraction. This datais used to test
the analytical models developed earlier from small spherical projectiles penetrating gelatins. This
datais used as the reference data labeled as ‘ BB-data’ for extending the capability of analytical
prediction of location, velocity and time for penetration of other projectilesin 20% gelatin. The
comparison of measured velocity and penetration depth for the ballistic test # 0506-07 shown in
Table 2, and analytical prediction (red curve) is shown in Figure 8. For the three other cases
shown in Table 6, acylindrical projectile of Y2 inch base diameter and length to diameter ratio of
2 isused asthe projectile.

TABLE 2. Analysis of Digital Video Data for Run No. 0506-07

GBL Test Distance Velocity Direct Read from Phantom 606 at 1170 fps Target: 20% Gelatin
I
Case: 0506-07 1/4 in Steel ball Mass=1.04 gm Total Depth of Pen = 6.3 in
Start Frame 9
Elap.Time | Read Dist.(in) | Actual Distance | Speed Read (fps) | Frame Read from Phantom 606

microsec inches
0.0000 0 0 1170
34.0091 0.404 0.404 989.932 10 d= 0.404in s= 989.932 ft/s
32.9891 0.425 0.829 1073.588 11 = 0.425in s=1073.588 ft/s
33.0312 0.383 1.212 966.257 12 = 0.383in s= 966.257 ft/s
32.9662 0.361 1.573 912.55 13 = 0.361in s= 912.550 ft/s
34.0147 0.319 1.892 781.525 14 d= 0.319in s= 781.525 ft/s
33.0436 0.298 2.19 751.533 15 d= 0.298in s= 751.533 ft/s
32.9891 0.255 2.445 644.153 16 = 0.255in s= 644.153 ft/s
32.9583 0.276 2.721 697.852 17 = 0.276in s= 697.852 ft/s
34.0680 0.213 2.934 521.017 18 = 0.213in s= 521.017 ft/s
33.0293 0.235 3.169 592.908 19 d= 0.235in s= 592.908 ft/s
33.0658 0.213 3.382 536.809 20 = 0.213in s= 536.809 ft/s
32.9459 0.191 3.573 483.115 21 = 0.191in s= 483.115 ft/s
34.0581 0.214 3.787 523.615 22 = 0.214in s= 523.615 ft/s
32.9459 0.191 3.978 483.115 23 = 0.191in s= 483.115 ft/s
32.9882 0.17 4.148 429.447 24 = 0.170in s= 429.447 ft/s
33.1637 0.1709 4.3189 429.435 25 = 0.170in s = 429.435 ft/s
34.0451 0.149 4.4679 364.712 26 d= 0.149in s= 364.712 ft/s
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FIGURE 8. Comparison of Recorded Data and Analytical Prediction: Run No. 0506-07
Analysis of other experimental data

e Unlike the spherical projectile (run # 0506-07), cylindrical projectilestend to rotate as
they penetrate the target due to small striking obliquities. For perfectly normal impact in a
perfectly homogeneous target, no rotation should be present.

e Since no deviation is observed for spherical projectiles, we postulate that the rotation
must occur mainly due to the small obliquity of incident angle.

e For locations where the cylinder is not in contact with the surrounding gelatin target, the
velocity normal to the projectile surface is along the inward normal.

e For locations where the cylinder isin contact with the surrounding gelatin target, the
velocity normal to the projectile surface is along the outward normal.

e Thisresult conforms to the assumptions made when the analytical model for the
projectile penetration was devel oped.

Similar results are shown for the “cut” cylindrical projectile where the rotational kinematics of
the cut-cylinder projectile are simulated in the slides on page 284 (Appendix N) and compared
with experimental results.
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Captured snap shots for the sphere and cylindrical targets are shown in Figure 9 to support the
observations made above.

Run No. 0506-07

2

projectile: sphere

Run No. 0506-09 Run No. 0506-10

/ projectile separation

projectilerotation

FIGURE 9. Snapshots From Digital Video of Ballistic Experiments

1.1.4 MOTION OF AN ARBITRARY-SHAPED RIGID BODY INSIDE A KNOWN TARGET WITH
POSITION DEPENDENT RETARDATION PROPERTIES

Let us consider an arbitrary shaped rigid body penetrating a target where the force of retardation
at any point P isdependent on the position of P inside the target. Considering an elementary
area dA at P on the surface of the body, we assume that force of resistance is opposite (inward)
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to the outward normal, n (Figure 10), and its magnitude depends on three position-dependent
retardation coefficients «, 8,7 , and the normal component v, = v,.n of the velocity v, of P.

From experimental data on penetration of small steel spherical projectiles, we have the depth of
penetration 6 (v) asafunction of the incident velocityv . Using one-dimensiona particle

kinematics, the force of retardation, R(v) can be obtained as a function of the instantaneous
velocity, v, from afunctional relation between s (v) and R(v) originally rendered as Equation 1,

v

_ [ _mw on (1-
o) = { R dn or R(v) ds Equation (1-12)
dv

where m isthe mass of the small spherical particle.

In the case of afinite sized rigid body penetrating a given target, we assume that the body surface
is composed of an ensemble of small elementary surfaces, and the force of resistance on an
elementary area dA depends on the inward velocity at P and three retardation coefficients
obtained from Equation (1-12) and experimenta data. By using a scaling analysis, we have
extended the nature of the retardation force to unknown bodies for which no experimental datais
available. It has been established that these coefficients depend on the following material
properties at the instantaneous location of dA :

Young's Modulus E Z n
Target density p

Target viscosity u , and 0]
Properties of the reference materia for
which experimental datais available.

A wihpE

The motion of the projectile inside the target is
decomposed into: (@) the motion of the center of
mass G, and (b) the rotational motion of therigid
body about G.

OXYZ Newtonian
Writing the force of retardation R(v,) perunitarea  Gxyz Body-Fixed

as
FIGURE 10. Frames of References

RW,)=ap+ fov, +7pUr21 Equation (1-13) for Arbitrary Penetrating Body

the equations of motion of the center of mass G is given by*

1 Overhead dot indicates time derivative
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mvg = —j R(v,)ndA Equation (1-14)
A

and the equation of motion for the rotational motion about G is given by

Mg =Hg = —J'R(vn)ner,PdA Equation (1-15)
A

In equation (1-15), subscripts P in the retardation coefficients «, f and y indicate that these
coefficients depend on the target material propertiesat P . In Equation (1-14), v, isthe velocity
of the center of mass G. In Equation (1-15), M isthe moment of the retardation forces about G,
and H isthe angular momentum of the rigid body about G, and r;,, = GP (Equation 1-15 and
Figure 10).

Using the inertia matrix

Ixx _Ixy _Ixz
I=-1, I, -I, Equation (1-16)
_Ixz _Iyz Izz

about the center of mass G with axes along the Gxyz (Figure 10), and the angular velocity o of
the rigid body

0=\ Equation (1-17)

where the components are along the axes of the rotating frame F = Gxyz attached to therigid

body, the relation betweenH ;, | and o isgiven by

H; =l.o Equation (1-18a)
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N
The relation between the Newtonian derivative operator % and frame-related derivative

F
operator a is
dt

N F
% = % + WX Equation (1-18b)

Using (10) Equation (7) can be written as
lo=M;-wxH Equation (1-19)

The component equations can now be written from Equation (1-19) in the rotating frame axes
Gxyz (Figure 10).

In order to track the location of the body at any given timet , the orientation of the body-fixed
unit vectors along with the location of the center of mass G in the Newtonian frame OXYZ should
be known. This can be done by solving the differential equations governing the motion of

thei, j, k through the target. The details about the motion of i, j, k are described in the next

section.
Material Properties Data in a Newtonian Frame and Its Transfer to the Equations of Motion

Two fundamental equations governing the motions of the center of mass G and rotation about the
center of mass are given in Equations (1-14) and (1-19). The scalar equations arising from these
equations can either be written by taking components along body-fixed Gxyz (F-frame) or
Newtonian OXYZ (N-frame) axes. Equation (1-19) is described in F-frame while (1-14) is
described in the N-frame. Besides, for visualization of projectile penetration inside the target, all
guantities should be tranglated to the N-frame. The transfer function between these two frames
requires the temporal description of the unit vectors along the F-axes to the unit vectorsin N-
axes. Asthe rotational angles can only be added incrementally, we also need to include the
differential equations describing the change in these unit vectors.

Let
iX jX kX
=i |,j=|Jy |, K=|ky Equation (1-20)
iZ jZ kZ
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be the unit vectors along the Gx, Gy and Gz axes (Figure 10) with components in the N-frame
aong OX, OY and OZ axes. Then the time derivative of these unit vectors are given by

I=oxi, jJ=oxj, k=woxk Equation (1-21)

The transformation matrix T between the F-axes and N-axes components is given by

iX I’Y iZ
T=|Jj. Jj, J, Equation (1-22)
ky ky kg

Using the T -matrix, any vector x™ with components along the F-axes can be converted to same
vector x" with components along the N-axes through

x" =T.x" Equation (1-23)
Using (1-21) and (1-23), the differential equations governing the unit vectors are given by
I =(Tw)xi,]=(Tw)xj,k=(To)xk Equation (1-24)

The integrations shown in (1-14) and (1-15) contain integrands which depend on the location of
the point P in space and the description of material properties at P. Since the integrations are
done in F-frame while the material properties are known in N-frame, we need to convert the
coordinates of P from the F-frame to the N-frame by using the conversion-formula given by
Equation (1-23).

18 Coupled Differential Equations and Their Solution by Runge-Kutta Algorithm

With reference to Figure 10, let us define a 18x1vector x whose components are described
below:

X,,%,, X, arethe coordinates of G in N-frame Equation (1-25)
X,, X5, X, arethe components of the velocity of the center of mass G in N-frame

x,,Xg, X, arethe components of the angular velocity of the body in F-frame

X100 X1, X, @€ the components or the direction cosines of the unit vector i in the N-frame
X3, X4, X5 @€ the components or the direction cosines of the unit vector j in the N-frame
X160 X7, X9 @€ the components or the direction cosines of the unit vector k in the N-frame
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Then the coupled differential equationin x isgiven by
X =D(t,x) Equation (1-26)

The function D(t,x) isavector where each element is the time-derivative of the corresponding

element in x. Since these derivatives are completely known in terms of the elements of x
through the equations (1-12)-(1-24), D(t,x) isaknown function. Theinitial conditions for

solving for x are given by theinitial entry scenario where usually the incident velocity and initia
angular velocity are known. Using theseinitial conditions, (1-26) can be solved completely using
a Runge-Kutta algorithm. Thus, the kinematics of the rigid body is completely known in the user
defined N-frame, and can be displayed for visual simulation of the penetration event.

Numerical Algorithms for Solving the Projectile Trajectory

Equations (1-14), (1-19) and (1-21) describe the differential equations of motion of the center of
mass G (Figure 10), rotational motion of the body about the center of mass and the orientation of
body fixed coordinates. These are (Figure 10):

e X, ,theposition vector of the center of mass G (Newtonian components),
e V,,thevelocity vector of G (Newtonian components),

e o, angular velocity vector of the projectile (Body-fixed component), and
e i, ], k,unit vectors along the body-fixed axes (Newtonian components).

Since these are all vectors, we have atotal of 18 independent time-dependent field quantities that
are governed by coupled, nonlinear first order differential equations givenin (1-14), (1-19) and
(1-21). Using a standard Runge-K utta algorithm for solving a system of first order, coupled
nonlinear differential equations; we can obtain a complete solution of the problem of determining
the wound tract due to a projectile motion in a body.

Application of the Runge-K utta method requires that al derivatives of the variables described
can be obtained from analytical, functions of all other variables. For problems involving location-
dependent material properties in a user-defined, Newtonian frame, these locations need to be
determined analytically from current values of these variables. This makes the problem very
complicated since the location of any point on the projectile surface in a Newtonian frame not
only depends on the location of the center of mass but also on the orientation of the unit vectors
along the body-fixed coordinates. In the absence of location-dependent properties, the dimension
of the unknown vector x in (1-16) can be significantly reduced from 18 to 6.
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1.2 SIMULATION OF PROJECTILE TRAJECTORIES

For spheres and sphere-like projectiles with aspect rati o% ~1, therotationa kinematics of the

problem is not significant, and hence the problem is simplified to tracking the motion of the
center of mass. Thisis especialy true during high velocity penetration except when the material
properties vary significantly over the surface of the projectile boundary. This can create a
significant moment about the center of mass.

1.2.1 Analytic Simulation of Projectile Trajectory for Platelet, L/D ~ 0, and Non-
Symmetric fragments, L/D =~ 2.

Two types of projectiles have been considered in the numerical codes written and developed by
ATK Mission Research for the determination of projectile motion inside a non-homogeneous
target with known properties. For the case of L/D ~ 2, we have used a cut cylinder as an example.
The physical dimensions of the cut cylinder are shown in Figure 11. For the case of aplatelet
with L/D - 0 we have used acircular plate. The code is correctly predicting the linear motion of
acut cylinder with L/D ~ 2 but the rotary motion is under-predicted. Some results are shown in
Figure 12.

Due to the complex physics and associated numerical algorithms (described in detail below), we
have devel oped the software in modular forms. Each module has been checked and the complete
code has been developed by integrating these modul es.

Material: Steel

Short Length L": 8 mm

Long Length L: 16 mm

Cutting Angle: 47 degrees

A schematic is shown in Figure 8.

Cutting Angle
)

FIGURE 11. Schematic of ATK Mission Research “cut cylinder” projectile
1.2.2 Material Property Modeling

A number of published animal based Strain Energy Functions which have been derived from
tissue property experiments were acquired by Mission Research. Stress-Strain relationships
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suitable for use in the Mission Research wound Tract analysis and other codes can be derived
from these functions. Several resulting stress-strain curves are shown in Figures 13 through 15.

Shown in Figure 13 isauniaxial stress-strain curve of cardiac muscle from the myocardium of a
human left ventricle in the direction of the fibers (Strength of Biological Materials, Y amada,
1970). It is noted that 1 gm/mm? is about 0.1 bar. Average values of failure strength are reported
to be between 0.9 and 1.4 bars depending on age with an average of 1.1 bars. The ultimate
strength in the transverse direction is about 1/3 of these values. The failure strainsin the fiber
direction vary between 63 and 79% with an average of 64%. The failure strain in the transverse
direction is about 1.3 times that in the fiber direction.

[ I I I
Axial Motion of a Cut Cylinder inside a Gelatin Target /

30 Analytical: Entry Speed 1400 fps

25
5
)
c
)
2 20
)
Q
©
a
L 15
o
8
<
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5 /
0 —
0 200 400 600 800
Time(usec)

FIGURE 12. Analytical Prediction of Axial Displacement of a Cut Cylinder

Figure 14 isaplot of the stress-stretch ratio in the fiber and transverse directions based upon
equal loading biaxia extension data. The fit to the datais based upon an assumed form of the
controlling strain energy density function. This information was provided by Prof. McCullouch,
Ph.D. from UCSD. It is noted that 10 KPais 0.1 bars. Stress datain the fiber direction is shown
to about 0.8 bars consistent with the values in Figure 13 athough the corresponding biaxia strain
level is calculated to be about 30%.
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A plot of predicted circumferential stressin a human ventricular chamber is shown in Figure 15.
The maximum value for the hypertensive case is about 8 KPa. The corresponding strain is about
64%. (Mechanical Properties of Diseased Hearts During Adaptation, Chaudhry, 2002).

gfmmt
16—

Elongation

FIGURE 13. Tensile Stress-Stain of Cardiac Muscle on
people 20 to 29 years old [Figure 82 from Yamata].

Cauchy Stress (kPa)

i.0 1.1 1.2 1.3

Strotch Ratio

1 FIGURE 14. Analytic fiber stress and cross fiber stress versus stretch

ratio for equibiaxial extension of thin rectangular sheet applicable to
cardiac myocardium [original data from Costa et al. 1996 and

application based on personal discussion with A. McClulloch/UCSD].
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Regional Circumferential Stress

Normal, Hypertensive, Congestive Heart Failure

Narmal
Congestive Heart Failure
-=-== Hypertensive

Circumferential Stress (kPa)

i}
9] 0.2 04 0.6 0.8 1

Fraction Wall Thickness (Endocardium to Epicardium)

FIGURE 15. Stress versus Ventricular Wall Thickness [from Chaudry]

Human myocardial tissue can be described as a hyperelastic, anisotropic material with principal
properties varying in the ‘fiber’ and ‘cross fiber’ directions. UCSD has been involved in a
number of efforts associated with modeling heart component response and has assembled a
library of Strain Energy based constitutive models which have been implemented in the UCSD
Continuity code. The maority of the existing datais based upon uniaxial and biaxial tension tests
which is appropriate for normal expansion. It must be noted that the principal early time stress
generated during impact and penetration are compressive and thus compressive data is ultimately
needed to verify predictions.

For the purposes of the current effort, UCSD recommended that a Canine based Transversely
Isotropic Exponential Strain Energy function be used to derive the required Stress-Strain
relations which are currently used as input to the ATK-Mission Research hydrocode models. The
orientation of the fiber/cross fiber ‘ sheets' are known as a function of thickness through the
ventricle and can be implemented as required. The properties are known to depend on a number
of parameters including moisture content and loading rate but the data base focuses on static
loading derived properties.
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A typical derived stress-strain relation is plotted in Figure 16. It is seen that failure strengths are
very low, on the order a bar. The forms of the constitutive models are givenin Table 3.

Stress vs. Strain

Transversely Isotropic Exponential Strain Energy Function Model

150—:
140 ; /ll4bars
130 3 /
120 3 /
110 3 /
- 100 ; Fiber Direction /
§ 90 "/
\%-; 80 E
O 70
wn 7
60 E / 0.6 bars
50 3 / / x
40 E // / Crosg Fiber Direction
30 A
] //
20 3 - Shear
10 E 4/ . 1 bars
O = T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Strain(mm./mm.)
FIGURE 16. Myocardium Stress-Strain Relation
TABLE 3. Simplified Material Models
Structure Congtitutive Model Strength Model Failure Model Anisotropy
Pericardium Linear Yield Strength NA
Myocardium Puff Yield Strength Yes
Heart External Puff Elastic Strength Future
Blood Shock None None NA

Parameter Sensitivity Studies

A series of 2D hydrocode parameter sensitivity studies were performed modeling gelatin impacts.
The shear modulus and material strength were varied. Typical results of penetration depth versus
time are shown in Figure 17. A more detailed discussion of the results from this study isincluded
in Appendices H and |. The 2D hydrocode analysis supporting the material parameter sensitivity
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studies was performed using (i) alinear elastic heart tissue moddl, (ii) a half scale MRC wedge

fragment, and (iii) a series of thin platelet fragments impacting normal to the target surface.
Penetration Depth vs. Time
2X7 mm Steel Disc @ 300 ft./sec.
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FIGURE 17. Penetration Depth of Platelet Fragment versus Time

As mentioned in Section 1.1.3,the slides on page 284 from the presentation reproduced in
Appendix N show avery favorable correlation between cut-cylinder rotational kinematics
observed experimentally using high speed digital video and the analytical simulation devel oped
as described in this section.

1.3 ANALYTICAL BACKGROUND OF PENETRATION OF A FRAGMENT INSIDE A GIVEN TARGET
WITH NONHOMOGENEOUS MATERIAL PROPERTIES

For modeling the complex, dynamic process of fragment penetration in a given target, we need to
understand the mechanical properties of both the target and the fragment, that are responsible for
the retardation forces exerted on the projectile during penetration. Some simple anaysis are done
first where the projectile has simple shapes e.g., a sphere in atarget with no material
inhomogeneities. Ballistic experiments conducted by Mission Research during the last few years
provide us an experimental database on small spherical steel balls, spherical balls of other sizes
and cut cylinders penetrating a uniform 20% gelatin used as a tissue-simulant. For various
incident velocities, the penetration depths were recorded during these experiments. By using the
equation of motion of arigid body assuming that the projectile does not deform during
penetration, we inverted the penetration depth versusincident velocity datato yield the
penetration coefficients described in previous quarterly reports for this project. The fundamental
equations used in the inversion are repeated below.
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mvgz—R(v) =—(a+ﬂv+yv2)

v, Equation (1-27)
muv

o(v,)=|——dv

[70)

In (1-27), misthe projectile mass, v istheinstantaneous velocity of the projectile at adepth x
during penetration; o, 5,y arethe retardation coefficients, and o (v,) isthe penetration depth for
incident velocity v, . For the experimental data, penetration depth vs. velocity is shown in Figure
18, and the calculated retardation coefficients per unit mass are

o = 4.04910" B :=52.47 y :=0.048

Thus the equation of motion, first Equation in(1-27), is modified as

v% =—R)=—(a+pv+yv?) Equation (1-28)

In (1-28), a, B,y arethe retardation coefficients per unit mass of the reference projectile.

Retardation coefficients derived from experimental data on 20% gelatins, need to be modified for
applications to other projectiles of different shapes and masses. For finite size bodies with
multiple boundary areas, we assumed that load per unit differential area can be determined from
the retardation laws established for the reference spherical projectile by proper scaling of area
and mass. Since increasing projectile mass indicates more kinetic energy available for

penetration, retardation coefficients are modified by afactor of m,

where the subscript r
m

indicates reference projectile mass which isthe BB-massin this case. Note that mass scaling is
inversely proportional for modifying the retardation coefficients. For surface scaling, the load on
an elementary area dS is calculated by multiplying the retardation coefficients by afactor of

Cé—s where S isthe projected area of the reference projectile on the target surface.

r
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Plot of §(v) vs. v
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FIGURE 18. Experimental Data: Penetration depth vs. Entry Velocity

For our applications, the problem of the penetration mechanics of a general shaped projectile e.g.
afragment/cylinder/sphere or sphere-like, in a nonhomogeneous human left ventricleis
considered. Since the experimental datais obtained for a homogeneous 20% gelatin target, some
material scaling is aso required. To include the inhomogeneity in material properties on
retardation forces, we need to relate the retardation coefficients to the associated physics of the
retardation process. For very low impact velocities, static properties of the projectile-target
dominate the process. For arigid projectile, the relevant material property isthe Young's

modulus of the target. Thus the low-velocity coefficient « is scaled with E£ where E isthe

r

Young's modulus of the target at the instantaneous contact location of the elemental area dS at
time t. The coefficient B isrelated to the Stoke' sfriction drag so that it depends linearly on

viscosity, and hence on the shear modulus G for harmonic loading. Thus, g isscaled with GE :

r

Finally the last term is the fluid drag term related to the density p of the target, and hence y is

scaled with £- .
P,

Besides the above scaling laws applied on the retardation coefficients, we also assume that target
resistance is always along the inward normal to the surface of the projectile when the projectile
velocity is along the outward normal to the projectile surface; otherwise, the retardation forceis
zero.
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TASK 2

WOUND TRACT MODELING AND SIMULATION

This task evolved during the course of the program and bifurcated into two discrete sub-efforts.
In the first effort, a nonlinear stress wave propagation model was devel oped emphasizing
ballistic impacts that partially penetrated the human left ventricle. A geometry model of the heart
was acquired and discretized into anumerical grid by Stanford University. Material properties
were mapped on the numerical grid with the help of the Bioengineering Institute at the University
of Californiain San Diego (UCSD) using the UCSD Continuity Code. Stress wave analysis was
then conducted by ATK Mission Research using the Autodyn® software package employing
various projectiles shown in Figure 1 (page 9). Parameter sensitivity studies were also conducted
to understand the appropriate model fidelity for various model features. This effort is discussed
in Section 2.1.

The second effort, discussed in Sections 2.2 and 2.3, involves developing anonlinear spring
lattice calibrated to intervening soft tissue properties. The trgjectory and vel ocity retardation
models developed in Task 1 are used to cut the springs and impart a velocity vector to the springs
asinitial conditions. Theinitial cutting and recoil of the spring lattice plus the subsequent
dynamic transient and associated accumulated plastic strain from spring hysteresis establishes the
residual diameter of the wound tract. The resulting wound tract is then imported into SClrun (a
scientific visualization tool developed by the University of Utah) for visualization. A SClrun
interface was written for this purpose by ATK Mission Research with the help of the University
of Utah Scientific Visualization Center of Excellence. This visualization effort is discussed in
Section 2.3.3.

2.1 CONSTITUTIVE AND HYDROCODE MODELING

3D models nonlinear dynamic models where developed to allow prediction of the wound tract
trgjectory, tract dynamics, and stress-strain fields for a human left ventricle penetrated by both a
wedge-like and small cylindrical fragment impacting normal to the ventricle surface. In order to
perform this analysis, we developed: (1) constitutive models for the pericardium, myocardium
and ventricle core, (2) a 3D finite-difference model of the ventricle and projectiles, and (3) a3D
finite-difference model approximating cardiac structures attached to the left ventricle. A range of
impact velocities were analyzed in order to ensure that the projectiles slowed to essentialy zero
velocity in the *blood’ filled central cavity. The output of this effort were animations of the above
parameters for aventricle penetrated by a (1) 7-mm, 45 degree steel wedge impacting at 250
ft/sec. and (2) a 3-mm, stedl circular cylinder impacting at 300 ft/sec. both with aspect ratios of 1.
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211 VentricleModd

In order to perform the desired penetration analysis, a realistic representation of the human left
ventricle geometry was required. We obtained a detailed geometry model from Stanford
University that was trandated by the University of Utah. We went thru a process of ‘ smoothing’
the surfaces and then asked XY Z corporation viaits True Grid® mesh development program to
develop a mesh suitable for input in the Century Dynamics Autodyn™ 3D hydrocode. The
pericardium, myocardium and cavity were then filled with approximations to the actual material
properties for the Phase | demonstrations.

A procedure similar to that above was used to develop a‘Heart Envelope” so that we could
account for the influence of the material surrounding the Ventricle on the Ventricle mechanical
response. In order to do this, we relied on a University of Utah supplied porcine heart
representation. We were advised that to first order, the size and basic geometry would satisfy our
‘Heart Envelope’ needs. A picture of the meshed model is shown in Figure 19. Details of the
interior mesh are shown in Figure 20.

FIGURE 19. Simulate Heart with Embedded Ventricle Finite Difference Mesh
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E+01  7.880E+01
E+0L  5.160E+01

FIGURE 20. Interior Mesh for Embedded Ventricle Model

2.1.2 Wedgelmpact Analysis

Thefirst set of analysis was intended to capture behavior of awedge shaped fragment similar to
the one which had been used by ATK-Mission Research both during its gelatin phenomenology
ballistic experiments and in several experiments at I1SR. Two aspect ratio fragments were used,
the first corresponding to that used in the tests and a second with an aspect ratio of 1:1 which was
designed to reduce the size of the cavity and the deviation from alinear trgjectory. Several impact
velocitiesin the range of 50 to 300 ft/sec were analyzed with the intent of having the projectile
stop in the central cavity of the ventricle without penetrating the cardiac septum. The appropriate
striking velocity on the ventricle to achieve this was 250 ft/sec. Shown in Figures 21 though 24
are snapshots of the original impact geometry, the external pressure distribution as waves
propagate along the surface, the internal pressure distribution and the internal strain. It isworth
noting that the pressure generated exceeds 14 bars (over afairly large volume) which isthe level
established from previous ATK-Mission Research in vitro testing, necessary to create
mechanically induced transient ion gradient upsets.

The results from this analysis were animations which were delivered to the Virtual Soldier team
at the University of Michigan as well as the projectile trgjectory, cavity dynamics, stress and
strain fields.
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AUTODYN-30 ¥6.0 from Century Dynamics
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FIGURE 21. Impact Geometry for Wedge Impact of Ventricle
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FIGURE 22. Pressure Distribution on Surface of Ventricle from Wedge Impact
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AUTODYN-30 5.0 from Century Dynamics
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FIGURE 23. Pressure distribution in Interior of Ventricle from Wedge Impact
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FIGURE 24. Strain Distribution in Interior of Ventricle from Wedge Impact

— 40 —



ATK MissSION RESEARCH W81XWH-04-C-0084

2.1.3 Cylinder Penetration Model

Thefinal set of analysis was intended to simulate a hypothetical projectile which would: (1)
create an approximately 4-mm diameter permanent entrance cavity, (2) a1 to 2-mm diameter
permanent exit cavity on the interior of the ventricle, (3) have the trgjectory of the fragment
follow alinear path, and (4) have the fragment stop in the blood filled central ventricle cavity
without penetrating the septum. In order to accomplish this, we analyzed the response of various
diameter circular cylinders all with aspect ratios of 1 traveling at various velocities. The final
design was a 3-mm diameter steel cylinder traveling at 300 ft/sec. Shown in Figures 25 though
28 are snapshots of the original impact geometry, the pressure distribution on the ventricle
surface, the internal strain distribution and the internal wound tract.

AUTODYM-30 5.0 fram Century Dynami

k

Material Location

hlyoCardium
Fericardium

Steel
MyoCardiumTrans

Blood

FIGURE 25. Impact Geometry for Cylinder Impact of Ventricle
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FIGURE 26. Pressure Distribution on Surface of Ventricle- Cylinder Impact
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FIGURE 27. Strain Distribution in Interior of Ventricle from Cylindrical Projectile Impact
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AUTODYR-E0 6,0 from Cenury Oynamice

Fdbvented
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Time 1 S0SE4000 ms

FIGURE 28. Wound Track- Cylinder Impact

2.2 ANALYTICAL DETERMINATION OF WOUND TRACT GEOMETRY

When a projectile penetrates a given target, various parts of the surface of the projectile
encounter materials with varying properties. We divide the motion of the projectile inside a target
into two parts; we first determine trandlation by tracking the motion of the center of mass G of
the projectile and then determine the angular rotation of the projectile due to the associated
moments of surface loading about G. The relevant equations of motion for both these motions are
given by

N
m% =>" | F.dS (uniquely determines the motion of G) (2-1a)
i=1l g,

i
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YM, =I.0,-(,-1,)0,0,
dYM,=1,0,-,-1)o,0, (2-1b)
M, =I,0,-(,-1,)0.0,

In (2-1a), v isthe velocity vector of G and N isthe total number of projectile surfaces with
geometric discontinuities, and the subscript n indicates that the force Fisaong the inward
normal to the projectile surface at the elementa area dS . For example, in the case of a cylinder
N = 3 which represents three surfaces of geometric discontinuities with two flat surfaces and one
curved surface. In the case of a sphere NV =1 as we have only one smooth curved surface. In (2-
1b), I isthe moment-of-inertiamatrix about G and M isthe moment vector of all surface loading
about G. Overhead dots indicate time derivative.

In afully three-dimensional problem with material inhomogeneities, equation (2-1) represent a
nonlinear, coupled, second order differential equationsin 15 unknown variables; six components
of displacement and velocity, three components of angular velocity, six independent components
of body-fixed unit vectors for Newtonian description of body-fixed coordinate system. Theses
equations were solved using the MATHCAD™ code. In the associated MATHCAD code, these
areincluded in asingle 15-element vector x defined asfollows. In the following, F-frame
indicates body-fixed frame while N-frame is the Newtonian frame.

TABLE 4
Physical Description of x-elements:

x1-x3: Center of Mass G in N-frame (inch)

x4-x6: Velocity of G in N-frame (ft/sec)

X7-x9: Components of Angular Velocity in F-frame (rad/sec)
x10-x12: Components of unit Vector along Gx in N-frame
(Nondimensional)

x13-x15: Components of unit Vector along Gy in N-frame

The resulting equations can be solved using built-in Runge-K utta algorithm in MATHCAD.
2.2.1 Accessing material property from material database

The materia property database is known in a Newtonian N-frame. Since the retardation forceis a
function of material properties at the contact point with the target, coordinates of the contact
point are needed during the solution of the nonlinear differential equations. Thisis done by
tracking three orthogonal axes fixed in the projectile, and including six independent differential
equations describing the time rate of change of these axes as afunction of time. These are the
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components x10-x15 described above in Table 4. Only six components are included since the
third one can be found from mutual orthogonality conditions of these axes.

2.2.2 Two-Dimensional Version of the Wound Tract Geometry

For some problems when the lateral variation in material inhomogeneitiesis small or
nonexistent, the above problem of determining the wound tract geometry is much simpler. In this
case, the resulting problem is two-dimensional, and can be reduced to the determination of only
three variables; two for the displacement component of the center of mass G and one for the
rotation of the body about the z-axisassuming that the motion takes place on the xy — plane.

The first equation (2-1a) remains unaltered while second equation is simplified to only one
equation [by substituting o, =0= o, in (2-1b)]

DM, =10, (2-2)
These equations can a so be solved easily using a Runge-Kutta algorithm.
223 MATHCAD™ Coding

Both three- and two-dimensional versions of the above nonlinear equations have been coded
using the built-in MATHCAD Runge-Kutta algorithm. MATHCAD applicability is somewhat
limited since it does not allow access to global variables during the time domain solution once
inside the Runge-Kutta module. Thus al functions describing the derivatives of the components
x1-x15 are written as stand-alone functions of the x1-x15 with no other dependency on external
or global MATHCAD variables. This made the code more complex but if the softwareis
subsequently converted to C, C++ or Fortran languages, these limitations will be eliminated.
However, MATHCAD alows us to write and debug the code easily as all equations are written
exactly asthey arein their respective mathematical forms.

Three types of projectiles are considered for analysis; these are selected on the basis of various

aspect ratios, % of the projectileswhere L isthelength and D isthe equivaent diameter of the

lateral area of the projectile. Cases of very low aspect ratio includes flat projectiles like platel et
(Class), aspect ratios of approximately one like sphere or spheroid and sphere-like projectiles
(Class-I1), aspect ratios of more than one like cylinder and cut-cylinder(Class-111). These
projectiles are shown in Figure 29.
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SN NN 1

Plate/Platel et
Sphere/Sphere-like Cylinder/Cut Cylinder

L . . L
FIGURE 29. Projectiles of various aspect ratios 5 ~0,1and >1

The output of the MATHCAD code are the temporal distributions listed below.

The displacement components of the center of mass G
The velocity components of G

The angular rotation components of the projectile about G
The angular velocity component of the projectile about G
The orientation of all three body-fixed axesin space

An Example

Out of many cases we analyzed using the MATHCAD developed codes under this program, one
example closealy related to the demonstration presented in March, 2005 at the University of
Michigan during the 5™ quarter VSP IPR. The projectile belongs to class 111 which isacut
cylinder. The geometric dimension and material properties are shown below. Length unitsarein
millimeters (mm), velocity isin ft/sec(fps). The striking Velocity is 200 fps and the input data to
the MATCHCAD coded module is shown below.
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Wedge Data
. D . D ~1
Base Diameter D :=7.0 mm Converttocm D :=— Base radius a:=— a=35x 10
10 2

Density p :=8.0gm/cc

Cylinder Length L:=7.0mm Converttocm L := L L=7x10
10

Cutting Angle ) := atan(%) ad o= ;V@ Ad = 4.5x 101 deg
T

D™ L
Wedge Mass mass m:= n.j.?p gm m= 1.07757x 10O

The output of the MATHCAD code for this case ate the temporal distribution of the variousfield
guantities, and is shown in Figure 30.

x-disp (cm) vs. Time (us) y-disp (cm) vs. Time (us)
X-Displacement vs. Time 01
_ 0.083
é 1.67 0.067
T (» 133 A3 005
% — 0.033
0.67
5 0.017
= 0.33 0
0 0 150 300 450 600
0 150 300 450 600
(v
Z<1> z

Time(microseconds)

FIGURE 30A. Displacement of the Projectile Center of Mass G
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x-velocity (cm/psec) vs. Time (us)

W81XWH-04-C-0084

y-velocity (cm/psec) vs. Time (u
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FIGURE 30B. Velocity Components of the Projectile Center of Mass
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FIGURE 30C. Angular Rotation and Angular Velocity
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FIGURE 30D. Initial Cavity Formed by Wedge

— 48 —



ATK MISSION RESEARCH W81XWH-04-C-0084

Comparing these results with experimental data and hydrocode results, we find that the x- and y-
components of both displacement and velocity of the center of mass G of the cut cylinder arein
good agreement. No experimental datais available for the angular velocity of the projectile while
the rotation of the projectile as afunction of timeisin good agreement for about 200-250
microseconds of penetration but the experimental results shows a decrease in angular rotation
beyond this time. Our model does not show this decrease. This discrepancy is possibly due to the
fact that the target materia tends to separate from the projectile surface asit penetrateswhichisa
phenomenon that is not understood completely and hence is not modeled in our analysis. Such
separation does not significantly decrease the components of the total retardation force, but their
moments about the center of mass of the projectile changes appreciably. This may introduce
accumulated error in the predicted rotation of the projectile.

2.24 Determination of Initial Cavity Shape from Experimental/Analytical Data

For the case of acut cylinder or wedge, we may determine theinitial cavity shape by tracking
four key points on the projectile. These points are shown in Figure 31.

B C

D
A
FIGURE 31. Key points of a cut cylinder

For two-dimensional mation, theintial cavity shape can be formed by an upper trace and alower
trace. If the time domain coordinates of these key points are known, the upper and lower traceis
given by

yupper = Max(yA'yB’yC'yD)
Yiow = Min(Y,.Ys.Ye: Yp)

Both analytical and experimental results van be used to find the time domain coordinates of the
center of mass and the orientation of the central axis of the projectile. These data can then be
mapped to generate the time domain coordinates of these key points.

Properties used for the cut-cylinder penetrating a 20% gelatin block with a speed of 200 fps are
shown below, and theintital initial cavity calculated from the above method is shown in Figure
32.
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Cylinder Data

a=37x10 %

N O

Base Diameter D := 7.4 mm ConverttocmD := % Base radius a:=

Density p := 8.0gm/cc
Long Lengh L := 16.0mm ConverttocmL := % L=16x 100

Short Lengh L2 := 8.0 mm ConverttocmLp2 := Ii—s Lp2 = 8x 10 !

o L5
1.31192%107,

0.5

yup
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FIGURE 32. Intial Cavity Shape of a Cut Cylinder

2.25 Simplified 2D Plane-Strain Axisymmetric Model Parameter Studies

The penetration of afragment/bullet like projectile thru a human chest and into the heart results
in tissue response which is at least non-linear from a constitutive behavior point of view and
creates large displacements in the neighborhood of the projectile. In order to explore these
effects, a series of analytical continuum models and 2/3D hydrocode models were created where
variations on fragment geometry, tissue material properties, property inhomogeneity and impact
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conditions were explored. The results from these sensitivity studies are discussed below and in
Appendices B and C. These sengitivity studies are being used to guide subsequent devel opment
of analytic models which will be the basis for the predictive tools employed at the end of the
Phase | portion of the Mission Research Virtual Soldier program.

Three 2D plan-strain axisymmetric models were created using modal analysis. In the first model
acylindrical annulus was created. Two different forcing functions were applied to the inner wall
of the annulus. In the first case a pressure was prescribed and in the second an initial velocity
corresponding to the pressure employed in the first case. As shown in Appendix C there was
minimal difference in applying these two different types of forcing functions. The model was
then used with a mixed boundary condition; i.e., aninitial velocity was prescribed followed by a
pressure release boundary. The results for this simulation are shown in Appendix C.

A second model was developed to explore radial variationsin Y oung' s modulus. In one case a
series of annuli were used with each annulus having a different modulus. The outermost annulus
had a modulus that was a factor of two higher than the inner annulus. In this case, where there
was arather gradual radial variation in moduli, a significant difference in dynamic response was
not seen and in general was proportional to changes in the sound speed of the intervening
material. However, when the modulus was varied to the same extent but in a discontinuous
manner (AE =~ 60%) peak pressures changed by more than 40%. Results for this simulation are
also shown in Appendix C.

A third model was devel oped to examine inhomogeneities that varied in a circumferential
manner. Thiswas seen to have the biggest effect due to the development of shear forces at
material property interfaces. Thisis discussed in more detail in Appendix B.

Finally, selected results from the plane-strain analysis above were compared with a 2D
axisymmetric model implemented within a hydrocode where the plane-strain assumption was not
employed. Surprisingly, these two models yielded similar results as shown in Appendix C.

2.2.6 2D/3D Hydrocode Models

A number of additiona hydrocode models were developed with the intent of investigating the
sensitivity of penetration depth to the material properties and failure criteria of the gelatin
(human soft tissue surrogate). Previous studies have relied on measured bulk modulus, sound
speed and static measurements to derive a 1D constitutive model. However, penetration studies
have shown that the shear modulus and failure stress/strain of the material have afirst order
effect on penetration. Ultimately, these properties will have to be either measured or backed out
from computer simulations. Currently, we are using known properties and adjusting others by
matching hydrocode simulations with penetration data as discussed below.
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Our previous model from a 1993 program sponsored by DARPA was based upon using avalue
for the bulk modulus obtained from flyer plate tests on gelatin and shear modul us obtained from
Autodyn™ hydrocode correlation of velocity versus depth predictions developed in Task 1 from
a 350 ft/sec BB impact on gelatin. These values are shown in Table 5. The results from these
studies suggested that for a reasonable minimum value of shear modulus, say > 100 bars, avalue
of failure strain of greater than 10 % isrequired to prevent large penetrations. We used a
reasonable value of Poisson ratio, which for nearly incompressible materials such as rubber
would be on the order of 0.48. Thiswould necessitate a much larger value of elastic modulus and
either alower value of failure strain or the implementation of afailure stress criteria.

TABLE 5. Potential Variations on Gelatin Material Properties

Correlation Bulk Modulus | Shear Modulus Elastic Poisson
Source (Bars) (Bars) Modulus(Bars) Ratio
Charest Flyer 2.32*10M 2170 6300 0.455
Early GBL BB 2.62*10M 125 375 ~0.498
Estimate 2.62*10M 940 3000 0.48

The bulk modulus can be derived from arelationship between shear modulus, G, and Poisson
ratio, v. Typical results are shown in Figure 33. The sensitivity of G and v to an approximately
10% change in bulk modulus is also shown in Figure 33, below.
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FIGURE 33. Shear Modulus versus Poisson Ratio

Theinitial hydrocode correlation assumed that the gelatin failed in shear and incorporated a shear
strain failure value of 40%. Subsequent thinking suggested that a principal strain criterion might
be more appropriate and the hydrocode correlation with experimental data suggested that a value
of 10-20% was more appropriate. In order to size reasonabl e experiments, the model devel oped
in Task 1, which assumes projectile diameter scaling was used to predict penetration depth
versus impact velocity. The results have been previously shown in Figure 3 (page 11).
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In Figure 4 (page 14), data points from the recent Task 3 ballistic penetration experiments
(discussed in Section 3) are plotted along side the predictive curves. It is seen that the model does
agood job of fitting the data. Further it can be seen that for a penetration depth of about 6 inches,
adimension typical of the depth of aheart, a velocity in the range of 800-1100 ft/sec for spheres
with diameters of interest is appropriate. Thus, steel spheres of diameter 0.25- and 0.375-inches
(1-3 grams) at velocities on the order of 1100 ft/sec were used for the numerical ssmulations.

Normal impacts into gelatin targets consisting in some cases of multiple materials were also
considered. Theintent was to correlate hydrocode results with the Task 3 impact data and then
verify predictions made by the Task 1 modeling for homogenous targets. In this way, we would
have a correlation between two different analytica techniques employing different assumptions
and experimental data.

A review of selected gelatin samples posttest showed both aresidual cavity and radial tears.
Based upon this it was speculated that a stress rather than strain failure criteriais appropriate.

A series of 2D hydrocode runs were then conducted where the projectile size, gelatin shear
modulus and failure stress were varied. The intent was to come up with an updated set of
material properties for gelatin which yielded penetration predictions consistent with current data.
The following parameters were varied in the model.

(1) Projectile shape: Sphere and Wedge

(2) Projectile Diameter: Spherical projectiles 0.17-, 0.250-, and 0.375-inch
diameter

(3) Projectile Material: Steel and Aluminum

(4) Gelatin Shear Modulus: 100-1000 bars

(5) Gelatin Tensile Stress Failure: 25-100 bars

(6) Erosion strain value used to remove highly distorted elements

A combination of parameters was inferred which alowed the approximate match of penetration
velocity versus time and penetration depth. In the case of a 0.375-inch sphere at 1100ft/sec, a
snapshot from the analytical simulation is shown in Figure 34. Notice the radial failure pattern
which is also observed in the corresponding ballistic experiment. A comparison of the Task 1
model of velocity versus time with the hydrocode prediction is shown in Figure 35. The
correlation assumed a nominal bulk modulus, a shear modulus of 125 bars, failure stress of 25
bars and erosion strain of 200%. The corresponding penetration depth versus time is shownin
Figure 36. These results compared favorably with those shown in Figure 3 and the ballistic data
described in Task 3.
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Matanal Status

Hydo

FIGURE 34. Sphere Penetration into Heart Simulant

A series of 3D simulations were also conducted using various spherical projectiles impacting
homogenous and layered materials. The trgjectory of the projectile in the case where the material
was horizontally layered was tracked and seen to deflect away from the stiffer material. A
snapshot of this simulation is shown in Figure 37.

A time resolved animated simulation of the solution corresponding to Figure 38 was previously
sent to Drs. Rick Satava (DARPA), Gerry Mosses (TATRC), and Brian Athey (University of
Michigan).

A response parameter of particular interest isthe radial velocity of the cavity wall as afunction of
time. This parameter will be used in to drive the cavity wall response in the analytical models.
Typical results are shown in Figure 39.

The blue linein Figure 39 shows the projectile axial velocity versus time which at zero timeis
335 m/sec. The y-velocity curves are cavity wall velocities at various distances from the impact
site at locations just outside the radius of the projectile. In genera it was found that the wall
velocity near the impact site was on the order of 1/3 of the axia velocity decaying more rapidly
than the axial velocity as penetration occurs. The initial duration of the wall response is less than
tenths of milliseconds.
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FIGURE 35. Sphere Penetration in Heart Simulant: Velocity vs. Time
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FIGURE 36. Sphere Penetration in Heart Simulant: Depth versus Time
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FIGURE 37. Sphere Penetration into Gelatin: Bi-Material, 3D
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FIGURE 38. Wedge Impact into Heart Simulator
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Videos from three ballistic experiments conducted during Task 3 show the projectile trgectory
and evolution of the temporary cavity in the wake of the projectile. These videos were also sent
previously to DARPA and the University of Michigan and show agreement with pretest
anaytical predictions. Animated numerical simulations of these experiments were also
previously sent to DARPA and the University of Michigan.
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FIGURE 39. Cavity Velocity versus Time

A 3D axisymmetric model is also being developed of the wound tract to determine the initial
conditions on the non-linear spring lattice that represent the wound tract boundary and that
describe the transient dynamic response of the tissue in the projectile wake. The static analysis
prerequisite to the 3-D axisymmetric model of wave propagation in acylindrical tissue perforated
by a concentric cylindrical projectileis discussed in Appendix E.
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2.3 WOUND TRACT MODELING AND NONLINEAR SPRING LATTICE

Section 2.3.1 discusses the spring lattice model that describes the transient dynamic response in
the projectile wake (SOW 2.3). Section 2.3.2 discusses amodal analysis model that describes
radiated stress waves (SOW 2.2). Thismodel is used to determine the initial conditions on the
spring lattice model (SOW 2.2.3). Finally, section 2.3.3 describes software that has been
developed to interface our wound ballistic codes with the University of Utah SciRUN code. This
last effort was done so that the University of Michigan could display our output on the
HOLOMER heart so our latest 1/0 formats that have been updated to work with SciRUN. The
output of these modelsisan MPEG of an analytical smulation of one of our gelatin ballistic
experiments. This was aso done so that we could easily do reality checks on our code output.

2.3.1 Determination of Temporary and Permanent Cavitiesin Projectile Wake

A lattice of non-linear springsis used to model the mechanical response of the soft tissue in the
wake of projectile motion. A schematic of this model is shown in Figure 40.

The high frequency portion of the power spectrum promotes damage and the energy content in
the high frequency band dissipates rapidly due to conversion of energy into mechanica work.
The current model is one-dimensional where the force-displacement relation has been derived
from experimental data on tissue deflections under various loads. Since these relations are strain
rate dependent, we assume average values in the frequency band of interest. Dueto residual
strain or deflection after each loading and unloading cycle, the loading curves differ from
unloading. For both loading and unloading, the force-displacement relations used in our
nonlinear spring model are given in Figure 41.

Nonlinear Springs

v =(v)

» Y = Projectile Velocity

Permenant Cavity

Maximum Transient Displacement
{Function of Time)

Boundary of Damage Region

FIGURE 40. Schematics of Nonlinear Spring Model
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The input to the nonlinear spring code is the lateral velocity at which the cavity wall is set to
motion after the passage of the projectile through that location. For athree dimensional body, it
isvery difficult to determine the relationship between the latera cavity velocity and the
instantaneous projectile velocity at a given location of the cavity wall. A video tape acquired
from Dr. Ronald Bellamy, Col., USAMC shows an AK74 projectile penetrating 10% ordnance
gelatin photographed at 20,000 frames a second. From these data, it is estimated that the |ateral
velocity is about 10% of the projectile velocity. In generd, this result depends on the projectile
shape and orientation as the projectile is penetrating through a specific location.

For a specific projectile shape with known curvature, if the target is not separated from the
projectile and assuming that the projectile isrigid, the velocity of the target material point in
contact with the projectile is normal to the projectile surface, and is equal to the normal
component of the projectile velocity. For example, in the case of a slant wedge of angle 6, if the
projectile velocity is v, along the x-direction (Figure 42), the material velocity of the target point

is along the normal to the path and is equal to v, coseé . Then the lateral material velocity along
the y-directionis v, =v, sind =v,cos@ sind . For our cut-cylinder projectile where 6 ~ 45°,
v, =v,/2. Thisresult agrees with hydrocode simulation of the projectile penetration process.

Using the three-particle nonlinear spring code where 10% of the projectileis transferred lateraly,
the nature of permanent and transient cavity for a¥%inch steel ball moving through a 10% gelatin
at 1510 fpsis shown in Figure 43. The correlation with some experimental datais also shownin
Figure 43.

Nonlinear Spring: Loading-Unloading Path
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FIGURE 41. Loading-Unloading Paths Used in Nonlinear Spring Code
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FIGURE 42. Velocity of Material Point in Contact with the Projectile
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FIGURE 43. Transient and Permanent Cavities from Nonlinear Spring Model
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2.3.2 3D Axisymmetric Modal Analysis of Stress Wave Radiation
Penetrating traumain biological tissueis caused by at least two discrete mechanisms

2 Tissue damage along projectile path. Thisinteraction is hydrodynamic in nature
where inertial and frictional forces dominate projectile motion during decel eration.

2 Stress waves generated at cylindrical interface between projectile and tissue from
radial and axial velocities prescribed by the projectile during penetration. These waves
radiate to neighboring tissue causing further damage.

The present analysis concerns mechanism 2 above.

As the projectile penetrates into tissue, it moves material by replacing it with its own volume.
When the material fails, it acts more like afluid, lessening the amount of material being
compressed. In the radial direction, material is compressed by an expanding cross-section of the
projectile smoothly curved leading edge. Aslong as the projectile speed is much smaller than the
speed of stress waves in the material, the moving projectile can be approximated by radial and
axial velocities prescribed aong its boundary. For a projectile speed on the order of hundreds of
feet per second and a dilatational speed in tissue material of 5600 ft/s, this approximation is
valid.

The influenced region is simulated by tissue material in the shape of a hollow cylinder. Let (r,z)
be radia and axial coordinates with an origin at one end of the cylinder axis. The inner cylinder
radius r isthat of the penetrating projectile while its outer radius r, and length | are chosen to

include the furthest radial and axial locations affected by penetration. In a coordinate system
(r,z) centered at one end of the finite cylinder, the projectileliesin theinterval z, <z<z such

that z,—z =1, where | isprojectilelength. The tissue material islinear viscous-elastic with a
constitutive law that includes first temporal derivatives of stress and strain.

For ssimplicity and without loss of generality, axial functions satisfying the differential equations and
specific boundary conditions at the two ends of the cylinder z=(0,l) are divided into 2 sets. One set

satisfying vanishing axial stress o,, a z=(0,I) which hasradial and axial displacements (u, w)
proportional to (si n(mrzz/l), cos(rmz/l)) belongs to “problem 17, where m is an integer wave
number. The other set satisfying vanishing shear stress z,, at z=(0,l) which has (u,w) proportional
to (cos(mr z/1), sin(mrz/1)) belongsto “problem 2”. Thefirst set applies to radial tractions

prescribed at the cylindrical footprint r =r, , z, <z<Zz while the second set appliesto prescribed
axial tractions along the same footprint. The fact that each set satisfies different boundary conditions
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does not affect transient response until waves reflect from the axial boundaries. Consequently, one
problem is solved for each type of forcing excitation and results are superimposed if both types of
excitation are acting simultaneously.

The form of the forcing function closest to the application isradial and axial velocity prescribed over
part of the inner cylindrical boundary, yet this leads to a mixed boundary condition. This difficulty can
be overcome by superimposing response from a set of unit radial or axia tractions with time dependent
weights prescribed on annular portions of the inner boundary. These weights are updated at each time
step using the condition that combined velocity response at the center of each annular portion equals
the prescribed instantaneous vel ocity. In this way, the forcing function is converted to pure radial or
axial traction with time varying spatial dependence.

Elastic analysis

In the analysisto follow, all subscript will denote components and not partia derivatives. In cylindrical
coordinates, the electrodynamics equations are

uViu+(A+ p)V(Veu) = po,u (2-3)
V?=0, +1/r 8, +1/r%0,,+0,,
V =(1/r o, r)e +@0/ro,)e, +(0,)e,

(r,0,2) areradial, circumferential and axial independent variables, u = {u,u,w}T is displacement

vector along these directions, (4, ) are Lame constants, p ismassdensity and t istime. Re-write (2-
3) as

uVAU+ (A +2u)V(Veu)— uV(Veu) = po,u (2-4a)
Noting that
uVU—puV(Veu) =—uVxVxu (2-4b)

permits casting (2-3) in the form
(A+2u)V(Veu) —uVxVxu=po,u (2-5)
Define dilatation A and rotation vector y as

A=Veu, y=Vxu (2-6)
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Substituting (2-6) in (2-5) yields (Love (1944))

(A+2u)VA —uVxy=po,u

(2-7)
Taking the divergence of (2-7) noting that V- (V xy) =0 yields
(A+2u)V?A=pA, (2-8)
Taking therotation of (2-7) noting that Vx(VA) =0 yields
LV = py, (2-8)
For ax symmetric motions, v =0, =0 and y, =, =0 reducing (2-8) and (2-9) to
(A+ Z.U)V(Z) A=pAy
BV W, = PWy (2-10)
V=9, +1/ro,—-n*/r’+0,, n=0.1
Expressing (2-6) interms of u yields
A=1/ro, (ru)+o,w
(2-11)
v, =0,U-0, W
Decoupling u and w in (2-11) produces
Viu=0, A+0
1 r z W@ (2_12)
Viw=0,A-1/r0,(ry,)

For theradial “problem 1" satisfying o,, =0 at z=(0,l), harmonic motions in time with radian
frequency @ and simply supported boundariesat z=(0,1) yields the separated solution

(A(r, 2,0),w,(r, 20} = {Z(r)cos(kzz),1/79(r)sin(kzz)}T gt (2:13)
{u(r,zt),w(r,zt)}" = {a(r) sin(k,2),w(r) cos(k,2)}" €
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i=+-1 and k, =mr /| where m isan integer axial wave number. The z dependencein (2-13) yields
u=o, =0 atthecylinder ends z=0,l . For real k, and k,, equation (2-10) admits the solution

A(r) =C,3,(k) + C, Yy (ker)
v,(r)=C,J,(kr) + C, Y, (k)
K=w’lc2 -k, =(A+2u)lp

Z

(2-14)

K2=w?lc2-K, c=ulp

Z 1

J, and Y, are Bessel functionsand c,,c, are dilatational and shear speeds of sound. If either k, or k
isimaginary, J, and Y, in (2-14) are replaced by the modified Bessel functions |, and K, with
appropriate changes in sign. Substituting (2-13) and (2-14) in (2-12) then solving for t(r) and w(r)
yields

U(r) =—k,(C, Ji(kr) +C, Yi(ker)) + K, (C; I, (k1) + C, Y (k1))

B (2-15)
W)= K, (C (k) +C, Yy (kr))+ k. (C; I (k) +C, Y (k1))

In cylindrical coordinates, the congtitutive relations are

o, =AA+2u0.U , 0, =AA+2uulr
Op=AA+2u0,W, 7,=p(0,u+0o,w) (2-16)
A=0.u+ulr+o,w

For “problem 1", harmonic motions in time and simply supported boundaries at (0,1) yield the
separated relations

o, o, (r)sinlk,z)
O o (r.zt) = Gp(r)sink,2)| (2-17a)
o, G, (r)sin(k,2)
T, 7,,(r)cos(k,2)

Boundary conditionsat r =r, and r =r, are
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o, (1, 2t) = p,()[H(z-2)-H(z-3)]
t,(r,,zt) =0 (2-17b)

o,(r,zt) =7,(r,,zt) =0

P, (t) isatime dependent uniform radial traction acting on the inner cylindrical boundary r =r inthe
interval z, <z< 7 .The z dependencein (2-17) yields u=o,, =0 at thecylinder ends z=0,I .
Substituting (2-13), (2-15) and (2-17) in (2-16) yields

G ()= | =((2+200K + 2K ) 3o(k1) + 26K 3, (k1) /(1) |Cy
=+ 20K + 20 ) Y (k1) + 2k Y, (kr) /(K1) |C, (2-184)
+ 20k, [ 35060 = 3, (KT /(r)] C

+ 2:leskz [Yo(ksr) - Yl(ksr) /(ksr)] C4
Goo (1) = =[ A0 +K2) I (kr) + 20 K2, (kF) /(kF) | C,

[ +KYo(kr) +2uk?Y,(ker) (k1) ]C, (2-180)
+2uk K, [C.d, (k) +C Y, (k) J/(kyr)

c,(r)= —((l +2u)k; +AKS )[Cl‘]o(ker) + CzYo(ker)] (2-18¢)
—2pkk, [Cy3, (kr) +C Y, (kr)]

7,,(r) = —2uk k, [C3, (k1) + C.Y, (k)] (2-18d)

= u(k = k)[CA (k) +CY,(k.r)]

Since o, isproportional to sin(k,z) in (2-17), it vanishesat z=0, | . Thisallows arigid body motion
w(r, z;t) = w,(t) when externa traction actsalong z. To avoid the rigid body motion, an additional

axial functional dependenceis considered for “problem 2"

{U} {U(r) COS(kZZ)} ot

(r,zt) =< _ . €

w w(r) sin(k,2)

rr (r) COS(kZZ) (2-19&)

o, o,

O o Gy (r) cos(k,2)| ..
(r,z,t)=4 _ e’

(o O-zz(r) Cos(kzz)

: 7..(r) sin(k,2)

rz
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that satisfies the following boundary conditionsat r =r and r =r,

o,(r,,zt)=0

0,020 = pO[H(z-2)-H(z-2)] (2-19b)
o,(r,zt) =7,(r,,zt) =0

p,(t) isatime dependent uniform axial traction acting on the inner cylindrical boundary r =r inthe

interval z, <z< 7 .The z dependencein (18a) yields w=1,, =0 at the cylinder ends z=0, . In the

analysis to follow, superscripts (1) and (2) will denote radial and axia problems respectively.
Derivations for problem (2) follow the same steps as those for problem (1) and are omitted here for
shortness. Although conditions at the boundaries z=0, | of each problems are different, they do not

affect the transient response at times preceding reflection of waves from these boundaries.

Divide the cylindrical surface {r =r,,2,<2< zb} into n+1 equidistant ring stations with increment

2,2, Zyy s Z, z -7 ,=Az,=const

z=2+(1-1)Az, (2-20)

Assume a uniform pressure of unit intensity to act over each ring segment z , — z . The elastic-
dynamic solution to the k™ ring pressure segment is outlined below.

For each pressure segment, expand each dependent variable in terms of eigenfunctions that satisfy
homogeneous boundary conditions. Expresstotal displacement u, (r, z;t) as asuperposition of two

terms
ul?(r,zt) =ul? (r,z) f,(t) + u§2(r,zt) (2-21)

ul?(r,2) is static displacement vector satisfying (2-4a) when time derivative vanishes, u:?(r,zt) is
dynamic displacement vector satisfying the dynamic equation of motion (2-4a), and f (t) istime
dependence of the forcing pressure. For each axial wave number m, express u':?(r,zt) inthe
eigenfunctions @2 (r,z) (Appendix F)

mj

uG2(r,zt) = > ald (t) @52 (r,2) (2-22)
j m
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a7 (t) isageneralized coordinate of the j'" eigenfunction with m axial half waves from the k"
pressure segment. Substituting (2-21) and (2-22) in (2-4a) and enforcing orthogonality of cI)r(nlsz) (r,2

12)

yields uncoupled equationsin agy (t) . For an undamped elastic cylinder the equation governing
ay (t) is

dt?
f82(1) = NE2, F(1)/N,,

mjk amjk

g2 .
(— + o, j bl () = fd () (2-233)

g h
NG? = [ @82 (r,2)- @82 (r,2) dz 1 dr (2-23b)
00

fqg h

N&2 = J'J'u(sllf)(r,z)-cl),f}f’(r,z) dzr dr
00

amjk

o . i1sthe resonant frequency. The solution to (2-23a) takes the form

mj

mjk

t
a2 (1) = ——— [sinw,, (t—7) T32(r) dr (2-24)
mj 0
Evaluating radial and axial displacements u, (r, z;t) for problem (1) and w,(r, zt) for problem (2)
from the k™ pressure segment at each central point z, = (z +z_,)/ 2 of apressure segment yields
coefficients of the influence matrices

Up 0= 2388, 0 081, 2) + 12(1,,2,) 1,0

(2-25)
VVlk (t) = zz ar{nzj)k (t) \W,(n’fi( (rp’ ZCI) + V\éi) (rp’ ZCI ) fp (t)
j m
{O9(r2y) W (r, 2)} and {uQ(r,,2,), W (1, 2,)} are modal and static displacement dyads at
z, fromthe k™ pressure segment in problems (1) and (2) respectively. In (2-23) and (2-25) f,(t) isa

first approximation to the time dependence of the applied pressure. One approximation is determined
from the plane-strain state when axial length of cylinder and footprint approaches infinity (Appendix

G). Enforcing the condition of prescribed displacements u$’ (t) and w{? (t) at eachtime step yieldsa
set of simultaneous equations in the weights p¥ and p{?
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SUL0 PO =udt) , I=1n
. (2-26)

SW, (1) pPM)=wd() , I=1n

An approximationto f (t) isfound from the plane-strain problem of the infinite length cylinder with
prescribed radial displacement at the inner boundary (Appendix F).

In what follows, superscripts (1,2) are dropped for shortness. For an elastic material, eigenvalues and
resonant frequencies are synonymous. In this case, the eigenvalues appear in pairs o,,; and -, .

Consequently equation (2-214) takes the form

d . d . -
(a_la)mjj(a-’_la)mjjamjk(t): fnji (1) (2-279)
f_mjk(t) = Namjk fp(t)/ ij
1
Nomic = | [ Uge(r,2)+ @, (x,2) r dr dz (2-27b)
or,

e
N, :J' @, (r,2)+®,,(r,2) rdrdz
0

p

o

-

2.3.3 SciRUN Interface and Visualization of Gelatin Experiments

This effort was to achieve the following objectives:
1. Set up acomputer on which to run SCIRun.
2. Mode the Projectile.
3. Moded the Gelatin Block.

The following was accomplished:
1. Set up aLinux Computer on which to run SCIRun.
2. Provide amethod to output the geometry of the projectile from MathCAD for input into
SCIRun.
3. Provide amethod to output the trgjectory of the projectile from MathCAD for input into
SCIRun.
4. Program SCIRun to simulate the movement and geometry of the projectile.
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5. Generate an MPEG of the projectile simulation.

Step (3) of the planned items will be completed by the end of December Il as it more
appropriately is handled as the projectile trgjectory model is debugged during the V&V phase.

Summary of Deliverables from this task
e DumpProjectile.dll, source code, and related files
user.xml
Traectory Source Code for SCIRun
extract.sh
Phasel.net
PC (Linux Redhat 9 OS) with modified SCIRun code (and all other necessary executables
and scripts).
Phasel.mpg
e movieplayer.exe

Explanation of Deliverables from this task

DumpProjectile.dll

ThisisaMathCAD specific DLL which isintegrated into the Mathcad environment to allow
Mathcad to generate a SCIRun compliant “fld” file which defines the geometry of the cut
cylinder.

Thedll isto be copied to the following directory
Drive Letter:\Program Files\Math Soft\Mathcad 2001i Professional\UserEFI

It should be noted that each projectile shape will require adifferent interface or dil to write out
thefile. ldedly, the best solution isto have the Mathcad generate the triangles defining the
geometry and input those to a more generic dll/interface which will generate the fld geometry
file.

Source code and project configuration files are also included.

user.xml

The xml file user.xml defines the interface to call into the DumpProjectile.dll to create the fld file
described above.

Thisfileisto be copied to the following directory (overwriting the existing file):
Drive Letter:\Program FilesMath Soft\Mathcad 2001i Professional\Doc\Funcdoc
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Theinterfaceto thefileis:
was Written := write_projectile( Curvel, Curve2, OutputFile)

where: wasWritten is areal number. If wasWritten = 1, the file was written and if = 0, thefile
was not written and an error occurred.

Curvel and Curve2 are both 3xN real matrices which define the closed lliptical (circular) curves
on the cut projectile.

OutputFileis astring which gives either arelative or full path of the file to be written.

Insert Function 3| x|

Function Category Function Mame

Special :I kronecker
Statiztics Pz

String wiite_projectile
Trigonometric
Truncation and Bound-OFFf

|zer defined
Wector and b atrix
W avelet Transform =

wirite_projechile(kd 1,042 2]

Write node coordinates and element connectivity to a file :I

=
| k. I Irizert Cancel |

Trajectory Source Code for SCIRun

The most effective way to handle atrgjectory path of arigid body was to create a customized
module for outputting transformation matrices as afunction of time. This source code was code
written to be integrated into SCIRun which reads a specially formatted file which contains the
time, position, and I, J, K orientation vectors generated by the Mathcad projectile calculation
code (see below). Thisdatais combined for each time step to create a series of time-dependent
transformation matrices which are applied to the geometry datain the fld file.

When this code is compiled into SCIRun it creates an MRC specific module called “ Trajectory”.
This module is then used in the graphical SCIRun net program to apply transformation matrices
to the projectile geometry to animate the projectile along the projectile path.
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In order to visualize the motion of the projectileit is necessary to slow the simulation down. A
partial solution has been built into SCIRun. Through the use of environment variables, the
trgjectory output can be delayed for aperiod of time:

e MRC_TIMESCALE (Linux command: “export MRC_TIMESCALE=s" wheresisa
real number greater than 0) — This environment variable sets a scale by which the time
stepsinput in the MRC file are scaled.

e MRC_TIMEDELTA (Linux command: “export MRC_TIMEDELTA=S’ wheresisa
real number greater than 0) — This environment variabl e sets the absol ute time between
projectile transformations and overrides the effect of MRC_TIMESCALE.

SCIRun v1.22.0
File SCIRun BioPSE Teem Matlabinterface

Loading packages, please wait...
Loading package 'SCIRun'

Loading package 'BioPSE'

Loading package 'Teem’

Loading package 'Matlabinterface’
Loading package 'MRC'

Finished Ioading packages.

extract.sh

extract.sh isaBourne shell script to be run on the Linux computer. The time, position, and I, J,
K orientation data are output from Mathcad as distinct print files*.prn. Thesefive files along
with the fld geometry file are to be zipped up (using PKZIP or WINZIP) and copied onto the
Linux computer.

- 71 -



ATK MISSION RESEARCH W81XWH-04-C-0084

This shell script extracts the files from the zip file and then combines the time, position, I, J, K
filesinto onefile called a.mrcfile. Itisthisfilewhichisread by the Trgectory modulein
SCIRun to process the time-dependent transformation matrices.

Phasel.net

Phasel.net is the SCIRun graphica program which reads in the projectile geometry, animates it
using the time-dependent transformation matrices from the Trajectory module, and then displays
the projectile.

Fle SCIRun BioPSE Teem Matlabinterface MRC Sub-Hetworks ﬂelpl

Messages:

Loading packages, please wait...
Loading package 'SCIRun’

Loading package 'BioPSE'

Loading package 'Teem'

Loading package 'Matlahinterface’
Loading package 'MRC

Finished loading packages.

Field Reader ul |Traject.ury
ol e [ T ]

-Transfun‘n Field
0.00 | (|
GenStandardColorMaps

2l e

-il Emwﬁeld
. () | ] |
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PC (Linux Redhat 9 OS) with Modified SCIRun Code

The University of Utah delivered a PC with Linux OS Redhat 9 installed along with an install of
SCIRun.

The Trajectory source code described above has been integrated into SCIRun to support the
Trajectory module used to describe the projectile trgjectory viaa set of time-dependent
transformation matrices.

Other executables necessary for creating MPEGs and processing data files are also on the Linux
computer.

Phasel*.mpg

These mpegs are generated using SCIRun and the linux utilities to show the projectile animation.
Note that there is only one frame per time step.

As mentioned previously, environment variables can be used to slow the graphic output. Varying
the speed at which the MPEG is played is also possible, but appears to be reliant on the number
of frames available (see below).

SCIRun can output either an MPEG or individual frames. The MPEGs which SCIRun produces
tend not to run in even time increments.. However, the frames are of good quality. An MPEG
can be created from the frames (which are graphics PPM files) using the Linux “convert”
command: “convert —quality 100 *.ppm Phasel.mpg”. (It should be noted that the first frameis
always the projectile geometry with the last transformation — when creating the MPEG, delete the
first PPM file *.0000.ppm.)

Note on MPEG quality and playing: Even with the efforts made so far and a variable-speed
MPEG player (see below), it isfelt that the MPEG can still be improved. A shell script will be
written on Linux which will generate multiple frames from the frame generated by SCIRun for
each time step. It isfelt that thiswill remove some of the “ jerkiness” fromthe MPEG aswell as
make it easier to run the MPEG at a much slower speed.

movieplayer.exe
According to the MPEG-1 standard, aframe isto last 26 milliseconds or about 38 frames per

second. We need to find away to reduce the number of steps per second to a much slower speed.

It was desirable to find an MPEG player which alowed avariable rate of speed to play the
frames. movieplayer.exe alows the speed of the MPEG to be anything from 1-300% of normal
Speed.
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&1 (i %
fe I i
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[ [Czseed [mme] [assc] 1-:--:-/i|125/i (s [a7s] _2-:--:-/”225,1 zsn] [ 275w [zoos]

ILength: 0000 Calors: Fpeed: 1005 wWalume: 100%
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Assuming the play rate defined for MPEG-1 above, we should obtain the following behavior at
various speeds for the MPEG:

MPEG SPEED Length of frame Number of Frames per Second
100% 26 ms 38

50% 52 ms 19

10% 260 ms 4

1% 2600 ms 0.4 or 2.6 seconds per frame

“The Best Movie Player 1.55” may be downloaded from http://www.svenbader.de/e_index.html.

It appears through experimentation that the effectiveness of variable play on the MPEGs we are
producing ismargina. Itislikely that it is dependent on the number of frames or on how those
frames are generated for the MPEG. However, it does appear that between the time scale and
the variable speed MPEG player, we do have control over the speed of the simulation. Further
methods such as repeating frames may be considered for further refinement of the final MPEG.

Data Flow
Consider the following chart:
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MATHCAD Program
to Calculate Projectile Trajectory

fid file - m il - pm file - prm file - | pm file - J prn file - K
Geometry tlrr'ire vector Location (X} orientation orientation orientation
Definition veclons veclons veclons veclons

: extractsh - Use
Zip file to be :
Zip Files on migrated to the shell scipt to open

¥

zip and generate
Aid and _mrc
Trajectory files

Windows Platform Linux SCIRun

Server

h ]
L ﬂgﬂ}iﬁﬁgraw SCIRun NET program
AND 1) Generates the projeclile as a field View the Results in
from the fid file. SCIRun and generate

e fike -
Caontains tima,
position, |, J, K

vectors

2) Generates fransform matrices as a
furnction of t which are used to
transform the projectile,

frames for each
transformation

Use the Linwx
utility "convert” to

View the MPEG

MPEG of

e | generse an Procile Miova Playoron
flan:;:. = e Windows

Theflow of datais very clearly given here.
Comments on next step in Visualization

The analysis model for the block is axisymmetric. In order to graphically model the block, it will
be necessary to write a small preprocessor which will generate a three-dimensional model from
the axisymmetric model. The graphical nodes in the axisymmetric model will correspond to the
masses in the spring model. The (undeformed) block will correspond to athree-dimensional
representation of the axisymmetric spring model (masses) at rest.

At the time of penetration, it will be necessary to gather information from both the spring model

(the masses which define the nodes which are now being deformed to define the cavity) and from
the hydro code which will provide the strains.
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2.3.4 Development of Analytic Model and Permanent Wound Cavity Results

Heart Geometry

The geometry of the heart was provided as a stereo lithography or STL file from Stanford.
however, it was necessary to trandlate the model into a data format which could be used by
various engineering analysis software packages. Also, it was necessary to be able to perform a
rigid-body transformation (translation and rotation) to place the model in various coordinate
frames as required by the analysis software.

Several different operations were performed on the STL model provided by Stanford.

1. UseParaview 1.8 to decimate the STL file as required for model verification.
2. Use Paraview 1.8 to validate and correct the Zone 12 entry and exit points.

3. Convert the model to an MSC.Patran Neutral File. Thisfileisafairly standard method
of passing finite element definitions between different finite element preprocessors. This
model was used by a special meshing package to generate a well-conditioned hexagonal
mesh for the nonlinear finite el ement solver; the output being used to create the Mission
Research movies.

Modeling Toolkit

In order to perform the data format translations and coordinate frame transformations, a “toolkit”
of computer routines was written from which we were able to generate programs as needed to
process the geometry as well as generate proper analyses models. Thetoolkit was a set of C++
classes which were written and tested on both Linux and Win32 platforms. The toolkit has the
following capabilities:

Platform-independent methods for file handling.

e Tensor, Matrix, Vector, Coordinate Frame, and Transformation Matrix support.

e Support for MathCAD objects which allows it to be integrated directly into MathCAD.
e Splinefitting including fitting of n-dimensional splines.

e Other mathematical methods including elgenvalue and eigenvector support.

e Read and Write of STL, SCIRun fld files, and MSC.Patran Neutra Files.
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Heart Material Properties

We worked with University of Californiaat San Diego to develop a method for generating
material properties for the heart based on the information available. The method included both a
first-order approximation and a modeling process by which the Stanford heart model as geometry
along with data from other sources to generate the material properties. These properties are
derived from an energy function which supports large elastic deformations where the
deformations are dependent on the fiber directions in the myocardium. The first-order
approximation was used for the Phase 1 model.

I ntegration of Analyses Results

There were several aspects of the analyses that required integration to generate the final results.

1. Theresults from the kinematic analysis of the projectile which provide the path of the
projectile including location of the center of mass G and rotation about G.

2. Thenonlinear spring analysis generated the shape of the cavity from theinitia entry till
the motion had sufficiently decayed. This data needed to be converted from atime-based
representation to a spatial representation in three dimensions.

3. Strain calculations over the time period of interest. The strains calculated included the
axial, circumferential and radia strains. From these, we calculated the principal strains
and the maximum principal strain at any point.

Using the projectile path as cal culated from the kinematic analysis (1) and the shape of the cavity
from the spring analysis (2), the cavity shape corresponding to the nonlinear projectile path can
be calculated over the time period of interest. Corresponding strain calculations then can be
mapped onto the resulting cavity wall as well asinto the myocardium of the heart up to a
predetermined distance from the cavity wall.

The C++ toolkit was used to create a program which could output the cavity at any point of time
along with the strain tensor on the cavity wall. The output was provided as a SCIRun fld file
where the geometry was transformed into the Zone 12 coordinates as provided by Stanford. The
output was given as to enable downstream applications to easily integrate the analysis results.
The following images depict the different strains on the final cavity wall as provided for the
demonstration. The images were output directly from SCIRun.
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FIGURE 44. Final Cavity Geometry and Final Axial Strain Shown as a Fringe Plot

FIGURE 45. Final Cavity Geometry and Final Circumferential Strain Shown as Fringe
Plot
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FIGURE 46. Final Cavity Geometry and Final Radial Strain Shown as a Fringe Plot

FIGURE 47. Final Cavity Geometry and Final Principal Axial Strain Shown as Fringe Plot
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FIGURE 48. Final Cavity Geometry and Final Principal Circumferential Strain Shown as
a Fringe Plot

FIGURE 49. Final Cavity Geometry and Final Principal Radial Strain Shown as Fringe
Plot
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FIGURE 50. Final Cavity Geometry and Largest Principal Strain over all Time Steps
Shown as a Fringe Plot

Support for Stanford Strain Calculations

Two variations of the code were generated as well to support arequest from Stanford University
and University of Michigan to provide strain results within the myocardium itself. Stanford
University requested that Mission Research generate a series of offset cylinders with strain
results. These results were given as SCIRun fld files and represent provide the maximum
principa strains at offset distances from the cavity wall into the myocardium. These results were
required for Stanford to run their moment cal cul ations.
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FIGURE 51. Maximum Principal Strain at the Cavity Wall

FIGURE 52. Maximum Principal Strain at 2.5 cm from the Cavity Wall
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FIGURE 53. Maximum Principal Strain at 5 cm from the Cavity Wall

FIGURE 54. Maximum Principal Strain at 7.5 cm from the Cavity Wall
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FIGURE 55. Maximum Principal Strain at 10 cm from the Cavity Wall

The University of Michigan desired to obtain strains viaa more general API in which points
could be input (in Stanford coordinates) viathe command line or afile. Thisis useful for
mapping strains into the myocardium. This capability was provided near the end of the
preparation time for the demo, so it may not have been used at the demo, but does show the
capability to provide such analytical results.
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TASK 3
BALLISTIC EXPERIMENTS

Ballistic testing encompassed using different projectiles — various diameter spheres, cylinders,
and “cut-cylinders’ (cf. Figure 2, page 10) and different target materials — homogenous 10, 15
and 20% ordnance gelatin targets and inhomogeneous hollow 10 and 20% gelatin targets with
water inclusions.

3.1 INITIAL BALLISTIC TESTING

Ballistic testing initially focused on implementation of a high-speed digital video system to
record the penetration process of two projectiles, namely a0.250” diameter steel sphere and a
stedl, right circular cylinder measuring 0.250” diameter and 0.500” length (Length/Diameter, L/D
= 2). A monolithic block of 20% ballistic gelatin was impacted at various vel ocities chosen to
produce similar depths of penetration, nominaly six inches, or 60% of the target thickness.
Finally, the highest velocity which would result in the cylindrical projectile coming to rest within
the target material was implemented for better comparison with existing and newly devel oped
datafor spherical projectiles. Table 6 presents the shot log for the initial tests which have high-
speed digital video records.

TABLE 6. Initial Ballistic Testing

Velacity Depth
(fps) (in.)
0506-07 1/4" steel sphere 20% gelatin 1170 6.3
0506-08  L/D=2 1/4" steel cylinder 20% gelatin 490 6.3
0506-09  L/D=21/4" steel cylinder 20% gelatin 470 5.7
0506-10  L/D=2 1/4" steel cylinder 20% gelatin 740 9.0

Run # Projectile Target

FIGURE 56. Comparison of Typical Wound Track for Sphere and Cylinder
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The sphere produced a straight wound track while the cylinder generally produced awound
which deviated from normal as the projectile slowed. Posttest photos of typical wound tracks are
presented in Figure 56.

Implementation of the high-speed digital system allowed an accurate record of the penetration
history for the two projectiles within the gelatin targets. Posttest processing software facilitated
measurement of projectile location throughout the penetration event. Using the framing rate of
the camera, an average projectile velocity was cal cul ated between successive frames. Frame-to-
frame uncertainties in the precise location of the tip of the projectile resulted in error bands about
the actual velocity decay curve. However, since the video data provided a continuous record of
the penetration event, uncertainties did not accumulate in the average velocity calculation.
Therefore, a curve-fit to the measured data resulted in a reasonable polynomial description of the
velocity decay over time for the experimentsin Table 6. That datais presented in Figure 57.

In addition to the projectil e tragjectory information, the high-speed video also reveals afluid-
mechanical, wake-like structure that trails the penetrating projectile (see Figure 58). The origin of
this structure contains the projectile. The transverse dimensions first grow and then shrink,
ending in aposition, which is similar to the permanent wound track created by the projectile.

Average Velocity vs Time in 20% Gelatin

——1/4" Steel Sphere
—e—1/4" Steel Cyl. (L/D=2)
—e—1/4" Steel Cyl. (L/D=2)
1/4" Steel Cyl. (L/D=2)
e=Poly. (1/4" Steel Sphere)
Poly. (1/4" Steel Cyl. (L/D=2))
e==Poly. (1/4" Steel Cyl. (L/D=2))
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FIGURE 57. Velocity Decay for Cylinder and Sphere in 20% Ballistic Gelatin

— 86 —



ATK MISSION RESEARCH W81XWH-04-C-0084

The images recorded in the video were generated by imaging the test target against a back-lighted
optical diffuser which is basically equivalent to illuminating the target with a point source at
infinity. Thisis the technique used for “ Shadow Photography” in fluid mechanicsto reveal
density gradients (diffraction) in the test volume. It is not clear that the present problem can be
treated as a problem in fluid mechanics; however some observations and tentative conclusions
can probably be made for a reasonably axisymmetric configuration.

The dark boundaries of the “wake” result from incident light being diffracted, reflected or
absorbed by the “atered” property details of the material in these boundaries. The very light
region in the center of the “wake” (cf. Figure 58) results from the relative absence of reflective
and absorptive changes as well as diffracted light entering the region. A void or a*“cavity” will
produce these results.

The features discussed above are rather well depicted in the early entry process of acylinder into
the gelatin target as shown in Figure 58. We estimate the local (axisymmetrical) “cavity” to be
given by the diameter indicated. A record obtained near the entry site was selected for this
presentation because the dimension of the entry hole in the impacted surface can be confirmed by
the appearance of atypical crater lip. It must be remembered that we record a two-dimensional
image only. A pronounced growth of the “cavity” is very obvious when the cylinder pitchesin
the imaged plane. Thisis also consistent with the suggested interpretation of the optical data.

Edge of cavity

FIGURE 58. Determination of Boundaries of Temporary Cavity (Experiment 0506-10)
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3.2 SPHERICAL PROJECTILES

After theinitial ballistic testsin Table 6, testing was then dedicated to filling voidsin the
penetration data space for the primary tissue simulant, namely 20% ordnance gelatin (see Table
8). Previous penetration data obtained by Mission Research and Edgewood Arsenal used small
steel spheres (BB's, 0.17” diameter). Limited datafor 0.25” steel spheres also existed at Mission
Research. It was concluded that the maximum penetration depth could be scaled, over the
velocity range of primary interest, by the ballistic coefficient (weight divided by the product of
the drag coefficient and the area) of the projectiles. The low velocity range, from zero to some
threshold velocity to assure penetration into the target is excluded from this linear dependence, as
are the higher velocities, of order 1500 feet per second and above, for small spheres. Thisis
elaborated in the Task 1 discussion.

TABLE 7. Additional Testing using Spherical Projectiles

Projectile Target Velocity (fps) | Depth (inches)
BB 20% Gel 280 0.0
BB 20% Gel 340 0.3
BB 20% Gel 400 0.6
BB 20% Gel 530 1.0
BB 20% Gel 675 1.5
BB 20% Gel 700 1.6
BB 20% Gel 1000 2.9
BB 20% Gel 1255 3.6
BB 20% Gel 1600 4.8
BB 20% Gel 1600 4.8
BB 20% Gel 1610 4.9
.25" sphere 20% Gel 245 0.6
.25" sphere 20% Gel 310 1.1
.25" sphere 20% Gel 440 1.6
.25" sphere 20% Gel 1350 6.9
.25" sphere 20% Gel 1455 7.2
.25" sphere 20% Gel 1550 7.5
.25" sphere 20% Gel 1600 8.1
.25" sphere 20% Gel 1630 8.2
.25" sphere 20% Gel 1750 8.1
.375" sphere 20% Gel 810 6.7
.375" sphere 20% Gel 760 6.4
.375" sphere 20% Gel 930 8.0
.375" sphere 20% Gel 185 0.4
.375" sphere 20% Gel 270 2.3
.30" wedge 20% Gel 1120 7.7
.30" wedge 20% Gel 1230 7.8
.30" wedge 20% Gel 710 6.0
.30" wedge 20% Gel 490 4.1
.30" wedge 20% Gel 1360 9.2
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With these limitations in mind we were able to correlate old and new spherical projectile
penetration data in 20% ordnance gelatin targets. Measured maximum penetration (5 in inches)
datausing BB’s (diameter, d = 0.17 Inches) were plotted versus striking velocity for normal
impacts (see Figure 59). A linear (hand) fit crosses the velocity axis (6 = 0) at 260 feet per
second with aslope of 3.67 x 103, or 2.15 x 10°°d, with d in inches. The maximum penetration is
then:

5= 2.15 x 10°%d(V — 260).
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FIGURE 59. Ballistic Data using Spherical Projectiles of Different Sizes

Scaling by ballistic coefficient, that is, scaling by “d” was then applied to existing and the newly
generated 0.25” sphere data. The dashed line in the attached figure, labeled “ (BB x 1.47)” results
from multiplying the fit through the BB-data by 1.47, which is the diameter ratio of the 0.25”-
inch spheres and the BB’s. Thislineis seen to fall dightly below the datafrom 0.25”-sphere
impact tests. After parallel tranglation to cover the new data, shown by triangles, the solid line,
labeled 0.25” resulted. It is seen to cross the velocity axis at 130 feet per second, for 5= 0. This
line has a slope of 5.40 x10° or 2.16 x10d, where d is now 0.25”. The equation for max
penetration is then:

5= 2.16 x10°d(V — 130)
Following the same procedure for the newly generated 0.375-inch steel sphere datayielded a

slope of 8.10 x 10° or 2.16 x 10°°d, with a § = 0 intercept at \V = -30 feet per second. The
equation for 0.375-inch sphere penetration becomes then:
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5= 2.16 x 10°°d[V —(-30)]

The slopes of the correlation lines through the 3 data sets are proportional to the diameters of the
projectiles that generated the data. This suggests that ballistic coefficient scaling holds rather
well for the velocity range of primary interest.

An asymmetrical projectile geometry was somewhat arbitrarily selected to explore penetration
trajectories of projectile fragments. We elected not to use the complicated geometry identified as
the Army Fragment Simulating projectile and opted for aless symmetrical geometry which is
readily produced. Our projectile, shown in Figure 2 (page 10), isa .30 caliber modified right
circular cylinder, two diameters long with one end ground off at 45 degrees. This configuration is
readily launched and will rapidly develop yaw that should lead to early tumbling.

A posttest photograph of an exploratory impact in 20% ordnance gelatin and using the
asymmetrical projectile (*Wedge") described above is shown in Figure 60. The large diameter
materia disruption, early in the penetration (see Figure 61), suggest that the projectile was
yawing through 90 degrees. The rapid reduction in the damage diameter, followed by a small
cylindrical damage region, suggests that the projectile moved nearly end-on stably for the latter
part of its trgjectory. The above observations are substantiated by high speed video records,
recorded during penetration, and the resting orientation of the projectile. The deviation from a
rectilinear trgjectory is obvious. Also note that wound tract diameter is highly non-uniform
toward the end of its trgjectory even when the projectile is traveling without tumbling, base
forward. Sometimes the wound tract is much smaller than the projectile diameter and sometimes
larger.

FIGURE 60. Longitudinal Target Cross-Sections showing that projectile has rotated 180
degrees so that it is penetrating base forward. (A) Experiment 040603-02 — Wedge into
20% Gelatin @ 710fps; (B) Experiment 040607-04 — Wedge into 15% Gelatin @ 730fps.
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FIGURE 61. Macro Views of Target Damage using different lighting

FIGURE 62. Posttest Photograph of Spherical Penetration Ballistic Experiment
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Spherical particle impacts, as expected, reveal virtualy no deviation from the striking velocity
direction. However, here too, awound tract much smaller than the projected area of the projectile
isevident. See Figure 63. Also note that thereis material disruption in front of the projectile and
the “wound tract” diameter behind the projectile is smaller than the projectile diameter due the
recoil of the material in the wake of the projectile.

3.3 VARIATION OF MATERIAL PROPERTIES

Testing of penetration depth, permanent and temporary wound tract, and projectile dynamicsin
ordnance gelatin targets were also conducted to determine differences in response attributable to
differences in material propertiesin the target material. For this purpose we tested ordnance
gelatin of 10% (by weight) and 15% concentrations for comparison to the primary data base
generated for 20% ordnance gelatin.

We performed impact tests with spheres and a 30 caliber “wedge-cylinder” projectile with
striking velocities ranging from nominally 500 to 1,400 feet per second as seeninthe Run Login
Table 8, below. For a qualitative comparison we included asingle test using a*“standard US
Army Fragment Simulator.” This small (1.13 grams), asymmetrical projectile produced a
penetration depths very similar to those produced by 0.25-inch, spherical projectiles (1.04
grams), in 15% gelatin targets.

TABLE 8. Ballistic Experiments on Homogeneous 10, 15, and 20% Gelatin Targets

Run # Projectile | Projectile| Projectile Target Velocity | Projectile Resting | Maximum Visible
Diameter (in)| Shape | Mass (gms) Material (fps) Depth (in) Penetration (in)
Q2-01 0.250 Sphere 1.04 15% Gelatin | 1300 9.0 9.0
Q2-02 0.250 Sphere 1.04 15% Gelatin 680 4.7 4.6
Q2-03 0.300 Wedge 4.10 15% Gelatin 730 6.9 6.8
Q2-04 0.300 Wedge 4.10 15% Gelatin 690 6.4 6.4
Q2-05 0.250 Sphere 1.04 15% Gelatin 900 6.8 6.8
Q2-06 0.250 Sphere 1.04 15% Gelatin 460 3.2 3.2
Q2-07 0.250 Sphere 1.04 15% Gelatin [ 1390 thru thru
Q2-08 0.300 Wedge 4.10 15% Gelatin 700 6.7 6.7
Q2-09 0.220 Frag Sim 1.13 15% Gelatin | 1060 6.9 6.9
Q2-10 0.300 Wedge 4.10 15% Gelatin 900 7.2 7.6
Q2-11 0.300 Wedge 4.10 15% Gelatin | 1000N 7.6 7.9
Q2-12 0.300 Wedge 4.10 20% Gelatin | 1050 6.8 7.1
Q2-13 0.300 Wedge 4.10 20% Gelatin | 1400 9.2 9.6
Q2-14 0.250 Sphere 1.04 10% Gelatin 600 8.3 8.3
Q2-15 0.250 Sphere 1.04 10% Gelatin 560 8.0 8.0
Q2-16 0.250 Sphere 1.04 15% Gelatin 940 6.0 6.1
Q2-17 0.300 Wedge 4.10 10% Gelatin 470 7.3 7.4

An important objective of this test series was to explore techniques for mapping, in real time,
projectile trajectories, especialy for the asymmetrical “wedge” projectiles. As expected, high
framing rate photography was best suited for this purpose, in transparent targets. These
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photographic records reveal projectile location, orientation and velocity, and also formation and
collapse of the temporary wound tract.

We have derived projectile pitch data from this record and one example is presented in Figure 63.
below. In addition, projectile deceleration as afunction of penetration depth was obtained as well
as cavity wall dynamics.

0.0 T
———measurements
—e—trend

-90.0 \

-180.0 \

pitch (degrees)

O\ Va
N

-360.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
microseconds

FIGURE 63. Cut-Cylinder Rotation Angle versus Penetration Depth for Experiment Q2-13.
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KEY RESEARCH ACCOMPLISHMENTS AND CONCLUSIONS

e A modd of tissue response from a survivable penetrating wound to the human left
ventricle was devel oped. The model described the residual wound tract and qualitatively
was consistent with anecdotal data from military trauma surgeons regarding these
wounds. The predicted wound geometries was also consistent with animal testing.

e Themode aso described the tissue dynamics of the wound tract from a beating heart,
including modulation of the pressure in the wound tract. This was discovered to be an
important effect in that for small diameter wounds, the tract periodically opens and closes
permitting and obscuring blood loss form the wound. Failure to include his effect results
in gross overestimation of blood loss and skewed results for predicted outcomes.

e Stresswaves propagating over heart form the ballistic impact are sufficient, based on
previous research, to cause transient ion upset in the neighborhood of the wound tract.
This upset is sufficient to disrupt the polarization wave causing contraction of the heart.
This disruption can cause arrhythmias that can transition into potentially lethal
fibrillation. These effects were not further considered in this effort but should be
considered in the future.

e A technique was developed to model relevant human tissue dynamic properties based on
guasi static mechanical property datafor these tissues. Thisisimportant in that dynamic
mechanical property datais not available for human tissue and these sets of data are
critical input for any subsequent analysis of projectile penetration. The methodology was
validated by using various formulations of gelatin where only static mechanical property
data was available and correlating with experimental measurements (using high speed
digital video) of projectile velocity, projectile rotational kinematics, projectile trgjectory,
transient target response, and residual cavity (wound tract) in the target as a function of
time during and immediately following projectile penetration.
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REPORTABLE OUTCOMES

The following five peer-reviewed papers were published from this project. Copies of these
papers are included in the indicated appendices for the reader’ s convenience.

(1) Eider, R. D., Stone, S. F., and Chatterjee, A, K., Analytical Smulation of Penetrating
Wounds to the Heart, MM VR 2005. See Appendix N.

(2) El-Raheb, M., An Acoustic Model for Wave Propagation in a Weak Layer, JOURNAL OF
APPLIED MECHANICS, Vol. 72, September 2005, pages 744-751. See Appendix J.

(3) EI-Raheb, M., Transient Waves in an Inhomogeneous Hollow Infinite Cylinder,
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, Accepted with Revision, 7
February 2005. See Appendix M.

(4) EI-Raheb, M., Wave Propagation in a Hollow Cylinder Due to Prescribed Vel ocity at the
Boundary, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, Accepted with
Revision, 8 March 2005. See Appendix K.

(5) EI-Raheb, M., Transient Response in a Finite Hollow Cylinder from Time-Delayed

Prescribed Motion at the Boundary, JOURNAL OF SOUND AND VIBRATION, Accepted with
Revision, 11 March 2005. See Appendix L.
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CONCLUSIONS

ATK Mission Research was sponsored by DARPA’s Virtual Soldier program to analytically
simulate residual wound tracts and tissue dynamics associated with a survivable wound from an
explosively driven fragment penetrating the left ventricular wall of the human heart. The resulting
ATK Mission Research wound description was used in the DARPA/University of Michigan Virtual
Soldier program asinitial conditions for describing blood loss and occurrence of hemorrhagic
shock. A key finding was that the tissue dynamics of the wound tract from a beating heart,
particularly for small diameter wounds that are survivable, are critical in the resulting blood loss
calculations. The wound tract periodically opens and collapses due to modulation of pressure within
the tract. Thisintermittent open and closing of the wound intermittently prevents and permits blood
loss form the wound. Failure to include the tissue dynamics in the blood loss calculations resultsin
agross overestimation of blood loss and skewed results for predicted outcomes.

Stress waves propagating over heart form the ballistic impact are sufficient, based on previous
research, to cause transient ion upset in the neighborhood of the wound tract. This upset is sufficient
to disrupt the polarization wave causing contraction of the heart. This disruption can cause
arrhythmias that can transition into potentially lethal fibrillation. These effects were not further
considered in this effort but should be considered in the future.

Finally, atechnique was devel oped to model relevant human tissue dynamic properties based on
guasi static mechanical property datafor these tissues. Thisisimportant in that dynamic mechanical
property datais not available for human tissue (although quasistatic mechanical property datais)
and dynamic mechanical property datais critical input to any subsequent analysis of projectile
penetration into tissue. The ATK Mission Research methodology was validated by using various
formulations of gelatin that from previous research were shown to be phenomenologically similar to
soft tissue in terms of projectile-tissue interaction. Static mechanical property data was used for
these “unknown” formulations of gelatin targets and used to successfully correlate with
experimental measurements (using high speed digital video) of projectile velocity, projectile
rotational kinematics, projectile trgjectory, transient target response, and residual cavity (wound
tract) in the target as a function of time during and immediately following projectile penetration.

Two additional tasks, unrelated to the base effort described above, were added to the Mission
Research SOW. Thefirst of these tasks included using a modified Nail Gun developed by the US
Army Institute of Surgical Research (ISR) on ordnance gelatin targets and comparing residual
damage produced in the gelatin by the ISR Nail Gun as compared to the residual damage from
ballistic experiments. A separate |etter report and a DV D with high-speed digital video of al
experiments were sent under separate cover for this task. The second task included conducting
hydrocode analysis of body armor SAPI plates subject to non-penetrating projectiles and blast
and is discussed in Appendix O.
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APPENDIX A

ATK MISSION RESEARCH
STATEMENT OF WORK
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MISSION RESEARCH CORPORATION (MRC)
STATEMENT OF WORK

MRC will develop analytic models that describe tissue damage from ballistic impact by afragment with a
low striking velocity penetrating the heart. Tissue damage will include descriptions of the projectile
trgjectory through the heart and tissue damage lateral to the projectile trajectory (the wound tract).

The MRC effort will be divided into two phases. The period of performance for Phase | will be 1 February
2004 though 1 April 2005. The period of performance for the optional second phase will be 1 April 2005
through 1 April 2006. [ The period of performance was modified to be consistent with the overall Virtual
Soldier Program. Thus, Phase | extends from 1 March 2004 through July 2005 and Phase Il is now 2-1/2
yearsin duration].

TASK DESCRIPTIONS

Phase | will consist of four tasks: (1) analytical ssmulation of the projectile tragjectory, (2) analytic simulation of the
wound tract, (3) ballistic experiments on tissue and biosimulant materials, and (4) preparation of deliverables.

PHASE | - PROJECTILE SOFT TISSUE INTERACTION

TASK 1 — ANALYTICAL SIMULATION OF PROJECTILE TRAJECTORY

MRC will develop agorithms and required material properties to describe the trajectory and velocity retardation
through biological tissue. Thisfirst task will consist of three subtasks: (1) material property measurements; (2)
development of projectile retardation algorithms; and (3) Development of algorithms for a user prescribed projectile.

1.1 Tissue Mechanical Properties
MRC will measure relevant properties of biosimulant and tissue materials representative of targetstested in
Task 3.

1.2 Projectile Retardation

MRC will develop agorithmsin terms of static and dynamic material properties either available in the
literature or from Task 1.1 that describe velocity retardation and the path of a prescribed standard projectile
through tissue and biosimulant targets.

1.3 Simulation of Arbitrary Projectile
MRC will generalize the algorithms developed in subtask 1.2 for a standard projectile to an arbitrary low
velocity projectile.

TASK 2 — ANALYTIC SIMULATION OF WOUND TRACT
Using the projectile velocity retardation and trajectory described in Task 1, MRC will use the transient tissue
response model developed in subtask 2.1 to simulate damage lateral to the projectile trajectory in subtask 2.2.
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2.1 Analytic Simulation of Tissue Transient Response
MRC will develop transient dynamic response models of the wound tract.

2.1 Analytic Simulation of Wound Tract Geometry

MRC will simulate wound tract geometry using the transient response models developed in subtask 2.1. MRC will
also assist in integration of the wound tract model into the human Holomer being developed by the University of
Michigan for DARPA’s Virtual Soldier project.

TASK 3 — BALLISTIC EXPERIMENTS ON TISSUE AND SURROGATE MATERIALS

MRC will conduct ballistic impact experiments with suitably designed launchers and projectiles on instrumented
homogeneous and non-homogeneous ordnance gelatin targets. Hybrid targets will also be developed that include
pressurized and un-pressurized porcine heartsin a gelatin matrix. MRC will obtain impact/penetration data and data
relative to stress wave formation and propagation in porcine tissue and in the chambers of the heart. The data from
these experiments will be correlated to models developed in Tasks 1 and 2.

TASK 4 — PREPARATION OF DELIVERABLES
Deliverables will be threefold and include: (1) quarterly status reports, (2) attendance and presentation at designated
quarterly technical interchange meetings, and (3) a Phase | final report.

PHASE Il (OPTION) — PROJECTILE TISSUE INTERACTION INCLUDING
FLUID, BONE, AND POROUS TISSUE

TASK 5 — PHASE || ANALYTICAL SIMULATION OF PROJECTILE TRAJECTORY

MRC will develop agorithms and required material propertiesto describe the trajectory and velocity retardation
through biological tissue, including bone, fluid interfaces, and porous materials. Thistask will consist of three
subtasks: (1) material property measurements; (2) development of projectile retardation algorithms; and (3)
Development of algorithms for user prescribed projectiles.

TASK 6 — PHASE Il ANALYTIC SIMULATION OF WOUND TRACT
Using the projectile velocity retardation and trajectory described in Task 5, MRC will use a transient tissue response
model developed to simulate fracture and damage lateral to the projectile trajectory.

TASK 7 — PHASE |l BALLISTIC EXPERIMENTS ON TISSUE AND SURROGATE MATERIALS

MRC will conduct ballistic impact experiments with suitably designed launchers and projectiles on instrumented
homogeneous and non-homogeneous ordnance gelatin targets. Hybrid targets will also be developed that include
biological tissue in agelatin matrix. MRC will obtain impact/penetration data and data relative to stress wave
formation and propagation. The data from these experiments will be correlated to models developed in Tasks 5 and
6.

TASK 8 — PHASE || PREPARATION OF DELIVERABLES

Deliverables will be threefold and include: (1) quarterly status reports, (2) attendance and presentation at designated
quarterly technical interchange meetings, and (3) a Phase 11 final report.
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APPENDIX B
STATIC SOLUTION OF CYLINDER IN

PLANE-STRAIN WITH
CIRCUMFERENTIAL INHOMOGENEITIES
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Static solution of cylinder in plane-strain with 6-inhonogeneity

The static solution of a hollow cylinder in plane-strain is the first step

toward the anal ysis of transient response. The effect on variabl es of

circunferential or @-inhonpgeneity froman axi symmetric pressure applied at the
i nner boundary is eval uated.

Static and dynanmi c solution of the honbgeneous holl ow cylinder in plane-
strain is a strai ght—forward mathemati cal task as the problemyields to an exact
treatment. Radial inhonbgeneity requires a nore conplicated anal ysis yet the

problemstill yields to an exact treatnment if a step-wise radial variation in
modul us is assumed. In other words, divide the region r,<r<r; into N,

equi di stant annul ar segnents

n<r<r, , j=L..,N
Arp =11, r=(0,—-r)/N,
r, and r, are inner and outer radii, and modulus E; is constant over each segment

yet varies fromone segment to the other. r-inhonbgeneity is axisymetric as E

varies only along r but remins constant along 6. Consequently, only extensional
waves are excited. The solution adopts transfer matrices of annular segnments with
varyi ng properties.

The 6-inhonobgeneity is substantially nore conplicated since a step-w se

di scretization along the circunference is not possible. The only way to treat the

0 -inhonogeneity analytically is by the Galerkin nmethod. Eigenfunctions of the
asymmetri ¢ honpbgeneous dynami ¢ equations are utilized as trial functions in the
i nhomogeneous dynani ¢ equations. The static solution is attenpted first to

eval uate the stability and convergence of the Gal erkin nethod.

Fig. 2. plots distribution of variables along r for the honbgeneous hol |l ow

cylinder made of gelatin with r,=0. 25" and r,=3" with an axisymetric unit
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pressure applied at r=r,. Fig. 2a plots radial displacement U and Fig. 2b plots

radi al and circunferential stresses o,,0,. Note the exponential decay of all

rr?

variables with r. Also note that magnitudes of o, and o, are the same at the

rr

i nner wall and equal the applied unit pressure.

Consi der a O-inhonogeneity in the form

E@)=E, [1+ O.5COS(29)]
nmeani ng that nodulus is made of an axisymmetric conponent with magnitude E,
superinposed to a conponent of magnitude O0.5E, that varies along 0 following a
cos(20) distribution. In this way, naximumnmagnitude is E_, =15E, at =0 and

0 =m, and nininummgnitude is E, =05E, at 0=xn/2, yielding an E_/E,, = 3.

n
Fig. 3(al-dl) plots r distribution of variable with 8=0,7/4,7/2 as paraneter,
while Fig. 3(a2-d2) plots 6 distribution with r=r,2r, 4r, 8 as parameter. U

and circunferential displacenent v have approximately the sanme nmagnitude yet they

are alnmost half the axisymretric U in Figure 2a. Both U and v vary periodically

along 6 as shown in Fig. 3(a2,b2). o, achieves its maxi mum nagnitude of unity at

rr

the i nner boundary consistent with the boundary condition there (see Fig. 3(cl-

€c2)). An interesting and inportant finding is the magnitudes of o, (Fig. 3(dl-
d2)) and axial stress o, (Fig. 3(el-e2)) at the inner boundary. Ogy iS5

approximately 13 times larger than applied pressure while o, is alnost 6 tines

hi gher than applied pressure. This can be attributed to the 6 notion that exists

for the i nhonbgeneous asynmetric case while it vanishes identically for the

honbgeneous axi symmetric case. Note that renote fromthe inner boundary r>r,,
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magni t udes of o, and o, . are alnost tw ce the applied pressure. Note that for
O>nl4 O, changes from conpression to extension suggesting that circunferenti al

asymretry produces a magnified tensile o, enhancing radial tearing of tissue.

Figure 1. E circumf. distrib. E_. , E_ = 050F,; 1.50E,
9. E-6 T T T 1. ' T T T T T
(a) \ (b)
Uy L % Ogeo §
6.E-6 | 1
0 - e e |
3.E-6 | .
0 I L 1 1 -1 I I I L
0 0.2 0.4 0.6 0.8 1.0 0 0.2 04 0.6 0.8 1.0

r/r, r/r,

Figure 2. Distribution of axisymmetric static displacement and stresses
of homogeneous cylinder in plane strain
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Figure 3. Distribution of static variables of cylinder in plane-strain
with 8—inhomogeneity

(al) - (el) along v, (a2)-(e2) along©
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APPENDIX C

SIMPLIFIED PLANE-STRAIN
ANALYTICAL RESULTS
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distribution along r
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distribution along

(al)

8.E-6
U, F
1E-6 |

0

0
[ L
04
08 L

(b1

0.2 0.4 0.6 0.8

1.0

Plane-strain circumferential inhomogeneity in modulus E =E_, + E, cos( 20 )

(al) (b1) distribution along radius with " 0" as parameter

(a2), (b2) distribution along circumference with "r" as parameter
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Mixed plane-strain problem :
prescribed motion for t < 23 Ws
pressure release fort = 23 s
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ATK MISSION RESEARCH
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Analysis
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Verification of plane-strain analysis by comparison with finite difference
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Finite difference
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APPENDIX D

LISTING OF PROJECTILE TRAJECTORY
MATHCAD CODE
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MATHCAD CODE

DETERMINATION OF WOUND TRACK

TRANSLATIONAL AND ROTATIONAL MOTION OF

A CUT CYLINDER INSIDE A TARGET

DEVELOPMENT OF GENERAL MODULAR CODE APPLICABLE TO AN ARBITRARY SHAPED
PROJECTILE

M oment of Inertia about the Combined Center of Mass G
Geometry of Cut Cylinder

Cufting Angle

Cylinder Base Radius a =1
Length of Cylinder L :=4
Cutting Angle Ad := 3( deg
I

180

IC ==~

2
(Complimentary Angle)
Lp:= 2-a‘tan(7»)
Lp2:=L - L
L=4
Lp =1.155
Lp2 = 2.845

Total Volume: V = rc-az-(Lp2+ %)

Cut Volume V2:= na2~%

Volumel V1:=V - V?
V =10.753
V2=1814
V1=8.939

Analysis of Section One: Upper Cut Section
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Sectional Functions

xn(b) = | « asm(Bj
a

md(b) := | ¢ « asin(B)
a

2
s« %-(n _ 2.4 —sin(2:¢))

S

Cut Mass cutmass(k) = n~a3~tan(k)

o(b.2) = a-tan(k)-(g R 1j

x-distance of CM from A, the base center
of the cut-section

1
tan(k)-J c(b,2)-md(b) db
xdis(k) . _cjtmass(x)

y-distance of CM from A, the base center
of the cut-section

1
tan(k)-J xn(b)-md(b) db

. -1
ydIS(K) = cutmass(k)
xd = xdig2)

yd = ydis(2)

Ixy of Section One about the base center A
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IAxy(a,2) = |2 < % Y
tani <« tan(k)

L«2——
tan(k)

3
2

r\)Ioa

Int « x(L-=X%"- 2atank—(L—x)tank] dx

[
|

2
ans <« —-Int
3

ans
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Parameter Definitions

I(G,V,B,A,IA,n) := |GB« B -G
GA«A-G
if n<3

facl « (|cB)? - (GBn)2

fac2 « (|GA|)? - (GAn)2

ans « IA + (facl - fac2)-V

otherwise
ki<n-3
k2 «—kl+1

k2 « k2 - 3~f|oor(k2

facl « GBkl-GBk2

fac2 « GAkl- GAk2

)

ans « IA + (facl —fac2)-V

ans
G = Center of Mass of V

B= MI about desired point

A=MI about known point

n=MI index code

n=1 for xx, =2, for yy, 3 for zz
n=4 for xy, =5 for yz and =6 for zx
Check Algorithm

n:.=¢

kl:=n-2

k2:=kl1+1

k2 := k2 — 3-f|oor(k23_ 1)

kl1=3
k2=1

W81XWH-04-C-0084
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Coordinates of Various Key Locationswrt. the uncut base section center O asorigin, x-axis along the cylinder

axis, y-axis along the cross-sectional axis of symmetry

Lp2
A=| 0
0
Lp2
2
Gl:=
0
0
xd
G2:=|yd |+ A
0
Lp
2
G3:=A +
0
0
2.845
A=| 0
0
1.423
Gl=| O
0
3.206
G2=| 0.25
0
3.423
G3=| O
0
glg2 .= G2 - Gl

V2
1g .= —-glg?
gi9 Vgg
G:=G1l+ glg
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Cutting Ansle

gg3 :=G3-C
g3g =G -Gt
ga=G-A
0293 := G3 - G
029 =G -Gz
1.723
G =] 0.042
0
1.699
gg3 =| -0.042
0
-1.699
g3g =| 0.042
0
-1.483
g2g = | -0.208
0
0.217
g2g3 =| -0.25
0

Known Moment of Inertia of Volume 1: V1: About G1, CM of V1

IxxV1G1l= n_a4_L7pZ

lyyV1Gl:= rc-az-Lsz.(% + azj

1zzV1GL= IxxV1C

IxyV1G1l:= C

lyzZV1G1:= C

1zxV1G1=C

Known Moment of Inertia of Volume 2: V2: About A, Base Center of Cut Portion
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L
IXXV2A:= n~a4~?p

2
2Lp| Lp 2
IyWW2A =n-a —:|— +a
Yy 8(3 j

122V 2A = lyyV2A
IXyV2A = 1Axy(a, L)
lyzV2A = C
1zxV2A:= C
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Using the Shift Function I(G,V,B,A ,1A,n)

Calculatethe Moment of Inertia of the cut cylinder about its center of mass G

VolumeV1

IXxV1G= 1(GL V1 G,GL IxxV1G1l)
1.723

G=| 0.042

0
1.423

Gl=| O

0
IxxV1G1= 4.469
IXxxV1G= 4.485
V1=38.939
lywwi1G:= I(GLVL1G,GL lyyW1Gl 2)
lyyV1G1 = 8.265
lyyV1G = 9.074
1zzV1G=I(GL V1 G,GL1zzV1G13)
12z2V1G1= 4.469
1zz2V1G= 5.294
IXyV1G:= I(GLVL1G,GL IxyV1G14)
IXyV1G1=0
IxyV1G= 0.113
lyzV1G:= I(GL VL1 G, Gl lyzV1Gl5)
lyzV1G1=0
lyzvV1G=0
1zxV1G= [(GL V1 G,GL 1zxV1G16)
1zxV1G1= 0
1zxV1G= 0

VolumeV?2

IXXV2G= (G2, V2,G,A, IxxV2A 1)
1.723

G=| 0.042

0
1.423

Gl=| O

0

IXXV2A= 1.814

IXXV2G= 1.779

lyyV2G = 1(G2,V2,G,A, lyyV2A, 2)
V1=8939

W81XWH-04-C-0084
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lyyV2A = 0.655
lyyV2G = 4.406
3.206

G2=| 0.25

0
2.845

A=| O

0

1z2V2G= (G2 V2 G,A,l1zzV2A 3)
1zzVV2A = 0.655

122V 2G= 4.371

IXyV2G:= (G2 V2 G, A, IxyV2A, 4)
IXyV2A = 0.262

IxyV2G= 0.657

lyzV2G:= (G2 V2 G,A,lyzV2A,5)
lyzZV2A =0

lyzV2G=0

1zxV2G= (G2 V2 G,A,1zxV2A 6)
IzxV2A=0

1zxV2G= 0

Final 1G Matrix (Non-Principal)

IXXG:= IXXV1Gr IxxV2(
lyyG = lyyW1G+ lyyV2C
122G:= 12z2V1G+ 1zzV A
IXyG = IxyV1G+ IxyV2(
lyzG = lyzV1G+ lyzV2(C
1zXG:= 1zxV1G+ 1zxV 2
IxxG IxyG 0

IG:=| IxyG lyyG O

0 0 1zzG
6.264 077 O

IG=| 077 1348 O
0 0 9.665
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Define Integration point for Various Surfacesfor Load Calculation:

1. Flat Surface (base): Labelled S3

2. Slant Plane Surface: labelled $4

3. Curved Surface: Uncut: Labelled S1

4. Curved Surface: Cut: Labelled S2

Body-fixed Axes System for Coordinate Descriptions

Center at the center of the flat base: Origin at G for Body-fixed F-frame used in the analysis
x-axis along the uncut cylinder axis

y-axisis on the plane through the high and low end of the cut surface

z-axis forms the right handed orthogonal system

Check MCAD Runge-K utta M ethod: Using External Functionsfor Derivatives
p=-0.

rowl(xv) := |fac « (le)z N (xv2)2

S WXVy =XV, — fac-xv]

w == (o) + o)y
wi s x| o)+ ()

row2(xv) := |fac « (le)z N (xv2)2

D(t,X) :=

S ¢ WXV, + XV, — fac:-xv2

2 1
S
Z = rkfixed(x, 0, 20, 100, D)
n:=0,1..10(
0.5
Zno O 7

_ | |

0.5
-0.5 0 0.5 1

rowl(x)
D(t,X) :=
row2(x)
Using Vector Method
Zn = rkfixed(x, 0, 20, 100, D)
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n:=0,1.. 10

Comparison Between Conventional and Vector Method

0.2 T
o
Zn n,2
-02[ 1
Zn,2
04— 1
-06 | |
=05 0 0.5 1

Znp3,Zn3
OK

Check the possibility of solving a 18-row vector using M CAD Runge-Kutta Coding
Physical Description of x-elements:

x1-x3: Center of Mass G in N-frame

x4-x6: Velocity of G in N-frame

X7-x9: Components of Angular Velocity in F-frame
x10-x12: Components of unit Vector along Gx in N-frame
x13-x15: Components of unit Vector along Gy in N-frame
x16-x18: Components of unit Vector along Gz in N-frame
N-frame: OXY Z Fixed Newtonian Frame

F-frame: Gxyz Rotating Frame attached to the projectile

Note:

There are two integrands for each of S1-34 surfaces: These integrands are vectors. First integrand is aforce
per unit area while second is the moment of this force about G. Components of these vectors are taken along
the Newtonian axes for the motion of G while they are taken along the F-frame axes for motion about G.

Initial conditionson x
x0=(100010000000000000)

X0:= xdr
L ocation Dependent Retardation
Coefficientsin Newtonian Frame

a(pn) = pn, +pn, + pn.

B(pn) :=2-a(pn)

y(pn) = 3a(pn)

Motion of the Center of Mass G: Vector-Integrand over Sl surfacein Newtonian Frame
ForceIntegrand for the S1-Surface
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FIGS14XV, X, §) =

le

gn « | XV,

XV3

XV, XV,

10 "'13

TEN « | XVpq XVpg X7

XV12 XV,

TNF < TN ©

X
opf « a«sin(q))
a«cos(q))
gpf < opf -G
gpn < TFN-gpf
pn < gn + gpn

XV7

XV,
0 < 8

XV9

vpgf <« o x gpf
0

pnf « sin((b)
cos(cb)

XV4

vgn « | XVg

XV6

vgf < TNF-vgn

vpf « vgf + @ x gpf

vn « vpf -pnf
0

s « |0
0

s« —(a(pn) + B(pn)-vn + y(pn)«vnz) if vin>0

sf

15

W81XWH-04-C-0084
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Fl GS;(xv, X, ¢)
Force Integral Over Sl Surface: F-Frame

In F-Frame
Lp2(A)

FS1y(xv) = a- | J FIGS14xv, x, ¢)-sin(¢) d¢J d>
0

Lp2(A)
FS1Axv) = a- [

2
U FIGS14xv, X, ¢)-cos(d) d¢} d»
0
0

In N-Frame

FS1X(xv) := XV o FS1ly(xv) + XV 6 FS1z(xv)
FS1Y(xv) := XV 4 FS1ly(xv) + XV, FS1z(xv)
FS1Z(xv) := XV o FS1ly(xv) + XV o FS1z(xv)

Force Integral Over S2 Surface: F-Frame
Define

Components
In F-Frame

L
( —
FS2y(xv) := a- J FIGS14xv, x, ¢)-sin(¢) dé | dx

(%)
Lp2(1)
L

|
)
f

m—(¥)
FS2Zxv) := a‘JI [J FIGS14xv, X, ¢)-cos(¢) d¢J dbx

(%)
Lp2(1)

W81XWH-04-C-0084
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In N-Frame

FS2X(xv) := XV o FS2y(xv) + XV 6 FS2z(xv)
FS2Y(xv) := XV 4 FS2y(xv) + XV, FS2z(xv)
FS2Z(xv) := XV o FS2y(xv) + XV o FS2z(xv)

Define

Lp3:=Lp2+ %

Force Integrand Over $4 Angled Flat Surface: F-Frame

Range of Integration for $4 Surface
0<=r<=1, 0<=0<=2n
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XVl

FIGSé(xv,r,O) = |on « | XYy

XV3

XV]_0 XV13 XVlG

TEN « | XVpy XVpy XV7

XV]_2 XV15 XV18

TNF < TEN *

Lp3+ a~tan(k)~r~sin(6)
opf « a‘r-sin(e)
a«r‘cos(e)
gpf <« opf -G
gpn < TFN-gpf
pn < gn + gpn
XV.

7
o« | XVg
XVgy
vpof <« o x gpf
cos(k)
pnf « | —si n(k)
0
XV,
vgn « | XVg
XV

vgf « TNF-vgn
vpf « vgf + o x gpf
vn <« vpf -pnf
0
sf « |0
0

sf « —(a(pn) + B(pn)-vn + y(pn)-vnz) if vn>0
sf
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Force Integral Over $4 Surface: F-Frame

In F-Frame

1
[ 2w
FSAX(xv) = a~cos(k)~ J FIGSé(xv,r,O) do |dr
0
0

1

2w
FSAy(xv) = —a~sin(k)- J FIGSé(xv,r,O) do |dr
0
0

In N-Frame

FSAX(xv) := XVio FSAX(xV) + XV o FSAy(xv)
FSAY(xv) = XVyp- FSAX(xV) + XV FSAy(xv)
FSAZ(xv) = XV; FSAX(xV) + XV, o FSAy(xv)

Range of Integration for S3 Surface
O<=r<=1, 0<=0<=2rn

Force Integrand Over S3 Uncut Flat Surface: F-Frame

W81XWH-04-C-0084
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FIGSYxv,r,0) :=

XVl

gn « | XY,

XV3

XV, XV,

10 "'13

TEN | XVpy XVpy XV7

XV, XV,

12 715

TNF < TEN *

0
opf « r-sin(e)
r-cos(e)
gpf < opf -G
gpn < TFN-gpf
pn < gn + gpn

XV7

XV,
o < 8

XV9

vpof <« o x gpf
-1

pnf <«
XV,

vgn « | XVg

XV6

vgf < TNF-vgn

vpf <« vof + o x gpf

vn « vpf -pnf
0

sf < |0
0

Sf o« —(oc(pn) + B(pn)-vn + y(pn)-vnz) if vn>0

sf

W81XWH-04-C-0084
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Force Integral Over S3 Surface: F-Frame
In F-Frame
1

27
FS3x(xv) := a-cos(2): | J FIGSExv,r,0) do | dr
0

0
1
( 2
FS3y(xv) := —a-sin(1)- | J FIGSExv,r,0) do | dr
0
Js
In N-Frame

FS3X(xv) := XV, FS3x(xv) + XV, o FS3y(xv)
FS3Y(xv) := XV, g FS3x(xv) + XV, FS3y(xv)
FS3Z(xv) := XV, FS3x(xv) + XV, o FS3y(xv)

W81XWH-04-C-0084
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Evaluating M oment Integrals

~1

IGl:=1G
0.994
ovec :=| 04
0
0.994 0.105 0
eigenvecs (IG) =| —-0.105 0.994 0
0 0 1
testl := (|G(DV€C) X VEC
0
testl = 0
2.231
0
IGltestl =| O
0.231
0
IGI{(IGwvec) X o)vec] =| O
0.231
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APPENDIX E

STATIC ANALYSIS PREREQUISITE TO 3-
D AXISYMMETRIC MODEL OF WAVE
PROPAGATION IN CYLINDRICAL
TISSUE PERFORATED BY CONCENTRIC
CYLINDRICAL PROJECTILE
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In what follows, all dependent variables pertaining to the static solution will be subscripted by

s. The static axisymmetric equationsin terms of displacementsare

((A+2u)¥2 + 10, )u; + (A+w)d,w, =0
(A+u)d,(0, +1/r)u, + (u©§+(/1+2u)azz)w5:o (AL)
Vi=¢, +1/rd, -n*/r®, n=01

Equations (A1) decouple to

u(/1+2u)(©f+azz)zuszo

i (A2)
u(/1+2y)(¢§+azz) w. =0

S

For the radial traction problem satisfying o, =0 at z=(0,l), separation of variablesis as follows.
Summing over al k, yields

u(r,z) = iﬁms(r)sin(kzmz) (A39)
w,(r,z) = iv‘vm(r)cos(kmz) , K, =mz/l (A3b)

Substituting (A3) in (A2) produces uncoupled equationsin r for each k,,

(V2-K2,) Te()=0 o
A4
(V2-K2,) W () =0

In what follows, subscript m will be dropped for shortness. Equations (A4) admit the solutions

0,()=C, (k) + C, K, (k1)

+Cy(k,r To(kr) — 1.(k,r)) — C,(k,r Ky(kr)+ K, (k,r))
V_VS(F) :C1 Io(kzr) - Cz Ko(kzr)

+C3(05l lo(K,r) + kr Il(kzr)) + C4(—ocl Ko(k,r) + k,r Kl(kzr)) (A5b)
o, =(A+3u) (A +1) o, =Al0+ p)

(A5q)
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Substituting (A5a,b) in the constitutive relations yields
Gus(r) = 20K, (C, (15 (k,1) = 1, (k1) /(K1) = C, (Ko (K1) + Ky (K,r) /(K,1)))
+ 21 k,Cy (e lo (k1) + (1+ (k1)) 1y (k1) (k) (A63)
+2uk,Cy o Kq k) +(1+ (k1)) Ky (K1) (k1)
Gaos(1) = 20K, (C 1, (K1) (K1) + C,K, (K,1) /(K,1))
+2uk,Co( (L—a,) 1o(ikr) = 1,(k,r) (K 1)) (A6b)
+2uk,C, (—(L-0,) Ko (k,r) = Ky (K,r) /(k,r))
G() = 2uk, (=Cly(kr) + C,Ky(k,r))
+2uk,Cy (= ey +a,) 1o(kr) = krl,(kr)) (A6C)
+2uk,C,( (o +0,) Ko(kr) = kr Ky (K,r))
7,(r) =2uk, (Cl,(k,r) + C,K, (k1))
+2uk,Cy( K1 15(K,r) + @—e,)1, (K 1)) (A6d)
+2uk,C, (=K,r Ko (K,r) + (1—a,) K, (K1)

Tractions at the inner and outer surfaces of the tube are expressed as

Grrs(rp! Z) =b (H (Z_ Za) -H (Z_ zb))
7.5(r,,2) =0
Ol 2) =75 (1,,2) =0 (A7b)

(A79)

p, isauniform radial traction prescribed at r =r  intheinterva z, <z<z . Substituting (A6a) and
(A6d) in (A7a) and (A7b) and enforcing orthogonality of sin(k,z) and cos(k,z) produces M (4x4)
uncoupled matrix equationsin the coefficients C_, k=14

km ?
M.C, =f, (A8)

Coefficientsof M, aretheradial functions multiplying C,,, in (A6a) and (A6d) evaluated at r =,
and r =r,, and f _ isavector defined by

f1m =-2 P (Cos(kzm zb) —COS(kzm Za))/(kzml)

A9
fon=fa=f,,=0 (A9)

2m m
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For the axial traction problem satisfying vanishing shear stress z,,, =0 at z=(0,l), theexpansion in
(A3) becomes

0 (r2) = b (1) cos(k,,2)

m (A10)
w,(r,2) =Y W (r)sin(k,2) , Ky=mz/l
m=1
The boundary conditions are
o,(r,,2)=0
5. 2) (A7a)
71y, 2) = P, (H(z-2,)-H(z-3))
Ol 2) =75 (1,,2) =0 (A7b)

p, isauniform axial traction applied at r =r, intheinterval z, <z<z, . Expressionsfor
displacements and stresses resembl e those of the radial problem and are omitted here for shortness.

In all resultsto follow, geometric and material properties of the cylinder are listed in Table A-1. Figure
1 (al) plots the static deformed generator from a unit radial displacement prescribed at the footprint

Uy (1, 2) = H(z-2,) ~H(z-2,) (A8a)

In (A8) z,=1.5" and z,=2.5". Theresulting normalized o,,(r,,2) distribution plotted in Figure 1 (b1)
showsarisenear z, and z of 1.5 timesits magnitude at the plateau. Fig. 1(a2,b2) plot static
deformed generator and normalized o ((r,, ) distribution for aunit axial displacement prescribed at
the footprint

W (r,.2) = H(z-2,) ~H(z3,) (A8b)

Inthiscase, o, risesnear z, and z to 1.7 timesits magnitude at the plateau.
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Table A-1. Cylinder properties

E (Ib/in%) 4.5x%10"
p (Ibs?/in*) 8.7x10°
v 0.48
| (in) 4
I’p (in) 0.25
r, (i) 3
Cq (infg) 6.74 x 10"
Cs (in/s) 1.322x 10"
prescribed u(r,.z) prescribed w (’} 2
; : T F

Figure 1. Static deformation and foot-print traction at r=r, , z,<z <z,
(al),(bl) prescribed u(r,.z) (a2),(b2) prescribed w(r,.z)
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APPENDIX F

MODAL ANALYSIS
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The dynamic solution u(r, z,t) satisfies the homogeneous boundary conditions

o, (r,,zt)=0, r7,(r,zt) =0

(BI1)
o,(r,zt) =0, 7,(r,zt) =0
Substituting (16a) and (16d) in (B1) yields the matrix equation
M.C=0 (B2)

M, isa4x4 square matrix, C = {Cl,CZ,C3,C4}T is the vector of unknown coefficients and

ar = (4 20)IC + 212 I (kar,) + 20 K2 3, (kr,) (kry)
s = 201Kk, [ Jo(Kr) = Jy(Kir,) /(KT |

e = 21K K, 3, (K1)

s = —1(KZ =K 3, (K1)

(B3)

< Z Z L

M. Moy Moo, My, havethesameformas M, M5, M,,, M, with J_ replaced by Y, .

Similarly, M, , M., k=14 havethesameformas M,,, M, k=14, with r_ replaced by r,.

From the definitions of k, and k, in (12), k, isimaginary when o <k,c,, ¢, =+ (1 +2u)/p ,and
k.isimaginary when o <k, c,, c,=+/u/p .Below these cut-off frequencies, J, and Y, are replaced
by I, and K, with appropriate changesin sign. For each m in K, , anon-trivial solution to (B2) yields

the implicit eigenvalue problem
det|M,, F0 = {o,:®,(r,2)] (B4)

{@n;:®,;(r,2)} isthe Eigen-dyad corresponding to the m" axial wave-number.
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APPENDIX G

PLANE-STRAIN PROBLEM
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The radial plane-strain problem is that of an infinite hollow cylinder where &,, = W= 0, = 0. The dynamic
equationin U then reducesto

Vau=1/c?8,u , Ty ST,
Vi=o, +1ro, —1r®, ¢2=E,lp (C1)
E, =EQ1-v)/(1+v)1A-2v))
The boundary conditions are
u(r,,t)y="f,), o,(r,t)=0 (C2)

f,(t) isthetime dependent displacement profile prescribed at I =r,,. The constitutive law takes the form

o, =&, +2usg;, , li—>Ir,00, 2z
i Vv [l ii (C3a)
gv = grr +8¢90 ’ gzz = O

o, =E, (6,u+vil-v) ulr)
o, =E (ulr+vid-v)o.u) (C3b)
. =E (u/r+o.u)vid-v)

Express U(r,t) asa superposition of a static and a dynamic solution

u(r,t) =ug(r) f(t) +u,(r,t) (C4)
U, (r) isthe static solution satisfying the inhomogeneous boundary conditions

us(r,)=1, o,(r,)=0 (C5)

Uy (r,t) isthe dynamic solution satisfying the homogeneous form of boundary conditions (C2). Expand U, (r,t) in
the Eigen functions ¢, (r) of (C1)

ud(r,t):Zaj (t) ?, (r)
(Pj(r): 'Jl(krj r)+C2Y1(krj N, ¢ :_'Jl(krj rp)/Yl(krj rp)

(C6)

Substituting (C6) in the homogeneous form of (C2) yields the dispersion relation
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Oty Oty =03 Oy =0

Ay = ‘]1(krj rp) o Ay :Yl(krj rp)

Uy = (A+2u)k 5 Ji(K ;1) + A dy (ke 1)/,
= (A 200k, YK 1) + 2% (K, 1),

(C7)

(1)’ stands for derivative with respect to the argument. (C7) determines the wave numbers K ; . The static solution

to V2u =0 is

u(r)y=Ar+B/r

A:rp(r§+(ﬂ,+y)rf/u)_1, Bzrp(l—Arp) )

The constitutive law is given by (C3b). Substituting (C6) and (C8) in (C4) and enforcing orthogonality of ¢ j (r)
yields
() +ofat)=—(N, /N, )T,

fo ) ro (Cg)
Nj = [of(r)rdr, Ny =fu()e()rdr, o =ck,

p

(") standsfor time derivative. Theintegralsin N;; and N,; areevaluated analytically intermsof J, and Y, for
n=012.

For the radial plane-stress problem, o,, = W= 0, =0 yielding the equation

Vau=1/c?é,u , V=9, +1/r o, —1/r?

C10
c¢Z =E/(p@-v?)), r,<r<r, (€10

(C10) has the same form as (C1) but with alower speed of propagation since C_ /Cd =(1- 2v)l/2 /(A-v) issmall
when v iscloseto 1/2. The constitutive law simplifiesto

o,=E (d,u+vulr) , o,=E (ulr+vou)
-0, E, =E/1-v?)

(C11)

z

If prescribed displacement at I = r is the same for both plane stress and plane strain, then strains are approximately

the same. It follows that stressesin (C11) are smaller than those in (C3b) by a factor of (CU / Cq )2 . Inthe present
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application, if material of the cylinder fails radially within the footprint Z, < Z< 7 , then the approximate state of
plane-strain changes to that of plane-stress reducing transmitted pressure substantially.
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APPENDIX H

EFFECTS OF TARGET PROPERTIES ON FRAGMENT
PENETRATION — SENSITIVITY STUDY
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SUMMARY

The penetration response of a Gelatin target which is being used as afirst order simulant of human heart tissue was
studied. The target was subjected to a normal impact at 300 ft./sec. by a steel fragment in the form of adisk with a
4:1 diameter to length ratio. The response was modeled using the Autodyn 2D hydrocode. The failure strength, shear
modulus and erosion properties of the target were varied. Of interest was the penetration depth versus time profiles.
Also, the left ventricle of the heart was the focus of interest. To first order, this region was assumed to be less than 2
inches deep with the front and rear walls less than 0.5 inches thick. The inner portion is assumed to be filled with
blood.

The calculated penetration depths using the baseline Gelatin model was slightly lessthat 1 inch. Varying the target
properties led to penetration depths between 0.1 and greater than 1.2 inches thus potentially putting the fragment
somewhere between the inner wall and fluid core. The baseline strength was assumed to be 25 bars. Increasing this
level by afactor of 10 had the biggest effect resulting in more than a factor of 10 reduction in penetration depth.

The baseline shear modulus was assumed to be 125 bars. Reducing this level by afactor of 10 resulted in an increase
in the penetration depth of about 30%.

The baseline erosion strain was assumed to be 200%. Thisisthe level of strain at which the material is assumed to
completely fail and the cells removed from the grid. Doubling thislevel resulted in a reduction in penetration depth
of about 20%.

Based upon these analysis, it is estimated that a factor of 5-10 in shear modulus and/or failure strength will have a
significant effect on penetration depth.

BACKGROUND

We areinterested in the problem of asmall caliber fragment penetrating a human chest cavity, impacting and
partially penetrating the heart. The resulting physical damage is manifest in 3 ways:
(1) The projectile generates awound cavity resulting from the tearing of the material during penetration.
This cavity can partially close back on itself but often leaves aresidua hole.
(2) Thewallsof the cavity can be damaged due to both the penetration process and the wall stresses
created during the penetration
(3) Tissue remote from the wound cavity can be damaged due to the propagation of stress waves generated
by the penetration.

It has been shown by experiment and analysis that the damage and damage trajectory depends to first order on the
fragment properties including: projectile velocity, shape, orientation upon impact, and material. The damage also
strongly depends upon the tissue material properties and spatial dependence of these properties.

The heart is composed of a number of regions each having its own geometry and material properties. These materials
arein general characterized as nonlinear anisotropic with arange of failure strengths. It is not practical or probably
required to include the detailed variation of these propertiesin predicting the critical damage. In order to understand
how much uncertainty can be allowed, a series of sensitivity based experiments and numerical predictions are
ongoing.
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ANALYSIS

A series of 2D axisymmetric hydrocode runs were made using the Autodyn code. In the runs, a steel fragment disc, 7
mm x 1.8 mm, impacts a 3.4 inch thick x 5 inch high elliptical Gelatin heart simulant at 300 ft./sec.

A baseline caseis run using the nominal Gelatin material model. Excursions on the Gelatin shear modulus, strength
and erosion strain were made with the vel ocity and penetration depth versus time calcul ated.

RESULTS

A snapshot of the fragment penetrating the target is shown in Figure D-1. Notice that the ‘wound’ cavity hasa
conical like shape expanding behind the penetrating fragment.

AUTODYN-2D 48,0 from Century Dynamics Material Location

GEL1
STHL STEEL
virfrag300kb P
Cycle 23000
Tirne 9.8558E-001 s
Units mm, mg, ms
Axial symmetry a0/0.741

The penetration versus time is shown in Figure D-2. The baseline response is shown as the blue curve. Increasing the
failure strength by afactor of 10 resultsin the lower red curve. Reducing the shear modulus by afactor of 10 results
in the upper maroon curve. Reductions in the failure strength and erosion strain result in the intermediate curves. Itis

seen that afactor of 10 uncertainty in failure strength or shear modulus can have a significant effect on penetration
depth.
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Penetration Depth (mm.)

Penetration Depth vs. Time
2X7 mm Steel Disc @ 300 ft./sec.
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APPENDIX |

COMPARISON OF LONG ROD VERSUS WEDGE
FRAGMENT PENETRATION INTO GELATIN
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BACKGROUND

Penetration tests are being performed in support of the Virtual Human program using various ‘Nail’ like projectiles
to investigate certain physical and biological functions. These projectiles are driven into and then stopped at
prescribed depths in the targets and thus undergo forced acceleration and then decel eration. The effects of this
acceleration vs. time history on target response as compared to what would happen with a projectile which impacts
with a known velocity, i.e. launched remains to be explored and is not addressed in this Appendix. Similarly, the
details of the target failure which depend upon the failure model and the extend to which Gelatin and biological
materials differ also remains to be explored and is not addressed in this Appendix.

The purpose of this study isto explore the similarities and differences one would expect from projectiles with
geometries of interest given similar impact conditions and target parameters. To that end, we assumed that the
projectiles were given initial velocities and then modeled the penetration into thick gelatin targets.

APPROACH

A series of 2D hydrocode runs were made using various Long Rod and wedge fragments penetrating a gelatin target.
Of interest were the (1) deformation patterns, (2) velocity deceleration profiles, and (3) distribution of energy asa
function of time.

Asabaseline, we explored the effect of a steel wedge fragment. Recall that we had explored this effect earlier
wherein we assumed impact velocities on the order of 1000 ft/sec. The early time predicted motion correlated well
with that observed in the GBL experiments. However the penetration depths in gelatin were greater that actual heart
thicknesses so we decided to re-do the analysis using impact velocities which would result in the projectile remaining
in the assumed approximately 4" thick simulated heart.

We then turned the wedge around and contrasted the response with the tip-forward impact. This was doneto
illustrate the differences in response depending on the orientation of the fragment on impact. The differencein
response was not due to differences in kinetic energy (which was the same for both cases).

Finally, we selected a‘long rod’ penetrator with what we believed to be a representative ‘Nail’ projectile geometry
which we assumed to be a4” long by 10 mm diameter circular rod with a hemispherical cap impacting normal to the
target. We explored several impact velocities until we came up with one which would cause the *Nail’ to (1)
penetrate but stop in the gelatin and (2) penetrate and continue out the back.

SUMMARY
The wound track, energy transfer and resulting damage in gelatin are a strong function of the fragment geometry and
fragment striking angle and velocity. Projectiles with irregular geometries will tumble while projectiles with large

aspect ratios will penetrate with little relative retardation. The retardation and energy transfer characteristics of
‘Wedge' and ‘Nail’ like projectiles can be very different as demonstrated in this analysis.
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RESULTS

Q) Steel Wedge ‘Forward’ Impacts: Impact Velocities L ess 66 m/sec.

The deceleration velocity vs. time profile is shown in Figure E-1. In the case of the higher velocity impact (~220
ft/sec) the penetration processis violent with the projectile causing massive damage ahead of its path. The target
material just fails and subsequently provides little penetration resistance thus the projectile velocity reaches a

constant state. In the case of the lower velocity impact (~110 ft/sec) The projectile tumbles and moves off the path of
its original velocity vector and then is stopped by the target and remains imbedded.

Velocity vs. Time: Wedge

KAWELOCITY

i ] | — peph1v33
0 | | | peph1veE
0.0 0.2 04 06 08

TIME (ms)

FIGURE E-1. Deceleration Velocity vs. Time for Wedge ‘Forward’ Impacts

The deformation/pressure fields at 1.2 msec. after impact are shown in Figure E-2.
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AUTODYN-2D v .0 frorn Century Dynarmics PRESSURE (kPa)
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Cycle 50000

Time 1.209E+100 ms
Units mm, mg, ms -5.000e+03

Flanar symmetry 50071

FIGURE E-2. Deformation/Pressure Snapshot for ‘Forward’ Wedge @ 110 ft/sec.
2 Steel Wedge ‘Backward’: Impacts Velocities Less Than 66 m/sec.

In this case, the fragment impacted with cylindrical end first. A comparison of the deceleration velocity for the
‘forward’ and ‘backward’ impact orientationsis shown in Figure E-3. Notice the very different behavior. The
‘forward’ first projectile tumbles at early time presenting a much larger projected area and is stopped by the target.
The ‘backward’ first projectile acts like arod for along time and then and undergoes only dight rotations and thus
decelerates at a much slower rate.

Velocity vs. Time: Wedge

=
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0 T 1 1 ] peph1v33
0.0 02 0.4 06 0.8
TIME {ms)

Figure E-3. Deceleration Velocity vs. Time ‘Forward’,’Backward’ Wedge @ 110 ft/sec.

A snapshot of the deformation/pressure field is shown in Figure E-4.
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AUTODYN-2D w0.0 from Century Dynarmics

pephlrd3
Cycle 50000

A

Time 1.215E+100 ms
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Flanar symrnetry
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FIGURE E-4. Deformation/Pressure Snapshot for ‘Backward’ Wedge@110 ft/sec.

3 Steel ‘Long Nail’: Impactsat Velocities L ess Than 33 m/sec.

A series of runs were made using a4” long ‘Nail’ projectile. It was speculated that this type of projectile because of
its large aspect ratio and additional momentunvkinetic energy would be fairly penetrating and that was born out in
the analysis. Typical velocity deceleration vs. time profiles are shown in Figure E-5. The projectile basically

penetrates the target undisturbed at 110 ft/sec. in contrast to the wedge which stopped in the middle of the target. The

impact velocity would have to be reduce to less than approximately 50 ft./sec. to prevent penetration.

KNMELOCITY

2
o
|

___________________________________________________

— usys101001

0.0 02 04 06 0.8 1.0
TIME (ms)

usys 101002

FIGURE E-5. Deceleration Velocity vs. Time ‘Long Nail’
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A snapshot of the deformation pattern/pressure state is shown in Figure E-6. Notice that the projectile has caused
massive ‘failure’ of the target while continuing to penetrate.

AUTODYN-2D v5.0 from Century Dynamics PRESSURE (kPa)
5.000e+33 !
4.000e+13
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2.000e+73 1
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-2.000eH13 [
-3.000e+03
usys101001 4 O00e+03
Cycle 75000
Time 1.128E+100 ms
Units mem, g, ms -5.000e+03
Planar symrmetry 80/0.741

FIGURE E-6. Deformation/Pressure Snapshot for ‘Long Nail’@110 ft/sec
4 Steel ‘Short Nail’: Impactsat Velocities Less Than 33 m/sec.
A series of runs were made where the length of the ‘Nail” was reduced from 4” to about 1.5”. This still left an aspect

ration of 4:1. The resulting velocity deceleration vs. time results are shown in Figure E-7. It is seen that the projectile

actualy is decelerating more quickly than the ‘long’ nail as expected. Thiswill continue as the aspect ratio, and
impact momentum is further reduced.
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Velocity vs. Time: Short Nail
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FIGURE E-7. Deceleration Velocity vs. Time ‘Short Nail’

The ‘Short Nail’ still creates substantial target damage behind the projectile at an impact velocity of 110ft./sec. as
shown in Figure E-8.

AUTODYR-20 v0.0 from Century Dynamics PRESSURE (kPa)
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FIGUPIanar symmetry . 500771 Na” @110 ft/SeC
(5) Energy Partitioning in Targets as a Function of I mpacting Fragment Parameters

Upon impact and during subseguent penetration the projectiles transfer energy and momentum to the targets. The
energy is partitioned into Kinetic and Strain energy. The fragment and target properties and impact velocity will
determine the energy partitioning.
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Results for those components of the kinetic and internal portions of the energy in the target are shown in Figures E-9
through E-11. Shown in the plotsistotal energy in the projectile + projectile as a function of time (minus the energy
lost to failed material and numerical error), the total energy transmitted to the target (h130), and the kinetic, internal
energy components transmitted to the target.

Results for the ‘forward' /’ backward’ wedge impacts at 110 ft./sec. are shown in Figures E-9 and E-10. First, it is

seen that substantial energy islost to material failure as the projectile tumbles. Second, the kinetic energy in the

target is an important portion of the total energy in the target, especially for the ‘backward’ projectile. Finally, when

the energy in the target peaks, it is about 1/3 of the total of the projectile + target energy which is substantial.
Energy Partitioning: Wedge
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FIGURE E-9. Energy Partitioning during ‘Forward’ Wedge Impact

Energy Partitioning: Wedge
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FIGURE E-10. Energy Partitioning during ‘Backward’ Wedge Impact
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In the case of the ‘Nail’ impacts the results are different as shown in Figure E-11. The solid black and violet lines
represent the total energy in the problem for the cases of 110 and 220 ft/sec. striking velocities. Note that these levels
do not vary much with time indicating little energy loss due to failure and (numerical error). The cyan line represents
the total energy in the target for the ‘Long Nail’ case. Notice that thisis avery small fraction of the incident
projectile energy, probably less than 5%. The darker blue line is the total energy in the target for the case on the
‘Short Nail’ which increases with time as the target slows the projectile down.

If we were to continue to reduce the aspect ratio of the ‘Nail’ we should approach the result for the ‘backward’
wedge.
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APPENDIX J
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“An acoustic model for wave propagation in aweak layer”
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ABSTRACT

An acoustic nodel is devel oped for transient wave propagation in a weak
| ayer excited by prescribed pressure or prescribed acceleration at the boundary.
The validity of the acoustic nmodel is investigated for the two excitations. A
conpari son of transient response fromthe acoustic nbodel and a 3-D axisynmetric
el astic nodel reveals that for prescribed acceleration the acoustic nodel fails to
capture inportant features of the elastic nodel even as Poisson ratio v
approaches 1/2. However for prescribed pressure, the two nbdels agree since shear
stress is reduced. For prescribed accel eration adopting the nodal approach, the
m xed boundary-val ue problemon the excited boundary is converted to a pure
traction problemutilizing the influence nmethod. To validate the el aborate nodal

approach a finite difference nodel is also devel oped.
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1. Introduction

Laboratory sinulation of blunt trauma in living tissue relies on neasuring
propagati on of stress waves fromlow velocity inpact in a weak viscoel astic
mat eri al such as ordnance gelatin. It has acoustic inpedance close to that of
water yet living tissue dissipates energy fromviscoelasticity and possesses shear
rigidity controlling transverse propagation. It has been wi dely assuned that
gelatin is simlar to water because it has approxinmately the sane density and bul k

speed of sound. In a weak solid like gelatin, effects of the free surface and

| at eral propagation of a forcing pulse are controlled by shear nmodulus G and the
speed of shear waves respectively. These types of propagation are independent of a
| oss nechanismlike viscoelasticity. Loss produces an attenuation of the pul se
over and above that from di spersion. It reduces the participation of high
frequency nodes by snpot hing average response and its gradients.

In a fluid Iike water, propagation is nostly volunmetric, with shear related to
di ssipation that is proportional to velocity gradient and kinematic viscosity. At
the free surface a different kind of wave devel ops controlled by gravity and depth
of the fluid. It can be argued that although water and gelatin have very simlar
acoustic inpedances, shear rigidity of gelatin may control how a stress wave
propagates laterally and its character at and close to the free surface. If
gelatin is like water then it can be treated as an acoustic fluid governed by the
wave equation. In this work the wave equation is derived as a limting case of the
i near el asto-dynanm ¢ equations of a honbgeneous solid. In fact when Poisson ratio
assumes the value of 1/2, the elastic field converts to the acoustic field. One
i ssue addressed in this work is the sensitivity of the solution to Poisson ratio
close to 1/2.

To neasure transm ssion of stress waves produced by |ow velocity inpact on
gelatin, a layer is bonded onto a netallic substrate instrunented by sensitive

carbon gauges. Upon inpact, stress waves propagate across the |ayer reaching the
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substrate with substantial reduction in intensity fromdispersion and vi scous
| osses. Measuring inpact and transnitted pressures are needed to construct the
material’s constitutive nodel. Carefully controlled experinments with sufficient
accuracy reproducing transient histories for correlation with conputed results are
very hard to execute. The problemlies in the weakness of the material. Gauges can
neither be placed inside the material while gauges at the interface between
material and netal substrate suffer fromlack of cohesion adding uncertainty to
neasured data. This difficulty forces investigators to rely on sensitivity studies
from anal ysis and general purpose discretization prograns in order to understand
phenonena. Moreover, literature in this field addresses quasi-static neasurenents
of elongation omtting inmportant dynam c effects such as strain-rate dependence in
the m crosecond regi me. The sinulation of these experinments led to the realization
t hat approximating gelatin as a viscous fluid is valid only for unrealistic inpact
conditions when pressure over the footprint is uniform

Acoustic wave propagation governed by the Hel nholtz equation has been treated
extensively in the literature. Solution techniques range fromthe anal ytical for
sinpl e geonetries to nunerical for problens with conplicated geonetry, nedium
i nhomogeneity and nonlinearity. Theil [1] treats the 1-D viscoel astically danped
wave equation analytically. Yserentant [2] shows how a consistent discretization
of the acoustic equation can be recovered fromthe particle nodel of conpressible
fluids (see Ref. [3]). Sina and Khashayar [4] solve the 3-D wave equation
analytically for arbitrary non-honbgeneous nedia adopting the differentia
transfer nmatrix. Sujith et. Al. [5] present an exact solution to 1-D transient
waves in curvilinear coordinates adopting transfornmati on of variabl es suggested by
the WKB approximation. Handi et. Al. [6] present exact solitary wave sol utions of
the 1-D wave propagation in nonlinear nedia with dispersion. Yang [7] solves
nunerically the wave equation with attenuation fromlinear friction utilizing grid

nodi fication to track wave fronts accurately. Narayan [8] solves the 3-D transient
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acoustics in i nhonbgeneous nedia by finite difference and Schemann and Bor nemann
[9] apply the adaptive Rothe integrator. Bailly and Juve [10] present a nunerica
solution to the 2-D acoustic propagation fromtransient sources using the

di spersion-rel ation-preserving schene in space and a fourth-order Runge-Kutta in
tinme. Wagner et. Al. [11] and Gaul and Wenzel [12] use a hybrid boundary el enent
net hod for frequency and transient acoustic response in bounded and unbounded
regi ons. Mehdi zadeh and Paraschivoiu [13] devel op a spectral elenent nethod to
solve the 3-D Hel nholtz equation retaining accuracy for |arge wave nunbers. None
of the references above addresses 3-D transi ent propagation from i npact

anal ytically.

Acoustic wave propagation in a free disk is devel oped here adopting a nodal
anal ysis validated by a finite difference nethod. Transi ent response to prescribed
pressure and prescribed acceleration at the boundary is anal yzed. Since the
primary goal of this work is to investigate the validity of the established beli ef
that tissue can be treated as a fluid, the acoustic equation is derived fromthe
el astic equations of a solid in the Iimt when Poisson ratio and shear stresses
vani sh (Appendi x A).

Section 2 devel ops the acoustic nodel utilizing the nodal approach for both
prescri bed pressure and prescribed acceleration. In the nodal approach,
the forcing function at the boundary is treated adopting the static-
dynam ¢ superposition nethod (see Berry and Naghdi [14]). The solution is
expressed as a superposition of a static termsatisfying the
i nhombgeneous boundary conditions, and a dynamic solution in terms of the
ei genfunctions satisfyi ng honbgeneous boundary conditions.

Since the projectile’ s strength and acoustic inpedance are nmuch greater than
those of tissue, the excitation transmitted over the boundary at the
projectile-tissue interface can be approxi mated as a given tinme dependent

prescribed notion in contrast to an unknown pressure excitation. However,
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this type of excitation would lead to a nmixed boundary condition; i.e.
pressure gradient prescribed over part of the boundary and zero pressure
prescri bed over the remaining part. This difficulty can be overcone by
the influence nethod which superinposes response froma set of unit
pressures with time-dependent wei ghts prescribed on annul ar portions of
the footprint. These wei ghts are updated at each tine step fromthe
condition that conbined acceleration at the center of each ring over the
footprint equals the prescribed instantaneous acceleration. In this way,
the forcing function is converted to pure traction with tine-varying
spati al dependence.

Section 3 develops the finite difference approach. Radial and axia
dependence are discretized by central differences while tinme dependence
is integrated by the Kutta-Runge nethod.

Section 4 conpares acoustic histories fromthe two approaches validating the
nodal approach. Histories of the acoustic nodel are conpared to those
froma 3-D axi symmetric elastic nodel denonstrating the inadequacy of the
acoustic nodel when applied to a solid with Poisson ratio near 1/2 and
forced by applied acceleration. Sensitivity of the acoustic histories to
type of excitation and to parameters of the prescribed accel eration
profile is also presented. The effect of Poisson ratio v on peak elastic
stress is evaluated confirmng that for prescribed acceleration m smatch
of acoustic and elastic results is not caused by snmall deviations in
Poi sson ratio v from1/2 in the elastic nodel. Finally, results fromthe
two nodels are conpared for prescribed uniform pressure revealing that

the m smatch di m ni shes when shear stress is reduced.

2. Modal analysis
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In the analysis to follow, all variables are independent of circunferential
angl e due to the assunption of axisymretry. This condition applies for a

cylindrical projectile at nornmal incidence. Consider a traction-free disk with
radius r; and length h bonded to a rigid sub-strate. Appendix A derives the

acoustic equation in the limt when shear stress vanishes in the |linear elasto-
dynam c equations of a solid. In the analysis to follow, r and Z denote radial
and axi al coordinates. Acoustic propagation in the disk is governed by the

acoustic equation

(8, +1/r 0, +8,,)py —1/C 0,y =0 (1a)
with the foll ow ng boundary conditions

p(r,,z;t) =0 (1b)

p(r,0;t) =[H(r)=H(r-r)] f(t) prescribed pressure

a,p(r,0;t)=—p f (1) O<r<r 1
Zp( ) p W( ) P prescribed acceleration (10)
p(r,0;t) =0 r,<r<ry

0,p(r,h;t) =0, fixed face, or alternatively (1d)

p(r,h;t) =0, free face

where H(r) is the Heaviside function, r, is footprint radius of the external

excitation which is projectile radius, f(t) is tinme dependence of prescribed

pressure and fw(t) is time dependence of prescribed acceleration. Express p(r,z;t)

as a superposition of two ternms (see Berry and Naghdi [14])

p.(r,z) f(t) + py(r,z;t), prescribed pressure )
-ps(r,2)p fW(t) + py(r,z;t) , prescribed acceleration (2)

p(r, z; t)={

wher e ps(r,z) is the static solution of (1a) wi th i nhonogeneous boundary

conditions (1b-d) assuming f(t)=1 or f.W(t)zllp, and p,(r,z;t) is a dynanmic
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solution of (1la) satisfying the honmbgeneous boundary conditions (1b-d) with
f(t)=0 or f,(t)=0.

The prescribed accel eration boundary condition in (1c) is mxed. |In other

words, part of the boundary has prescribed pressure gradi ent and the other part

has prescribed pressure. This difficulty can be overcone by dividing the circle

boundi ng the footprint into N+1 equidistant radial stations wth increnment Arp
0,1, ... (P : M, — Ty = Ar, = const
wher e r,="r,. Assune a uni form pressure of unit intensity acting over each

annul ar segnment I, —>TI that is termed source segment. Were subscript Z
denotes partial derivative with respect to Z, evaluating the pressure

gradient P, (r,zt) fromthe k" source segment at the center of the I

segnent ry=(r+r_,)/2 that is terned target point and foll owing the expansion

in (2) yields
Pz,lk(rcl O t) = _pzs,lk(rcl ,0) p fw(t)+ pzd,lk(rcl ,O;t) (3)

where P, (g, 0it) and P, (r

CI,0) are static and dynam c pressure gradients at

Ith

t he target point due to the k™ source segnment. Enforcing the condition of

prescri bed pressure gradient pzf(t) over the footprint at each tinme step yields

a set of sinultaneous equations in the weights C(t)

ZPZ,Ik(rcI!O;t)Ck(t):pzf(t) ’ 1S|Sn (4)
k=1

The conbi ned pressure fromall annul ar source segments is the superposition of

R.(r,zt) factored by time dependent weights c,(t)
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p(r,z;t):zn:Plk(r,z;t)ck(t) , 1<I<n
) (5a)
Re(r,zt)=-p,, (r.2) p fw(t)+ Pai (1, Z1)

Sol utions of p,, (r,zt) and py,(r,zt) for each unit source segnment are outlined in

what follows. The static solution for the K" source segnent p,(r,z) takes the form

m
Pk (r,2) = Z Yank(2) Jo(K 1)

Vank(2) =y sinh(k , 2) + B, cosh(k, 2)

(5b)

where Jy(k.,,r) is the Bessel function of the first kind and zeroth order.
Substituting (5b) in the boundary conditions (1lb,c,d) and enforcing orthogonality

of Jy(k.,,I) yields

Jo(k,r;)=0 , 1<m<m (6a)

_ Z(rk‘Jl(krmrk)_rk—l‘Jl(krm rk—l)) (6b)

m r.dz‘]il.z(krm r.d)krm
— B tanh(k . h) , fixed face, or alternatively
Umk =1 _p Itanh(k,,, h) , free face (6c)
Note that in (3) Puu(rg,0)=0,P(ry,0).

The dynanic solution pg (r,zt) satisfies
(8, +1/1 8, +0,,) Pay — UG 0, Pyy =0 (7)

and the honbgeneous boundary conditions in (1b-d). Expand pd(r,Z;t) in terms of

its orthogonal eigenfunctions

pd,k(r’Z;t):zzamn,k(t) Wyn(2) Jo(K 1) (8)
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Appl yi ng the honmpgeneous boundary conditions in (1b,c,d) to J,(kK,r) and w,,(2)

produces
Jo(k.,,ry)=0 , 1<m<m (9a)
1
cos(k,. z), cos(k, h)=0— k _h==(2n-1Drx, fixed f
v (@)= | O cosllon ) =g @N=Dr, e fece
sin(k,, h), sin(k,,h)=0 — k,,h=nr, free face
k22n+kr2m=k:1n ' a)ngCokmn (9C)

where ., is the eigenfrequency corresponding to node (m,n). Substituting (3) in
(1a) with use made of (5),(6),(8) and (9) and enforcing orthogonality of l//dn(Z)

and Jy(k.,r) vields

Bk (1) + OB () = —Neg oy o 1,70 1 1,7 (©) =01, ())/at"

2 ! (10)
NI :ijsm'k(z) v (2)dz, 1<m<m , 1<n<n,
0

In deriving Eq. (10) the term Vi(—p,)p f, (), (V2=9, +1/rd,) vanishes since
static pressure pP,(r,z) satisfies the equation VgpS:O. Acoustic displacenents

(w,u), are deternined from (A4)

o, Pax =—pP atzt W

, (11)
O Py =—P Oy Uy
The solution to (10) is expressed as a Duhanel integral
N t
B (1) = 22 [Siney, (t-7) 1LY (c) de (12)
mn 0
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Note that in (11) 0,P,,(ry,0t) = Py, (ry,0;t) as defined in (3). Once histories of

0,Py and O, p,, are deternined fromsolving (10), histories of W and U  are

found by integrating (11) nunerically.

3. Finite difference
Consider a disk with traction-free boundaries satisfying the conditions

0,p(0,z;t) =0 (13a)
p(ry,z;t) =0 (13b)
0,p(r,0;t) =0 (13c)

p(r.hit) =[H(r)=H(r-r,) ] f(t) presribed pressure
o0,p(r,h;t)=—pf, () , O<r<r, (13d)

prescribed acceleration
p(r,h;t) =0 , T<r<ry

wher e () denotes time derivative. Unlike the analysis in Section 2 where Z has

its origin at the excited boundary, in the finite difference schene Z has its

origin at the non-excited boundary. Condition (13a) is symretry about the axis of

revolution r=0, (13b) is traction-free boundary at r=r,, (13c) is fixed
boundary at z=0, and (13d) is prescribed acceleration for OSrSrp and
traction-free boundary for rpérSrd at z=h. Formthe rectangular grid

i=1l->n , d<r<r,-d ,d=r/(n+1)
: (14)
j=1->n, , d,<z<h-d, , d,=h/(n,+1)

In this grid, nodes do not include points on the boundaries. Expressing Eq. (1la)

in central difference to first order yields the follow ng relations dependi ng on

posi tion:

a) Internal points d <r<r,—d, d,<z<h-d, = 2<i<n -1, 2<j<n,-1
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P TP, TR +0‘4(p|,j+1+ 9,1—1):1/05 B

U R N IV SN T IRV S T RV
Y {d? 2rd ) "7 (d? 2rd )0 T \d? d2) Tt d?

b)

d)

f)

Corner point at r=d, z=d, = i=1, j=1

r?

0L +(a, taz+a,) B+, :1/05 plj

Points along axis r=d , d,<z<h-d, = i=1, 2<j<n,-1

z

P +(O‘2+O‘3)p|,j +O‘4(p|,j+1+ p.,j71) :1/05 o
Corner point at r=d,z=h-d, = i=1, j=n,
For prescribed pressure

0L +(a2+a3)p|,j +O‘4p|,j—1_1/cg pi,j =a,f(t)

For prescribed accel eration

P (o tos+a,)p +0¢4p.,;71—1/02i0.,; == pf;/v(t)/dz

Poi nts al ong boundary d, <r<r,—d , z=d, =2<i<n -1, j=1

0P TP +(0534‘054)9,] T, =l/C§ pu

Poi nts along boundary d <r<r,—d , z=h-d, = 2<i<n -1, j=n

r? A

For Oérérp and prescribed pressure

0P T0,0; tas0 +O‘4p|,171_1/C§ B=a, f(t)
For O<r Srp and prescribed accel eration
0Py TP +(0534'054)9,] +a4p|'j_1—1/c202 B :_pﬂv(t)/dz

For r,<r=<ry

0P T80 + AP +O‘4p|,j—1_1/C§ B =0

W81XWH-04-C-0084

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)
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g) Corner point at r=ry—d, z=d, = i=n, j=1

AP (o ta,)p ta,p g :1/C2pi,j (159)
h) Points along boundary r=r,—d , d,<z<h-d, = i=n, 2<j<n,-1
P tasP +a, (Pt Poja) =1/c oF (15h)

i) Corner point at r=r;—d , z=h-d, = i=n, j=n,

2 . .
AP tosp ta,p =16 B (15i)
In (15a-i), the differential equation is satisfied only at internal points of

the grid nodified by constraints on the boundaries.

Applying (15a-15i) at all internal points in the grid (14) produces a set
of ordinary differential equations in pi]j(t) cast in the formof tri-diagonal

bl ocks as foll ows

p=c;(M,p-F() (16)
‘A, C, .
BZ A2 CZ
M p: . . .
Bnr -1 An, -1 n -1
B, A,

B, and C, are (n,xn,) diagonal matrices, A, is (n,xn,) banded matrix with
bandwi dth 3, and F is the global vector of the forcing function in (15d) and
(15f). For each point j>(1<j<n,) along an i line in the grid, coefficients of
p; in the Laplacian define A;, coefficients of p,; define B;, and
coefficients of p; define C,. The tine derivative is expressed in central

difference to first order allowing integration in tine.
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Vi scous danping is included follow ng the approxi mate equation (Al2)
(1+vic o) (o, +1ro, +0,,)p - 1/ 8,p =0 (A12)
This nodifies (16) to the first order system
pP=d
G=GM,p+V M, q-cF() )

4, Resul ts

The nunerical experiments to follow assune a traction-free gelatin disk
12.7mm (=0.5in) thick and 254mm(=1in) radius with the boundary zZ=h bonded to a
rigid surface. In the elastic nodel the gelatin properties are (Eisler, R [16]):

E =3.1x10°dyn/cn® (= 4.5x10" Ib/in®),

(18a)
p=093g/em’ (=87x10° Ib s’ /in*), v=048

The data in (13a) yield a small ratio of Lam€ constants

ulA=0-2v)I(2v) ~0.0417 resulting in reduced shear stresses and in turn |arge

di spl acenents. In the acoustic nodel, bulk modulus E , density p and speed of
sound C, are then

E, = E/(3(1-2v)) = 2.73x10° dyn/ cn?® (= 3.95x10° Ib/in?)
p=0.93g/cm’ (=0.87x10Ib §*/in*) (18b)
G, =+E/p=171 km/s(: 6.74><104in/s)

E, is deternined from experinmental neasurenents of G.

To confirmthe inplenmentation of the conplicated anal ytical approach
adopting time dependent influence coefficients, results are first conpared to
those fromthe nore straight forward nunerical finite difference approach derived

in Appendix B. Fig. 1 conpares acoustic pressure histories fromthe two approaches
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for a layer forced by a prescribed trapezoidal pressure pulse of unit intensity

lasting 8us with 2us rise and fall times and 4us plateau applied over a circular
footprint with radius r,=6.35mm (=O.25in). Fig. 1(al,a2) plots histories at

z=0.5h and Fig. 1(bl),(b2)) at z=h. For each z, histories at 3 radial stations
r/rp: 0, 0.5 and 0.9 are superinposed. Fig. 1(al,bl) shows that the prescribed

pressure pul se quickly changes profile as the wave travels along Z. The flat

pl ateau of the profile acquires a discontinuity in intensity after an interval
At; =3.5us fromthe wave front equal to travel time of the wave over r,. Over this
interval intensity dimnishes snobothly with Z, while over the renaining interval

At,=4.5us intensity diminishes steeply with z. At z=h, intensity over At rises

fromreflections at the rigid boundary. Histories fromthe two distinctly
di fferent approaches agree confirm ng the inplenentation of the anal ytical nodel.
The difference in response between the acoustic nodel and the 3-D

axi symmetric elastic nodel is discussed in what follows. Fig. 2(a,b) plots the
ei gen-frequency Q (kHz) versus radial wave nunber A /7 =K, r,/7 with axial wave
nunmber N as paraneter for the elastic and acoustic nodels. For each node (m,n),
Q of the acoustic nmodel is 5 times higher than that of the elastic nodel. The

reason is that in the acoustic nodel € is proportional to G while in the elastic

nodel it is proportional to the flexural phase velocity C, that is bounded by the

shear speed C,=.,/E/(2(1+v)p). For v =048, ¢,/c,=4.97 consistent with the ratio

observed in Fig. 2. This is the fundanmental difference distinguishing the two
nodel s. Furthernore, the acoustic npdel cannot capture transverse wave propagation

as no shear is included in the nodel. Although in the elastic nodel extensional
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nmodes exist with frequencies proportional to G nevertheless flexural nodes

dom nate the response because of their | ower frequencies.

Fig. 3 plots prescribed notion fW(t), fw(t) and f,(t) when acceleration is

prescribed at the footprint. fw(t) is made of 4 |linear segnents

1. Linear acceleration: f (0)=at , 0<st<t
2. Constant acceleration: f,(t)=oyt, . 4 St<t,
3. Linear deceleration: f.t)="f,t)—a(t-t) , t,<t<t,
4. Constant velocity: f.)=0, f,t)=U, . t<t<t,

Assuning that the first three tine intervals are equal (At =At,=At,, At =t -t )
and a,=oa,, then o is determned by assigning the constant velocity U, to
f.(t). In the analysis to follow

At , = At + At +At,=2us, Uy,=14m/s(=46ft/s) (19)
Fig. 4 conmpares histories of the elastic and acoustic nodels from prescri bed
accel eration. Displacement at z=0 (Fig. 4(al),(a2)) conforns to the prescribed

value in Figure 3(c). At z=0, Fig. 4(bl),(b2) conpare histories of axial stress

-0, fromthe elastic nodel to pressure P fromthe acoustic nodel. Peak stress,

pul se duration, distribution of P over the footprint, and shape differ

substantially between the two nodels. At z=h, Fig. 4(cl),(c2) conpare -0, to p

histories. There, nmagnitude and pulse width also differ. It is evident fromthis
conparison that the two nodels differ appreciably in spite of the fact that in the

elastic nbdel v=0.48 is close to the transition value 1/2.
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The difference between the two nodels in response fromuniform prescribed

pressure and prescribed acceleration is denonstrated in the exanple to follow A

uni form pressure pul se duplicating that at r=0 in Fig. 4(b2) is applied at z=0

(see Fig. 5(b)). The resulting histories of displacement W and pressure pP at

Z=h are shown in Fig. 5(a) and 5(c). Conparing histories in Fig. 4(a2),(c2) to
those in Fig. 5(a),(c) reveals the sensitivity of response to pP distribution over

the footprint. Further evidence of this sensitivity appears when conparing pP and
W profiles at z=0 of the two cases. For prescribed acceleration p (Fig. 6(al))

is not uniformwhile W (Fig. 6(bl)) is alnpbst constant for r<r, and

di sconti nuous at r=r,. For prescribed pressure, P (Fig. 6(a2)) duplicates the

external pulse while W (Fig. 6(b2)) increases with I reaching a maxi num at r=r,

with a discontinuity even stronger than that in Fig. 6(bl).

The paraneters characterizing the applied acceleration profile are the final

constant velocity Uy, and time interval At ; of acceleration and deceleration to
reach U, snoothly fromrest. Fig. 7 plots P, against U; with At as paraneter
and vice versa. As expected, P, is linear with U, (Fig. 7(al),(a2)). In
contrast, [P, is non-linear with Atly3 (Fig. 7(bl),(b2)) following a relation
Prox €U, At where the o depends on Z. p,, approaches a constant val ue as
At113—>0 when sl ope of the acceleration profile in Fig. 3(a) becones infinite.
This is the liniting case when U, is applied instantaneously. For At1’3 < 3usS,
P.x go0es through a transition when its val ue at Z=h exceeds that at z=0. The

transition At is alnost independent of U,.
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Figure 8(a) shows deformed shapes at t=8usS fromthe elastic nodel for
v=0.470 and 0.495 keeping bul k nodulus E the same. This requires expressing the

constitutive lawin terms of E and v as in Eq. (A2b). Note that bul ging of

material near the perinmeter is nore pronounced for v= 0.495 than for v=0.470. As
v approaches 1/2, material conpressibility dinmnishes followed by a reduction in
phase velocity along r near the free surface which del ays propagation of the wave

front. In turn, conservation of volune and pressure rel ease beyond the perineter

r>r, explains the formation and intensification of the bul ge. |Indeed, the closer

v gets to 1/2 the steeper the displacement gradient O,W along the perinmeter

rem ni scent of the acoustic W profile in Fig. 6(bl). The effect on peak elastic

stress (GZZ)mx of v inthe range 0.47<v<0.498 is shown in Fig. 8(b). Al though

(GZ) at z=0 is insensitive to v for v<0495, its value at z=h drops by 76%
max

due to a 6% increase in v. Unfortunately for attenpts to use the acoustic nodel
to capture elastic features, this makes the di screpancy between acoustic and
elastic results even larger than that in Fig. 4(cl),(c2).

Convergence of the elastic nmodel with nunmber of npdes is paramount in the
conpari son between elastic and acoustic results. This is especially inmportant
since in the elastic nodel shear drops nodal frequencies substantially (see Fig.
2). Alarger nodal set in the elastic nbdel may be needed for its results to agree
with the acoustic nodel that includes volunetric nodes only. To verify convergence
of the elastic nodel, histories fromthe analysis that produced results in Fig.
4(bl) and Fig. 8(b) are compared to those fromthe finite volune nodel enployed by
El - Raheb [15] that couples projectile and disk with 40,000 nodes. Properties and

geonetry of the projectile are
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E, =1.21x10"dyn/ e’ (=1.76x10°Ib/in?),
p,=1g/cm® (=9.3x10° Ib s’ /in*), v, =03
r,=6.35mm(=0.25in), h =254mm(=1in), U, =20m/s(=65 ft/s)

G = (E,(1-v,)/(@+v,)A-2v,)p,))  =4.L1km/s(=16x10° in/s)

rp,hp are projectile radius and length, U_ is striking velocity and Cop is

P
di | atati onal speed of sound. Properties of gelatin are given in (13a,b). Based on

t he acoustic inpedances (pcb) of projectile and gelatin, the velocity of gelatin

at the footprint follow ng inpact is approxi mtely U, =14m/s (=45ft/S).
Hi stories of axial displacement W at the footprint fromthe two nodel s coincide

(Fig. 9(al),(a2)) since the asynptotic velocity U, at the footprint is the sanme
for both nodels. Fig. 9(bl),(b2) conpare histories of axial stress o, at the
footprint fromthe two nodels. In the finite volume nodel, the drop in o, 4uS

after inpact (Fig 9(b2)) corresponds to tprzcbp/er the arrival time at r=0 of
tensile reflections fromthe projectile’ s lateral boundary. This is evidenced by

the deviation fromlinearity of the W histories at tpr in Fig 9(a2). In general,

magni t ude and shape of the o, histories agree suggesting convergence of the

anal ytical elastic nodel.

For prescribed uniformpressure, W histories fromelastic and acoustic
model s agree (Fig. 10(bl,Db2)) except at the footprint z=0 (Fig. 10(al,a2)). In
Fig. 11, the lead pulse in the o, histories fromthe two nodels is followed by a
pl ateau with [ ower magnitude. The wave reflected fromthe constrained face at

Z=h appears as a peak following the plateau. In the elastic nodel,

i) Rise time is |onger
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i) Hi story is nodul ated by a periodic oscillation

iii) Magnitude of the reflection dip is reduced.
For prescribed uniform pressure, the two nodels agree better than for prescribed
accel eration inplying that m smatch between the two nodels increases with
magni t ude of shear stress in the elastic nodel. |Indeed, near the perineter of the
footprint shear stress is |lower for prescribed uniformpressure than it is for
prescri bed accel erati on because in the later pressure distribution is not uniform

(Ref. [15]).

5. Concl usi on
Acousti c wave propagation in a weak |layer is treated adopting both a
nodal and a finite difference approach. The acoustic equation derives
fromthe el asto-dynam ¢ equati ons when shear stress vani shes. Two
types of excitations are considered at the boundary, prescribed
pressure and prescribed acceleration. In the nodal approach, the
external excitation is nodeled by the static-dynam c superposition
nmet hod. Noteworthy results are
1. Acoustic histories fromthe nodal and finite difference approaches coincide.
2. For prescribed acceleration, histories fromthe acoustic and el astic nodel s
di sagree both in nagnitude and shape because the resulting pressure is not
uniform However the two nodel s show agreenment for prescribed uniform pressure

because shear stress is reduced.
3. Enpl oyi ng the el astic nodel reveals that renote fromthe footprint (GZZ)mx

drops sharply as v approaches 1/2 nuaking the discrepancy between acoustic and
elastic results even larger.

4. Convergence of the elastic nmodel with number of nodes is verified by
comparing its histories with those froma finite volune nodel coupling

projectile and disk.
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5. For prescribed acceleration at the boundary, rise tine in pressure history
is proportional to At, while p, is proportional to U At;.
6. Hi stories fromprescribed pressure and prescribed accel eration differ
because of non-uni form pressure distribution over the footprint.

7. For At , < (At,);, P, goes through a transition when its value at the
boundary zZ=h exceeds that at the footprint z=0. (At,); is a function of E

and p but is alnost independent of U,.

Appendi x A. Acoustic equation in the Iimt of elasto-dynam c equations
Consi der the linear axisymetric el asto-dynam c equations in cylindrical

coor di nat es
ara” +(O-”’ _099)/r + azﬁl’-rz = patt u

(Al)
0,0,+0,t1,+1,/T=p0,W

where (0,,0,,0 ) are radial, circunferential, axial and shear stresses, and

rr? ZZ,TI’Z

(u,w) are radial and axial displacements. Bulk modulus E  relates average nornal

stress o, to volunetric strain g,

o,=E & =pce, E=0B1+2u)/3=E/(31-2v))
o, =(o, +0, +0,)3 (A2a)
& =&, + &, +&,=V-U=0uU+ulr+0,w

where (A,u) are Lame’ constants and G, is bulk speed of sound. In terms of E,

and v, the constitutive |aw takes the form

v 3(1-2v)
o = L) E, &, 9; +—(1+v) E, &; ( A2b)

As v—1/2, o; >0, =FEg, recovering the bulk relation in (A2a)
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v—o1/2 = 1,=0, 0,=0,=0,=—p, (A3)
wher e 5” is Dirac’s delta function. Substituting (A3) in (Al) produces the
i near Eul er equation
po,u=-Vp, (A4)

where U is displacenent vector. For a honobgeneous fluid, conservation of nass

takes the form
op+ po,(V-u)=0 (AS)

The equation of state is

%ﬂé (A6)
Jo,
i mpl yi ng t hat

0Py = Csatp (A7)

Unlike the elastic solid where deviatoric or shear stresses contribute to
material stiffness and reversible strain energy, in a viscous fluid these
stresses are dissipative and irreversible. They are related to acoustic velocity

by a constitutive |aw resenbling that of an elastic solid
7, =(¢-2/30)8, 0,6, +10, 5, = ($ ~2/30),8,0,u + 1 8,(8,U, +0, ) (48)

X,X; are independent variables and (§—2/37]) and n are coefficients of viscosity
for dilatational and deviatoric stains (see Landau and Lifshitz [17] page 48). Eq.

(A8) resenbles the constitutive relation (A2b) where 3v/(1+v)E, and

31-2v)/1+v)E, are replaced by (§—2/377) and 1. The linearized Navi er- St okes
equations sinplify to
po u=-Vp, + 0, [(4—1/677)V(V-u) + (n/Z)Vzu} ( A9)

Conservation of mass and the equation of state are given by (A5) and (A6).
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Substituting for 0,0 from (A7) into (A5) vyields

o, ps + PG (V-u)]=0 (A10)

Equation (A10) is the tine derivative of (A2a) with o, replaced by —p. For a

non-vi scous fluid, taking the divergence of (A4), then elinminating U using (A10)

det erm nes the acoustic equation
(8, +1/r 0, +8,,)py —1/G 0,py =0 (A1)

Equation (All) is purely hyperbolic non-di spersive.
For a viscous fluid, adopting the procedure that led to (All) on (A9) and

assumng that { =1/6n yields the approxi mate vi scous acoustic equation
(1+v1¢ a,)(o, +1/r 8,+0,,)py — 1/ 8,py =0 (A12)

wher e \7=n/(2p) (cm?/s) is kinematic viscosity.
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Summary

Anal yzed is transient response of a hollow cylinder to tinme dependent radia
and axial velocities prescribed at the cylinder’s inner boundary. Mdal and static
solutions are superinposed for solving transi ent response. Axial dependence is
expressed by two orthogonal sets of periodic functions; one set satisfies
vani shing axial stress at the cylinder ends and applies to the radial traction
problem and the other set satisfies vanishing shear stress at the ends and
applies to the axial traction problem The m xed boundary val ue problemwth
vel ocity prescribed over part of the boundary and vani shing stress prescribed over
the remaining part is analyzed by the nethod of influence coefficients. This
net hod superi nposes response from several external annular traction segnments of
unit intensity with time dependent wei ghts yielding a combi ned response equal to

t he prescribed instantaneous velocity.
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1. Introduction

Trauma in human organs fromprojectile penetration is caused by two
nmechani sns:

i) Tissue danmge along projectile path. This interaction is hydrodynamc in
nature where inertial and frictional forces dominate the projectile’ s notion
as it decelerates and eventual ly stops.

ii) Stress waves generated at the cylindrical interface between projectile and
tissue fromradial and axial velocities prescribed by the projectiles
during penetration. These waves radi ate to nei ghboring tissue and organs
causi ng further danmge.

The present anal ysis concerns nechanismii) above.

As the projectile penetrates into tissue, it noves material by replacing it
with its own volune. Wen the material fails, it acts nore like a fluid, |essening
t he amount of nmaterial being conpressed. In the radial direction, material is
conpressed by an expandi ng cross-section of the projectile’ s snoothly curved nose.
As long as the projectile’ s speed is nmuch smaller than the speed of stress waves
in the material, the noving projectile can be approxi mated by radial and axia
vel ocities prescribed along its boundary. For a projectile speed of 330 ft/s and a
dil atational speed in tissue material of 5600 ft/s, this approximtion is valid.

Dynam ¢ response of solid and hollow elastic cylinders has been studied
extensively in the literature as it applies to a variety of engineering and
sci ence problens. A |large body of references concerns sound scattering by elastic
cylinders in the frequency donmain. Anong these are Stanton (1988), Honarvar and
Sinclair (1996), Bao et al. (1997), Wang and Ying (2001). Stepani shen and Janus
(1990) treat transient radiation and scattering fromfluid | oaded cyli nders.
Frequency response of cylinders is analyzed by Gishenko and Mel eshko (1978),
Batard et al. (1992), and Ginchenko (1999). Soldatos and Ye (1994) treat

ani sotropic |am nated cylinders, and Hussein and Heyliger (1998) consider |ayered
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pi ezoel ectric cylinders. Cheung et al. (2003) analyze the 3-D vibration of solid
and hol l ow cylinders by the Chebyshev-Ritz nethod. Very few references discuss
transi ent response of elastic cylinders. Paul and Miurali (1995) deternine the

axi symmetric dynam c response of poro-elastic cylinders. Soldatos (1994) presents
a conpilation of nore than 150 references on frequency response of solid and
annul ar elastic cylinders, yet not a single one addresses transient response. Yin
and Yue (2002) solve the transient plane-strain response frominmpulse of infinite
length nulti-layered cylinders. Fromthe |ist above, this is the only reference
rel evant to a special case of the present analysis.

The influenced region is sinulated by tissue material in the shape of a

hol | ow cylinder. Let (r,z) be radial and axial coordinates with origin at one end

of the cylinder axis. The inner cylinder radius I is that of the penetrating

projectile while its outer radius I, and length | are chosen to include the
furthest radial and axial locations affected by penetration. In a coordinate

system (r,z) centered at one end of the finite cylinder, the projectile lies in

the interval z,<z<Z such that z -2z =I| where | is projectile length. The

P
tissue material is linear visco-elastic with a constitutive |aw that includes
first temporal derivatives of stress and strain.

For sinplicity and without |oss of generality, axial functions satisfying

the differential equations and specific boundary conditions at the two ends of the

cylinder z=(0,1) are divided into 2 sets. One set satisfying vanishing axi al

stress o, at z=(0,) which has radial and axial displacenents (U,w) proportional
to (sin(rmz/l), COS(m?TZ“)) bel ongs to “problem 1”, where M is an integer wave
number. The other set satisfying vanishing shear stress 7, at z=(0,1) which has

(u,w) proportional to (cos(rmz/l),sin(rrwz/l)) bel ongs to “problem2”. The first set
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applies to radial tractions prescribed at the cylindrical footprint
r=r,, z,<z<7 while the second set applies to prescribed axial tractions along

the sane footprint. The fact that each set satisfies different boundary conditions
does not affect transient response until waves reflect fromthe axial boundaries.
Consequently, one problemis solved for each type of forcing excitation and
results are superinposed if both types of excitation are acting sinultaneously.
The formof the forcing function closest to the application is radial and
axial velocity prescribed over part of the inner cylindrical boundary, yet this
| eads to a mi xed boundary condition. This difficulty can be overcone by
superinposi ng response froma set of unit radial or axial tractions with tine
dependent wei ghts prescribed on annul ar portions of the inner boundary. These
wei ghts are updated at each tinme step using the condition that conbi ned velocity
response at the center of each annular portion equals the prescribed instantaneous
velocity. In this way, the forcing function is converted to pure radial or axia
traction with tinme varying spatial dependence.
Section 2 derives frequency and transient response of the hollow cylinder
with finite length. Section 3 presents stress histories fromprescribed radial and

axi al pressures and velocities at the inner boundary.

2a. Elastic analysis
In the analysis to follow, all subscript will denote conponents and not

partial derivatives. In cylindrical coordinates, the el astodynam c equations are
HV2U+(A+ u)V(Veu) = pd,u (1)

V?=0, +1/r 8, +1/r%0,, +0,,
V =(1/r o, r)e +@0/ro,)e, +(0,)e,
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(r,9,z) are radial, circunferential and axial independent variables, U ={U,U,W} is

di spl acenent vector along these directions, (A,u) are Lane constants, p is mass

density and t is tine. Re-wite (1) as

uVAU+ (A +2u)V(Veu)— uV(Veu) = po,u (2a)
Noti ng that
uVU—uV(Veu)=—uVxVxu (2b)

permts casting (1) in the form

(A+2u)V(Veu) —uVxVxu=po,u (3)
Define dilatation A and rotation vector Yy as

A=Veu, y=Vxu (4)
Substituting (4) in (3) yields (Love (1944))

(A+2u)VA —uVxy=po,u (5)
Taki ng the divergence of (5) noting that V-(Vxy)=0 vyields

(A+2u)VZA=pA, (6)

Taking the rotation of (5) noting that Vx(VA)=0 vyields

LV = py, (7)

For axisymmetric motions, v=0,=0 and y, =y,=0 reducing (6) and (7) to

(A+ Z.U)V(Z) A=pAy
BV V, =PV, (8)
V=9, +1/ro,—n*/r’+0,, n=0.1

Expressing (4) in terns of U yields

A=1/ro, (ru)y+o,w

9
v, =0,U-0, W (%)
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Decoupling U and W in (9) produces

Viu=0,A+0,y,

(10)
Viw=0,A-1/r0,(ry,)

For the radial “problem1” satisfying o,=0 at z=(0,), harnonic notions in time

with radian frequency @ and sinply supported boundaries at z=(0,l) yields the

separ ated sol ution

(A 20w, (1,20} = {A) cos(k,2), 7, (Nsin(k, )| &

(11)
{u(r,zt),w(r,zt)}" = {a(r) sintk,2),w(r) cos(k,2)}' €

i=+v-1 and k,=mz/l where m is an integer axial wave nunber. The Zz dependence
in (11) yields u=0,=0 at the cylinder ends z=0,l. For real k, and K , equation
(8) admits the solution

Z(r) :C1 Jo(ker) + CzYo(ker)

_ (12)
7,(1) =C, 3, (k) + C, Y, (k)

kK2=w?/c?-k>, E=(A+2u)lp

K=w?lc:-k, c=ulp
J, and Y, are Bessel functions and C,,C, are dilatational and shear speeds of
sound. |f either ke or kS is imaginary, J, and Y, in (12) are replaced by the
nodi fied Bessel functions | and K, wth appropriate changes in sign.

Substituting (11) and (12) in (10) then solving for u(r) and W(r) yields

U(r) ==k, (C I (k) +C, Y (k) + K, (C5 3y (k) + C, Yi(kir))
W(r)= K, (C o(kr)+C,Yoke))+ K, (Cy (ki) +C, Yo (K,T))

In cylindrical coordinates, the constitutive relations are

(13)
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o, =AA+2ud U , 0, =AA+2uulr
c,=AA+210,W, TrZ:u(62u+8rW) (14)
A=0.u+ulr+o,w

For “problem 1”, harmonic notions in tinme and sinply supported boundaries at (0,l)

yield the separated rel ations

o, o, (r)sinlk,z)
Oo (r.zt) = 6_99 (r)s'ln(kzz) ot (15a)
o, G,,(r)sin(k,z)
Ty 7,,(r)cos(k,2)

Boundary conditions at r=r, and r=r, are

Oy (rp’ Z!t) =B (t)[H (Z_ é.) -H (Z_ zb)]
7,(r,,zt) =0 (15b)
o, (1 2) =7, (5, 2) =0

p,(t) is a time dependent uniformradial traction acting on the inner cylindrical

boundary r=r, inthe interval Z <Z<7Z . The Z dependence in (15a) yields

u=o0,=0 at the cylinder ends z=0,. Substituting (11), (13) and (15a) in (14)

yi el ds

G (1) = [ =((+20)K2 + 2K ) 3o(k1) + 2 K I, (1) /(1) |C,
[ (A + 2k + 22) Yy (kr) + 2 K2 Y, (kr) /(1) | C,
+2pkk, [ 3o (k) = 3, (k) /()] C,

+ 20k, [Yo (k) = Yy (k) /(k,r)]C,

(16a)

G (1) = = 2(KZ +K2) I (kr) + 20 k23, (k1) /(K.) |C,
—[ A0 + K2V (kr) +2uk2Y, (kr) /(K1) ]C, (16b)
+ 21k K, [Cd, (k) + C,Y, (kr) T/(kr)
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5,(1) = —((A+2u)k + 2kZ)[C, Iy (k1) + CY, (k,1)]
—2u kskz [CsJo(ksr) + C4Y0(ksr)]

(16c)

7,(r) = =2ukk, [CJ, (k1) + CY, (k)]

o (16d)
— p(ke =k [Codi (k) +C,Y, (k)]
Since o, is proportional to sin(k,z) in (15), it vanishes at z=0,1. This

allows a rigid body motion W(r,zt)=w,(t) when external traction acts along z. To
avoid the rigid body notion, an additional axial functional dependence is

consi dered for “problem 2"

u _ju(r) cos(k,2)| .
{w}(r’z’t) i {v—v(r) s'n(kzz)}e

o, 5, (1) cos(k,2) (172)
Ogp |0 (r) cos(k,2) | .,
(r,zt)=< _
o, c,,(r) cos(k,z)
T, 7,,(r) sin(k,z)

that satisfies the followi ng boundary conditions at r=r, and r=r,

o,r(rp,z,t)zo
7,(r,,2t) = p,(t)[H(z-2)-H(z-37)] (17b)
o,(r,,zt) =7,(r,,zt) =0

p,(t) is a time dependent uniformaxial traction acting on the inner cylindrical

boundary r=r, inthe interval Z <Z<Z . The Z dependence in (18a) yields

w=rt,=0 at the cylinder ends Zz=0,1. In the analysis to follow, superscripts (1)

and (2) will denote radial and axial problens respectively. Derivations for

problem (2) follow the same steps as those for problem (1) and are omtted here

for shortness. Al though conditions at the boundaries z=0,| of each problens are
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different, they do not affect the transient response at tinmes preceding reflection

of waves fromthese boundari es.
Di vide the cylindrical surface {rzrp, ZaSZSZb} into N+1 equidistant ring
stations with increnment Azp

2,2, 2,2, , %4-%,=Az =const
(18)

Assune a uniform pressure of unit intensity to act over each ring segnment 7z, — Z.

The el asto-dynami c solution to the K™ ri ng pressure segnent is outlined bel ow
For each pressure segnent, expand each dependent variable in ternms of

ei genfunctions that satisfy honbgeneous boundary conditions. Express total

di spl acement U, (r,zt) as a superposition of two terns

ug?(r,zt) =u§?(r,2) f (1) + u§2(r,zt) (19)
u(skl’z’(r,z) is static displacenent vector satisfying (2a) when tinme derivative
vani shes (Appendi x A), u(lz)(r Zt) is dynamic displacement vector satisfying the
dynami c equation of motion (2a), and f (t) is time dependence of the forcing
pressure. For each axial wave number M, express ‘12)(r Z,t) in the eigenfunctions

@52 (r,2) (Appendix B)

ul2(r,z,t) = ZZ i (t) @52 (r,2) (20)

(12)(t) is a generalized coordinate of the j ei genfunction with m axial half

waves fromthe K" pressure segnent. Substituting (19) and (20) in (2a) and

enforcing orthogonality of q),%f’(r,z) yi el ds uncoupl ed equations in (12)(t) For an

undanped el astic cylinder the equation governing (12)(t) is
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d? _
(Fmijjaﬂfz () =T ® (21a)
£92(t) = N&2, ,(1)/N,,
g h
Nr(nl}Z) :Hq),fquz)(f,z)'q),fqlf)(r,z) dzr dr (215)
00

amjk

fqg h
NE2 = j j ub?(r,2)- @2 (r,2) dzr dr
00

(O is the resonant frequency. The solution to (21a) takes the form
1 t
12 . ¥ @12
afnjg(t):__jsmmmj(t-r) f2(c) de (22)
mj 0

Eval uating radial and axial displacenents u/(r,zt) for problem (1) and w(r,zt)

for problem (2) fromthe k™ pressure segment at each central point z,=(z+z7,)/2

of a pressure segnent yields coefficients of the influence matrices

Up 0= 5388, 0 081, 2) + 02(r,,2) 1,0

(23)
VVlk (t):zzaﬁnzj)k(t) \W,(n'gz'i((rp’zcl) + V\éi)(rp’zcl) fp(t)
j m

{Uﬁ,’((rp,zd) : \Tv(nff((rp,zd)} and {ui)(rp,zc,),vv‘sf)(rp,zd)} are nmodal and static displacenent

dyads at Zz; fromthe K" pressure segrment in problens (1) and (2) respectively. In

(21) and (23) f (t) is a first approximation to the tinme dependence of the applied

pressure. One approximation is determ ned fromthe plane-strain state when axi al

l ength of cylinder and footprint approaches infinity (Appendix C). Enforcing the

condition of prescribed displacements ugl)(t) and V\/éz)(t) at each tine step yields a

set of sinultaneous equations in the weights p,((l) and pl((z)
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iUlk(t) pPM)=ul(t) , I=1n

k=1

3 (24)
YW, 0 p2M) =wP(®) , I=Ln

k=1

An approximation to f (t) is found fromthe plane-strain problemof the infinite

I ength cylinder with prescribed radial displacenent at the inner boundary
(Appendi x C).
In what follows, superscripts (1,2) are dropped for shortness. For an

elastic material, eigenvalues and resonant frequencies are synonynous. In this
case, the eigenvalues appear in pairs O and - Oy - Consequent|y equation (22a)

takes the form

d . d . —
(a_la)mjj(a-’_la)mjjamjk(t): fmjk(t) (25a)
f_mjk(t): Namjk fp(t)/NmJ
A
Nomic = | [ Uge(r,2)+ @, (x,2) r dr dz (25b)
or,

I Ty
N, =J' @, (r,2)®,,(r,2) rdrdz
0

)

2b. Visco-elastic analysis

For a visco-elastic material, O, and Cij(r,Z) in (25) are both conpl ex

O = O 10y (26a)

—

I Ty
Ny = [ | @0 (r,2)+ @, (r,2) r dr dz (26b)
0

r

°
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CI);j(r,z) is the conpl ex conjugate of the eigenfunction. Unlike the elastic case

where for each eigenfunction the eigenvalue pair is T and O in the visco-

elastic case the pair is T, and —®_. where () stands for conpl ex conjugate.

mj
This neans that @, =g, t10, and ©,, =-0g, +1®,,,. The reason , ,; retains
the same sign for both solutions is that o, mj is a measure of danpi ng which

reduces anplitude whether the real part is TOgmj OF —Wgpy,- Consequent |y equati on

(21a) takes the form

d . d ..
(_"“’mjj(a +'wmj)am,-k<t>= N0
(27)

dz ., . d . —
= |:F+I(wmj_a)mj)a+a)mja)mj:|amjk(t):fmjk(t)

Noting that i(w, —®y)=20,, and @0, =0f, +of. . (27) sinplifies to

2 d
{W"'Zwlmja"‘a’;mj"'wlzmj}am’k(t): fmjk(t) (28)

Cearly, O, acts as a vel ocity proportional viscous danper. Rewiting (28) in

standard form

d? _d _ -
{F"'Z mj Omj a+a)r$1jj|amjk(t): fmjk(t)
o (29)
Imj . =
gmj = _ml ’ a)mj :\[a)limj +w|2mj
O |
yields a solution in terns of a Duhanel integral:
1 t *gmjamj(tff) H A ra
aﬂjk(t):_a}_je SiNad,, (t—7) T, (7) de (30)

mj 0

N 2
wmj _wmj 1_§mj
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The general constitutive law for a |inear viscoelastic material takes the

form (see Fung (1965), pp 416-418)

N, n N n
: 0'oc = o0'e
n=ngn 6t” = Eo ;To-n 8t“ ' To-O :Tgo :1 (31)

T.,.,T, are constants and E  is a nodulus. For a sinusoidal time dependence, (31)

on?! “en

assumes the formof a Pade series

oc=B,(N,,N,;o) E &

BN, N)=Yr. (o) | S e o)

(32)

B.(N_,N,;®) is a conplex valued function of ®. The sinplest linear visco-elastic
solid limts N_ and N_ to 1 reducing (32) to

(147, i) _ _
o _—(1+r€lia)) E,e=p.(1Lw) E ¢ (33)

For the constitutive lawin (33), approximations to wy and @, in (26a) are

W = A,

B* (L1 w,)

.o o, Im(B(1LLo,))

(34)
BAL o) +i Im(B L Le,))]

wco:a)Ro_leo:wo[

o, is the eigenfrequency of the linear elastic problem

o]
3. Results

In all results to follow, geonetric and material properties of the cylinder
are listed in Table I. Fig. 1(al) plots the static deforned generator froma unit

radi al displ acenent prescribed at the footprint

Uy (1, D) = H(z-2,) - H(z-2,) (352)
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In (35a) Zz,=1.5" and z=2.5". The resulting nornalized o,(r,,2) distribution
plotted in Fig. 1(bl) shows a rise near Z, and Z of 1.5 times its magnitude at

the plateau. Fig. 1(a2,b2) plot static deformed generator and nornalized G”S(I’p,Z)
distribution for a unit axial displacenent prescribed at the footprint

W, (r,,2)=H(z-z)-H(z-2) (35b)

In this case, o, rises near Z and 7 to 1.7 tines its magnitude at the plateau.

rrs
Fig. 2(a,b) plots resonant frequency € in Hertz versus M wth kr as
paranmeter for the two problens. The two spectra are alnost identical for all m

and K. .
In Eq. (23), influence coefficients U, and W, require an approxination to
the tine dependence of the forcing pressure fp(t). One approximation is detern ned

fromthe plane-strain state when axial length of cylinder and footprint approaches

infinity (Appendix C. Fig. 3(a-d) plot histories of the plane-strain probl emwhen

a constant velocity U =330 m's is prescribed at r=r,. There, U history shown as

solid line in Fig. 3(a) reproduces the prescribed U, profile. At r=2rp and
r=4rp, U histories exhibit the time-delay in wave front from propagation with

finite speed C,. The closeness in nagnitude of peak o,, o, and o, (Fig.
3(b,c,d)) inplies a hydrodynam c state of stress. Geonetric stress attenuation
-1/2

along r is proportional to r

The G,r(rp) pl ane-strain history in Fig. 3(b) serves as the approxination to

f,(t) in the 3-D axisymetric nodel as it is the limt when projectile and
cylinder lengths are the same. Fig. 4(al-dl) plots histories fromthe prescribed

uni formpressure profile f (t) at the center of the footprint z=2". The u
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history in Fig. 4(al) does not follow the prescribed U, profile because applied
pressure is uniformover the footprint. Applying the influence nmethod of Section 2

yields the histories in Fig. 4(a2-d2). The u(r)) history in Fig. 4(a2) matches the

prescribed U, profile. At the footprint, except for the higher stress peaks,
results fromprescribed velocity agree with those fromthe prescribed plane-strain

pressure profile f (t). At r>r,, results fromthe two forcing methods coincide

pl
i mplying that the plane-strain pressure profile is a good approximation to the
actual profile deternmined by the influence nethod. Geonetric stress attenuation

-3/4

along r is proportional to r Fig. 5(a-d) plots histories from prescribed

velocity remote fromthe footprint at z=2.6". There, peak nornmal stresses are 1/5
t hose under the footprint (see Fig. 4(b2,c2,d2)). This steep drop in stress across

the edges of the footprint is caused by the | ow shear rigidity of the materi al

consistent with the ratio C,/C;=1/5 from Table I.
Fig. 6 plots instantaneous o, (r,,z;t)) distributions for 2us<t,<12us in

intervals of 2us. For t,=2us, the distribution is parabolic with a maxi num at
the center of the footprint. As time increases, the distribution becones flatter
then devel ops peaks near Z, and Z resenbling the static case in Fig. 1(bl). The

step-like shape of the distribution is an artifact of the finite nunber of
pressure ring segments dividing the footprint. In Fig. 6, the 8 steps correspond
to 8 ring segments. The distribution becomes snmoother as number of ring segments

i ncr eases.

For an axial prescribed velocity at r=r, along Z,<z<7,6 the approximtion

to f,(t) is deternmined fromthe solution of the pure-shear problemof an infinite

cylinder with axial velocity prescribed at r=r, derived in Appendix D. Figure
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7(a,b) plots histories of W and 7, for the case of pure shear. Since C,/C;=1/5,

the time range in these histories is extended to 40usS to allow for the |onger
arrival tinme at stations renote fromthe footprint. The 7, profile in Fig. 7(b) is

then used as an approximation f (t) in conputing histories with prescribed
vel ocity.
Fig. 8(al,bl) plots histories at the center of the footprint z=2" froma

uni form 7 ,.(r,,zt)=f (t) prescribed over the footprint. Fig. 8(al) shows that oW
is the same as prescribed velocity U;=330 ft/s till t=10us, then diminishes to
200 ft/s near t=40us. On the other hand for prescribed velocity, oW in Fig.

8(b2) is constant for all times and equals U, . Magnitude of 7, in Fig. 8(b2) is

rz

hi gher than that in Fig. 8(bl) by approximately a factor of 1.3.

Remote fromthe footprint at zZ=2.6", histories with prescribed pressure
(Fig. 9(al-dl)) are conpared to those with prescribed velocity (Fig. 9(a2-d2)). In

Fig. 9(al-dl) all variables are approxinately half the corresponding variables in

Fig. 9(a2-d2). Fig. 10 plots 7, distribution along the footprint. For t <1Ous,

T, s distribution is uniform As time increases, 7, rises steeply near the edges

rz

of the footprint reaching a value double its value at the center at t ~40us.

4 Conclusion
Wave propagation in a hollow cylinder is analyzed for pressure and velocity

prescribed at its inner boundary. The difficulty arising fromthe m xed boundary
conditions is overcone by the influence coefficient method. An approxination to
the prescribed pressure profile needed in this nmethod is determined fromthe

pl ane-strain solution. Noteworthy results are
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1) The stress state close to inmpact is al nbst hydrodynam c.
2) Results fromprescribed radial velocity agree with those from prescribed

uni form pressure determned fromthe plane-strain nodel.

3) In the plane-strain nodel, stress attenuation along r follows rY% while in

the 3-D axi symmetric nodel it foll ows r34,

4) For prescribed radial velocity, the instantaneous o, distributionis

par abolic soon after inpact, and approaches the static distribution for
| arge tines.

5) Near the center of the footprint, results fromprescribed axial velocity
agree with those from prescribed uni form shear stress determned fromthe
pur e-shear nodel. However, near the edges of the footprint, stresses from

prescri bed pressure are half of those from prescribed velocity because in

the later 7., rises near the edges by the same factor.

rz

Appendi x A. Static problem
In what follows, all dependent variables pertaining to the static solution
will be subscripted by S. The static axisymetric equations in terns of

di spl acenents are
((/1+2u)©f+uazz)us + (A+p)d,w, =0
(2+u)o, (0, +1/r)u, + (w;+(x+2y)azz)w5=o (AL)
Vi=0 +1/rd, -n*/r®, n=01

Equati ons (Al) decouple to

A 2
pA+2u)(Vi+0,) u,=0
(A2)
y(l+2p)(@§+8ﬂ)2 w, =0
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For the radial traction problemsatisfying o,=0 at z=(0,), separation of

variables follows Eq. (11) in the text. Sunm ng over all kZ yi el ds

M

uy(r,2) = > U (r)sin(k,,2) ( A3a)
m=1
M

W, (r,2) =Y W (r)cos(kz) , Ky, =mr/l ( A3b)
m=1

Substituting (A3) in (A2) produces uncoupled equations in r for each kZm

m

(V2-K2,) Te()=0

X , (A4)
2 2 NV
(V3-K2,) W () =0
In what follows, subscript m will be dropped for shortness. Equations (A4) admt
the sol utions
u.(r)=C,I,(kr) + C, K, (kr)
S 171I\"z 2 "TM\z (A5a)

+Cy(k,r 1o(kr) = 1.(k,r)) — C, (k,r Ko(kr)+ Ki(k,r))

W,(r) =G, lo(k,r) — C, Ky(k,r)
+Cy (0 Lo (Kyr) + Kot 1(K 1)) + Cy (o Ko(K,r) + K1 Ki(kr))  (A5b)
oy =(A+3u)I(A+p), o,=Al(A+p)
Substituting (A5a,b) in the constitutive relations (14) and (15a) of the text

yi el ds
Gro (1) = 20K, (C, (1o (k1) = 1,(k,P) /(K1) )= C, (Ko (1) + Ky (kP /(K 1)) )
+ 21 K,Cy (el o (k1) + (1+ (k1)) 1y (k1) (k1) (A6a)
+2u kZC4( o, Ko (k1) +(1+ (k1) K, (k) /(K 1))
Eees(r) = 2/,[ kz (Clll(kzr) /(kzr) + CZKl(kzr) /(kzr))

+2uk,Cy( (L-a,) 1, (ik,r) —1,(k,r)/(k,r)) (A6b)
+ 2,Ll sz4 (—(1—062) Ko(kzr) - Kl(kzr) /(kzr))
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Em(r) = 2:u kz (_Cllo(kzr) + C2K0(kzr))
+2,Ll sz3(_(al+a2) IO(kzr) - kzr ll(kzr))

(A6c)
+2ukC,( (o +a,) Ko(k,r) — kr K (kr))
(1) =2uk, (Cl, (k1) + CK (k1))
+2uk,Cy (K To(k,r) + @—a,)l, (k) ( A6d)

+2:u sz4 (_kzr KO(kzr) + (1_a2)Kl(kzr))
Tractions at the inner and outer surfaces of the tube are expressed as

Grrs(rp! Z) =b (H (Z_ Za) -H (Z_ zb))

A7
7.5(r,,2) =0 (A72)

0,(r,2)=1,,(r,,2 =0

(A7Db)
P, is auniformradial traction prescribed at r'=r;, in the interval 7 <7Z<z7.

Substituting (A6a) and (A6d) in (A7a) and (A7b) and enforcing orthogonality of
sin(k,z) and cos(k,z) produces M (4x4) uncoupled matrix equations in the

coefficients C,, k=14

M cmCm = fm

(A8)
Coefficients of M,

are the radial functions multiplying C., in (A6a) and (A6d)

evaluated at r=r

p and r=r,, and f, is a vector defined by

f1m ==

2pr (Cos(kzm Zb) _Cos(kzm Za))/(kzml)
f

(A9)
2mE f3mE f4m:0

For the axial traction problem satisfying vanishing shear stress 7,,=0 at

z=(0,1), the expansion in (A3) becones
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0 (r2) = b (1) cos(k,,2)

m (A10)
w,(r,2) =Y W (r)sin(k,2) ,  Ky=mz/l
m=1

The boundary conditions are

Grrs(rp’ Z) =0

(A7a)
Trzs(rp’ Z) = pz(H (Z_ Za)_ H (Z_ Zb))
Ous(l5:2) =7,5(r,,2) =0 (A7)

p, is auniformaxial traction applied at r=r, in the interval 7 <7Z<Z7.

Expressions for displacenments and stresses resenble those of the radial problem

and are onitted here for shortness.

Appendi x B. Mddal anal ysis

The dynam ¢ sol ution ud(r,z,t) sati sfies the honmbgeneous boundary conditions

o, (r,,zt)=0, r7,(r,zt) =0

(B1)
o,(r,zt) =0, 7,(r,zt) =0
Substituting (16a) and (16d) in (Bl) yields the matrix equation
M.C=0 (B2)

M, is a 4x4 square matrix, C={C1,C2,C3,C4}T is the vector of unknown

coefficients and

M, = —((/1+2,J)k§ +},k22)J0(kerp)+2u k2 J,(kr,) /(K1)
M s = 20k, | Jp(kir,) = Ji (k1) (kT |

My = _Zukekz“]l(kerp)

Mo = _.U(ksz - kzz)‘Jl(ksr)

(B3)
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M.y Moy My, My, have the same formas M., M 5, M,,, M, with J, replaced
by Y. Simlarly, Mg, M., k=14 have the same formas M_,, M_,, k=14, wth

r, replaced by r,. Fromthe definitions of k, and ki in (12), k, is imaginary when

o<kc,, ¢g=(A+2u)/p, and K is imaginary when w<K,C,, C,=/u/p . Bel ow

these cut-off frequencies, J, and Y, are replaced by |, and K, with appropriate

n
changes in sign. For each m in kz, a non-trivial solution to (B2) yields the

implicit eigenval ue problem

det|M, F0 = {o,:®,(r,2)] (B4)

{a)mj;CDmi(r,Z)} is the eigen-dyad corresponding to the m" axial wave- nunber .

Appendix C. Plane-strain problem
The radi al plane-strain problemis that of an infinite hollow cylinder where

£,=W=0,=0. The dynanic equation in U then reduces to

Vau=1/c?d,u , Ty Sr<r,
Vi=o, +1ro, —1r*, ¢2=E,lp (C1)
E, =EQ1-v)/(1+v)A-2v))
The boundary conditions are
urr,,ty=~f @, o,r,t)=0 (C2)

f,(t) is the time dependent displacement profile prescribed at r=r,. The

constitutive |aw takes the form

o,=A&, +2ug, , li—>rr,e0,z

(Ca)
gv :8rr +8¢90 ’ gzzEO
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o, =E, (6,u+vi(l-v) ulr)
o, =E (ulr+vid-v)o.u) (C3b)
o,=E (ulr+o,u)vi(l-v)

Express u(r,t) as a superposition of a static and a dynam c sol ution
u(r,t) =ug(r) f,(t) +u,(r,t) (C4)
us(r) is the static solution satisfying the i nhonbgeneous boundary conditions
u(r,)=1, o,(r,)=0 (C5)
ud(r,t) is the dynam c solution satisfying the honbgeneous form of boundary
condi tions (C2). Expand Uy(r,t) in the eigenfunctions ¢,(r) of (C1)
ug (r,t) = > a, (1) (1)
i
(Pj(r): 'Jl(krj r)+C2Y1(krj N, ¢ :_'Jl(krj rp)/Yl(krj rp)

Substituting (C6) in the hompbgeneous formof (C2) yields the dispersion relation

(C6)

Oy Oy =03, Oy =0

a, = ‘Jl(krj rp) v Oy :Yl(krj rp)

= Gt 20k, 3Lk 1) + 23,0k, 1)/,
= (A 200k, YK 1)+ 2%(K, 1),

(C7)

() stands for derivative with respect to the argument. (C7) deternines the wave
nunber s k,j. The static solution to vfuszo is

u(r)y=Ar+B/r

- (38)
A:rp(r§+(ﬂ,+y)rf/u)1, B=r,(1-Ar,)
The constitutive law is given by (C3b). Substituting (C6) and (C8) in (C4) and

enforcing orthogonality of ¢(r) yields
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4 (t) + o a (t)=—(N,; /N;; ) f,(0)

T , To (C9)
NJ.J.:I(pJ(t’)I’dI’, Naj:_[us(r) (Pj(r)rdr; a)j:Cd krj

p

(") stands for time derivative. The integrals in ij and Naj are eval uat ed

analytically in terms of J, and Y, for n=0,12.

For the radial plane-stress problem o,=W=0,=0 yielding the equation

Vau=1/c2o,u , V=9, +1/r o —1/r?
5 5 (C10)
c¢Z =E/(p@-v?)), r,<r<r,
(C10) has the same formas (Cl) but with a | ower speed of propagati on since
CG/Cd =(1—2v)1/2/(1—v) is small when v is close to 1/2. The constitutive |aw

sinmplifies to

o,=E, (6,u+vulr) , o, =E (ulr+vaou)

(C11)
c,=0, E,=E/1-v?

I f prescribed displacenent at r=r, is the same for both plane stress and pl ane

strain, then strains are approximately the sane. It follows that stresses in (Cl1l)

are smaller than those in (C3b) by a factor of (CG/Cd)Z. In the present
application, if material of the cylinder fails radially within the footprint
Z,<72<7, then the approximte state of plane-strain changes to that of plane-

stress reducing transmtted pressure substantially.

Pure shear problem
For the pure shear problem o, =0, =0,=U=0 yielding the equation

Viw=1/c2oiw , V=4, +1/r5,

- (D1la)
c.=E/(2p@+v)), r <r<r
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w(r,,t)=f (t) , 7,(r,,t)=0 ( D1b)

7,,(r,t)=E/(2(1+v)) 6,W(r,t) (Dic)

Express W as a superposition of a static and a dynanic solution

w(r,t) =w,(r) f () +w,(r,t) (D2a)
Viw, =0, w,(r,) =1, 7,5(r,)=0 (D2b)
Vow, =1/¢2 0, Wy, Wy (r,,1)=0, 7,4(r,,t)=0 (D2c)

Since (D2b) admits a rigid body notion, a body-force bf is subtracted from (D2b)

so as to equilibrate the external shear traction and b, f (t) is added to (D2c) to
cancel its effect. This yields
ﬁSWs:_bf

.y y s (D3)
Vow, =1/cs opw, + by (1)

The solution to W, satisfying the boundary conditions (D2b) is
w(r)= (22 Inr —r?)/(2rZ Inr, —r?)

E (r02_r2)
(L+v) (22 In(r,)—r2)r

by =2/(rZInr, —r2/2)

TTB(r): (D4)

Expand W, in terms of its eigenfunctions ¢;(r)
Wd(r’t)zzaj(t)q)j(r)
9, (N)=J5(k ;) ~(Jo(k; 1) Yolk 1)) Yo 1)

Substituting (D2a) in (Dla) using (D3) and (D5) and enforcing the orthogonality of

(D5)

@,(r) produces uncoupl ed equations in a,(t)
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& (1) +ofa t)=—(N,; /N;;) f,t) = (N, /N;; )by (1)

To o o 2 (m)
Naj :Igpj(r)ws(r) rdr ) ij :.[('Dj (r) rdr ) ij :I(pj (r) rar

P P P

(") is time derivative and @; are roots of the dispersion relation
Jo(krj r.p)YO’(krj r.o)_‘]é(krj ro)YO(krj rp) =0 ! krj :a)j /Cs (D7)

() is derivative with respect to the argunent.
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E (Ib/in%) 45x10°
p (Ibs?/in*) 8.7x10°
) 0.48
| (in) 4
r,  (in) 0.25
r, (i) 3
c, (in/9 6.74 x 10"
C, (in/9 1.322x10"

Table I. Cylinder properties
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Figure 1. Static deformation and foot-print traction at r=r, ,z,<z <z
(al),(bl) prescribed u(r,.z), (a2),(b2) prescribed w(r,.z)

200 . .
(a) w ~ sin(k,z) (b)w ~ cos(k,z)
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Figure 2. Frequency spectra
(a) radial problem, u ~ sin(k_z),
(b) axial problem, u ~ cos(k.z)
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Figure 3. Plane-strain histories from prescribed radial velocity

=T, -}—er, - r=dr,

fa)u, (b)o,, (c)cy, (do,

- 220 -



ATK MISSION RESEARCH W81XWH-04-C-0084

prescribed pressure prescribed velocity
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Figure 4. Histories from radial excitation at z=2"
F=F,, e F=2r,, ----r=4r,
(al), (bl), (cl), (dI) prescribed pressure from plane-strain
(a2), (b2), (c2), (d2) prescribed velocity
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Figure 5. Histories from prescribed radial velocity at z=2.6"
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Summary

Previous work (to appear in International J. of Solids & Structures, 2005)
on transient response of a hollow cylinder to tinme dependent radial nmotion is

extended to include notion of the excitation along the axis of the cylinder.

— 227 -



ATK MISSION RESEARCH W81XWH-04-C-0084

1. Introduction

When a projectile penetrates into human tissue, it noves material by
replacing it with its own volunme. Wen the material fails, it acts nore like a
fluid, |essening the anount of material being conpressed. In the radial direction,
material is conpressed by an expandi ng cross-section of the projectile’s snoothly
curved nose. As long as the projectile’s speed is much snmaller than the speed of
stress waves in the material, the nmoving projectile can be approxi mated by radi a
and axial velocities prescribed along its boundary [1]. For a projectile speed of
300 ft/s and a dilatational speed in tissue material of 5600 ft/s, this
approximation is valid. However, for projectile speed in excess of 1000 ft/s,
projectile notion nust be considered in the anal ysis.

The forcing function is a radial notion prescribed over part of the inner
cylindrical boundary while the renmainder part of the boundary is traction-free.
This leads to a m xed boundary val ue probl em whose solution is briefly outlined
for conpleteness while details may be found in Ref. [1]. In order to convert the
segnent of boundary where notion is prescribed to one where traction is
prescri bed, response froma set of unit ring tractions with tinme dependent wei ghts
i s superinmposed. These wei ghts are updated at each tinme step using the condition
that the conbi ned displacenment response at the center of each ring equals the
prescribed i nstantaneous displacenment. In this way, the forcing function is

converted to pure traction with tinme varying spatial dependence.

2. Analysis

A brief outline of the principal points of the analysis follows in order to
clarify how the tinme-delayed forcing function along the cylinder’'s axis is
included in the algorithm In cylindrical coordinates, the axisymetric

el ast odynam ¢ equations are

HV2U+(A+ u)V(Veu) = pd,u (1)
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V=0, +1/r 8, +0,
V =(1/r o,r)e +(0,)e,

. . . . T, .
(r,z) are radial and axial independent variables, U= {u,w} i s di splacement vector

al ong these directions, (A,u) are Lame constants, p is mass density and t is

time. For harnonic notions in time and sinply supported boundaries at (0,) the
solution is

0, 2) =6 (€1 206+ C, (k) + K, (€ k) +C, k) Joosthd)

W(r,2) = K, (C, Jo(kr) +C, Yo (k) + k(o Jo k) + C, Yolkor)) Jsin(k,2)
with constitutive relations

o, =AA+2u0.U , 0, =AA+2uulr
Op=AA+2u0,W, 7,=p(0,u+0o,w) (3)
A=0.u+ulr+o,w

k,=mz/l. Boundary conditions at r=r, and r=r, are

o, (r,,zt) = p,(O[H(z-2)-H(z-3)]
t,(r,,zt) =0 (4)
o,(r,zt) =7,(r,,zt) =0

p,(t) is a time dependent uniformradial traction acting on the inner cylindrical
boundary r=r,in the interval zZ,<7Z<7.

Di vide the cylindrical surface {rzrp, ZagZSZb} into N+l equidistant ring
stations with constant increnent Azp

Zy 2y 4y Zoy . Z=2+(1-DAz,, (z,-27)/n=Az (5)
Assume a uniformpressure of unit intensity to act over each ring segment 7z, — Z.

The el asto-dynam c solution to the K™ ri ng pressure segnent is outlined bel ow
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For each pressure segnent, expand each dependent variable in terns of

ei genfunctions that satisfy honbgeneous boundary conditions. Express total

di spl acement u,(r,zt) as a superposition of two ternms
u(r,zt)=ug(r,2) fp(t) + Uy (r,z1) (6)
usk(r,z) is static displacenent vector satisfying (1) when tine derivative
vani shes, udk(r,z;t) i s dynami c displacenent vector satisfying the dynam c equation
of nmotion (1), and fp(t) is time dependence of the forcing pressure. For each axial

wave number m, express U, (r,zt) in the eigenfunctions cI)mj(r,z)
udk(rizit):zzamjk(t) @, (r,2) (7)
j m

a,;(t) is a generalized coordinate of the j™ eigenfunction with m axial half

waves fromthe K" pressure segnent. Substituting (6) and (7) in (1) and enforcing
orthogonality of @,(r,z) yields uncoupled equations in a,,(t). Evaluating radial
and axi al displacenents u(r,zt) and W(r,zt) fromthe k™ pressure segment at each

central point Z,=(Z+2%,)/2 of a pressure segnent yields coefficients of the

influence matrices
Ulk(t)zzzamjk(t) Umjk(rp’zcl) + usk(rp’zcl) fp(t) (8)
j m
U (rp12y) and Ug(r,,z,) are nodal and static displacenent dyads at Z, fromthe k™"

pressure segnent. Since f (t) is arbitrary, it was found from nunerical

experiments that a sinple ranp is appropriate

fo(t)=(t/AL)[H{E)-H(E-AL)] + H(t-At) (9)
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where At is rise time of the first line segment in the prescribed acceleration

profile shown in Fig. 2(c). Enforcing the condition of prescribed displacenent

up(t) at each time step yields a set of sinultaneous equations in the weights P,

Zn:ulk(t) p)=u,(t) , I=1n (10)

In the case of tine-del ayed prescribed displacenent where the projectile

A

noves axially varying length of the footprint instantaneously, fp depends not only

on tinme t but also on axial coordinate Z in the form

f.(6), f=(t-z/V,)H(t-z/V,) (11)

V, is projectile speed and H (t—Z/Vp) is the Heaviside function. The significance

A

of (11) is that at some station z, f, acts only when t>2z/V  otherwise it

vani shes thus the term"tine-del ayed".

3. Results

In all results to follow, geonetric and material properties of the cylinder

are listed in Table I. The footprint extends from 2,=0.1" to Z=1.6". The
properties in Table | yield extensional and shear wave speeds C; and C, 5610 ft/s

and 1115 ft/s and the ratio C,/C,=5.

Fig. 1 plots prescribed radial notions at the cylinder's inner boundary from
a cylindrical projectile with a spherical nose 0.25" in radius and Vp:1000 ft/s.

For a noving projectile, prescribed notion starts at one end of the cylinder and

noves inward into the cylinder with the speed of the projectile as shown in Fig. 2

for three different projectile axial positions z=0,5Az, ,10Az,.
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Since the plane-strain cylinder is the sinplest exanple, it is presented
first for conparison with the finite length cases. Fig. 3(a-e) plots histories of

the plane-strain cylinder for the prescribed notion in Fig. 2 at three radial

stations r=r,, 2r,4r,. At r=r, (Fig. 3(a)), U follows the prescribed displacenent

in Fig. 2(a), and du/dt (Fig. 3(b)) follows prescribed velocity in Fig. 2(b). The

first reflection fromthe outer boundary r =r, happens at t~80us as evidenced by
the sudden rise in histories there. At r=2rp and r=4rp, U histories exhibit the
tinme-delay in wave front from propagation with finite speed C.. Soon after notion

starts, the closeness in magnitude of peak o,, o, and o, (Fig. 3(c,d, e))
inplies a hydrodynanmic state of stress. Note the sharp rise in stress history at
t~80us when the first reflection fromr=r, is felt at the corresponding Z.

Fig. 4 plots histories fromprescribed notion uniformover the footprint at

three different axial stations; zZ= 0.25", 0.8" and 1.7". The first two stations
lie within the length of the footprint |p=1.5" while the z=1.7" station is outside

this interval. In Fig. 4, histories of all dependent variables at each zZ—station
lie along a colum, while histories of a dependent variable for the three
Z—stations lie along a row. Soon after start of notion, the U histories at
Z=0.25" and 0.8" in Fig. 4(al,a2) follow the plane-strain case in Fig. 3(a).

However, the first reflection is not acconpani ed by sharp rises in response as in

pl ane-strain. At z=1.7", U and du/dt response is attenuated as expected since
that station is renote fromthe footprint. Magnitude of the W histories is
conparable to those of U at z=0.25". However, W attenuates substantially at the
other stations. An explanation is that W motion is controlled by shear waves
which for the present material are 5 tinmes weaker than extensional waves

controlling U. Soon after start of nmotion and within the footprint, normal stress
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histories (Fig. 4(dl-d3,el-e3,f1-f3)) resenble those of the plane-strain case in
that magnitude of the three stress conponents is approxinately the sane inplying a
hydrostatic state of stress. Agreenent of results from plane-strain and finite
cylinder with prescribed uniformnotion inplies that the plane-strain
approximation is satisfactory for axial stations within the footprint. Al so,
magni t ude of stress renote fromthe footprint is conparable to that within the
footprint after the initial hydrostatic transient el apses.

Fig. 5 plots histories fromtinme-delayed prescribed notion. The sane
nonencl ature applies as in Fig. 4. Conparing histories of U and du/dt in Fig
4(al-a3,bl-b3) and Fig. 5(al-a3,bl-b3) it is apparent that except for the shifted
response at the footprint, nmagnitude and shape of response are the sane. However,
magni tude of W histories in Fig. 5(cl-c3) are alnpst 1/2 those in Fig. 4(cl-c3).
This is caused by the reduction in shear in the tinme-delayed prescribed
di spl acenent conpared to the uniform case. Conparing stress histories in Fig.
5(d1-d3,el-e3,f1-f3) and Fig. 4(dl-d3,el-e3,f1-f3) reveals that soon after start
of notion, the tine-delayed case |ooses the initial hydrostatic transient while
magni tudes following this transient are conparable. This steep drop in stress

across the edges of the footprint is caused by the | ow shear rigidity of the
material consistent with the ratio c,/cy=1/5.

Figure 6 plots snap-shots of the deformed cylinder generator for the two
types of excitation at 3 times t=40us, 80us and 110usS. Note the expanding
footprint in the case of the tinme-delayed case (Fig. 6(a2-c2)). Fig. 7 plots
i nstantaneous o, (r,,z;t,) distributions for 10us<t,<110us in intervals of 10us.

In both types of excitation, pressure at the ends of the footprint is higher than
that at intermediate stations. For the time del ayed excitation, Fig. 7(b) shows

t he expansion of the footprint with time follow ng prescribed displacenment in Fig.

2. The undulation in the o,(r,,z;t,) distributionis an artifact of the finite
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nunber of pressure ring segnents dividing the footprint. The distribution becones

snoot her as nunber of ring segnents increases.

4 Conclusion
An extension to wave propagation in a hollow cylinder is presented for

notion of the excitation along the cylinder’s axis. Two types of excitation are
considered, a uniformprescribed notion and a tinme del ayed prescribed notion.
Not eworthy results are
6) Soon after notion starts, the normal stress state for the plane-strain
cylinder and finite cylinder with uniform prescribed displacenent is al nost
hydrostatic. Displacenent, velocity and stress responses over the footprint
for these two cases are conparable.
7) Response fromtime-del ayed excitation is simlar to that fromuniform
excitation in magnitude and form al though the forner response does not

exhibit the hydrostatic state soon after notion starts.
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E (Ib/in%) 45x10°
p (Ibs?/in*) 8.7x10°
) 0.48
| (in) 4
r,  (in) 0.25
r, (i) 3
c, (in/9 6.74 x 10"
C, (in/9 1.322x10"

Table I. Cylinder properties
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Figure captions

Figure 1. Prescribed motion

(a) u, (in), (b)du,/dt (fi/s), (c) a’zup/a’z2 (f1/s°)

Figure 2. Delayed prescribed displacement
left line z=0, middle line z=5Az, , right line z=10Az,

Figure 3. Histories of plane-strain cylinder with prescribed displacement
(a) u, (b) du/dt ’ (C) Oy, (d) Oop, (e) O

Figure 4. Histories of cylinder with uniform prescribed displacement
(al)u, (bl)w, (cl)du/d, (dl)c,,. (el)Cgy, (f1)o,. : z=0.25"
(@2)u, (b2)w, (c2)dwdt, (d2)c,. (e2)Cgyy. (f2)0, : z=0.8"
(a3)u, (b3)w, (c3)du/dt, (d3)c,, (e3)Cge. (3)0. @ z=17"

Figure 5. Histories of cylinder with delayed prescribed displacement
(al)u, (b1)w, (cl)du/dt, (dl)o,. (el)og, (fl)o. . z=0.25"
(@2)u, (b2)w, (c2)du/dt, (d2) o, (e2)0g. (2)0. @ z=0.38"
(@3)u, (b3)w, (c3)du/dt, (d3)c,. (e3)Cee. (f3)0..: z=1.7"
Figure 6. Time snap-shots of cylinder with prescribed displacement
(al) t=40 us, (bl)t=80Ws, (cl)t=110pus : uniform,
(@2) =40 us, (b2) t=80 s, (c2)t=110us . time-delayed
Figure 7. Snap-shots of |0,,(r,,z; t,)| distribution in cylinder
with prescribed displacement at 10us <, <_110s

top t=10us, bottom t=110s
far left t=10us, far right t=110ns

(a) uniform :
(b) time-delayed :
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Figure 4. Histories of cylinder with uniform prescribed displacement
(al)u, (bl)w, (cl)duwdt, (dl)G,,. (el)Cy (f1)0C, : z=0.25",
(@2)u, (b2)w, (c2)duwdt, (d2)oc,. (e2)0Cpy, (f2)0., @ z=0.8",
(@3)u, (b3)w, (c3)dusdt, (d3)G,,. (e3)Cgg, (f3)0.. : z=1.7"
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Figure 7. Snap-shots of |6,.(r,,z; t )| distribution in cylinder

P’
with prescribed displacement at 10us <1, <_110ps

(a) uniform :
(b) time-delayed :

top t=10us, bottom t=110us
far left t=10us, far right t=110us
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Summary

Effects on transient waves of circumferential and radial inhomogeneity are
studied in a plane-strain hollow cylinder. A periodic circumferential inhomogeneity
modulating a constant value is analyzed adopting the Galerkin method where trial
functions are chosen as the axisymmetric and asymmetric modes of the homogeneous
cylinder. A periodic radial inhomogeneity is analyzed by dividing the cylinder into
annular segments of constant width. A step-wise variation in modulus is assumed
where modulus is constant over each segment. Adopting transfer matrices, continuity of
state variables at interfaces of segments establishes the global dynamic equilibrium of
the segmented cylinder. The static-dynamic superposition method is employed to solve

for transient response.

— 244 —



ATK MISSION RESEARCH W81XWH-04-C-0084
1. Introduction

Propagation of transient stress waves in human tissue during projectile
penetration concerns medical researchers as overpressure from these waves may
cause indirect trauma in human organs. As the projectile penetrates into tissue, it
moves material by replacing it with its own volume. When tissue fails, it acts more like a
fluid, lessening the amount of material being compressed by the moving projectile. In
the radial direction, tissue is compressed by an expanding cross-section of the
projectile’s smoothly curved nose. This rapid expansion generates compressive waves
symmetric about the projectile’s axis that attenuate with distance. EI-Raheb (2004)
develops a model that approximates penetrated tissue as a homogeneous hollow finite
cylinder with inner radius that of the projectile and a sufficiently large outer radius to
avoid interference from reflections at the outer boundary during the simulation time. A
radial velocity is prescribed at the cylinder’s inner boundary over the finite projectile
length accounting for radial expansion from projectile axial motion.

This work evaluates the effect on propagation of material inhomogeneity that
may result either from spatial variation in modulus or asymmetric radial tearing. Since
real tissue inhomogeneity is complicated to model, the analysis to follow treats two
uncoupled types of material inhomogeneity; circumferential or 6 -inhomogeneity and
radial or r -inhomogeneity. 8 -inhomogeneity is asymmetric as modulus E varies
periodically with angular coordinate 6 but remains constant along the radial coordinate

r . In this case both extensional and shear waves are excited. r -inhomogeneity is
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axisymmetric as E varies only along r but remains constant along 6. In this case only
extensional waves are excited. In practice both & and r inhomogeneities exist in
tissue, nevertheless the two types are presently addressed separately for parametric
evaluation of each type’s effect avoiding the cross-coupling that may result if both were
acting together. Since histories from the homogeneous finite cylinder model (EI-Raheb
2004) compared favorably with those from the homogeneous plane-strain model, the
latter model is adopted for studying material inhomogeneity.

Whittier and Jones (1967) studied the propagation of longitudinal and torsional
waves in a bi-material solid cylinder composed of an inner homogeneous core bonded
to an outer homogeneous annular cylinder of different properties. Armenakas (1967),
Reuter (1969), Armenakas (1970), studied flexural waves in bi-material cylinders. Keck
and Armenakas (1971) presented an exact solution for longitudinal waves in an
infinitely long composite hollow cylinder made of three different transversely isotropic
layers. Vibrations of homogeneous hollow plane-strain cylinders was analyzed by Gasis
(1958), Bird et al (1960), and Baltrukonis et al (1960). The references above were
restricted to three concentric axisymmetric layers. Yin and Yue (2002) analyzed the
plain-strain axisymmetric problem with multiple annular layers using Laplace transforms
to integrate time dependence. Heyliger and Jilania (1992) adopted a variational method
and a Ritz approximation to study frequency response of inhomogeneous cylinders and
spheres. Steinberg (1995) formulated the inverse spectral problem to determine

properties of a cylinder with inhomogeneous materials. Inertial 6 -inhomogeneity from
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point masses attached to the wall of a thin cylinder was analyzed by EI-Raheb and
Wagner (1989).

In section 2, O-inhonbgeneity is treated adopting the Gal erkin nethod
Ei genfunctions of the asymetric honbgeneous dynam ¢ equations are utilized as
trial functions in the i nhonbgeneous dynam c equations. Othogonality of
radi al and circunferential dependence produces an ei genval ue problemwth
coupling coefficients as the eigenvector. The static-dynam c superposition
nmethod i s adopted to solve the transient response. In section 3, a step-wi se
I -i nhonogeneity is treated adopting transfer matrices of annular segnents
with varying properties. Continuity of stress and di spl acenent at interfaces
of segments yields a global transfer matrix produci ng ei genstates of the
multi-layered cylinder. Once nore, transient response is found adopting the
static-dynam c superposition method. Section 4 discusses transient histories
in hollowcylinders with the two types of inhonogeneity.

2. Circunferential inhonmogeneity

Consider the plane-strain dynamic equilibrium equations in cylindrical
coordinates

0,0, + (0, —04)Ir +1/T 0,7, = pO, U
0,1, + 2t,lr +1/r 0,0, =p0O, v (1a)
r,<r<r,, 0<60<2r

with boundary conditions

Grr(rp’g;t): pO fp(t) ’ 7’-rB(rp’Q;t):o

(1b)
((r,,0;t)=0 . T,(r,,0;t)=0

r, and r, are cylinder inner and outer radii, o

b Op:Tp are normal and shear

rr?
stresses, (r,0) are radial and circunferential coordinates, (Uv) are

correspondi ng displacenments, p is density, t is time, P, is nagnitude of

uni form pressure applied at r=r, and f (t) is its time dependence. The

constitutive relations are
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o, =AA+2us, , ii=rr, 00, zz

A=¢, +&,, €,=0 (2a)

yz4

oy =pg , ij=10,0z,

g, =0u, g,=ulr+1l/r o,v, ¢,=0 (2b)
&, =1r o,u + o,v —vlr

(A, u) are the Lame’ constants. For the homogeneous medium, substituting (2b) in (2a)
then in (1a) yields the dynamic displacement equations

/J(D11U+D12 U):pattu (3)
#(Dzy Uu+Dy v)=pov

Dy, =[ (B+2)Vi+1/rd,, |, D, =1/ 8,[(B+1)0, —(B+3)/r]

D, =1/1 8,[(B+D0, +(B+3/1], Dp=|Vi+(B+2)/10,, |

Vi=p, +1/ro, —1Ur?, B=Alu=2vI1-2v)
Vv is Poisson ratio. Eq. (3) is the limting case of Eq. (Al) in Appendix A
when the z dependence vani shes.

Assume a circunferentially inhonogeneous modul us (@) symretric about

0=0 with a Fourier expansion

Ne

nO)=12,6C0), §(0)=sin(6), G (6) =cos(16) (4)

1=0

Substituting (4) in (2a,b) then in (1la) produces the equations

ZQ G (0) to(Dy u+Dy, ) + ZQ 1 S(0) No(|511u+ Ijlzu)zpanu (5a)
1=0 I=1
ZQ G () /Jo(Dzl u+D, U) + ZQ 1 S(6) ﬂo(ﬁzlu"' [~)22U):/)8ttU (5b)
I=0 I=1

D,=-1/r%0, , D,=-1/ro, +1/r?

Dy=-B/ro, —(B+2)/r? , D,=—(8+2)/r?,
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To solve (5), the Galerkin nethod is adopted. U and v are expanded in terns

of orthogonal trial functions satisfying the boundary conditions at the inner

and outer walls of the cylinder r=r, and r=r,. One adnm ssible set is the

ei genfunctions of the honbgeneous problemin Eq.(3) with u=u, the
axi symmetric termin the u(f) expansion (4). For harnonic motions in time

with radian frequency @ and periodicity along 6, the solution to (1a) is

u(r,0,1) = (W (r.0) +u,(r.0))€”

. (6a)
o(r,0,t) = (v,(r,0) +v,(r,0))e”
= Z{Cﬂ.ln kre(n‘]n(krer)/(krer)_Jn+1(krer)) + Cin n‘]n(krsr)/r } Cn(e)
L, = Z{_Clln r]‘]n(krer)/r - ClZn krs(n‘]n(krsr)/(krsr) _‘Jn+1(krsr))} Sn(e) (Gb)

n=0

S, (@) =sin(ng), C,(6)=cos(nd)
(U, v) are derived in Eq. (Bl) of Appendix B, and (U,, v,) have the same form
as (U, v,) with J (kr) replaced by Y,(kr) and (C,, ,C,,) replacing (Cy, ,Cpo,)-

Expressions for o,,7, simlar to those for displacenment in (6a) and (6b) can

be expressed as

0, (1,0,t)=(0,.(r,0)+0,,(r,0))e"

(7a)
Tre (r ,Q,t) = (Trel(rie) +Tr92(r !6))elwt
= 13 (((B+2 (0)? +2(* =) 3, (k) 17+ 2K, 3, 5(k1)/ T)
n=0 (7b)
+ 265, (0" =m)3, (k1) /1° = nk 3., (k 1)/1)} C,(0)
uZ{Zcm( —(0° = ), (ko) /12 + k3,4 (K1) /)
(7c)
=265, ((M° = 1 = (k1)?12) 3, (6,112 + Ky 3,.a(kn) 7)) S,(0)
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(Oy,1+Ty) are derived in Eg. (B2) of Appendix B, (k. Kk,) are radial wave
nunbers defined in Egq. (Bl) of Appendix B. (0,,,T7,,) have the same form as

(0,1, T) With J (kr) replaced by Y, (kr) and (C.,,Cy,) replaced by (Cy,,C,,).

Re-write (7a) in the form

Sr.0.0)={o,, 7.} =>.9,0)B,(r) c, €

C.(0)

0 ‘ (8)
0 S(9)

9.(0) =

B,(r) is a 2x4 matrix of the radial functions in (o, ,7,) mltiplying

C, :{Clln’ClZn'CZln’CZZn}T in (7b,c). The honogeneous boundary conditions (la) are
o.(r,)=0, o,(,)=0 (9a)
T,(r,)=0, 71,(,)=0 (9b)

Substituting (8) in (9a,b) and enforcing orthogonality of the 6 dependence
yi el ds a set of uncoupl ed ei genval ue problenms for each circunferential wave
nunmber N
B.c=0 , an[g“gﬂ
n\lo
= det|B,F0 = {o(r),y(r); o}

(10)

B, is a 4x4 matrix, {go(r),y/(r)}m are the displacenent eigenfunctions, o,

are the eigenvalues, and m is radial wave nunber. In what follows ¢, (r) and
V() will be witten as ¢, and ., for shortness since it is known that

they are functions of r only. Expand (U,v) in the eigenfunctions (9)
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u(r.0.0)=3"3"a,(t) ¢, C,(0)
n=0 m=1 (11)

o(r,0,0)=2"> &) ¥y, S,(60)

n=1 m=1

Substituting (11) in (5a,b) yields

quecw) ZZa,k(t)(Dfp p+D3 y) C(O)

+qual S(e)ZZa,k(w(Dﬁ’ p+Dy) S0 122
=P 2 2 8 1) P C, 0)

S.(0) =sin(k), C,(0) = cos(k0)

Zecw) ZZaJk(t)(Dé?wDé;’w) S.(6)

+quel S(0) ZZaJk(t)(Dé? p+DZv) C(O) (12b)
=pzzamn(t)v/mn5n(0)

In (12a,b) the operators Di(jr) are the sane as Dij in (5 withthe 0

dependence el i m nated, and () is derivative with respect to t. From Eq. (3),

noti ng that

(D 0 +DEw) =—p! 1,0} 9,

(13)
(D 0+DLw), =—p o0y
reduces (12) to
—Zq G (©) g;w,ka,k(t) ?;Cc (0)
—,uo/qul S(6) ;; a, (1) (-ney /1% = vy /17 + i, I1)S.(6) (14a)
=22, (0 9mC,(0)
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—zqu) 220530 v, S0)

_ﬂo/pqu S(0) ZZ a;, (1) (ﬂ(pjk/r + (ﬂ+2)§0,k/r +n(g+2) ij/r )Ck(Q) (14b)
= 2.2, 8OV S, ©)

For each (m,n) dyad, multiplying both sides of Eq. (14a) by ¢, cos(nd) and
both sides of (14b) by wy  sin(nP), integrating over the domain r,<r<r,
0<60 <27 then adding the two resulting equations produces

(1+5no) T Nmn amn(t) + ZZ[(@S& (l) jk + ®(2) n, Jk:l Co]k a]k(t)

k=0 j=1

(15a)
+ 1/ p ZZ[(O&) (3) k+®(4) Mr?,jk} ajk(t) =0
k=0 j=1
N__ =f((p§m+y/;n)rdr, n=01.,N, , m=12.,N,
2 2z
CH :Zejc. (6) C.(6) C,(0) 6, ©F =& [ C(0) S(6) S,(0) db
oo (15b)
O =28 | jS(e)sK(e)C(e) do, o =3q | [s0)C.(0) S,0) do
=1 0
Rrgnlr)1 jk = (pjk r dr ! (2) Jk _J-l//n’n ]k dr
R® szjg n(—k(pjk/rz—1//J.k/r2+1//j'k/r)r dr (15c)
Rmn ]k:J- Y (ﬂ (p;k/r + (ﬂ+2) (pjk/rz + k(ﬂ+2) l)z/jk/rlz) rdr

-

P

O, is the Kronecker delta and () is derivative wr.t. r. In arriving at

(14a) the orthogonality of ((pmn ,l//mn) was utilized. For a hompbgeneous
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materi al , @S,’() :®§14k) =0, @f]llz = ®E{‘,’2 = (1+d,,) 7 and R(nl,)] ]k+Rm ik = N O Ok
reducing (11la) to the sinmple form
8n (1) + 07, 8, (1) =0 (16)

To diagonalize (14a), formthe coupl ed ei genprobl em

T

[K.-M@?]a=0 , a={a,}
Kcmn,jk:a)jzk[ (l) R(nlr)'n ]k+®§12k) I%nn jk} + :uolp[ (3) n jk +®$14k) |%(nd;1) ]k} (17)
M = (1+8,5) 7 Ny, Sy S

cmn, jk

K. is a stiffness matrix of order (N, N,)x(N,N,), M_ is a diagonal mass

matri x of the same order. The eigenproblem (13) yields the orthogonal eigenset

{CI)Ci (r,0); a)ci} where @_(r,0) is the i" eigenvector coupling the constituent

T
nmodes {(pmn’l//mn} by the coupling coefficients {am,} , and o, are the

correspondi ng ei gen-frequencies. The coupled state vector

.
SCZ{UC,UC,Grrc,c%c,am,rrgc} can be expanded in ternms of @,(r,0) as

Sc(r,G;t)=Zq(t) @, (r,0) (18a)

Dy (r,0)=2.2 m, Sw(r.6)

(18b)
@, (r,0)= {U Vg O-rrc’o-eec’gzzc’?mc}:—
S,, is the state eigenvector of the (mn)"™ constituent node and Ugi s Ugi 11 Trgei
are conponents of the i" coupled eigenvector @_(r,0).
Express displ acement u(r,0;t) as a superposition of two terms
u(r,0;t) =uy(r,0) f (t) + u,(r,0;t) (19)
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us(r,Q) is static displacenment vector satisfying (5) with vanishing tine
dependence and boundary conditions (1b) with f (t)=1 (see Appendix C),

uy, (r,0;t) is dynam c displacenment vector satisfying (5) and boundary

conditions (1b) with f (t)=0

Uy(r,0) = Uy (r) + D UoC(0) ,  vy(r.0) =DV, S, (6)

(20)
Usn = zlbrm q)mn ! Vsn = zbmn l//mn

m=1

uso(r) is the axisymmetric radial displacenent satisfying the i nhonbgeneous

boundary condition (1b) with f (t)=1 (see Appendix C). Expand U,(r,0;t) in the

ei genfunctions (0,0,

ci?

ud(r’e;t):ZQ(t) Uci(r’e) ) Uci (rie):zzamn,i P Cn(e)

n=0 m=1

V(1 0:) =2 (1) 05(r.0) . 04(r.0)=2 3 8n; Vi S(0)

n=1 m=1

(21)

c(t) is generalized coordinate of the i'" coupled eigenfunction. Substituting
(19),(20) and (21) in (5) and enforcing orthogonality of the {Uci,Uci} set

yi el ds uncoupl ed equations in G(t)

G(t) + oic )= f() (22a)
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fit) =Ny f,(0)/N;

o(u +0g ) r drdo _n2(1+5no)j Uz, +V7Z ) radr

P

=~

N..

Il
o'—;';\,’

-
°

2r

A

U, Ug +U,us)rdrd9 (22b)

'—u s

-

P
fo

j o+Ugp) Ug, rdr + EZT(UM Ug+ Vi V) 1 df

n:1,»p
:zam,i(pmn ’ n,i:zarm,il//mn
m=1 m=1
bmn are coupling coefficients of the coupled static solution. Eq. (22a) adnits

the sol ution
1 -
q(t):-—jsinmd(t—r) f(r) de (23a)
.

If f (t) is piecewise linear with n, conjoined segnents

f,(t) =2(o¢j +B; (t—t))[H(t-t)-H(t-t,,) ]
B =(f(t.)- @) (ta-t), o ="f(t), t=1f)=0 (23b)
f,0=B50-p,50-t, +1)+Z( = B) 5=t
then (23a) can be integrated analytically with an accuracy independent of the
tinme interval.
3. Radial inhomogeneity
Consi der a step-wi se radial variation in nodulus as follows. Divide the

region r,<r<r, into N, equidistant annul ar segments

n<r<r, , j=L..,N

(24)
Ar=Ar =1, -1, =(r,—r )/ N,
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T
Assune that C; :{Clj,czj} is constant over each segment but varies from segnent
to segnent. Since axial symetry holds, the follow ng equation applies to the

i™ segnent

(A+2u), (8, +1/rd, —Ur?)u, = pou, (25)
For harnmonic motions in time with radian frequency o, Eq. (25) adnmits the

solution for the " segment

u(r,) =0, (Ne”,  u(r)=c; Lk, +c, Yk,

) (26)
k;=olc, , G =(A+2u)/lp
Substituting (26) in the constitutive relations (2a,b) yields
Gy = 1,6 (~(B +2) kyy Iyl 1) + 23, (kg 1) /1) .

+ HGy, (—(ﬁ+2) ke Yo (ke 1) + 2Yi(k,, r)/r)

T
For each annul ar segment, express the state vector S ={Gm.,Uj} in terms of

the constant vector C; :{Clj,czj}T

S,(r)=B,(r) c, (28)
B;(r) is a mtrix with coefficients the functions nultiplying (c;,C,;) in (26)
and (27). Evaluating (28) at the two ends of the jth segrment then elimnating

C determines the (2x2) transfer matrix TJ. relating state vectors at the ends

of a segnent

Sj (ra)= T, Sj (rj) , Ty = [tkjl :' = B]l(rj) B; (rj+1) (29a)

J

¢, =B;'(r)S;(r;) (29b)
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Enforcing continuity of Sj at interfaces of segments and honmpbgeneous boundary

conditions (8a) at r=r, and r=r, yields the global transfer matrix Tg in

tri-diagonal block formand the corresponding global S; which is the ensenble

of all Sj

T,:S;=0 = det|T;|=0

) (30)
Ss ={S.(1),S,(1,),S, (1)), Sy, ()]

t121 t122 -1 0

T, = t2 t5, 0 -1
ty ty -1 0
ty th 0 -1
-1 0

T
Eg. (30) determines the eigenset {SG;a)} and in turn Cj ={Cl,cz,..,cj,..,CNr} from

(29Db).
To solve the transient response problem deconpose the displacenent
u(r;t) as a superposition of two terms in the manner as was done for the

circunferential inhonbgeneity
u(r,t) =u,(r) f (t) + u,(r,t) (31)
us(r) is static displacenent satisfying (25) wth vanishing time dependence

and boundary conditions (1b) with f (t)=1, and u,(r;t) is dynanic displacenment
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satisfying (25) and boundary conditions (1b) with f (t)=0. The static state
vector S ={o,,U}] of the |" segnent takes the form
Grrsj (r) = 2()*_{_#)] C.lsj + 2:”] CZsj /r2 (32&)

Ug(r)=cgr +c,/r (32b)

The gl obal static transfer matrix is determined followi ng the steps that |ed

to Eq. (28) and (29)

TGS'SGS:pO , pO:{pO,O,O,...,O}T (33)
.
See ={Su (1), S (1) 10 Sy (1)) Sayy, (1)}
Expand U, in its eigenfunctions ¢,(r)
Uy (r,8) = 28, (t) @)
) (34)

Pn(r) :Zkejm(cljm‘]l(kejmr) + Gy Yi(Kejm T) )(H(I’ -r) - H(r_rj+1))

H(r) is the Heaviside function, k, =w,/C; and o, is the m" ei genval ue.
Substituting (32a,b) in (31) then in (25) and enforcing orthogonality of the
{(pm} set yields uncoupl ed equations in a,(t)

4, (1) + o a, () = (1)

— .. 2 o 35
=N, f,0/N, . N=[2rdr, N,=[e,uradr (39)

Eg. (35) admits the solution

8, () =~ [§no,(t-7) F,() dr (36)
a)m 0
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4. Results

Consi der a plane-strain cylinder with properties

E, =3.1x10° dyn/cn?, p=0.93 g/cm®, v =0.48

(37)
r,=0.635cm, r, =7.62cm

This yields extensional and shear wave speeds C, and C, 1.71 and 0.34 knm's

and the ratio Ce/CS=5. Fig. 1 plots the resonant frequency spectrum Q versus

discrete N with radial wave nunber M as paraneter. Al though each frequency
corresponds to a discrete integer N value, the points are joined to

facilitate discerning constant m lines in the explanation to follow Lines

of constant M are alnost parallel with slope proportional to C,. A constant

m-line L, changes slope and coal esces with the next constant m-line L.,
wi t hout crossing it. Coal escence without crossing is necessary for uniqueness

of the eigen-states. Near coal escence, L, reverts to its original slope while

L proceeds through sinilar steps to coalesce with L, and so on. Renote

m+1
from coal escence, these |lines have a slope proportional to C, and correspond
to shear nodes. Near coal escence, envel opes are also straight lines with sl ope

proportional to C, and correspond to extensional nodes. Shear nodes are denser
t han ext ensi onal nobdes when Ce/CS is large as in the present case. Coupling of

shear and extensional nodes for N>1 is what distinguishes asymmetric from
axi symretric notions.

Since the static solution is prerequisite to solving transient response,

under st andi ng the effect of O-inhonogeneity on the static problemw |l help
understanding its effect on transient response. The first step starts with the

sinmple case of the static axi symmetric honmogeneous cylinder with unit
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prescribed pressure at its inner boundary I = M. Fig. 2 plots radi al
di stribution of displacement U, and stresses o,, and Oy,. Renote from r=rg,

Uyocl/t and (0,4, Oup)c1/r%, with magnitude equal to applied pressure p,.

As expected, o,, is conpressive and o,,, is tensile since internal pressure
expands the cylinder along the radius.

Consi der the plane-strain cylinder with @-inhonogeneity in the form of

Eq. (4) including only 2 terns

u(0) =, (1+ O.5COS(29)) (38)
u(@) in (38) is symetric about =0 and O=x/2 requiring that only even
N’s be included in the expansion (C8) of Appendix C Convergence of the
static solution was achieved with m=60 and Nn=0,2,4. Fig. 3(al-el) plots
dependent variable along  with 6 as parameter and Fig. 3(a2-e2) plots these
variables along 6 with r as paraneter. At 6 =0 where E is largest (Fig.

3(al)), U, decreases along I like U, in Fig. 2(a) with peak U,(r,,0) at r=r,

slightly less than that of U,. As 0 increases, Ug(r,,7/4) dininishes to

alnmost 1/2 U 0). Along O (Fig. 3(a2)), U, is periodic follow ng

e (g :
approxi mately the cos(20) distribution of w(@). This nmeans that along a
constant r-line, the cross-section is squashed with larger curvature at 60 =0
and smallest curvature at @=x/2. This results in flexure of the cross-
section adding to o, a periodic stress conponent that changes from

conpressive at 6=0 to tensile at O=x/2. Indeed Fig. 3(dl,d2) shows a

conpressive over-stress at =0 with magnitude 6 p, and a tensile over-stress
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with magnitude 2 p,. The same argunent applies to o, in Fig. 3(el,e2). Note
that in Fig. 2 0,, is not plotted since it is small since

O o = Bol(A+ Bo) r2I(r7 —r2) =12 /17 <1. It appears then that in the static case,

0 -inhonogeneity magnifies conpressive and tensile stresses because of flexure
at and near the inner boundary, and raises axial stress substantially fromthe
honbgeneous case.

Consi der transient response of a honmpgeneous pl ane-strain cylinder

forced by a 10us trapezoidal pulse of unit intensity, with 1uS rise and fall
times and a 8usS plateau. Fig. 4 plots histories of dependent variables wthin
a 60us time range. Fig. 4(a) shows U histories at 3 different radial

stations. U increases alnost linearly while the forcing pulse is nonzero then

drops smoothly until waves reflect fromthe free boundary Tr=r,. Note the

time delay in response for r=2rp and r=4rp equal to travel time of

ext ensi onal waves to reach these stations from r=r,. Fig. 4(b) plots velocity

history. Velocity increases steeply with rise tinme that of the forcing pul se,
then continues to increase at a reduced rate until the forcing pul se el apses
consistent with the shape of the U history in Fig. 4(a). The snooth rise

during the plateau portion of the pulse is characteristic of cylindrical

symmetry as it is flat in 1-D and 2-D. o, follows the shape of the forcing
pul se closely since it nust satisfy the boundary condition at r=r, (see Fig.

4(c)). However, o, while being tensile for all r in the static case (Fig.

2(b)), is compressive throughout the duration of the pulse then changes to
tensile after the pul se el apses. An explanation is that shortly after the

pul se is applied, a narrow annul ar regi on bounded by the extensional wave-
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front undergoes stress while the wave-front acts as a solid but noving
boundary. During this tinme, the state of stress in this instantaneously
confined annul ar region is al nost hydrostatic where all three normal stress

conponents are approxi mately equal. Rel ease of pressure at the end of the
pul se and radial notion of the wave-front reverts to the free notion when o,
changes to tensile.

Consi der transient response of the plane-strain cylinder with the 0-

i nhomogeneity given by (38). Fig. 5 plots histories of each dependent variabl e
along a colum for a specific 6. Three values of @ are chosen: O, 7/4,7/2.

Unl ess specified on the ordinate of some variable, |abels along a row are the
same for all 6. Exceptions to this rule are when the variable at =0 is

substantially larger than that for other values of 8. At =0 (Fig. 5(al)),

magni tudes of the U histories are approximately half those for the other

0’'s. This may seemcounter intuitive as it is the opposite of the static case
(Fig. 3(al,a2)). Yet, the explanation is the same as that for the sign of o,
in the honogeneous cylinder (Fig. 4(d)). Shortly after the pulse is applied,

t he wave-front confines a narrow annul ar regi on near r=r, where the state of

stress is hydrostatic. Since at =0, nodulus is 3 times larger than at

0=n/2, and since hydrostatic displacenent is inversely proportional to

nmodul us, the result in Fig. 5(al) is obtained. Hi stories of circunferential

di spl acenent v are plotted only for §=n/4 (Fig. 5(b2)) since vosin(ng)

vanishes at =0 and O=7/2 for N=2 and N=4. Magnitude of v is

approximately 1/5 that of U for the 6 shown. Also, travel time is

approxinmately 5 times that for U in Fig. 5(a2). This inplies that v

propagates at the speed of shear waves C,. Histories of o, (Fig. 5(cl-c3))

r
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qualitatively resenble the correspondi ng ones of the honbgeneous cyli nder

(Fig. 4(c)). The difference is that magnitude of o, reduces with nodulus as

evi denced by conparing Fig. 5(cl) to Fig. 5(c2,c3). Histories of o, at 0=0

(Fig. 5(d1)) are particularly interesting. Throughout the duration of the

pul se, response is conparable to the honbgeneous cylinder. After the pulse
el apses, o, becomes tensile reaching a peak 3.5p, at t=90us. The first

peak of o, occurs at the 1/4 period of the coupled fundanental resonance

with a frequency of 2.6 KHz conpared to the fundanental axisymretric resonance

of the honpgeneous cylinder at 6.1 KHz. For an inpul sive pressure, setting
f_i(r)=5(r) in (23a) yields a(t)ocsin(wt)/ o, inplying that the |argest
anplitude of free oscillation is inversely proportional to the fundanental

resonance. This explains the larger o, anplitude of the inhonmogeneous
cylinder conpared the honogeneous one. Histories of o, (Fig. 5(el-e3))
resembl e those of o, (Fig. 5(cl-c3)) except that nagnitude at 6=0 is

approxi mately double that at @ =7x/4. Finally, velocity histories (Fig. 5(f1-

f3)) followthe U histories (Fig. 5(al-a3)) in that nmagnitude of velocity at

0=0 is lower than that at @& =xn/4 and at @ =xn/2.

In the case of r-inhonpgeneity assunme the follow ng distribution of

modul us  E(r)
E(r) = E0(1+O.53in(47r(r —r)(r, —rp))) (39)
where E;, and all other properties are given in (37). In this way, the highest

to lowest E(r) ratiois 3 simlar to the 6-inhonmogeneity. The cylinder is

divided into 45 annul ar constant width segnents each assigned a constant E(r)
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following (39) with I being the nean radius of the " segment. The

correspondi ng stepwise C, distribution is shown in Fig. 6. The cylinder is

forced by the same 10usS trapezoidal pulse used in the case of the 6-
i nhomogeneity. Fig. 7(a-e) plots histories of the cylinder in the interva
0<t<80us. Throughout the duration of the pulse, histories of the cylinder

with r-inhonogeneity are al nost the sane as those of the honbgeneous case (see
Fig. 4). During this tine, response is confined to a narrowring close to
r=r,, where magni t ude depends only on properties in this region. After the
pul se el apses and the wave-front noves outward, response then differs fromthe
honogeneous case especially after reflection fromthe outer boundary r=r_.

It is evident fromthe exanpl es above that for the same | evel of

i nhonogeneity, O-inhonbgeneity has a nore pronounced effect on transient

response both in shape and nmmgnitude. The fundanental reason is that with a

0 -inhonpbgeneity, asymmetric waves are excited that include both extensiona
and shear conponents adding to the spectrum nodes with | ower frequency. These

nodes nmagnify anplitude of free notion for all dependent vari abl es.

5. Concl usi on

Transi ent response of a plane-strain hollow cylinder was anal yzed for

both 6 and r inhonmpbgeneity. For a 6-inhonpbgeneity with periodic nodul ation
noteworthy results are

1. Dependent variables acquire a periodicity along the circunference
2. Static o, and o, are magnified at =0 and r=r, conpared to the

honbgeneous case
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3. Static o, is nodulated by a flexural conponents that is conpressive
al ong the axis of highest nodulus and tensile along the axis of
weakest nodul us

4. Asymetric waves are induced that include extensional and shear

conponents addi ng nodes with | ower frequencies to the spectrum This
in turn magnifies anplitude of o, and o, after the forcing pul se

el apses and free harnonic notion starts.
For a periodic r-inhonogeneity the principal results are

1. Wien the forcing pulse is acting, response resenbl es the honbgeneous
case

2. Differences in response appear after the pul se el apse especially
after reflection fromthe outer boundary

3. Fixing the level of inhonpbgeneity, 6-inhonpbgeneity has a nore
pronounced effect on response than r-inhonpgeneity because of the

absence of shear waves in the latter.

Asymmetric dynamic solution of homogeneous finite cylinder

For periodic notions in tine, The Navi er equations of el astodynam cs can

be witten in vector formas

(A + u)V(Veu) + uVe(Vu) + po’u=0 (AL)
where A and u are Lame’s constants, p is density, U is displacenent
vector, and @ is radian frequency. For cylindrical coordinates (r,0,z) where

Z is along the axis of revolution, U can be expressed in terns of three

scal ar potentials ¢@,&,n as follows

u=Vep+Vx(e,)+VxVx(ne,)

(A2)
u=ue +ve, +Wwe,
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where €,€,,€, are a unit vectors along I,f,Z. Substituting (A2) in (Al)

t hen taking the divergence yields

Vip+kip=0 , V?’=0, +1/r0, +1/r?0,,+ 0,

(A3)
k,=wlc, , =(A+2u)lp
Substituting (A2) in (Al) and taking the curl yields
V% +k% =0
Vn+kin=0 (A4)

k,=wlc, , C=ulp
For sinply-supported boundary conditions at z=0,] and periodicity along 8,
¢@,&,n can be expressed in terns of Bessel functions in r and harnonic
functions in 6 and Zz

(r,0,2) = (¢, I, (Ker) + ¢, Yo (ko)) Si(2) C,(0)

&(r,0,2) :(C12 'Jn(krsr) + Cy Yn(krsr) ) Sm(Z) Sn(e) (A5a)
0(r,0,2) =(C3 3, (kg + C Yo (K1) ) C(2) C,(0)

S,(0)=sin(nP) , C,(0)=cos(nv)
S.(2)=sin(k,,2), C,(2)=cos(k,,2)
k2=k2-K2,, Ki=KZ-KZ , K,=mz/l
m=12,...M, n=01..,N

( ASb)

M is an integer axial wave nunmber that follows fromthe exact solution of
t he separated axi al dependence satisfying sinply supported boundary conditions
at z=0,l which require that u(r,0,z)=v(r,0,2)=0,(r,0,2)=0 at z=0,l.

Simlarly, N is an integer circunferential wave nunber that follows fromthe
exact solution of the separated circunferential dependence satisfying

continuity of dependent variable along the cylinder’s circunference. Subscript
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m in kZm will be dropped hereafter for shortness. If D is a dependent

variabl e, then
D (‘]n "]n+l ; Yn ’Yn+l): Dl(‘]n "]n+l)+D Z(Yn ’Yn+1) (A6)
Since D, has the same formas D, except that the prinmitives J ,J., in D,

are replaced by Y,,Y, in D,, only expressions for D, will be listed bel ow

for shortness. Substituting (A5) in (A2) produces expressions for

di spl acenment s
U= ZZ{C”-”‘H kfe(n‘]n(kfer)/(krer) - ‘]n+1(krer)) * Com n‘Jn(krsr)/r
- C13n‘n krskz(n‘]n(krsr)/(krsr)_Jn+1(K'sr))}Sm(Z) C:n (9)

(A7a)

L, = ZZ{_Can n‘]n(krer)/r — Com krs(an(krsr)/(krsr)_‘]n+1(krsr))

nom ( A7b)
+Ciam NK, J,(K 1) /71 S,(2) S, (0)

W =33 { Gy K, I (Kel) + G K2 3, (K1) | C,,(2) C,(6) (ATC)

n m

The constitutive relations are

o, =AA+2us, , ii=rr, 00, zz
A=¢, +€y+eE, (A8)
oy =pg , ij=10,0z,

g, =0,U, g, =ulr+1/r v, €,0,W
g,=1rou + ov —vlr ( A9)
g,=0,0+ 1row , g, =0,W+0,u

Substituting (A7) in (A9) then in (A8) produces

G = 1 2 D Cu (B + D 1)+ 20 =) = Bk, 1)) 3, (K 1)/ 1% 4+ 2k, 3,0 (K ) T
+2Cl2rm ((nZ - n)‘]n(krs r)/r2 - nkrs ‘]n+1(krs r)/r) (AlOa)
=205 K, ((° == (k1)) 3,k /1 4K 3k, 1)/ T )} S,(2) C,(0)
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Gaos = 1 2| Cua (—(200° =)+ BTN 3, (K1) /72 =2k, 3,1 (K oD) T)
+2C 0 (—(N* =) 3, (K1) /17 41k 3,4 (K 1)/ T) ( A10b)

+ 2c\1.3mn I(z ((nZ - n)‘]n(krsr)/r2 + krst-l(krsr)/r)} Sm(Z) Cn(g)

or =12 D N Ca ((B+2) K+ B ) 31K h) = 205, K K2 3,1} S,(2) C,(0) (AL00)

T = 12, 2 2 (=0 =) 3 (k1) 72+ 1k, 3, (Kr) /)
= 200 ((° =N= (k)7 12) 3, (kM) /12 4k I, (k) /1) (AL0d)
+ 205 k, (17 =) 3,01 /77 = 1K 3,0 (k1) 1)} S,(2) S,(0)
Ton = MZZ{_ZClln‘n nkz Jn(krer)/r - Cerm kz (n‘]n (krsr)/r _krs ‘]n+1(krsr))
nem ( AlOe)
+ Cgon 1 (K2 =K2) 3, (k1) 7} C,(2) S,(0)
Trzl = :uZZ{ZCllmnkz (n‘]n(krer)/r _kre ‘Jn+l(krer))+C12mn n&‘]n (krsr)/r
+ o (K2 = K2) (=13, (k. F) /T +k 3,1 (ko)) Ch(2) C,(6)

( ALOf)

S,(0)=sn(n@), C,(0)=cos(n¥), n=01,..,N
kre:ke:a)/ce ' krs:ks:wlcs ’ ﬁ:i/ll

The Bessel functions in (A5a) through (A10) are real when ® is greater than
both shear and extensional cut-off frequencies of the m" axial node
wzoll=kec, =kzk , ozol)=kc, =k =Kk, (A11)
Since C,>C, then (A5a) through (A10) are valid when a)ZkZCe. However, if
k,c.,<w<k,c, then J (k.r),Y,(k.r) are replaced by I,(k.r),K,(K,). Simlarly,

if o<kc, then J (k.),Y, (ko) are replaced by |.(k. ), K,(Ks). Expressions

for displacenent and stress sinmilar in formto (A7) and (A10) follow with

appropriate changes in sign but will not be Iisted here for shortness.
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Appendi x B: Asymetric dynam c solution of plane-strain cylinder
For the plane-strain problem displacenents and stresses are found from
Appendi x A when the Z dependence and axial displacenent W vanish.

Expressions for U and v are

ul = Z{Clln kre(n‘]n(krer)/(krer) - Jn+1(krer)) + CJ.2n n‘]n(krsr)/r } Cn (9)

n

(B1)
L = Z{_Clln r]‘]n(krer)/r — Cp krs(n‘]n(krsr)/(krsr) _‘Jn+1(krsr))} Sn(e)
S.(0)=sn(n@), C,(0)=cos(nd), n=01,..,N
ke=k. =wl/c, , Kk =K =wlc
Expressions for stresses o,,0,,0,,T, are
G = 12 {Cun (<(B+D (k) + 202 =) 3, (k) 72+ 2k, I, (k1))
n (B2a)
+ 265, (0" =M 3, (k1) /17 = nk 3,1 (k 1) /1)) C,(6)
0991 = MZ{Clln(_(Z(nz _n) + ﬂ (ker)2 )‘]n(krer)/r2 - 2kre ‘Jn+1(krer)/r)
n ( B2D)
+ 20,5, (~(° =3, (k1) /17 + 1k 3,4 (k 1)/ 1) C,(6)
Gzzl = ,Ll Z{_ 2Clln ﬁ kre2 Jn(krer)} Cn (9) ( BZC)
Ty = 1| 20 (—(0° = M) 3 (K1) 72+ ke, I, (K r) /)
" ( B2d)

=26, (0" = N = (k1) 12) 3,0, 172+ K, 3,4 (kD) )} S,(0)

Appendi x C. Asymmetric static solution of plane-strain cylinder

For the honpbgeneous cylinder with material properties (A4 ,uo), t he

static solution is obtained by solving Eq. (1a) with vanishing tine
dependence. The solution takes the form

uy(r,0)=c,r’c (@) , o(r,0)=c,r* S,(0) (C1)
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where C, and C, are constant coefficients. Substituting (Cl) in (la) yields
t he equati ons
((o+26) (o* =1 = 10" ) &, + (o + o) = (2o +315) ), =0 .
n((ﬂ“o"'ﬂo)a"'(lo"'sﬂo))cu —((ﬂo+2‘uo)n2—,uo(a2—l))cu:0
A non-trivial solution requires that the determ nant of the coefficients of
C, and C, vanish. This yields a fourth order polynomal in o with 4 roots
o =%(n+l) (&)

The solution (Cl) then takes the form

uy(r,0) = ZZ uni T C, () (C4a)
n=0 i=1
4
0,(r8)=2, 26,0 1" §,) (Cab)
n=0 i=1
Substituting each of the roots of (C3) in (C2) determ nes a relation between
Cu,ni and Cu,ni

(()*o +20,) (ari -1)- ,uonz)
Coni =~ Co i (C5)
’ n((ﬂvo"‘/lo)ani _(%+3U0)) Y

Substituting (C4) into the constitutive relations (2) gives

G,o(,60) = Zi{ o (7o (00 +1)+ 28001, )+ €, A | 17, (6)

4

G o (,0) = ZZ{C (o (et +2)+ 280 )46, N0 + 2080) | 17 C, (6)

0 i=1

4

0 (1,0) =262 > (G (et +1) 4G, N} 17 C,(0)

n=0 i=1

Tr@s(rle):_:uo i{cu nill um( Ay _1)} r.am_lsn(e) (C6)

n=0 i=1
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Substituting (C5) in the boundary conditions

Np

Grrs(rp) = Z pn C:n (0) ! Grrs(ro) =0 ( C7a)
n=0

Tr@s(rp) = O ! Tr@s(ro) = O ( C7b)

yields N, uncoupled |inear equations in each set of coefficients C,; and

C

v,ni *

For the cylinder with @-inhonogeneity in E given by (4), the static
equations (5a,b) with vanishing tine derivative are solved by the Galerkin
net hod. A set of orthogonal trial functions is assumed each satisfying the

honogeneous differential equations (3) and boundary conditions (9). Candidate

functions are the eigenfunctions of the honbgeneous cylinder with Nn>0. Since
the total static solution is made of the axisymretric static solution nodified
by an asymmetric part accounting for material inhonpbgeneity, that static

solution is added to the set of trial functions. In this way, the displacenent

expansi on takes the form

Uy(r,0) =D By @ Co(0) + Ugo(r)

n=0 m=1

0,(r,0) =22 by ¥ S,(6)

n=1 m=1

(C8)

{(p(r),l//(r)}nm are the eigenfunctions of the honbgeneous probl em determ ned by

(10) satisfying the honbgeneous boundary conditions (9), and uso(r) is static

axi synmetric radial displacenent defined by (C4a) with n=0, satisfying the

i nhomogeneous boundary conditions (C7a)

Uy (1) ==, rp2 (r/(ﬁo+1) + rozlr)/(z/'lo(ro2 _rpz)) v Bo =201 1 (C9)

- 271 -



ATK MISSION RESEARCH W81XWH-04-C-0084
Substituting (C8) in the static equivalent of (5a,b), then multiplying (5a) by

0!

, €0s(nd) and (5b) by . Sn(nY), integrating over the domain r <r<r,

0<60 <27 then adding the two equations produces

PY. 2 [ON R o+ ORRE ]l by,

k=0 j=1

+:u0 ZZI:GDB) (33 jk +®E1‘l‘<) n, jk:l b = - po 5n0 ®(4) R(O) (ClO)

k=0 j=1

RO =—r2/(r7-r? J-l//mn (1+(r /r)) dr

"

Al other quantities in (Cl0) are defined in (15b,c). The |inear sinmultaneous

equations (Cl0) determine the coefficients bjk.

Since the functions {(p(r),l//(r)}nm are only trial functions and not
solutions of the static equations, not all functions are physically
adm ssible. In fact, the lowest node m=1 for N>2 is dropped for reasons to

follow Fig. Cl(al) plots normalized Uy,(r) which varies exponentially with r.
Fig. Cl(bl) and Cl(cl) plot ¢u(r) and @;(r) which follow the same

qualitative behavior. For modes ¢,(r), ¢4(r), ¢,(r) etc., this trend changes

as shown in Fig. Cl(a2,b2,c2) as these functions increase with r. These
shapes al t hough consistent with extensional dynam c resonances, are

i nconsistent with static deformation frompressure at the inner boundary as
shown in Fig. Cl(al). Functions with higher wave nunber as @, (r), @(r),
@,(r) etc. (Fig. Cl(a3,b3,c3)) are all admissible. It then follows that for

N>2 extensional nodes with Mm=1 are inadnm ssible trial functions excl uded

in the expansion (C8).

- 272 -



ATK MISSION RESEARCH W81XWH-04-C-0084

Ref er ences

Armenakas, A., 1967. Propagation of harnonic waves in conposite circular
cylindrical shells |I: Theoretical investigation. Anerican Institute of
Aeronautics and Astronautics Journal 5, 740-744.

Armenakas, A., Keck, H., 1970. Harnonic non-axi symmetric waves with short wave
| engt hs propagating in conmposite rods. Journal of the Acoustical Society of
Anerica 48, 1160-1169.

Bal trukoni s, J., 1960. Free transverse vibrations of a solid mass in an
infinitely long rigid circular cylindrical tank. ASME Journal of Applied
Mechani cs 27, 663- 668.

Bird, J., Hart, R, MCure, F., 1960. Vibration of thick-walled holl ow
cylinders: Exact numerical solutions. Journal of the Acoustical Society of
Anerica 32, 1403-1412.

El - Raheb, M, Wagner, P., 1989. Wave propagation in a thin cylinder that
i ncl udes point nmasses. Journal of the Acoustical Society of Anerica 85,
759-767.

El - Raheb, M, 2004. Wave propagation in a hollow cylinder due to prescribed
velocity at the boundary. International Journal of Solids & Structures,
41/18-19, pp 5051-5069.

Gazis, D., 1958. Exact analysis of the plane-strain vibration of thick-walled
hol | ow cylinders. Journal of the Acoustical Society of Anmerica 30, 786-794.

Heyliger, P., Jilania, A, 1992. The free vibration of inhonpbgeneous elastic
cylinders and spheres. International Journal of Solids and Structures 29,
2689- 2708.

Keck, H., Arnenakas, A, 1971. Wave propagation in transversely isotropic
| ayered cylinders. Journal of Engineering Mechanics 97, 541-558.

Reuter, R, 1969. Dispersion of flexural waves in circular bimateria
cylinders — Theoretical treatnent. Journal of the Acoustical Society of
Anerica 46, 643-648.

Steinberg, L., 1995. Inverse spectral problens for inhonbgeneous elastic
cylinders. Journal of Elasticity 38, 133-151

Wiittier, J., Jones, J., 1967. Axially symetric wave propagation in a two-
| ayered cylinder. International Journal of Solids and Structures 3, 657-
675.

Yin, X., Yue, Z., 2002. Transient plane-strain response of nmultilayered
elastic cylinders to axisymetric inpulse. ASME Journal of Applied
Mechani cs 69, 825-835.

Acknowl egnent :

This work was supported by a grant from DARPA, executed by the U S. Arny
Medi cal Research and Materiel Command/ TATRC Contract # WB1XWH 04- C- 0084.
The views, opinions and/or findings contained in this paper are those of the
aut hor and should not be construed as an official Department of the Arny
position, policy or decision unless so designated by other docunmentation

- 273 -



ATK MISSION RESEARCH W81XWH-04-C-0084

80 . . .

60

40

Figure 1. Asymmetric mode frequency spectrum
of homogeneous plane-strain cylinder
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Figure 2. Axisymmetric static variables of homogeneous plane strain cylinder
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APPENDIX N

Slides Presented at MMVR 13

— 281 -



ATK MissSION RESEARCH W81XWH-04-C-0084

IRTUAL
LDIER

DARPA

OJECT

ANALYTIC SIMULATION OF
TISSUE DAMAGE FROM
PENETRATING WOUNDS TO
THE HEART (PART 1)

Bob Eisler
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Presented at: Medicine Meets Virtual Reality 12
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Thiswork is supported by the U.S. Army Medical Research and Materiel Command
under Contract No. W81XWH-04-C-0084. The views, opinions and/or findings
contained in this report are those of the author(s) and should not be construed as an
official Department of the Army position, policy or decision unless so designated by
other documentation.

IRTUAL
LDIER
ROJECT

DARPA

Develop analytic models describing tissue damage from ballistic impact by low
velocity fragments (categories of fragments shown at bottom) penetrating heart.
Tissue damage includes descriptions of projectile trajectory through heart and
tissue damage lateral to projectile trajectory (wound tract).

SCOPE

e TASK 1 — ANALYTICAL SIMULATION OF PROJECTILE TRAJECTORY
- Tissue Mechanical Properties
- Projectile Retardation
- Simulation of Arbitrary Projectile
* TASK 2 — ANALYTIC SIMULATION OF WOUND TRACT
- Analytic Simulation of Tissue Transient Response
- Analytic Simulation of Wound Tract Geometry
e TASK 3 — BALLISTIC EXPERIMENTS ON TISSUE SURROGATES

“Chunky” Equivalent Slender High Aspect Ratio Fragment

Platelet L—)g Sphere
@ J ’ o8
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DARPA

« GENERAL PURPOSE NUMERICAL DISCRETIZATION TOOLS SUCH AS
FINITE ELEMENT CODES CANNOT PROPERLY ADDRESS PROJECTILE-
TISSUE INTERACTION

— Require high strain rate material properties for human tissue as input which do
not exist and cannot be acquired

- High penetration velocities - tissue interaction with projectile fluid-like
- Low penetration velocities - target response is like hyperelastic and
viscoplastic solid
- Most of wound tract established at intermediate velocities where multiphase
material interacts with projectile at high strain rates
— Require detailed material models of failure which is local proce ss
* Relevant material properties do not exist and probably cannot be acquired

» Analysis requires highly refined mesh (frequency content > MHz) not
consistent with late-time structural response (frequency content Hz - kHz)
HYBRID APPROACH WITH ANALYTIC MODEL THAT DESCRIBES
RESPONSE LOCAL TO WOUND TRACT AND PROVIDES INITIAL/BOUNDARY
CONDITIONS TO NUMERICAL DISCRETIZATION SCHEME FOR GLOBAL
RESPONSE

— Require feedback loops between global and local models

IRTUAL

LDIER
ROJECT

Q
* Observation. Empirically observed that penetration depth, &(v), as a function of striking velocity, v, of a
spherical projectile into soft materials like gelatin (and presumably soft tissue as well) have sigmoidally shaped
curves bounded by low velocity and high velocity asymptotes

» Retarding force on spherical projectile can be derived from the 8=§(v)

— More complicated projectile geometries can be represented as ensemble of spherical projectiles where
retarding forces can be derived by integrating resultant forces from constituent spheres about projectile
geometry.

« For Unknown Material (e.g., Human Tissue). The Taylor series expansion of the asymptotes for the curves
can be rigorously derived.*

- Limits of these asymptotes as v>0 and v>« have dominate leading terms

- Coefficients of terms can be expressed in terms of independently measured material properties which
can be used to construct 3=§(v) for unknown materials

- 3=4(v) for intermediate velocities can be established by matching slopes of high and low velocity
asymptotes.

- Allows determination of projectile retarding forces in unknown materials where quasistatic properties are
available

 Projectile rotational kinematics and trajectory can be determined by continuum techniques once retarding
forces specified

» Testing methodology by measuring quasistatic material properties and reconstructing 6=5(v) for unknown
materials which is then correlated with experimental 3=6(v) from ballistic testing

* A.K. Chatterjee and R. D. Eisler, et al. Ballistic Penetration into Gelatin, IMPACT, WAVES, AND FRACTURE, Proceedings Of
The Werner Goldsmith Symposium, sponsored by the Applied Mechanics Division of the American Society of Mechanical
Engineers and the University of California at Los Angeles, Los Angeles, 28 - 30 June 1995, ASME Applied Mechanics Division,
Volume 205, pp. 9-20, 1995
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Experimental Data on
Penetration Depth, &(v),
versus Striking Velocity,
v, for Spherical
Projectiles

TASK 1 — Analytic Simulation

of Projectile Trajectory

TASK 2 — Wound
Tract Model

Wound tract sum
of initially failed
material and
inelastic strain
accumulated
from hysteresis

-
jry
o

High and Low Velocity
Asymptotes

lim{5(v)] = av*

lim[5(v)] = In[v]

a function of quasistatic
material properties and y
function of density

Lattice of nonlinear
springs with shear
springs
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Threshold
Penetration Model

\4

Retarding Forces on
Spherical Projectile

)

Kinematics of
General Projectile
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0 Low Velocity — _ @™ High Velocity
- i Asymptote, Asymptote
2 g9 _i / 4igh Velocity Asymptote can
o . RCae be reconstructed from
= g ! 5] material densities which is
= _1‘ available for human tissue
a 7 —
4]
s - .
c 6 — Intermediate Velocities can be
=) . deduced from matching slopes
« 5 | of the high and low velocity
g ﬂ asymptotes E
s 4 — !
E n /2 Ballistic Penetration data for
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| Simulation of Projectile Rotation and Trajectory

I from Ballistic Impact by 30 cal. Cut Cylinder at 30 Caliber, 0.6 inch long, 45

1 1,400 feet/sec into 20% Ordnance Gelatin degree “cut” cylinder
projectile

FIRST 2-1/2 INCHES OF WOUND TRACT

100
microseconds microseconds 1.25 milliseconds " 5 milliseconds
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Comparison between Simulated (-)
and Experimental Data (A)

Rotational Angle versus Time

T

-25 \

Wedge Orientation at Impact

360 microseconds

Rotation Angle (Degrees)

-150 -f 1’ .

-175 -+ Posttest Wound Tract
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0 50 100
Time (microseconds)

1.230 milliseconds
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Fragment Ballistic Impact

Pressure Contours on Pressure Contours Strain Contours
Impact Surface of Left Through Thickness of Through Thickness of
V icle (LV) LV Myocardium from LV ardium from

pii|

Impact of Cylindrical
Projectile on LV
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APPENDIX O

BRIDGE EFFORT
BEHIND ARMOR RESPONSE TO NON-PENETRATING

PROJECTILES AND BLAST
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A series of 2D Hydro code cal culations was conducted to address various mechanical response
modes of ceramic breast plates used in current body armor. Of particular interest were stresses
promoted at the interface between the ‘ catcher’ portion of the vest and human tissue behind the
plate for an incident threat (blast or projectile) that is defeated by the armor. Moreover, future
upgrades entail increasing the performance (ballistic limit) of the plate so thisin turn will also
increase the stresses transmitted to the tissue.

Theinitial analysis yielded good correlation with published ballistic limits for the baseline 4.8
Pounds per Square Foot (psf) protective vest design. This plate is designed to defeat a 7.62 M80
ball round at muzzle velocity. The baseline plate consists of a 0.27-inch thick Boron Carbide
Plate fixed to 0.29-inch (45 layer) Spectra Shield. Subsequent analysis included and enhanced
design with an areal density of 5.9 psf which was designed to defeat a 7.62 APM2 threat. At a
nominal striking velocity of 2900 fps (muzzle velocity) normal to the plate impact surface, the
stresses at the interface between the Spectra Shield backer-plate and human tissue were
significantly reduced compared to the impact surface stresses. However, these stresses were still
significant. The high mechanical impedance of the ceramic plate which is designed to cause high
impact stresses that fragment the incident projectile also result in high stresses promoted in
underlying tissue.

The 2D hydrocode model that was developed for this effort is shown in Figure O-1.

FIGURE 0-1. Hydro code Model for Baseline SAPI Configuration
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Snapshots of the early time (3.6 psecs.) and late time (73 psecs.) material response of the
projectile and target are shown in Figures O-2aand b. At early timeit is seen that the nose of the
projectile has failed as well as the front surface of the ceramic. At latetimeit is seen that the
projectile has been defeated and is fragmented. A cone of the ceramic material has failed and
there is significant deformation and initial failure near the centerline of the Spectra Shield back-
plate.

The velocity versus time in the center potion of the projectile for the cases of a nominal 2900 fps
(no penetration) and a 3000 fps (penetration) are shown in Figure O-3. It is predicted that
ceramic and projectile failure occur around 30 psec leading to the ‘blip’ in the velocity shown in
the associated figures

FIGURE O-2a, b. Early/Late Time Material Response of Projectile/Target at Nominal
Striking Velocity

AUTODYN-20 8.1 from Century Dynamics

Gauge History ( ) Gauge# 3

ToJopm M-

FIGURE O-3. Velocity versus Time for 7

2900 and 3000 fps

Striking Velocities (2900
fps event is defeated and
3000 fps event fully 2007
Penetrates armor).

HVELOCITY
I
e
[
|
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The resulting projectile/target response for the 3000 fps impact case at late time (72 psecs.) is
shown in Figure O-4. Note that the projectile has failed but penetrated the Spectra Shield.

FIGURE O-4. Late Time Material Response of Projectile/Target at 3000 fps Striking
Velocity

Once correlation was achieved with published data for the ceramic breast plate in isolation, the
analysis was repeated using the configuration above backed by 0.2-inches of ordnance gelatin
simulating human tissue. Of interest in this case was the stresses developed in the gelatin given
that the Spectra Shield was not penetrated. The geometry is shown in Figure O-5

MataT| s

Figure O-5. Hydrocode Model for Ceramic Breast Plate and Gelatin Backing
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The state of the materials at |late elapsed times following impact assuming Gelatin is bonded to
the Spectra Shield (SS) is shown in Figures O-6a and b. The location of the corresponding

materialsis shown in Figure O-7.

I.Q’.eﬁ’.'tﬂmmm

FIGURE 6 a,b. Late-Time Material Failure of Ceramic Breast Plate and Gelatin
Configuration

FIGURE O-7. Late-Time Material Location for Ceramic Breast Plate and Gelatin
Configuration

The thru the thickness stress versus time histories for the ceramic/SS interface (Gauge 23), rear
of SS (Gauge 27), near front surface of gelatin (Gauge 28) and middle of gelatin (Gauge 30) are
shown in Figure O-8a. The near impact surface stress is compared with the ceramic/SS interface

stressin Figure O-8b.
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Gauge History ( vestgell )
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FIGURE O-8a ,b. Stress versus Time for Various Locations in Ceramic Breast Plate and
Gelatin Configuration

A comparison of the peak stresses at various locationsis given in Table O-1. It is seen that a
substantial amount of attenuation occurs as the impact induced pulse propagates thru the various
layers but the stresses created in the gelatin are still sufficient to cause tissue damage.

TABLE O-1. Summary of Peak Stresses in Materials

Location Peak Stress (ksi) | % of Peak Stress Failure Stress
(ksi)

Near Impact Site 1700 100

Ceramic/SS Interface 100 6

Back of SS 5 0.3

Near Front Surface of 15 0.6 0.4

Gelatin

Middle of Gelatin 7 0.4 0.4

The late time state of the various materials is shown in Figure O-9.
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AUTODYN-2D +6.1 from Cenl
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Cycle 5
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FIGURE O-9. Late-Time Material State for Ceramic Breast Plate and Gelatin Configuration

An additional set of hydrocode cal culations were conducted to address the response of behind
armor tissue to non-penetrating APM 2 and blast wave loading. Of interest are the character of the
stress pulse and the deformation of the tissue stimulant behind the armor. An APM2 projectile
traveling at 2900 fps and a blast wave of several hundred psec and 1 Bar peak stressand a
rapidly rising blast pulse of several msec and a 6.8 Bar rapidly rising blast pulse were modeled.

The projectile which did not penetrate the vest transferred much of its momentum to the vest
which then impacted the tissue simulant. Damage in the Spectra Shield resulted in damage to the
gelatin. The projectile then rebounded resulting in enhanced momentum transfer to the target.
The lower peak pressure blast pulse cased significant deformation in the gelatin and ceramic
breast plate enhanced which also promoted significant induced stresses. The higher magnitude
pressure blast pul se caused significant damage to the tissue simulant.

A 2D hydro code model was constructed as shown in Figure O-10. In this case the tissue
stimulant was ‘stood’ off from the Spectra Shield by approximately 1.6 mm which just alows the
Spectra Shield to impact the gelatin. The rear of the gelatin is assumed to be a transmitting
boundary thus allowing the stress pulse to be transmitted without and reflection at the boundary.
The first simulation was run using the APM 2 projectile. The tissue simulant is restrained from
moving in the direction of the projectile impact.
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Gell

Fragmit At Sack

Figure O-10. Hydrocode Model for Ceramic Breast Plate and Gelatin Configuration

Snapshots of the stress contours in the materials just after contact of the Spectra Shield on the
gelatin (57 psecs.) and late time (210 psecs.) when significant deformation of the gelatin occurs
are shown in Figure O-11aand b.

FIGURE O-11a ,b. Early/Late Time Material Response of Projectile/Tissue
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A plot of stress versus time in the tissue simulant along the centerline is shown in Figure O-12.
Note that the stress pulse with any significant duration (5 psecs) and has an average magnitude of
about 300 bars. The gelatin displaces about 1.6 mm in the 210 msecs time-interval in which the
problem was run

Gauge History ( vestgel2sep2 )
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50 55 6.0 6.5 7.0
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TIME (ms)

FIGURE O-12. Stress vs. Time Near Front of Gelatin

The second set of analysis was conducted assuming a prescribed blast wave loading on the
ceramic front surface of the target. In this case the pul se was assumed to rise rapidly over 20
psecs to a peak pressure of 1 bar (100 KPa) and decay Ilnearly to zero in 230 psecs. Themode is
shown in Figure O-13. MOV Fi oy Oy

stgrial Locatiom

Spectra&d
BiC
Gelt

vestgellsapl)
Cycle 0 %'

Tirrra 0 DODE-+00Q s
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FIGURE O-13. Model of Ceramic Breast Plate and Gelatin Configuration
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The thru the thickness stress versus time for a point near the front of the gelatin is shown in
Figure O-14. Note that at about 0.41 msec the rear of the Spectra Shield impacts the gelatin
causing avery short duration pressure spike. The stress contours at thisimpact time are shown in
figure O-15. Recall that the peak impact stress is 100kPa. The peak stress in the gelatin is more
than twice this value.

Gauge History ( vestgel2sep2pr1 )
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Figure O-14. Stress vs. Time Near Front of Gelatin

FIGURE O-15. Stress vs. Time Near Front of Gelatin
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The impulse delivered by the surface loading pul se results in momentum generation in the
targets. The time history of the momentum in the various layersis shown in Figure O-16. Note
that the tissue simulant ultimately contains about 10% of the momentum of the target.

Part Summary ( vestgel2sep2pri1 )
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Figure O-16. Momentum versus Time in the Various Layers

The final set of analysis was conducted assuming a more severe blast wave loading on the front
surface of the target. In this case the pulse was assumed to rise rapidly over 20 psecsto a peak
pressure of 6.8 bar (680 KPa) and decay linearly to zero in 5 msecs. The thru the thickness
stresses versus time near the ceramic, Spectra Shield and tissue front surfaces are shown in
Figure O-17. It is noted that at about 0.12 msec the rear of the Spectra Shield impacts the gelatin
causing avery short duration pressure spike. Recall the peak impact stressis 680 KPa. The peak
stressin the gelatin is ~ 3 times this value. In this loading case, the gelatin is predicted to undergo
significant failure as shown in Figure O-18.

The impulse delivered by the surface loading pul se results in momentum generation in the
targets. The time history of the momentum in the various layersis shown in Figure O-19 and is
significantly different in character than that shown for the previous loading case. Note that the
gelatin again ultimately contains about 10% of the momentum of the target.

Both the projectile and the blast pulses will cause the vest to impact the gelatin causing
significant deformation and stress. The peak stresses transmitted to the gelatin could in theory be
mitigated by designing ‘ poorer’ mechanical coupling of the vest via clothing or alarger standoff.
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FIGURE O-17. Stress versus Time in the Various Layers
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FIGURE O-18. Material State at 1 msec.
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FIGURE O-19. Momentum versus Time in the Various Layers

A comparison of the peak stresses at various locationsis given in Table O-2. It is seen that a
substantial amount of attenuation occurs as the impact induced pul se propagates through the
various layers but the stresses created in the tissue are still significant.

TABLE O-2. Summary of Peak Stresses in Materials

Location Peak Stress (ksi) % of Peak Stress Failure Stress
(ksi)
Near Impact Site 1700 100
Ceramic/SS Interface 100 6
Back of SS 5 0.3
Near Front Surface of 15 0.6 0.4
Gelatin
Middle of Gelatin 7 0.4 0.4
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