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INTRODUCTION

ATK Mission Research was sponsored by DARPA’s Virtual Soldier program to analytically
simulate residual wound tracts and tissue dynamics associated with a survivable wound from an
explosively driven fragment penetrating the left ventricular wall of the human heart. The resulting
ATK Mission Research wound description was used in the DARPA/University of Michigan Virtual
Soldier program as initial conditions for describing blood loss and occurrence of hemorrhagic
shock. The DARPA/ATK Mission Research Statement of Work (SOW) is included as Appendix A.

The Mission Research effort consisted of three related tasks. In the first task entitled Analytical
Simulation of Projectile Trajectory, Mission Research divided up fragments into three geometric
categories – platelet, “chunky” fragment, and slender high aspect ratio projectile – with different
governing parameters. For each fragment geometry, algorithms were developed that describe
interaction of the fragment with human tissue and resulting projectile kinematics through different
tissue layers of the human left ventricular wall. Prof. Andrew McCulloch, Ph.D. (University of
California, San Diego – UCSD) and his team assisted Mission Research in executing the UCSD
Continuity code to develop quasistatic constitutive models for the various layers of tissue through
the left ventricular wall. From these quasistatic models, high strain rate tissue property data was
developed by Mission Research for input into projectile retardation models. The retardation models,
which are specific to the various fragment geometry classes, describe projectile deceleration during
tissue penetration and were also developed by Mission Research in this first task.

In the second task entitled Analytical Simulation of Wound Tract, Mission Research used the
projectile velocity retardation and trajectory models developed in Task 1 as input conditions to a
transient tissue response model developed in subtask 2.1 to simulate tissue displacement lateral
to the projectile trajectory in subtask 2.2. The permanent tissue displacement was used to
simulate the residual wound tract which was then integrated into the Human Holomer developed
by the University of Michigan for DARPA’s Virtual Soldier project.

In the final technical task entitled Ballistic Experiments on Tissue and Surrogate Materials,
ballistic impact experiments were conducted with custom designed launchers and projectiles on
instrumented homogeneous and non-homogeneous ordnance gelatin targets. The data from these
experiments were correlated with output from Task 1 and 2 models.

Two additional tasks, unrelated to the base effort described above, were added to the Mission
Research SOW. The first of these tasks included using a modified Nail Gun developed by the US
Army Institute of Surgical Research (ISR) on ordnance gelatin targets and comparing residual
damage produced in the gelatin by the ISR Nail Gun as compared to the residual damage from
ballistic experiments. A separate letter report and a DVD with high-speed digital video of all
experiments were sent under separate cover for this task. The second task included conducting
hydrocode analysis of body armor SAPI plates subject to non-penetrating projectiles and blast and is
discussed in Appendix O.
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TASK 1
PROJECTILE RETARDATION AND TRAJECTORY MODELING

The principal activity in this task was to develop a model that describes velocity retardation and
trajectory of the projectile center-of-mass as it penetrates human tissue. The model must use
independently measured target mechanical properties that is typically available for human tissue
as input. This is important since ballistic test data will not be available for human subjects and
only limited, quasistatic human tissue mechanical property data is available. We therefore
formulated a projectile retardation model where given data relative to penetration depth versus
striking velocity derived from ballistic experiments on a known projectile target combination,
where the penetration physics are phenomenologically similar to human tissue, a similar relation
can be derived for an unknown projectile-target combination (in this case human tissue) provided
that projectile properties, striking conditions, and target material properties are known. We
successfully validated the methodology by conducting ballistic penetration experiments on
different formulations of gelatin and predicting velocity retardation and projectile kinematics
where only quasistatic mechanical properties where known for the gelatin formulations.

In this task three categories of fragments were modeled (cf. Figure 1). The first category is a
platelet with length to diameter ratio (L/D)   (i.e., fragment thickness dimension is very
small). The mean amplitude,, of the irregular boundary about the platelet is user specified. The
second category is a “chunky fragment” that is symmetrical with length to diameter ratio (L/D) ≈
1. In general this projectile can be represented as an “equivalent sphere” in terms of its
penetration characteristics. The third category is a non-symmetric fragment with a user specified
L/D where 1 < L/D  2. We have used as a nominal example of this fragment category a cylinder
with a leading edge geometry that is a wedge where the angle of the wedge is user specified. An
example of this fragment is shown in Figure 2 and is being used in the Task 3 ballistic
experiments.

FIGURE 1. Models for three fragment categories
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“Slender” High Aspect Ratio
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FIGURE 2. 30 Caliber “Wedge Projectile” used in Task 3 Ballistic Experiments

1.1 ESTIMATION OF RETARDATION COEFFICIENTS FROM EXPERIMENTAL DATA AND ITS

EXTENSION TO UNKNOWN PROJECTILE-TARGET PAIR

When a projectile enters a target medium at a known velocity, the projectile velocity decreases as
penetration depth increases. For analysis, the associated penetration mechanics is idealized as
occurring in two phases. The first phase is the initial entry phase when the projectile is not fully
embedded in the target. The discussion of this initial phase is deferred until Sections 1.1.2 and
1.1.3. The second phase is the projectile motion after the projectile is fully embedded in the
target. Note that for a given projectile-target pair, there is threshold striking velocity below which
no penetration takes place and the motion of the pair can be predicted by linear elastic analysis.

Initially, our effort focused on the second phase of the penetration process. To understand the
second phase of motion, experimental data from Task 3 relative to penetration of spherical
projectiles into 20% gelatin targets was employed. We used three sizes of spherical projectiles; a
0.34 gram, 0.17 inch diameter steel sphere (referred to as a ‘BB’), a 1.0 gm, 0.25 inch diameter
steel sphere, and there is also some limited 0.375 inch diameter steel sphere data.

Experimental data was collected on the depth of penetration, (v), at different striking velocities,
v,. We call this data “experimental (v) versus v” data. This data is presented in the Task 3
discussion. Using the kinematics of a point mass m under a retarding force, ( )R v , we can relate

( ) and ( )R v v through the following equations.
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 v( )

0

v

v
v

R v( )






d
R

R v( )
v

v
 v( )

d

d





Equation (1-1)

where the mass term have been dropped from the equations. From physical considerations,
2( )R v v v     , then the first term corresponds to very low velocity or a ‘static’ retarding

force, the second term correspond to the Stokes frictional drag while the last term is the fluid

drag term with a 21

2
v scaling. Frictional drag is scaled to the viscosity  of the target medium

and the first term is scaled with the elastic modulus of the target.

To develop a retardation force algorithm, Equation (1-1) is used to determine , ,   for the

projectile target pair used in the experiments. These are called “reference” values. Equation 1-1
can be used to derive the low velocity and high velocity characteristics of the ( )v function. It

can be shown that 2( )v v  as v 0 for low velocities and ( ) ln( )v v  for high velocities.

Expanding ( )v as

2 2

2

( ), low v

( ) ' '
' ln( ) , high v

v a bv cv

v b c
a v

v v



  

  


Equation (1-2)

And using the experimental data, we can get the coefficients in Equation 1-2 by curve fitting, and
matched asymptotic expansions. Once ( )v is known, ( )R v and its coefficients can be

calculated from Equation 1-1. For 0.25-inch diameter steel balls, experimental data and
estimation of the retardation force using Equation 1-1 is shown in Figure 2. In Figure 2, v is in
ft/sec,  is in inches, and R2 is in consistent units.

FIGURE 3. Penetration Depth and Retardation forces versus Velocity
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To extend these equations to unknown projectile target pairs, we make some fundamental
assumptions. We assume that the force of retardation is normal to the projectile surface. That is,
the retardation depends only on the normal component of velocity, nv for a representative point

on the projectile surface. If this component is negative, then the force of retardation is zero. Thus,

the normal force is
( ) if 0

0 if 0

n n

n

R v v
R

v





.

The projectile is assumed to be rigid as it moves through the target. This is a good approximation
if the target is “soft” as is the case for biological tissue and surrogate materials of interest. The
scaling laws applied to the various coefficients , ,   are done using the physical relations

between the respective terms discussed above. Scaling parameters are shown below in Table 1,
page 13.

The scaling in the text box was used for the spherical penetration data in the 20% gelatin targets
shown in Figure 4. So in this example, the target mechanical properties are unchanged while the
projectile properties are different and the scaling for different diameter spherical projectiles is
shown. As previously mentioned, a correlation between the theoretical predictions using the
method above and experimental data for various spherical projectiles are also shown in Figure 4.

1.1.1 APPLICATION TO NON-SPHERICAL PROJECTILES WITH ASPECT RATIOS 0 2
L

D
 

Using the above approximations, we have developed models to predict the motion of two
completely different types of projectiles. The first one is a flat fragment with very low L/D while
the second one is a cut cylinder with 1 ≤ L/D ≤ 2. These models with the associated theoretical
development are briefly discussed below.

1.1.1.1 Flat Fragment (Platelet). A schematic of the fragment and loading is shown in Figure 5.

Equations of Motion

The motion of the center of mass G and the motion about G are governed by

ˆ( )

ˆ( )

G n

S

G n

S

mV R v ndS

H r R v ndS

 

  






 


  

Equation (1-3)
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TABLE 1. SCALING METHODOLOGY FOR PENETRATION DEPTH AS FUNCTION OF STRIKING

VELOCITY

 0.048n 0.032n r
mr

mp


D

Dr









2




r


 52.427n 34.951n r
mr

mp


D

Dr









2




r


 4.049 10
4

n 2.7 10
4

n r
mr

mp


D

Dr









2


E

Er


Scale Retardation Coefficients

(gm)mr 1.073(gm)mp 3.62

Reference Projectile Mass mr
1

6
 Dr 2.54( )

3
 pr

Projectile Mass mp
1

6
 D 2.54( )

3
 p (gm)

Reference Values: Change when Different
Experimental Data is used as Reference
Values

Use Scaling Laws for Retardation
Coefficients

Reference or Experimental Data Values
Enter Projectile/Target Data

Reference Target Young's ModulusEr 4.5 10
4

 (psi)
Target Young's Modulus E 4.5 10

4
 (psi)

Target Viscosity  0.1 (poise) Reference Target Viscosity r 0.1 (poise)

Reference Projectile Diameter or
Diameter of Projected Area Dr 0.25 (in)

Projectile Diameter or
Diameter of Projected Area D 0.375

Reference Target Density r 1.0 (gm/cc)
Target Density  1.0 (gm/cc)

Reference Projectile Density pr 8.0 (gm/cc)
Projectile Density p 8.0 (gm/cc)

________________________________________________________________________________________
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PENETRATION DEPTH VERSUS IMPACT VELOCITY

Analysis and Ballistic Data for Normal Impact Into Gelatin of Different Diameter Steel Spheres

FIGURE 4. Correlation between analytical predictions and ballistic test data for three
different diameter spheres shot into 20% ordnance gelatin

In Equation 1-3, GH


is the angular momentum of the fragment about the center of mass G and

r GP 



. Equation 1-3 represents six nonlinear, second order, coupled differential equations that

can be solved using a Runge-Kutta method. Solution to these equations will predict the motion of
the center of mass and the rotation of the projectile as it moves about its center of mass. This
solves the motion of a flat fragment through the target.

1.1.1.2 FRAGMENT REPRESENTED BY A CUT CYLINDER. The schematic of a “cut-cylinder” and
associated loading is shown in Figure 6.
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FIGURE 5. Schematic of Loading on a Flat Fragment

FIGURE 6. Schematic and Loading on a Cut Cylinder
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The equations of motions are identical to Equation 1-3 except that the mass moment of inertia
matrices are different. The projectile surface has been subdivided into three areas shown by the
different colors in Figure 6. Two of these surfaces are flat and have simple normals and
representative points while the other one is flat and has more complicated normal orientations at
various representative points.

1.1.2 DETERMINING TISSUE THRESHOLD PENETRATION VELOCITY

For a given projectile-target pair, there exists a minimum velocity below which no visible
penetration occurs. For elastic targets, this means that the deformation produced during impact is
mostly recoverable and virtually no or only a very small indentation is visible. Thus, for a non-
penetrating ballistic impact, the input kinetic energy is lost through elastic wave radiation in the
target.

While the determination of this characteristic threshold velocity is difficult, some observations
are made from experimental data generated in Task 3 for spherical projectiles. For the cases of
0.17 in. and 0.25 in. diameter projectiles, it has been observed that indentation/penetration in the
target equivalent to at least one projectile diameter is necessary in order for full penetration to
occur. Using this observation, we can use the penetration depth versus incident velocity data for
these two cases and determine penetration thresholds. Since penetration threshold data for these
two projectile cases is known, we can compare our prediction with experimental results. For the
above models, the relation between the penetration depth  and the incident velocity v is given

by 2 2( ) ( )v v a bv cv    where the coefficients a, b, and c can be obtained by data fitting. For

the 0.25 inch diameter spherical projectile, these constants are given above in Table 1. Thus, the

theoretical penetration threshold minv can be calculated from 1
min ( )v d  where d is the

projectile diameter and 1  is the inverse function of . Since this result depends on the lower

end of the velocity field, minv can be approximated from a simpler equation, min

d
v

a
 . For a

0.25 inch diameter steel ball, this yields min 143
sec

ft
v  which is very close to what was

experimentally observed.

1.1.3 SMALL DEPTH OF PENETRATION MODEL

Models describing the penetration of projectiles of various aspect ratios have been developed
earlier using the retardation formula given by a quadratic function in the instantaneous projectile
velocity, v . The coefficients used in this formula are determined from the analytical inversion of
experimental data for cases where such data is available. Extension of this model to cases where
no such experimental data is available has also been developed earlier. The early phase of
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penetration, when the incident velocity is at or near the threshold velocity of penetration, has not
been explored in detail before, however. Some simple particle kinematics can yield insight
relative to the mechanics of penetration during these early phases of penetration prior to the stage
when the projectile is fully embedded inside the target and does not rebound elastically. We refer
to this analysis as the small depth of penetration model. This model can be used for two
problems; first to predict the penetration threshold, cv , as described in Section 1.2,for a given

projectile and second, to determine the small depth of penetration for impact velocities near cv .

The nature of the force of retardation (FR) changes for impact velocities below and above cv .

Such differences in the nature of FR can be obtained from simple one-dimensional motion of a
lumped particle mass that represents the projectile. The equation of motion of the projectile of
mass m impacting a target with a incident velocity iv is

( )
dv

mv F x
dx

  Equation (1-4)

where ( )F x is the FR when the surface displacement is x .

If d is the final displacement, then integrating Equation 1-4 above, we have

2

0

1
( )

2

d

iF x dx mv Equation (1-5)

If D is the diameter of the average projected area of the projectile on the target, then ( )F x can

be written as

2( ) ( )
4

F x D x


 Equation (1-6a)

If E is the Young’s modulus of the target and  is the effective depth, then

for elastic displacement
( )

for penetrationc

x
E

x



  Equation (1-6b)

In (1-6b), c is the threshold stress for penetration and is a material constant. Substituting (1-6)

in (1-5), we have
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2

for elastic deformation

for projectile penetration

v
d

v





Equation (1-7)

Equation (1-7) is consistent with the observed nature of the small depth of penetration for
incident velocities near the penetration threshold velocity cv .

Using (1-7) and a reference projectile identified by a subscript r , we can write down the formula
that gives the functional relation ( )d d v between the incident velocity v and the depth of

penetration d for a small depth of penetration. The derivation of this result for a spherical or
sphere-like projectile of diameter D and density,  , is given below. From (1-4) and (1-7), we

have, using

31

6
m D ,

Writing (1-7) explicitly, we have

2

( )
3 c

v
d v D





 
  
 

Equation (1-8)

when penetration occurs. The effective spring constant, k , of the target material can be
calculated from the following formula.

2( )

4

F x ED
k

x


 


Equation (1-9)

Thus, the spring stiffness increases as 2D .

Determine Penetration Threshold Velocity, cv , Revisited

To determine the penetration threshold velocity, cv , we postulate, as in Section 1.1.2, that the

penetration depth should be at least the radius (or the effective radius) of the spherical or sphere-
like projectile so that cv satisfies the condition

( )
2

c

D
d v  Equation (1-10)

From (1-8) and (1-10), we have
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22

3
c cr

r
c cr

v

v v

 









Equation (1-11)

FIGURE 7. Penetration Depth of Steel Spherical Reference Projectile compared with
Polypropylene Spherical Projectile

We have experimental data on penetration of small ( 0.17 in.rD  ) diameter spherical steel ball

impacting gelatin blocks. From this data, we derived the penetration threshold velocity 175crv 

fps which is consistent with Equation (1-10). Applying Equation (1-11) to 32 caliber

polypropylene spherical ball (
gm

1
cc

  ), we get the predicted threshold velocity 495cv  fps.

This result is very close to the experimentally observed minimum velocity needed for full
penetration. In Figure 7, we compare the penetration depth of the reference ‘BB’ projectile and a
polypropylene projectile using the small-depth penetration model. It should be recalled that for a

large depth of penetration, penetration depth is proportional to ln( )v instead of 2v shown in

Equation (1-8) for the small depth of penetration model.
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Analysis of New Penetration Data

Using high speed digital video with a frame rate of the order of microseconds, new experimental
data on ballistic penetration has been obtained by ATK Mission research as part of the Virtual
Soldier effort. Two types of projectiles were used; one is a ¼ in. steel projectile and the other is a
¼ in steel cylinder with an aspect ratio of 2 (See Tables 6, 7, and 8 in Section 3).

Run No. 0506-07
¼ in steel sphere impacting 20% gelatin target at 1,170 fps

Experimental data derived from video images by manual cursor placement is shown in Table 2.
The wavy nature of the velocity profile is due to manual data extraction. This data is used to test
the analytical models developed earlier from small spherical projectiles penetrating gelatins. This
data is used as the reference data labeled as ‘BB-data’ for extending the capability of analytical
prediction of location, velocity and time for penetration of other projectiles in 20% gelatin. The
comparison of measured velocity and penetration depth for the ballistic test # 0506-07 shown in
Table 2, and analytical prediction (red curve) is shown in Figure 8. For the three other cases
shown in Table 6, a cylindrical projectile of ¼ inch base diameter and length to diameter ratio of
2 is used as the projectile.

TABLE 2. Analysis of Digital Video Data for Run No. 0506-07

GBL Test Distance Velocity Direct Read from Phantom 606 at 1170 fps Target: 20% Gelatin

Case: 0506-07 1/4 in Steel ball Mass=1.04 gm Total Depth of Pen = 6.3 in
Start Frame 9

Elap.Time Read Dist.(in) Actual Distance Speed Read (fps) Frame Read from Phantom 606
microsec inches
0.0000 0 0 1170
34.0091 0.404 0.404 989.932 10 d = 0.404 in s = 989.932 ft/s
32.9891 0.425 0.829 1073.588 11 d = 0.425 in s = 1073.588 ft/s
33.0312 0.383 1.212 966.257 12 d = 0.383 in s = 966.257 ft/s
32.9662 0.361 1.573 912.55 13 d = 0.361 in s = 912.550 ft/s
34.0147 0.319 1.892 781.525 14 d = 0.319 in s = 781.525 ft/s
33.0436 0.298 2.19 751.533 15 d = 0.298 in s = 751.533 ft/s
32.9891 0.255 2.445 644.153 16 d = 0.255 in s = 644.153 ft/s
32.9583 0.276 2.721 697.852 17 d = 0.276 in s = 697.852 ft/s
34.0680 0.213 2.934 521.017 18 d = 0.213 in s = 521.017 ft/s
33.0293 0.235 3.169 592.908 19 d = 0.235 in s = 592.908 ft/s
33.0658 0.213 3.382 536.809 20 d = 0.213 in s = 536.809 ft/s
32.9459 0.191 3.573 483.115 21 d = 0.191 in s = 483.115 ft/s
34.0581 0.214 3.787 523.615 22 d = 0.214 in s = 523.615 ft/s
32.9459 0.191 3.978 483.115 23 d = 0.191 in s = 483.115 ft/s
32.9882 0.17 4.148 429.447 24 d = 0.170 in s = 429.447 ft/s
33.1637 0.1709 4.3189 429.435 25 d = 0.170 in s = 429.435 ft/s
34.0451 0.149 4.4679 364.712 26 d = 0.149 in s = 364.712 ft/s
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FIGURE 8. Comparison of Recorded Data and Analytical Prediction: Run No. 0506-07

Analysis of other experimental data

 Unlike the spherical projectile (run # 0506-07), cylindrical projectiles tend to rotate as
they penetrate the target due to small striking obliquities. For perfectly normal impact in a
perfectly homogeneous target, no rotation should be present.

 Since no deviation is observed for spherical projectiles, we postulate that the rotation
must occur mainly due to the small obliquity of incident angle.

 For locations where the cylinder is not in contact with the surrounding gelatin target, the
velocity normal to the projectile surface is along the inward normal.

 For locations where the cylinder is in contact with the surrounding gelatin target, the
velocity normal to the projectile surface is along the outward normal.

 This result conforms to the assumptions made when the analytical model for the
projectile penetration was developed.

Similar results are shown for the “cut” cylindrical projectile where the rotational kinematics of
the cut-cylinder projectile are simulated in the slides on page 284 (Appendix N) and compared
with experimental results.
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Captured snap shots for the sphere and cylindrical targets are shown in Figure 9 to support the
observations made above.

FIGURE 9. Snapshots From Digital Video of Ballistic Experiments

1.1.4 MOTION OF AN ARBITRARY-SHAPED RIGID BODY INSIDE A KNOWN TARGET WITH

POSITION DEPENDENT RETARDATION PROPERTIES

Let us consider an arbitrary shaped rigid body penetrating a target where the force of retardation
at any point P is dependent on the position of P inside the target. Considering an elementary
area dA at P on the surface of the body, we assume that force of resistance is opposite (inward)

projectile rotation

Run No. 0506-09

projectile: sphere

Run No. 0506-07

projectile: cylinder

Run No. 0506-08

projectile separation

Run No. 0506-10



ATK MISSION RESEARCH W81XWH-04-C-0084

– 23 –

to the outward normal,n (Figure 10), and its magnitude depends on three position-dependent
retardation coefficients , ,   , and the normal component .nv  Pv n of the velocity Pv of P.

From experimental data on penetration of small steel spherical projectiles, we have the depth of
penetration ( )v as a function of the incident velocityv . Using one-dimensional particle

kinematics, the force of retardation, ( )R v can be obtained as a function of the instantaneous

velocity, v , from a functional relation between ( )v and ( )R v originally rendered as Equation 1,

0

( ) or ( )
( )

v
m mv

v d R v
dR
dv


 


  Equation (1-12)

where m is the mass of the small spherical particle.

In the case of a finite sized rigid body penetrating a given target, we assume that the body surface
is composed of an ensemble of small elementary surfaces, and the force of resistance on an
elementary area dA depends on the inward velocity at P and three retardation coefficients
obtained from Equation (1-12) and experimental data. By using a scaling analysis, we have
extended the nature of the retardation force to unknown bodies for which no experimental data is
available. It has been established that these coefficients depend on the following material
properties at the instantaneous location ofdA :

1. Young’s Modulus E
2. Target density 

3. Target viscosity  , and

4. Properties of the reference material for
which experimental data is available.

The motion of the projectile inside the target is
decomposed into: (a) the motion of the center of
mass G, and (b) the rotational motion of the rigid
body about G.

Writing the force of retardation ( )nR v per unit area

as

2( )n P P n P nR v v v     Equation (1-13)

the equations of motion of the center of mass G is given by1

1 Overhead dot indicates time derivative

P

Gv

n
Pv



dA

G

o

x

y
zX

Y

Z

OXYZ Newtonian

Gxyz Body-Fixed

FIGURE 10. Frames of References
for Arbitrary Penetrating Body
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( )n

A

m R v dA Gv n Equation (1-14)

and the equation of motion for the rotational motion about G is given by

/( )n

A

R v dA   G G G PM H n r Equation (1-15)

In equation (1-15), subscripts P in the retardation coefficients , and   indicate that these

coefficients depend on the target material properties at P . In Equation (1-14), Gv is the velocity

of the center of mass G. In Equation (1-15), GM is the moment of the retardation forces about G,

and GH is the angular momentum of the rigid body about G, and / G Pr GP (Equation 1-15 and

Figure 10).

Using the inertia matrix

xx xy xz

xy yy yz

xz yz zz

I I I

I I I I

I I I

  
 

   
   

Equation (1-16)

about the center of mass G with axes along the Gxyz (Figure 10), and the angular velocity  of

the rigid body

x

y

z



 



 
 

  
 
 

Equation (1-17)

where the components are along the axes of the rotating frame F Gxyz attached to the rigid

body, the relation between , and GH I is given by

.GH I Equation (1-18a)
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The relation between the Newtonian derivative operator
Nd

dt
and frame-related derivative

operator
Fd

dt
is

N Fd d

dt dt
   Equation (1-18b)

Using (10) Equation (7) can be written as

   GI M H Equation (1-19)

The component equations can now be written from Equation (1-19) in the rotating frame axes
Gxyz (Figure 10).

In order to track the location of the body at any given timet , the orientation of the body-fixed
unit vectors along with the location of the center of mass G in the Newtonian frame OXYZ should
be known. This can be done by solving the differential equations governing the motion of
the , ,i j k through the target. The details about the motion of , ,i j k are described in the next

section.

Material Properties Data in a Newtonian Frame and Its Transfer to the Equations of Motion

Two fundamental equations governing the motions of the center of mass G and rotation about the
center of mass are given in Equations (1-14) and (1-19). The scalar equations arising from these
equations can either be written by taking components along body-fixed Gxyz (F-frame) or
Newtonian OXYZ (N-frame) axes. Equation (1-19) is described in F-frame while (1-14) is
described in the N-frame. Besides, for visualization of projectile penetration inside the target, all
quantities should be translated to the N-frame. The transfer function between these two frames
requires the temporal description of the unit vectors along the F-axes to the unit vectors in N-
axes. As the rotational angles can only be added incrementally, we also need to include the
differential equations describing the change in these unit vectors.

Let

, ,

X X X

Y Y Y

Z Z Z

i j k

i j k

i j k

     
     

       
     
     

i j k Equation (1-20)
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be the unit vectors along the Gx, Gy and Gz axes (Figure 10) with components in the N-frame
along OX, OY and OZ axes. Then the time derivative of these unit vectors are given by

, ,       i i j j k k   Equation (1-21)

The transformation matrix T between the F-axes and N-axes components is given by

X Y Z

x Y Z

X Y Z

i i i

j j j

k k k

 
 

  
 
 

T Equation (1-22)

Using the T -matrix, any vector Fx with components along the F-axes can be converted to same

vector Nx with components along the N-axes through

.N Fx T x Equation (1-23)

Using (1-21) and (1-23), the differential equations governing the unit vectors are given by

( . ) , ( . ) , ( . )       i T i j T j k T k   Equation (1-24)

The integrations shown in (1-14) and (1-15) contain integrands which depend on the location of
the point P in space and the description of material properties at P. Since the integrations are
done in F-frame while the material properties are known in N-frame, we need to convert the
coordinates of P from the F-frame to the N-frame by using the conversion-formula given by
Equation (1-23).

18 Coupled Differential Equations and Their Solution by Runge-Kutta Algorithm

With reference to Figure 10, let us define a 18 1 vector x whose components are described
below:

1 2 3, ,x x x are the coordinates of G in N-frame Equation (I-25)

4 5 6, ,x x x are the components of the velocity of the center of mass G in N-frame

7 8 9, ,x x x are the components of the angular velocity of the body in F-frame

10 11 12, ,x x x are the components or the direction cosines of the unit vector i in the N-frame

13 14 15, ,x x x are the components or the direction cosines of the unit vector j in the N-frame

16 17 18, ,x x x are the components or the direction cosines of the unit vector k in the N-frame
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Then the coupled differential equation in x is given by

( , )tx D x Equation (1-26)

The function ( , )tD x is a vector where each element is the time-derivative of the corresponding

element in x . Since these derivatives are completely known in terms of the elements of x
through the equations (1-12)-(1-24), ( , )tD x is a known function. The initial conditions for

solving for x are given by the initial entry scenario where usually the incident velocity and initial
angular velocity are known. Using these initial conditions, (1-26) can be solved completely using
a Runge-Kutta algorithm. Thus, the kinematics of the rigid body is completely known in the user
defined N-frame, and can be displayed for visual simulation of the penetration event.

Numerical Algorithms for Solving the Projectile Trajectory

Equations (1-14), (1-19) and (1-21) describe the differential equations of motion of the center of
mass G (Figure 10), rotational motion of the body about the center of mass and the orientation of
body fixed coordinates. These are (Figure 10):

 GX , the position vector of the center of mass G (Newtonian components),

 GV , the velocity vector of G (Newtonian components),

  , angular velocity vector of the projectile (Body-fixed component), and
 , ,i j k , unit vectors along the body-fixed axes (Newtonian components).

Since these are all vectors, we have a total of 18 independent time-dependent field quantities that
are governed by coupled, nonlinear first order differential equations given in (1-14), (1-19) and
(1-21). Using a standard Runge-Kutta algorithm for solving a system of first order, coupled
nonlinear differential equations; we can obtain a complete solution of the problem of determining
the wound tract due to a projectile motion in a body.

Application of the Runge-Kutta method requires that all derivatives of the variables described
can be obtained from analytical, functions of all other variables. For problems involving location-
dependent material properties in a user-defined, Newtonian frame, these locations need to be
determined analytically from current values of these variables. This makes the problem very
complicated since the location of any point on the projectile surface in a Newtonian frame not
only depends on the location of the center of mass but also on the orientation of the unit vectors
along the body-fixed coordinates. In the absence of location-dependent properties, the dimension
of the unknown vector x in (1-16) can be significantly reduced from 18 to 6.
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1.2 SIMULATION OF PROJECTILE TRAJECTORIES

For spheres and sphere-like projectiles with aspect ratio 1
L

D
, the rotational kinematics of the

problem is not significant, and hence the problem is simplified to tracking the motion of the
center of mass. This is especially true during high velocity penetration except when the material
properties vary significantly over the surface of the projectile boundary. This can create a
significant moment about the center of mass.

1.2.1 Analytic Simulation of Projectile Trajectory for Platelet, L/D  0, and Non-
Symmetric fragments, L/D  2.

Two types of projectiles have been considered in the numerical codes written and developed by
ATK Mission Research for the determination of projectile motion inside a non-homogeneous
target with known properties. For the case of L/D  2, we have used a cut cylinder as an example.
The physical dimensions of the cut cylinder are shown in Figure 11. For the case of a platelet
with L/D 0 we have used a circular plate. The code is correctly predicting the linear motion of
a cut cylinder with L/D  2 but the rotary motion is under-predicted. Some results are shown in
Figure 12.

Due to the complex physics and associated numerical algorithms (described in detail below), we
have developed the software in modular forms. Each module has been checked and the complete
code has been developed by integrating these modules.

Material: Steel
Short Length L : 8 mm
Long Length L: 16 mm
Cutting Angle: 47 degrees
A schematic is shown in Figure 8.

FIGURE 11. Schematic of ATK Mission Research “cut cylinder” projectile

1.2.2 Material Property Modeling

A number of published animal based Strain Energy Functions which have been derived from
tissue property experiments were acquired by Mission Research. Stress-Strain relationships
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suitable for use in the Mission Research wound Tract analysis and other codes can be derived
from these functions. Several resulting stress-strain curves are shown in Figures 13 through 15.

Shown in Figure 13 is a uniaxial stress-strain curve of cardiac muscle from the myocardium of a
human left ventricle in the direction of the fibers (Strength of Biological Materials, Yamada,
1970). It is noted that 1 gm/mm2 is about 0.1 bar. Average values of failure strength are reported
to be between 0.9 and 1.4 bars depending on age with an average of 1.1 bars. The ultimate
strength in the transverse direction is about 1/3 of these values. The failure strains in the fiber
direction vary between 63 and 79% with an average of 64%. The failure strain in the transverse
direction is about 1.3 times that in the fiber direction.

FIGURE 12. Analytical Prediction of Axial Displacement of a Cut Cylinder

Figure 14 is a plot of the stress-stretch ratio in the fiber and transverse directions based upon
equal loading biaxial extension data. The fit to the data is based upon an assumed form of the
controlling strain energy density function. This information was provided by Prof. McCullouch,
Ph.D. from UCSD. It is noted that 10 KPa is 0.1 bars. Stress data in the fiber direction is shown
to about 0.8 bars consistent with the values in Figure 13 although the corresponding biaxial strain
level is calculated to be about 30%.
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A plot of predicted circumferential stress in a human ventricular chamber is shown in Figure 15.
The maximum value for the hypertensive case is about 8 KPa. The corresponding strain is about
64%. (Mechanical Properties of Diseased Hearts During Adaptation, Chaudhry, 2002).

FIGURE 13. Tensile Stress-Stain of Cardiac Muscle on
people 20 to 29 years old [Figure 82 from Yamata].

FIGURE 14. Analytic fiber stress and cross fiber stress versus stretch
ratio for equibiaxial extension of thin rectangular sheet applicable to

cardiac myocardium [original data from Costa et al. 1996 and
application based on personal discussion with A. McClulloch/UCSD].
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FIGURE 15. Stress versus Ventricular Wall Thickness [from Chaudry]

Human myocardial tissue can be described as a hyperelastic, anisotropic material with principal
properties varying in the ‘fiber’ and ‘cross fiber’ directions. UCSD has been involved in a
number of efforts associated with modeling heart component response and has assembled a
library of Strain Energy based constitutive models which have been implemented in the UCSD
Continuity code. The majority of the existing data is based upon uniaxial and biaxial tension tests
which is appropriate for normal expansion. It must be noted that the principal early time stress
generated during impact and penetration are compressive and thus compressive data is ultimately
needed to verify predictions.

For the purposes of the current effort, UCSD recommended that a Canine based Transversely
Isotropic Exponential Strain Energy function be used to derive the required Stress-Strain
relations which are currently used as input to the ATK-Mission Research hydrocode models. The
orientation of the fiber/cross fiber ‘sheets’ are known as a function of thickness through the
ventricle and can be implemented as required. The properties are known to depend on a number
of parameters including moisture content and loading rate but the data base focuses on static
loading derived properties.
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A typical derived stress-strain relation is plotted in Figure 16. It is seen that failure strengths are
very low, on the order a bar. The forms of the constitutive models are given in Table 3.

FIGURE 16. Myocardium Stress-Strain Relation

TABLE 3. Simplified Material Models

Structure Constitutive Model Strength Model Failure Model Anisotropy
Pericardium Linear Yield Strength NA
Myocardium Puff Yield Strength Yes

Heart External Puff Elastic Strength Future
Blood Shock None None NA

Parameter Sensitivity Studies

A series of 2D hydrocode parameter sensitivity studies were performed modeling gelatin impacts.
The shear modulus and material strength were varied. Typical results of penetration depth versus
time are shown in Figure 17. A more detailed discussion of the results from this study is included
in Appendices H and I. The 2D hydrocode analysis supporting the material parameter sensitivity
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studies was performed using (i) a linear elastic heart tissue model, (ii) a half scale MRC wedge
fragment, and (iii) a series of thin platelet fragments impacting normal to the target surface.

FIGURE 17. Penetration Depth of Platelet Fragment versus Time

As mentioned in Section 1.1.3,the slides on page 284 from the presentation reproduced in
Appendix N show a very favorable correlation between cut-cylinder rotational kinematics
observed experimentally using high speed digital video and the analytical simulation developed
as described in this section.

1.3 ANALYTICAL BACKGROUND OF PENETRATION OF A FRAGMENT INSIDE A GIVEN TARGET

WITH NONHOMOGENEOUS MATERIAL PROPERTIES

For modeling the complex, dynamic process of fragment penetration in a given target, we need to
understand the mechanical properties of both the target and the fragment, that are responsible for
the retardation forces exerted on the projectile during penetration. Some simple analysis are done
first where the projectile has simple shapes e.g., a sphere in a target with no material
inhomogeneities. Ballistic experiments conducted by Mission Research during the last few years
provide us an experimental database on small spherical steel balls, spherical balls of other sizes
and cut cylinders penetrating a uniform 20% gelatin used as a tissue-simulant. For various
incident velocities, the penetration depths were recorded during these experiments. By using the
equation of motion of a rigid body assuming that the projectile does not deform during
penetration, we inverted the penetration depth versus incident velocity data to yield the
penetration coefficients described in previous quarterly reports for this project. The fundamental
equations used in the inversion are repeated below.
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dv
mv R v v v
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mv
v dv

R v

  



     

 
Equation (1-27)

In (1-27), m is the projectile mass, v is the instantaneous velocity of the projectile at a depth x
during penetration; , ,   are the retardation coefficients, and ( )sv is the penetration depth for

incident velocity sv . For the experimental data, penetration depth vs. velocity is shown in Figure

18, and the calculated retardation coefficients per unit mass are

 4.049 10
4

  52.47  0.048

Thus the equation of motion, first Equation in(1-27), is modified as

 2( )
dv

v R v v v
dx

        Equation (1-28)

In (1-28), , ,   are the retardation coefficients per unit mass of the reference projectile.

Retardation coefficients derived from experimental data on 20% gelatins, need to be modified for
applications to other projectiles of different shapes and masses. For finite size bodies with
multiple boundary areas, we assumed that load per unit differential area can be determined from
the retardation laws established for the reference spherical projectile by proper scaling of area
and mass. Since increasing projectile mass indicates more kinetic energy available for

penetration, retardation coefficients are modified by a factor of rm

m
where the subscript r

indicates reference projectile mass which is the BB-mass in this case. Note that mass scaling is
inversely proportional for modifying the retardation coefficients. For surface scaling, the load on
an elementary area dS is calculated by multiplying the retardation coefficients by a factor of

r

dS

S
where rS is the projected area of the reference projectile on the target surface.
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FIGURE 18. Experimental Data: Penetration depth vs. Entry Velocity

For our applications, the problem of the penetration mechanics of a general shaped projectile e.g.
a fragment/cylinder/sphere or sphere-like, in a nonhomogeneous human left ventricle is
considered. Since the experimental data is obtained for a homogeneous 20% gelatin target, some
material scaling is also required. To include the inhomogeneity in material properties on
retardation forces, we need to relate the retardation coefficients to the associated physics of the
retardation process. For very low impact velocities, static properties of the projectile-target
dominate the process. For a rigid projectile, the relevant material property is the Young’s

modulus of the target. Thus the low-velocity coefficient  is scaled with
r

E

E
where E is the

Young’s modulus of the target at the instantaneous contact location of the elemental area dS at
time t . The coefficient  is related to the Stoke’s friction drag so that it depends linearly on

viscosity, and hence on the shear modulus G for harmonic loading. Thus,  is scaled with
r

G

G
.

Finally the last term is the fluid drag term related to the density  of the target, and hence  is

scaled with
r




.

Besides the above scaling laws applied on the retardation coefficients, we also assume that target
resistance is always along the inward normal to the surface of the projectile when the projectile
velocity is along the outward normal to the projectile surface; otherwise, the retardation force is
zero.
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TASK 2

WOUND TRACT MODELING AND SIMULATION

This task evolved during the course of the program and bifurcated into two discrete sub-efforts.
In the first effort, a nonlinear stress wave propagation model was developed emphasizing
ballistic impacts that partially penetrated the human left ventricle. A geometry model of the heart
was acquired and discretized into a numerical grid by Stanford University. Material properties
were mapped on the numerical grid with the help of the Bioengineering Institute at the University
of California in San Diego (UCSD) using the UCSD Continuity Code. Stress wave analysis was
then conducted by ATK Mission Research using the Autodyn® software package employing
various projectiles shown in Figure 1 (page 9). Parameter sensitivity studies were also conducted
to understand the appropriate model fidelity for various model features. This effort is discussed
in Section 2.1.

The second effort, discussed in Sections 2.2 and 2.3, involves developing a nonlinear spring
lattice calibrated to intervening soft tissue properties. The trajectory and velocity retardation
models developed in Task 1 are used to cut the springs and impart a velocity vector to the springs
as initial conditions. The initial cutting and recoil of the spring lattice plus the subsequent
dynamic transient and associated accumulated plastic strain from spring hysteresis establishes the
residual diameter of the wound tract. The resulting wound tract is then imported into SCIrun (a
scientific visualization tool developed by the University of Utah) for visualization. A SCIrun
interface was written for this purpose by ATK Mission Research with the help of the University
of Utah Scientific Visualization Center of Excellence. This visualization effort is discussed in
Section 2.3.3.

2.1 CONSTITUTIVE AND HYDROCODE MODELING

3D models nonlinear dynamic models where developed to allow prediction of the wound tract
trajectory, tract dynamics, and stress-strain fields for a human left ventricle penetrated by both a
wedge-like and small cylindrical fragment impacting normal to the ventricle surface. In order to
perform this analysis, we developed: (1) constitutive models for the pericardium, myocardium
and ventricle core, (2) a 3D finite-difference model of the ventricle and projectiles, and (3) a 3D
finite-difference model approximating cardiac structures attached to the left ventricle. A range of
impact velocities were analyzed in order to ensure that the projectiles slowed to essentially zero
velocity in the ‘blood’ filled central cavity. The output of this effort were animations of the above
parameters for a ventricle penetrated by a (1) 7-mm, 45 degree steel wedge impacting at 250
ft/sec. and (2) a 3-mm, steel circular cylinder impacting at 300 ft/sec. both with aspect ratios of 1.
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2.1.1 Ventricle Model

In order to perform the desired penetration analysis, a realistic representation of the human left
ventricle geometry was required. We obtained a detailed geometry model from Stanford
University that was translated by the University of Utah. We went thru a process of ‘smoothing’
the surfaces and then asked XYZ corporation via its True Grid® mesh development program to
develop a mesh suitable for input in the Century Dynamics Autodyn™ 3D hydrocode. The
pericardium, myocardium and cavity were then filled with approximations to the actual material
properties for the Phase I demonstrations.

A procedure similar to that above was used to develop a ‘Heart Envelope” so that we could
account for the influence of the material surrounding the Ventricle on the Ventricle mechanical
response. In order to do this, we relied on a University of Utah supplied porcine heart
representation. We were advised that to first order, the size and basic geometry would satisfy our
‘Heart Envelope” needs. A picture of the meshed model is shown in Figure 19. Details of the
interior mesh are shown in Figure 20.

FIGURE 19. Simulate Heart with Embedded Ventricle Finite Difference Mesh



ATK MISSION RESEARCH W81XWH-04-C-0084

– 38 –

FIGURE 20. Interior Mesh for Embedded Ventricle Model

2.1.2 Wedge Impact Analysis

The first set of analysis was intended to capture behavior of a wedge shaped fragment similar to
the one which had been used by ATK-Mission Research both during its gelatin phenomenology
ballistic experiments and in several experiments at ISR. Two aspect ratio fragments were used,
the first corresponding to that used in the tests and a second with an aspect ratio of 1:1 which was
designed to reduce the size of the cavity and the deviation from a linear trajectory. Several impact
velocities in the range of 50 to 300 ft/sec were analyzed with the intent of having the projectile
stop in the central cavity of the ventricle without penetrating the cardiac septum. The appropriate
striking velocity on the ventricle to achieve this was 250 ft/sec. Shown in Figures 21 though 24
are snapshots of the original impact geometry, the external pressure distribution as waves
propagate along the surface, the internal pressure distribution and the internal strain. It is worth
noting that the pressure generated exceeds 14 bars (over a fairly large volume) which is the level
established from previous ATK-Mission Research in vitro testing, necessary to create
mechanically induced transient ion gradient upsets.

The results from this analysis were animations which were delivered to the Virtual Soldier team
at the University of Michigan as well as the projectile trajectory, cavity dynamics, stress and
strain fields.
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FIGURE 21. Impact Geometry for Wedge Impact of Ventricle

FIGURE 22. Pressure Distribution on Surface of Ventricle from Wedge Impact
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FIGURE 23. Pressure distribution in Interior of Ventricle from Wedge Impact

FIGURE 24. Strain Distribution in Interior of Ventricle from Wedge Impact
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2.1.3 Cylinder Penetration Model

The final set of analysis was intended to simulate a hypothetical projectile which would: (1)
create an approximately 4-mm diameter permanent entrance cavity, (2) a 1 to 2-mm diameter
permanent exit cavity on the interior of the ventricle, (3) have the trajectory of the fragment
follow a linear path, and (4) have the fragment stop in the blood filled central ventricle cavity
without penetrating the septum. In order to accomplish this, we analyzed the response of various
diameter circular cylinders all with aspect ratios of 1 traveling at various velocities. The final
design was a 3-mm diameter steel cylinder traveling at 300 ft/sec. Shown in Figures 25 though
28 are snapshots of the original impact geometry, the pressure distribution on the ventricle
surface, the internal strain distribution and the internal wound tract.

FIGURE 25. Impact Geometry for Cylinder Impact of Ventricle
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FIGURE 26. Pressure Distribution on Surface of Ventricle- Cylinder Impact

FIGURE 27. Strain Distribution in Interior of Ventricle from Cylindrical Projectile Impact
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FIGURE 28. Wound Track- Cylinder Impact

2.2 ANALYTICAL DETERMINATION OF WOUND TRACT GEOMETRY

When a projectile penetrates a given target, various parts of the surface of the projectile
encounter materials with varying properties. We divide the motion of the projectile inside a target
into two parts; we first determine translation by tracking the motion of the center of mass G of
the projectile and then determine the angular rotation of the projectile due to the associated
moments of surface loading about G. The relevant equations of motion for both these motions are
given by

1
i

N

ni
i S

d
m dS

dt 


v

F (uniquely determines the motion of G) (2-1a)
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(2-1b)

In (2-1a), v is the velocity vector of G and N is the total number of projectile surfaces with
geometric discontinuities, and the subscript n indicates that the force F is along the inward
normal to the projectile surface at the elemental area dS . For example, in the case of a cylinder

3N  which represents three surfaces of geometric discontinuities with two flat surfaces and one
curved surface. In the case of a sphere 1N  as we have only one smooth curved surface. In (2-
1b), I is the moment-of-inertia matrix about G and M is the moment vector of all surface loading
about G. Overhead dots indicate time derivative.

In a fully three-dimensional problem with material inhomogeneities, equation (2-1) represent a
nonlinear, coupled, second order differential equations in 15 unknown variables; six components
of displacement and velocity, three components of angular velocity, six independent components
of body-fixed unit vectors for Newtonian description of body-fixed coordinate system. Theses
equations were solved using the MATHCAD™ code. In the associated MATHCAD code, these
are included in a single 15-element vector x defined as follows. In the following, F-frame
indicates body-fixed frame while N-frame is the Newtonian frame.

TABLE 4

The resulting equations can be solved using built-in Runge-Kutta algorithm in MATHCAD.

2.2.1 Accessing material property from material database

The material property database is known in a Newtonian N-frame. Since the retardation force is a
function of material properties at the contact point with the target, coordinates of the contact
point are needed during the solution of the nonlinear differential equations. This is done by
tracking three orthogonal axes fixed in the projectile, and including six independent differential
equations describing the time rate of change of these axes as a function of time. These are the

Physical Description of x-elements:

x1-x3: Center of Mass G in N-frame (inch)
x4-x6: Velocity of G in N-frame (ft/sec)
x7-x9: Components of Angular Velocity in F-frame (rad/sec)
x10-x12: Components of unit Vector along Gx in N-frame
(Nondimensional)
x13-x15: Components of unit Vector along Gy in N-frame
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components x10-x15 described above in Table 4. Only six components are included since the
third one can be found from mutual orthogonality conditions of these axes.

2.2.2 Two-Dimensional Version of the Wound Tract Geometry

For some problems when the lateral variation in material inhomogeneities is small or
nonexistent, the above problem of determining the wound tract geometry is much simpler. In this
case, the resulting problem is two-dimensional, and can be reduced to the determination of only
three variables; two for the displacement component of the center of mass G and one for the
rotation of the body about the -axisz assuming that the motion takes place on the plane.xy 

The first equation (2-1a) remains unaltered while second equation is simplified to only one
equation [by substituting 0x y   in (2-1b)]

z zz zM I   (2-2)

These equations can also be solved easily using a Runge-Kutta algorithm.

2.2.3 MATHCAD™ Coding

Both three- and two-dimensional versions of the above nonlinear equations have been coded
using the built-in MATHCAD Runge-Kutta algorithm. MATHCAD applicability is somewhat
limited since it does not allow access to global variables during the time domain solution once
inside the Runge-Kutta module. Thus all functions describing the derivatives of the components
x1-x15 are written as stand-alone functions of the x1-x15 with no other dependency on external
or global MATHCAD variables. This made the code more complex but if the software is
subsequently converted to C, C++ or Fortran languages, these limitations will be eliminated.
However, MATHCAD allows us to write and debug the code easily as all equations are written
exactly as they are in their respective mathematical forms.

Three types of projectiles are considered for analysis; these are selected on the basis of various

aspect ratios,
L

D
of the projectiles where L is the length and D is the equivalent diameter of the

lateral area of the projectile. Cases of very low aspect ratio includes flat projectiles like platelet
(Class-I), aspect ratios of approximately one like sphere or spheroid and sphere-like projectiles
(Class-II), aspect ratios of more than one like cylinder and cut-cylinder(Class-III). These
projectiles are shown in Figure 29.
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Plate/Platelet
Sphere/Sphere-like Cylinder/Cut Cylinder

FIGURE 29. Projectiles of various aspect ratios 0,1 and >1
L

D


The output of the MATHCAD code are the temporal distributions listed below.

 The displacement components of the center of mass G
 The velocity components of G
 The angular rotation components of the projectile about G
 The angular velocity component of the projectile about G
 The orientation of all three body-fixed axes in space

An Example

Out of many cases we analyzed using the MATHCAD developed codes under this program, one
example closely related to the demonstration presented in March, 2005 at the University of
Michigan during the 5th quarter VSP IPR. The projectile belongs to class III which is a cut
cylinder. The geometric dimension and material properties are shown below. Length units are in
millimeters (mm), velocity is in ft/sec(fps). The striking Velocity is 200 fps and the input data to
the MATCHCAD coded module is shown below.
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The output of the MATHCAD code for this case ate the temporal distribution of the various field
quantities, and is shown in Figure 30.

FIGURE 30A. Displacement of the Projectile Center of Mass G
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FIGURE 30B. Velocity Components of the Projectile Center of Mass

FIGURE 30C. Angular Rotation and Angular Velocity
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FIGURE 30D. Initial Cavity Formed by Wedge
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Comparing these results with experimental data and hydrocode results, we find that the x- and y-
components of both displacement and velocity of the center of mass G of the cut cylinder are in
good agreement. No experimental data is available for the angular velocity of the projectile while
the rotation of the projectile as a function of time is in good agreement for about 200-250
microseconds of penetration but the experimental results shows a decrease in angular rotation
beyond this time. Our model does not show this decrease. This discrepancy is possibly due to the
fact that the target material tends to separate from the projectile surface as it penetrates which is a
phenomenon that is not understood completely and hence is not modeled in our analysis. Such
separation does not significantly decrease the components of the total retardation force, but their
moments about the center of mass of the projectile changes appreciably. This may introduce
accumulated error in the predicted rotation of the projectile.

2.2.4 Determination of Initial Cavity Shape from Experimental/Analytical Data

For the case of a cut cylinder or wedge, we may determine the initial cavity shape by tracking
four key points on the projectile. These points are shown in Figure 31.

FIGURE 31. Key points of a cut cylinder

For two-dimensional motion, the intial cavity shape can be formed by an upper trace and a lower
trace. If the time domain coordinates of these key points are known, the upper and lower trace is
given by

( , , , )

( , , , )

upper A B C D

low A B C D

y Max y y y y

y Min y y y y





Both analytical and experimental results van be used to find the time domain coordinates of the
center of mass and the orientation of the central axis of the projectile. These data can then be
mapped to generate the time domain coordinates of these key points.

Properties used for the cut-cylinder penetrating a 20% gelatin block with a speed of 200 fps are
shown below, and the intital initial cavity calculated from the above method is shown in Figure
32.

A

B C

D



ATK MISSION RESEARCH W81XWH-04-C-0084

– 50 –

FIGURE 32. Intial Cavity Shape of a Cut Cylinder

2.2.5 Simplified 2D Plane-Strain Axisymmetric Model Parameter Studies

The penetration of a fragment/bullet like projectile thru a human chest and into the heart results
in tissue response which is at least non-linear from a constitutive behavior point of view and
creates large displacements in the neighborhood of the projectile. In order to explore these
effects, a series of analytical continuum models and 2/3D hydrocode models were created where
variations on fragment geometry, tissue material properties, property inhomogeneity and impact
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conditions were explored. The results from these sensitivity studies are discussed below and in
Appendices B and C. These sensitivity studies are being used to guide subsequent development
of analytic models which will be the basis for the predictive tools employed at the end of the
Phase I portion of the Mission Research Virtual Soldier program.

Three 2D plan-strain axisymmetric models were created using modal analysis. In the first model
a cylindrical annulus was created. Two different forcing functions were applied to the inner wall
of the annulus. In the first case a pressure was prescribed and in the second an initial velocity
corresponding to the pressure employed in the first case. As shown in Appendix C there was
minimal difference in applying these two different types of forcing functions. The model was
then used with a mixed boundary condition; i.e., an initial velocity was prescribed followed by a
pressure release boundary. The results for this simulation are shown in Appendix C.

A second model was developed to explore radial variations in Young’s modulus. In one case a
series of annuli were used with each annulus having a different modulus. The outermost annulus
had a modulus that was a factor of two higher than the inner annulus. In this case, where there
was a rather gradual radial variation in moduli, a significant difference in dynamic response was
not seen and in general was proportional to changes in the sound speed of the intervening
material. However, when the modulus was varied to the same extent but in a discontinuous
manner (E  60%) peak pressures changed by more than 40%. Results for this simulation are
also shown in Appendix C.

A third model was developed to examine inhomogeneities that varied in a circumferential
manner. This was seen to have the biggest effect due to the development of shear forces at
material property interfaces. This is discussed in more detail in Appendix B.

Finally, selected results from the plane-strain analysis above were compared with a 2D
axisymmetric model implemented within a hydrocode where the plane-strain assumption was not
employed. Surprisingly, these two models yielded similar results as shown in Appendix C.

2.2.6 2D/3D Hydrocode Models

A number of additional hydrocode models were developed with the intent of investigating the
sensitivity of penetration depth to the material properties and failure criteria of the gelatin
(human soft tissue surrogate). Previous studies have relied on measured bulk modulus, sound
speed and static measurements to derive a 1D constitutive model. However, penetration studies
have shown that the shear modulus and failure stress/strain of the material have a first order
effect on penetration. Ultimately, these properties will have to be either measured or backed out
from computer simulations. Currently, we are using known properties and adjusting others by
matching hydrocode simulations with penetration data as discussed below.
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Our previous model from a 1993 program sponsored by DARPA was based upon using a value
for the bulk modulus obtained from flyer plate tests on gelatin and shear modulus obtained from
Autodyn hydrocode correlation of velocity versus depth predictions developed in Task 1 from
a 350 ft/sec BB impact on gelatin. These values are shown in Table 5. The results from these
studies suggested that for a reasonable minimum value of shear modulus, say > 100 bars, a value
of failure strain of greater than 10 % is required to prevent large penetrations. We used a
reasonable value of Poisson ratio, which for nearly incompressible materials such as rubber
would be on the order of 0.48. This would necessitate a much larger value of elastic modulus and
either a lower value of failure strain or the implementation of a failure stress criteria.

TABLE 5. Potential Variations on Gelatin Material Properties

Correlation
Source

Bulk Modulus
(Bars)

Shear Modulus
(Bars)

Elastic
Modulus(Bars)

Poisson
Ratio

Charest Flyer 2.32*10^4 2170 6300 0.455
Early GBL BB 2.62*10^4 125 375 ~0.498

Estimate 2.62*10^4 940 3000 0.48

The bulk modulus can be derived from a relationship between shear modulus, G, and Poisson
ratio, . Typical results are shown in Figure 33. The sensitivity of G and  to an approximately
10% change in bulk modulus is also shown in Figure 33, below.

FIGURE 33. Shear Modulus versus Poisson Ratio

The initial hydrocode correlation assumed that the gelatin failed in shear and incorporated a shear
strain failure value of 40%. Subsequent thinking suggested that a principal strain criterion might
be more appropriate and the hydrocode correlation with experimental data suggested that a value
of 10-20% was more appropriate. In order to size reasonable experiments, the model developed
in Task 1, which assumes projectile diameter scaling was used to predict penetration depth
versus impact velocity. The results have been previously shown in Figure 3 (page 11).
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In Figure 4 (page 14), data points from the recent Task 3 ballistic penetration experiments
(discussed in Section 3) are plotted along side the predictive curves. It is seen that the model does
a good job of fitting the data. Further it can be seen that for a penetration depth of about 6 inches,
a dimension typical of the depth of a heart, a velocity in the range of 800-1100 ft/sec for spheres
with diameters of interest is appropriate. Thus, steel spheres of diameter 0.25- and 0.375-inches
(1-3 grams) at velocities on the order of 1100 ft/sec were used for the numerical simulations.

Normal impacts into gelatin targets consisting in some cases of multiple materials were also
considered. The intent was to correlate hydrocode results with the Task 3 impact data and then
verify predictions made by the Task 1 modeling for homogenous targets. In this way, we would
have a correlation between two different analytical techniques employing different assumptions
and experimental data.

A review of selected gelatin samples posttest showed both a residual cavity and radial tears.
Based upon this it was speculated that a stress rather than strain failure criteria is appropriate.

A series of 2D hydrocode runs were then conducted where the projectile size, gelatin shear
modulus and failure stress were varied. The intent was to come up with an updated set of
material properties for gelatin which yielded penetration predictions consistent with current data.
The following parameters were varied in the model.

(1) Projectile shape: Sphere and Wedge
(2) Projectile Diameter: Spherical projectiles 0.17-, 0.250-, and 0.375-inch

diameter
(3) Projectile Material: Steel and Aluminum
(4) Gelatin Shear Modulus: 100-1000 bars
(5) Gelatin Tensile Stress Failure: 25-100 bars
(6) Erosion strain value used to remove highly distorted elements

A combination of parameters was inferred which allowed the approximate match of penetration
velocity versus time and penetration depth. In the case of a 0.375-inch sphere at 1100ft/sec, a
snapshot from the analytical simulation is shown in Figure 34. Notice the radial failure pattern
which is also observed in the corresponding ballistic experiment. A comparison of the Task 1
model of velocity versus time with the hydrocode prediction is shown in Figure 35. The
correlation assumed a nominal bulk modulus, a shear modulus of 125 bars, failure stress of 25
bars and erosion strain of 200%. The corresponding penetration depth versus time is shown in
Figure 36. These results compared favorably with those shown in Figure 3 and the ballistic data
described in Task 3.
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FIGURE 34. Sphere Penetration into Heart Simulant

A series of 3D simulations were also conducted using various spherical projectiles impacting
homogenous and layered materials. The trajectory of the projectile in the case where the material
was horizontally layered was tracked and seen to deflect away from the stiffer material. A
snapshot of this simulation is shown in Figure 37.

A time resolved animated simulation of the solution corresponding to Figure 38 was previously
sent to Drs. Rick Satava (DARPA), Gerry Mosses (TATRC), and Brian Athey (University of
Michigan).

A response parameter of particular interest is the radial velocity of the cavity wall as a function of
time. This parameter will be used in to drive the cavity wall response in the analytical models.
Typical results are shown in Figure 39.

The blue line in Figure 39 shows the projectile axial velocity versus time which at zero time is
335 m/sec. The y-velocity curves are cavity wall velocities at various distances from the impact
site at locations just outside the radius of the projectile. In general it was found that the wall
velocity near the impact site was on the order of 1/3 of the axial velocity decaying more rapidly
than the axial velocity as penetration occurs. The initial duration of the wall response is less than
tenths of milliseconds.
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FIGURE 37. Sphere Penetration into Gelatin: Bi-Material, 3D

FIGURE 38. Wedge Impact into Heart Simulator
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Videos from three ballistic experiments conducted during Task 3 show the projectile trajectory
and evolution of the temporary cavity in the wake of the projectile. These videos were also sent
previously to DARPA and the University of Michigan and show agreement with pretest
analytical predictions. Animated numerical simulations of these experiments were also
previously sent to DARPA and the University of Michigan.

FIGURE 39. Cavity Velocity versus Time

A 3D axisymmetric model is also being developed of the wound tract to determine the initial
conditions on the non-linear spring lattice that represent the wound tract boundary and that
describe the transient dynamic response of the tissue in the projectile wake. The static analysis
prerequisite to the 3-D axisymmetric model of wave propagation in a cylindrical tissue perforated
by a concentric cylindrical projectile is discussed in Appendix E.
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2.3 WOUND TRACT MODELING AND NONLINEAR SPRING LATTICE

Section 2.3.1 discusses the spring lattice model that describes the transient dynamic response in
the projectile wake (SOW 2.3). Section 2.3.2 discusses a modal analysis model that describes
radiated stress waves (SOW 2.2). This model is used to determine the initial conditions on the
spring lattice model (SOW 2.2.3). Finally, section 2.3.3 describes software that has been
developed to interface our wound ballistic codes with the University of Utah SciRUN code. This
last effort was done so that the University of Michigan could display our output on the
HOLOMER heart so our latest I/O formats that have been updated to work with SciRUN. The
output of these models is an MPEG of an analytical simulation of one of our gelatin ballistic
experiments. This was also done so that we could easily do reality checks on our code output.

2.3.1 Determination of Temporary and Permanent Cavities in Projectile Wake

A lattice of non-linear springs is used to model the mechanical response of the soft tissue in the
wake of projectile motion. A schematic of this model is shown in Figure 40.

The high frequency portion of the power spectrum promotes damage and the energy content in
the high frequency band dissipates rapidly due to conversion of energy into mechanical work.
The current model is one-dimensional where the force-displacement relation has been derived
from experimental data on tissue deflections under various loads. Since these relations are strain
rate dependent, we assume average values in the frequency band of interest. Due to residual
strain or deflection after each loading and unloading cycle, the loading curves differ from
unloading. For both loading and unloading, the force-displacement relations used in our
nonlinear spring model are given in Figure 41.

FIGURE 40. Schematics of Nonlinear Spring Model



ATK MISSION RESEARCH W81XWH-04-C-0084

– 59 –

The input to the nonlinear spring code is the lateral velocity at which the cavity wall is set to
motion after the passage of the projectile through that location. For a three dimensional body, it
is very difficult to determine the relationship between the lateral cavity velocity and the
instantaneous projectile velocity at a given location of the cavity wall. A video tape acquired
from Dr. Ronald Bellamy, Col., USAMC shows an AK74 projectile penetrating 10% ordnance
gelatin photographed at 20,000 frames a second. From these data, it is estimated that the lateral
velocity is about 10% of the projectile velocity. In general, this result depends on the projectile
shape and orientation as the projectile is penetrating through a specific location.

For a specific projectile shape with known curvature, if the target is not separated from the
projectile and assuming that the projectile is rigid, the velocity of the target material point in
contact with the projectile is normal to the projectile surface, and is equal to the normal
component of the projectile velocity. For example, in the case of a slant wedge of angle  , if the
projectile velocity is 0v along the x-direction (Figure 42), the material velocity of the target point

is along the normal to the path and is equal to 0 cosv  . Then the lateral material velocity along

the y-direction is 0sin cos sinL nv v v    . For our cut-cylinder projectile where 45o  ,

0 / 2Lv v . This result agrees with hydrocode simulation of the projectile penetration process.

Using the three-particle nonlinear spring code where 10% of the projectile is transferred laterally,
the nature of permanent and transient cavity for a ¼ inch steel ball moving through a 10% gelatin
at 1510 fps is shown in Figure 43. The correlation with some experimental data is also shown in
Figure 43.

FIGURE 41. Loading-Unloading Paths Used in Nonlinear Spring Code
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FIGURE 42. Velocity of Material Point in Contact with the Projectile

FIGURE 43. Transient and Permanent Cavities from Nonlinear Spring Model
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2.3.2 3D Axisymmetric Modal Analysis of Stress Wave Radiation

Penetrating trauma in biological tissue is caused by at least two discrete mechanisms

(1) Tissue damage along projectile path. This interaction is hydrodynamic in nature
where inertial and frictional forces dominate projectile motion during deceleration.

(2) Stress waves generated at cylindrical interface between projectile and tissue from
radial and axial velocities prescribed by the projectile during penetration. These waves
radiate to neighboring tissue causing further damage.

The present analysis concerns mechanism 2 above.

As the projectile penetrates into tissue, it moves material by replacing it with its own volume.
When the material fails, it acts more like a fluid, lessening the amount of material being
compressed. In the radial direction, material is compressed by an expanding cross-section of the
projectile smoothly curved leading edge. As long as the projectile speed is much smaller than the
speed of stress waves in the material, the moving projectile can be approximated by radial and
axial velocities prescribed along its boundary. For a projectile speed on the order of hundreds of
feet per second and a dilatational speed in tissue material of 5600 ft/s, this approximation is
valid.

The influenced region is simulated by tissue material in the shape of a hollow cylinder. Let ( , )r z

be radial and axial coordinates with an origin at one end of the cylinder axis. The inner cylinder
radius pr is that of the penetrating projectile while its outer radius or and length l are chosen to

include the furthest radial and axial locations affected by penetration. In a coordinate system
( , )r z centered at one end of the finite cylinder, the projectile lies in the interval a bz z z  such

that b a pz z l  where pl is projectile length. The tissue material is linear viscous-elastic with a

constitutive law that includes first temporal derivatives of stress and strain.

For simplicity and without loss of generality, axial functions satisfying the differential equations and
specific boundary conditions at the two ends of the cylinder (0, )z l are divided into 2 sets. One set

satisfying vanishing axial stress zz at (0, )z l which has radial and axial displacements ( , )u w

proportional to  sin( / ) , cos( / )m z l m z l  belongs to “problem 1”, where m is an integer wave

number. The other set satisfying vanishing shear stress rz at (0, )z l which has ( , )u w proportional

to  cos( / ) , sin( / )m z l m z l  belongs to “problem 2”. The first set applies to radial tractions

prescribed at the cylindrical footprint ,o a br r z z z   while the second set applies to prescribed

axial tractions along the same footprint. The fact that each set satisfies different boundary conditions
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does not affect transient response until waves reflect from the axial boundaries. Consequently, one
problem is solved for each type of forcing excitation and results are superimposed if both types of
excitation are acting simultaneously.

The form of the forcing function closest to the application is radial and axial velocity prescribed over
part of the inner cylindrical boundary, yet this leads to a mixed boundary condition. This difficulty can
be overcome by superimposing response from a set of unit radial or axial tractions with time dependent
weights prescribed on annular portions of the inner boundary. These weights are updated at each time
step using the condition that combined velocity response at the center of each annular portion equals
the prescribed instantaneous velocity. In this way, the forcing function is converted to pure radial or
axial traction with time varying spatial dependence.

Elastic analysis

In the analysis to follow, all subscript will denote components and not partial derivatives. In cylindrical
coordinates, the electrodynamics equations are

2 ( ) ( ) tt       u u u  (2-3)

 

2 21/ 1/

1/ (1/ ) (

rr r zz

r r z z

r r

r r r



 

        

     e e )e

( , , )r z are radial, circumferential and axial independent variables,  , ,
T

u wu = is displacement

vector along these directions, ( , )  are Lame constants,  is mass density and t is time. Re-write (2-

3) as

2 ( 2 ) ( ) ( ) tt         u u u u     (2-4a)

Noting that

2 ( )       u u u    (2-4b)

permits casting (2-3) in the form

( 2 ) ( )  u    u  = tt  u (2-5)

Define dilatation  and rotation vector  as

,   u u   (2-6)
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Substituting (2-6) in (2-5) yields (Love (1944))

( 2 )      = tt  u (2-7)

Taking the divergence of (2-7) noting that ( 0     yields

2( 2 ) tt       (2-8)

Taking the rotation of (2-7) noting that ( )   0  yields

2
tt    (2-8)

For ax symmetric motions, 0    and 0r z   reducing (2-8) and (2-9) to

2
0

2
1 ,

2 2 2

( 2 )

1/ / , 0,1

tt

tt

n rr r zzr n r n

 

  

  

    

 

        

(2-10)

Expressing (2-6) in terms of u yields

1/ ( )r z

z r

r r u w

u w

    

  
(2-11)

Decoupling u and w in (2-11) produces

2
1

2
0 1/ ( )

r z

z r

u

w r r









     

     
(2-12)

For the radial “problem 1” satisfying 0zz  at (0, )z l , harmonic motions in time with radian

frequency  and simply supported boundaries at (0, )z l yields the separated solution

   

   

( , , ), ( , , ) ( ) cos( ) , ( )sin( )

( , , ), ( , , ) ( ) sin( ) , ( ) cos( )

TT i t
z z

T T i t
z z

r z t r z t r k z r k z e

u r z t w r z t u r k z w r k z e


 



   


(2-13)
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1i   and /zk m l where m is an integer axial wave number. The z dependence in (2-13) yields

0zzu   at the cylinder ends 0,z l . For real ek and sk , equation (2-10) admits the solution

1 0 2 0

3 1 4 1

( ) ( ) ( )

( ) ( ) ( )

e e

s s

r C J k r C Y k r

r C J k r C Y k r

  

 
(2-14)

2 2 2 2 2

2 2 2 2 2

/ , ( 2 ) /

/ , /

e d z d

s s z s

k c k c

k c k c

   

  

   

  

nJ and nY are Bessel functions and ,d sc c are dilatational and shear speeds of sound. If either ek or sk

is imaginary, nJ and nY in (2-14) are replaced by the modified Bessel functions nI and nK with

appropriate changes in sign. Substituting (2-13) and (2-14) in (2-12) then solving for ( )u r and ( )w r

yields

   

   
1 1 2 1 3 1 4 1

1 0 2 0 3 0 4 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

e e e z s s

z e e s s s

u r k C J k r C Y k r k C J k r C Y k r

w r k C J k r C Y k r k C J k r C Y k r

    

   
(2-15)

In cylindrical coordinates, the constitutive relations are

 

2 , 2 /

2 ,

/

rr r

zz z rz z r

r z

u u r

w u w

u u r w

     

    

      

       

     

(2-16)

For “problem 1”, harmonic motions in time and simply supported boundaries at (0, )l yield the

separated relations

( )sin( )

( )sin( )
( , , )

( )sin( )

( )cos( )

rr rr z

z i t

zz zz z

rz rz z

r k z

r k z
r z t e

r k z

r k z

  

 

 

 

 

   
   
   

   
   
      

(2-17a)

Boundary conditions at pr r and or r are
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 ( , , ) ( ) ( ) ( )

( , , ) 0

( , , ) ( , , ) 0

rr p r a b

rz p

rr o rz o

r z t p t H z z H z z

r z t

r z t r z t





 

   



 

(2-17b)

( )rp t is a time dependent uniform radial traction acting on the inner cylindrical boundary pr r in the

interval a bz z z  . The z dependence in (2-17) yields 0zzu   at the cylinder ends 0,z l .

Substituting (2-13), (2-15) and (2-17) in (2-16) yields

 

 
 
 

2 2 2
0 1 1

2 2 2
0 1 2

0 1 3

0 1 4

( ) ( 2 ) ( ) 2 ( ) /( )

( 2 ) ( ) 2 ( ) /( )

2 ( ) ( ) /( )

2 ( ) ( ) /( )

rr e z e e e e

e z e e e e

s z s s s

s z s s s

r k k J k r k J k r k r C

k k Y k r k Y k r k r C

k k J k r J k r k r C

k k Y k r Y k r k r C

    

   





      

      

 

 

(2-18a)

 

2 2 2
0 1 1

2 2 2
0 1 2

3 1 4 1

( ) ( ) ( ) 2 ( ) /( )

( ) ( ) 2 ( ) /( )

2 ( ) ( ) /( )

z e e e e e

z e e e e e

s z s s s

r k k J k r k J k r k r C

k k Y k r k Y k r k r C

k k C J k r C Y k r k r

  

 



     

    

 

(2-18b)

  

 

2 2
1 0 2 0

3 0 4 0

( ) ( 2 ) ( ) ( )

2 ( ) ( )

zz z e e e

s z s s

r k k C J k r C Y k r

k k C J k r C Y k r

   



    

 
(2-18c)

 

 
1 1 2 1

2 2
3 1 4 1

( ) 2 ( ) ( )

( ) ( ) ( )

rz e z e e

s z s s

r k k C J k r C Y k r

k k C J k r C Y k r

 



  

  
(2-18d)

Since zz is proportional to sin( )zk z in (2-17), it vanishes at 0,z l . This allows a rigid body motion

( , ; ) ( )ow r z t w t when external traction acts along z . To avoid the rigid body motion, an additional

axial functional dependence is considered for “problem 2”

( ) cos( )
( , , )

( ) sin( )

( ) cos( )

( ) cos( )
( , , )

( ) cos( )

( ) sin( )

z i t

z

rr rr z

z i t

zz zz z

rz rz z

u r k zu
r z t e

w r k zw

r k z

r k z
r z t e

r k z

r k z



  

 

 

 

 

  
   

   

   
   
   

   
   
      

(2-19a)
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that satisfies the following boundary conditions at pr r and or r

 

( , , ) 0

( , , ) ( ) ( ) ( )

( , , ) ( , , ) 0

rr p

rz p z a b

rr o rz o

r z t

r z t p t H z z H z z

r z t r z t





 



   

 

(2-19b)

( )zp t is a time dependent uniform axial traction acting on the inner cylindrical boundary pr r in the

interval a bz z z  . The z dependence in (18a) yields 0rzw   at the cylinder ends 0,z l . In the

analysis to follow, superscripts (1) and (2) will denote radial and axial problems respectively.
Derivations for problem (2) follow the same steps as those for problem (1) and are omitted here for
shortness. Although conditions at the boundaries 0,z l of each problems are different, they do not

affect the transient response at times preceding reflection of waves from these boundaries.

Divide the cylindrical surface  ,p a br r z z z   into 1n  equidistant ring stations with increment

pz

1 2 3 1, , , ....., ,

( 1)

n l l p

l a p

z z z z z z z const

z z l z

   

   
(2-20)

Assume a uniform pressure of unit intensity to act over each ring segment 1l lz z  . The elastic-

dynamic solution to the thk ring pressure segment is outlined below.

For each pressure segment, expand each dependent variable in terms of eigenfunctions that satisfy
homogeneous boundary conditions. Express total displacement ( , ; )k r z tu as a superposition of two

terms

(1,2) (1,2) (1,2)( , ; ) ( , ) ( ) ( , ; )k sk p d kr z t r z f t r z t u u u (2-21)

(1,2) ( , )sk r zu is static displacement vector satisfying (2-4a) when time derivative vanishes, (1,2) ( , ; )d k r z tu is

dynamic displacement vector satisfying the dynamic equation of motion (2-4a), and ( )pf t is time

dependence of the forcing pressure. For each axial wave number ,m express (1,2) ( , , )d k r z tu in the

eigenfunctions (1,2) ( , )m j r z (Appendix F)

(1,2) (1,2) (1,2)( , , ) ( ) ( , )d k m j k m j
j m

r z t a t r zu  (2-22)
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(1,2) ( )m j ka t is a generalized coordinate of the t hj eigenfunction with m axial half waves from the thk

pressure segment. Substituting (2-21) and (2-22) in (2-4a) and enforcing orthogonality of  1,2 ( , )m j r z

yields uncoupled equations in (1,2) ( )m j ka t . For an undamped elastic cylinder the equation governing
(1,2) ( )m j ka t is

2
2 (1,2) (1,2)

2
( ) ( )m j m j k m j k

d
a t f t

dt


 
  

 
(2-23a)

(1,2) (1,2)

(1,2) (1,2) (1,2)

0 0

(1,2) (1,2) (1,2)

0 0

( ) ( ) /

( , ) ( , )

( , ) ( , )

d

d

m j k am j k p mj

r h

m j m j m j

r h

am j k s k m j

f t N f t N

N r z r z dz r dr

N r z r z dz r dr



 

 

 

 u



 



(2-23b)

m j is the resonant frequency. The solution to (2-23a) takes the form

(1,2) (1,2)

0

1
( ) sin ( ) ( )

t

m j k m j m j k

m j

a t t f d   


   (2-24)

Evaluating radial and axial displacements ( , ; )ku r z t for problem (1) and ( , ; )kw r z t for problem (2)

from the thk pressure segment at each central point 1( ) / 2cl l lz z z   of a pressure segment yields

coefficients of the influence matrices

(1) (1) (1)

(2) (2) (2)

( ) ( ) ( , ) ( , ) ( )

( ) ( ) ( , ) ( , ) ( )

l k m j k mj k p cl s k p cl p
j m

l k m j k mj k p cl s k p cl p
j m

U t a t u r z u r z f t

W t a t w r z w r z f t

 

 




(2-25)

 (1) (2)( , ) , ( , )mjk p cl mjk p clu r z w r z and  (1) (2)( , ), ( , )sk p cl sk p clu r z w r z are modal and static displacement dyads at

clz from the thk pressure segment in problems (1) and (2) respectively. In (2-23) and (2-25) ( )pf t is a

first approximation to the time dependence of the applied pressure. One approximation is determined
from the plane-strain state when axial length of cylinder and footprint approaches infinity (Appendix

G). Enforcing the condition of prescribed displacements (1) ( )pu t and (2) ( )pw t at each time step yields a

set of simultaneous equations in the weights (1)
kp and (2)

kp
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(1) (1)

1

(2) (2)

1

( ) ( ) ( ) , 1,

( ) ( ) ( ) , 1,

n

l k k p
k

n

l k k p
k

U t p t u t l n

W t p t w t l n





 

 




(2-26)

An approximation to ( )pf t is found from the plane-strain problem of the infinite length cylinder with

prescribed radial displacement at the inner boundary (Appendix F).

In what follows, superscripts (1,2) are dropped for shortness. For an elastic material, eigenvalues and
resonant frequencies are synonymous. In this case, the eigenvalues appear in pairs m j and - m j .

Consequently equation (2-21a) takes the form

( ) ( )m j m j m j k m j k

d d
i i a t f t

dt dt
 

  
    

  
(2-27a)

0

0

( ) ( ) /

( , ) ( , )

( , ) ( , )

o

p

o

p

m j k a m j k p m j

rl

am j k s k m j

r

rl

m j m j m j

r

f t N f t N

N r z x z r dr dz

N r z r z r dr dz







 

 

u









 

(2-27b)

2.3.3 SciRUN Interface and Visualization of Gelatin Experiments

This effort was to achieve the following objectives:
1. Set up a computer on which to run SCIRun.
2. Model the Projectile.
3. Model the Gelatin Block.

The following was accomplished:
1. Set up a Linux Computer on which to run SCIRun.
2. Provide a method to output the geometry of the projectile from MathCAD for input into

SCIRun.
3. Provide a method to output the trajectory of the projectile from MathCAD for input into

SCIRun.
4. Program SCIRun to simulate the movement and geometry of the projectile.
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5. Generate an MPEG of the projectile simulation.

Step (3) of the planned items will be completed by the end of December II as it more
appropriately is handled as the projectile trajectory model is debugged during the V&V phase.

Summary of Deliverables from this task
 DumpProjectile.dll, source code, and related files
 user.xml
 Trajectory Source Code for SCIRun
 extract.sh
 Phase1.net
 PC (Linux Redhat 9 OS) with modified SCIRun code (and all other necessary executables

and scripts).
 Phase1.mpg
 movieplayer.exe

Explanation of Deliverables from this task

DumpProjectile.dll

This is a MathCAD specific DLL which is integrated into the Mathcad environment to allow
Mathcad to generate a SCIRun compliant “fld” file which defines the geometry of the cut
cylinder.

The dll is to be copied to the following directory
Drive Letter:\Program Files\Math Soft\Mathcad 2001i Professional\UserEFI

It should be noted that each projectile shape will require a different interface or dll to write out
the file. Ideally, the best solution is to have the Mathcad generate the triangles defining the
geometry and input those to a more generic dll/interface which will generate the fld geometry
file.

Source code and project configuration files are also included.

user.xml

The xml file user.xml defines the interface to call into the DumpProjectile.dll to create the fld file
described above.

This file is to be copied to the following directory (overwriting the existing file):
Drive Letter:\Program Files\Math Soft\Mathcad 2001i Professional\Doc\Funcdoc
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The interface to the file is:
was Written := write_projectile( Curve1, Curve2, OutputFile )

where: wasWritten is a real number. If wasWritten = 1, the file was written and if = 0, the file
was not written and an error occurred.

Curve1 and Curve2 are both 3xN real matrices which define the closed elliptical (circular) curves
on the cut projectile.

OutputFile is a string which gives either a relative or full path of the file to be written.

Trajectory Source Code for SCIRun

The most effective way to handle a trajectory path of a rigid body was to create a customized
module for outputting transformation matrices as a function of time. This source code was code
written to be integrated into SCIRun which reads a specially formatted file which contains the
time, position, and I, J, K orientation vectors generated by the Mathcad projectile calculation
code (see below). This data is combined for each time step to create a series of time-dependent
transformation matrices which are applied to the geometry data in the fld file.

When this code is compiled into SCIRun it creates an MRC specific module called “Trajectory”.
This module is then used in the graphical SCIRun net program to apply transformation matrices
to the projectile geometry to animate the projectile along the projectile path.
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In order to visualize the motion of the projectile it is necessary to slow the simulation down. A
partial solution has been built into SCIRun. Through the use of environment variables, the
trajectory output can be delayed for a period of time:

 MRC_TIMESCALE (Linux command: “export MRC_TIMESCALE=s” where s is a
real number greater than 0) – This environment variable sets a scale by which the time
steps input in the MRC file are scaled.

 MRC_TIMEDELTA (Linux command: “export MRC_TIMEDELTA=s” where s is a
real number greater than 0) – This environment variable sets the absolute time between
projectile transformations and overrides the effect of MRC_TIMESCALE.

extract.sh

extract.sh is a Bourne shell script to be run on the Linux computer. The time, position, and I, J,
K orientation data are output from Mathcad as distinct print files *.prn. These five files along
with the fld geometry file are to be zipped up (using PKZIP or WINZIP) and copied onto the
Linux computer.
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This shell script extracts the files from the zip file and then combines the time, position, I, J, K
files into one file called a .mrc file. It is this file which is read by the Trajectory module in
SCIRun to process the time-dependent transformation matrices.

Phase1.net

Phase1.net is the SCIRun graphical program which reads in the projectile geometry, animates it
using the time-dependent transformation matrices from the Trajectory module, and then displays
the projectile.
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PC (Linux Redhat 9 OS) with Modified SCIRun Code

The University of Utah delivered a PC with Linux OS Redhat 9 installed along with an install of
SCIRun.

The Trajectory source code described above has been integrated into SCIRun to support the
Trajectory module used to describe the projectile trajectory via a set of time-dependent
transformation matrices.

Other executables necessary for creating MPEGs and processing data files are also on the Linux
computer.

Phase1*.mpg

These mpegs are generated using SCIRun and the linux utilities to show the projectile animation.
Note that there is only one frame per time step.

As mentioned previously, environment variables can be used to slow the graphic output. Varying
the speed at which the MPEG is played is also possible, but appears to be reliant on the number
of frames available (see below).

SCIRun can output either an MPEG or individual frames. The MPEGs which SCIRun produces
tend not to run in even time increments.. However, the frames are of good quality. An MPEG
can be created from the frames (which are graphics PPM files) using the Linux “convert”
command: “convert –quality 100 *.ppm Phase1.mpg”. (It should be noted that the first frame is
always the projectile geometry with the last transformation – when creating the MPEG, delete the
first PPM file *.0000.ppm.)

Note on MPEG quality and playing: Even with the efforts made so far and a variable-speed
MPEG player (see below), it is felt that the MPEG can still be improved. A shell script will be
written on Linux which will generate multiple frames from the frame generated by SCIRun for
each time step. It is felt that this will remove some of the “jerkiness” from the MPEG as well as
make it easier to run the MPEG at a much slower speed.

movieplayer.exe

According to the MPEG-1 standard, a frame is to last 26 milliseconds or about 38 frames per
second. We need to find a way to reduce the number of steps per second to a much slower speed.

It was desirable to find an MPEG player which allowed a variable rate of speed to play the
frames. movieplayer.exe allows the speed of the MPEG to be anything from 1-300% of normal
speed.
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Assuming the play rate defined for MPEG-1 above, we should obtain the following behavior at
various speeds for the MPEG:

MPEG SPEED Length of frame Number of Frames per Second
100% 26 ms 38
50% 52 ms 19
10% 260 ms 4
1% 2600 ms 0.4 or 2.6 seconds per frame

“The Best Movie Player 1.55” may be downloaded from http://www.svenbader.de/e_index.html.

It appears through experimentation that the effectiveness of variable play on the MPEGs we are
producing is marginal. It is likely that it is dependent on the number of frames or on how those
frames are generated for the MPEG. However, it does appear that between the time scale and
the variable speed MPEG player, we do have control over the speed of the simulation. Further
methods such as repeating frames may be considered for further refinement of the final MPEG.

Data Flow
Consider the following chart:

http://www.svenbader.de/e_index.html


ATK MISSION RESEARCH W81XWH-04-C-0084

– 75 –

The flow of data is very clearly given here.

Comments on next step in Visualization

The analysis model for the block is axisymmetric. In order to graphically model the block, it will
be necessary to write a small preprocessor which will generate a three-dimensional model from
the axisymmetric model. The graphical nodes in the axisymmetric model will correspond to the
masses in the spring model. The (undeformed) block will correspond to a three-dimensional
representation of the axisymmetric spring model (masses) at rest.

At the time of penetration, it will be necessary to gather information from both the spring model
(the masses which define the nodes which are now being deformed to define the cavity) and from
the hydro code which will provide the strains.
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2.3.4 Development of Analytic Model and Permanent Wound Cavity Results

Heart Geometry

The geometry of the heart was provided as a stereo lithography or STL file from Stanford.
however, it was necessary to translate the model into a data format which could be used by
various engineering analysis software packages. Also, it was necessary to be able to perform a
rigid-body transformation (translation and rotation) to place the model in various coordinate
frames as required by the analysis software.

Several different operations were performed on the STL model provided by Stanford.

1. Use Paraview 1.8 to decimate the STL file as required for model verification.

2. Use Paraview 1.8 to validate and correct the Zone 12 entry and exit points.

3. Convert the model to an MSC.Patran Neutral File. This file is a fairly standard method
of passing finite element definitions between different finite element preprocessors. This
model was used by a special meshing package to generate a well-conditioned hexagonal
mesh for the nonlinear finite element solver; the output being used to create the Mission
Research movies.

Modeling Toolkit

In order to perform the data format translations and coordinate frame transformations, a “toolkit”
of computer routines was written from which we were able to generate programs as needed to
process the geometry as well as generate proper analyses models. The toolkit was a set of C++
classes which were written and tested on both Linux and Win32 platforms. The toolkit has the
following capabilities:

 Platform-independent methods for file handling.

 Tensor, Matrix, Vector, Coordinate Frame, and Transformation Matrix support.

 Support for MathCAD objects which allows it to be integrated directly into MathCAD.

 Spline fitting including fitting of n-dimensional splines.

 Other mathematical methods including eigenvalue and eigenvector support.

 Read and Write of STL, SCIRun fld files, and MSC.Patran Neutral Files.
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Heart Material Properties

We worked with University of California at San Diego to develop a method for generating
material properties for the heart based on the information available. The method included both a
first-order approximation and a modeling process by which the Stanford heart model as geometry
along with data from other sources to generate the material properties. These properties are
derived from an energy function which supports large elastic deformations where the
deformations are dependent on the fiber directions in the myocardium. The first-order
approximation was used for the Phase 1 model.

Integration of Analyses Results

There were several aspects of the analyses that required integration to generate the final results.

1. The results from the kinematic analysis of the projectile which provide the path of the
projectile including location of the center of mass G and rotation about G.

2. The nonlinear spring analysis generated the shape of the cavity from the initial entry till
the motion had sufficiently decayed. This data needed to be converted from a time-based
representation to a spatial representation in three dimensions.

3. Strain calculations over the time period of interest. The strains calculated included the
axial, circumferential and radial strains. From these, we calculated the principal strains
and the maximum principal strain at any point.

Using the projectile path as calculated from the kinematic analysis (1) and the shape of the cavity
from the spring analysis (2), the cavity shape corresponding to the nonlinear projectile path can
be calculated over the time period of interest. Corresponding strain calculations then can be
mapped onto the resulting cavity wall as well as into the myocardium of the heart up to a
predetermined distance from the cavity wall.

The C++ toolkit was used to create a program which could output the cavity at any point of time
along with the strain tensor on the cavity wall. The output was provided as a SCIRun fld file
where the geometry was transformed into the Zone 12 coordinates as provided by Stanford. The
output was given as to enable downstream applications to easily integrate the analysis results.
The following images depict the different strains on the final cavity wall as provided for the
demonstration. The images were output directly from SCIRun.
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FIGURE 44. Final Cavity Geometry and Final Axial Strain Shown as a Fringe Plot

FIGURE 45. Final Cavity Geometry and Final Circumferential Strain Shown as Fringe
Plot
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FIGURE 46. Final Cavity Geometry and Final Radial Strain Shown as a Fringe Plot

FIGURE 47. Final Cavity Geometry and Final Principal Axial Strain Shown as Fringe Plot
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FIGURE 48. Final Cavity Geometry and Final Principal Circumferential Strain Shown as
a Fringe Plot

FIGURE 49. Final Cavity Geometry and Final Principal Radial Strain Shown as Fringe
Plot
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FIGURE 50. Final Cavity Geometry and Largest Principal Strain over all Time Steps
Shown as a Fringe Plot

Support for Stanford Strain Calculations

Two variations of the code were generated as well to support a request from Stanford University
and University of Michigan to provide strain results within the myocardium itself. Stanford
University requested that Mission Research generate a series of offset cylinders with strain
results. These results were given as SCIRun fld files and represent provide the maximum
principal strains at offset distances from the cavity wall into the myocardium. These results were
required for Stanford to run their moment calculations.
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FIGURE 51. Maximum Principal Strain at the Cavity Wall

FIGURE 52. Maximum Principal Strain at 2.5 cm from the Cavity Wall
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FIGURE 53. Maximum Principal Strain at 5 cm from the Cavity Wall

FIGURE 54. Maximum Principal Strain at 7.5 cm from the Cavity Wall
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FIGURE 55. Maximum Principal Strain at 10 cm from the Cavity Wall

The University of Michigan desired to obtain strains via a more general API in which points
could be input (in Stanford coordinates) via the command line or a file. This is useful for
mapping strains into the myocardium. This capability was provided near the end of the
preparation time for the demo, so it may not have been used at the demo, but does show the
capability to provide such analytical results.
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TASK 3
BALLISTIC EXPERIMENTS

Ballistic testing encompassed using different projectiles – various diameter spheres, cylinders,
and “cut-cylinders” (cf. Figure 2, page 10) and different target materials – homogenous 10, 15
and 20% ordnance gelatin targets and inhomogeneous hollow 10 and 20% gelatin targets with
water inclusions.

3.1 INITIAL BALLISTIC TESTING

Ballistic testing initially focused on implementation of a high-speed digital video system to
record the penetration process of two projectiles, namely a 0.250” diameter steel sphere and a
steel, right circular cylinder measuring 0.250” diameter and 0.500” length (Length/Diameter, L/D
= 2). A monolithic block of 20% ballistic gelatin was impacted at various velocities chosen to
produce similar depths of penetration, nominally six inches, or 60% of the target thickness.
Finally, the highest velocity which would result in the cylindrical projectile coming to rest within
the target material was implemented for better comparison with existing and newly developed
data for spherical projectiles. Table 6 presents the shot log for the initial tests which have high-
speed digital video records.

TABLE 6. Initial Ballistic Testing

Run # Projectile Mass Target
Velocity

(fps)
Depth
(in.)

0506-07 1/4" steel sphere 1.04gm 20% gelatin 1170 6.3
0506-08 L/D=2 1/4" steel cylinder 3.12gm 20% gelatin 490 6.3
0506-09 L/D=2 1/4" steel cylinder 3.12gm 20% gelatin 470 5.7
0506-10 L/D=2 1/4" steel cylinder 3.12gm 20% gelatin 740 9.0

FIGURE 56. Comparison of Typical Wound Track for Sphere and Cylinder
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The sphere produced a straight wound track while the cylinder generally produced a wound
which deviated from normal as the projectile slowed. Posttest photos of typical wound tracks are
presented in Figure 56.

Implementation of the high-speed digital system allowed an accurate record of the penetration
history for the two projectiles within the gelatin targets. Posttest processing software facilitated
measurement of projectile location throughout the penetration event. Using the framing rate of
the camera, an average projectile velocity was calculated between successive frames. Frame-to-
frame uncertainties in the precise location of the tip of the projectile resulted in error bands about
the actual velocity decay curve. However, since the video data provided a continuous record of
the penetration event, uncertainties did not accumulate in the average velocity calculation.
Therefore, a curve-fit to the measured data resulted in a reasonable polynomial description of the
velocity decay over time for the experiments in Table 6. That data is presented in Figure 57.

In addition to the projectile trajectory information, the high-speed video also reveals a fluid-
mechanical, wake-like structure that trails the penetrating projectile (see Figure 58). The origin of
this structure contains the projectile. The transverse dimensions first grow and then shrink,
ending in a position, which is similar to the permanent wound track created by the projectile.

Average Velocity vs Time in 20% Gelatin
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FIGURE 57. Velocity Decay for Cylinder and Sphere in 20% Ballistic Gelatin
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The images recorded in the video were generated by imaging the test target against a back-lighted
optical diffuser which is basically equivalent to illuminating the target with a point source at
infinity. This is the technique used for “Shadow Photography” in fluid mechanics to reveal
density gradients (diffraction) in the test volume. It is not clear that the present problem can be
treated as a problem in fluid mechanics; however some observations and tentative conclusions
can probably be made for a reasonably axisymmetric configuration.

The dark boundaries of the “wake” result from incident light being diffracted, reflected or
absorbed by the “altered” property details of the material in these boundaries. The very light
region in the center of the “wake” (cf. Figure 58) results from the relative absence of reflective
and absorptive changes as well as diffracted light entering the region. A void or a “cavity” will
produce these results.

The features discussed above are rather well depicted in the early entry process of a cylinder into
the gelatin target as shown in Figure 58. We estimate the local (axisymmetrical) “cavity” to be
given by the diameter indicated. A record obtained near the entry site was selected for this
presentation because the dimension of the entry hole in the impacted surface can be confirmed by
the appearance of a typical crater lip. It must be remembered that we record a two-dimensional
image only. A pronounced growth of the “cavity” is very obvious when the cylinder pitches in
the imaged plane. This is also consistent with the suggested interpretation of the optical data.

FIGURE 58. Determination of Boundaries of Temporary Cavity (Experiment 0506-10)

Cavity Diameter

Edge of cavity
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3.2 SPHERICAL PROJECTILES

After the initial ballistic tests in Table 6, testing was then dedicated to filling voids in the
penetration data space for the primary tissue simulant, namely 20% ordnance gelatin (see Table
8). Previous penetration data obtained by Mission Research and Edgewood Arsenal used small
steel spheres (BB’s, 0.17” diameter). Limited data for 0.25” steel spheres also existed at Mission
Research. It was concluded that the maximum penetration depth could be scaled, over the
velocity range of primary interest, by the ballistic coefficient (weight divided by the product of
the drag coefficient and the area) of the projectiles. The low velocity range, from zero to some
threshold velocity to assure penetration into the target is excluded from this linear dependence, as
are the higher velocities, of order 1500 feet per second and above, for small spheres. This is
elaborated in the Task 1 discussion.

TABLE 7. Additional Testing using Spherical Projectiles

Projectile Target Velocity (fps) Depth (inches)

BB 20% Gel 280 0.0
BB 20% Gel 340 0.3
BB 20% Gel 400 0.6
BB 20% Gel 530 1.0

BB 20% Gel 675 1.5
BB 20% Gel 700 1.6
BB 20% Gel 1000 2.9
BB 20% Gel 1255 3.6

BB 20% Gel 1600 4.8
BB 20% Gel 1600 4.8
BB 20% Gel 1610 4.9

.25" sphere 20% Gel 245 0.6

.25" sphere 20% Gel 310 1.1

.25" sphere 20% Gel 440 1.6

.25" sphere 20% Gel 1350 6.9

.25" sphere 20% Gel 1455 7.2

.25" sphere 20% Gel 1550 7.5

.25" sphere 20% Gel 1600 8.1

.25" sphere 20% Gel 1630 8.2

.25" sphere 20% Gel 1750 8.1
.375" sphere 20% Gel 810 6.7
.375" sphere 20% Gel 760 6.4
.375" sphere 20% Gel 930 8.0

.375" sphere 20% Gel 185 0.4

.375" sphere 20% Gel 270 2.3
.30" wedge 20% Gel 1120 7.7

.30" wedge 20% Gel 1230 7.8

.30" wedge 20% Gel 710 6.0

.30" wedge 20% Gel 490 4.1

.30" wedge 20% Gel 1360 9.2
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With these limitations in mind we were able to correlate old and new spherical projectile
penetration data in 20% ordnance gelatin targets. Measured maximum penetration ( in inches)
data using BB’s (diameter, d = 0.17 Inches) were plotted versus striking velocity for normal
impacts (see Figure 59). A linear (hand) fit crosses the velocity axis ( = 0) at 260 feet per
second with a slope of 3.67  10-3, or 2.15  10-2d, with d in inches. The maximum penetration is
then:

 = 2.15  10-2d(V – 260).

FIGURE 59. Ballistic Data using Spherical Projectiles of Different Sizes

Scaling by ballistic coefficient, that is, scaling by “d” was then applied to existing and the newly
generated 0.25” sphere data. The dashed line in the attached figure, labeled “(BB  1.47)” results
from multiplying the fit through the BB-data by 1.47, which is the diameter ratio of the 0.25”-
inch spheres and the BB’s. This line is seen to fall slightly below the data from 0.25”-sphere
impact tests. After parallel translation to cover the new data, shown by triangles, the solid line,
labeled 0.25” resulted. It is seen to cross the velocity axis at 130 feet per second, for  = 0. This
line has a slope of 5.40 10-3 or 2.16 10-2d, where d is now 0.25”. The equation for max
penetration is then:

 = 2.16 10-2d(V – 130)

Following the same procedure for the newly generated 0.375-inch steel sphere data yielded a
slope of 8.10  10-3 or 2.16  10-2d, with a  = 0 intercept at V = -30 feet per second. The
equation for 0.375-inch sphere penetration becomes then:

BB  1.47

BB  2.21



ATK MISSION RESEARCH W81XWH-04-C-0084

– 90 –

 = 2.16  10-2d[V –(-30)]

The slopes of the correlation lines through the 3 data sets are proportional to the diameters of the
projectiles that generated the data. This suggests that ballistic coefficient scaling holds rather
well for the velocity range of primary interest.

An asymmetrical projectile geometry was somewhat arbitrarily selected to explore penetration
trajectories of projectile fragments. We elected not to use the complicated geometry identified as
the Army Fragment Simulating projectile and opted for a less symmetrical geometry which is
readily produced. Our projectile, shown in Figure 2 (page 10), is a .30 caliber modified right
circular cylinder, two diameters long with one end ground off at 45 degrees. This configuration is
readily launched and will rapidly develop yaw that should lead to early tumbling.

A posttest photograph of an exploratory impact in 20% ordnance gelatin and using the
asymmetrical projectile (“Wedge”) described above is shown in Figure 60. The large diameter
material disruption, early in the penetration (see Figure 61), suggest that the projectile was
yawing through 90 degrees. The rapid reduction in the damage diameter, followed by a small
cylindrical damage region, suggests that the projectile moved nearly end-on stably for the latter
part of its trajectory. The above observations are substantiated by high speed video records,
recorded during penetration, and the resting orientation of the projectile. The deviation from a
rectilinear trajectory is obvious. Also note that wound tract diameter is highly non-uniform
toward the end of its trajectory even when the projectile is traveling without tumbling, base
forward. Sometimes the wound tract is much smaller than the projectile diameter and sometimes
larger.

FIGURE 60. Longitudinal Target Cross-Sections showing that projectile has rotated 180
degrees so that it is penetrating base forward. (A) Experiment 040603-02 – Wedge into
20% Gelatin @ 710fps; (B) Experiment 040607-04 – Wedge into 15% Gelatin @ 730fps.

A
B
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FIGURE 61. Macro Views of Target Damage using different lighting

FIGURE 62. Posttest Photograph of Spherical Penetration Ballistic Experiment
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Spherical particle impacts, as expected, reveal virtually no deviation from the striking velocity
direction. However, here too, a wound tract much smaller than the projected area of the projectile
is evident. See Figure 63. Also note that there is material disruption in front of the projectile and
the “wound tract” diameter behind the projectile is smaller than the projectile diameter due the
recoil of the material in the wake of the projectile.

3.3 VARIATION OF MATERIAL PROPERTIES

Testing of penetration depth, permanent and temporary wound tract, and projectile dynamics in
ordnance gelatin targets were also conducted to determine differences in response attributable to
differences in material properties in the target material. For this purpose we tested ordnance
gelatin of 10% (by weight) and 15% concentrations for comparison to the primary data base
generated for 20% ordnance gelatin.

We performed impact tests with spheres and a 30 caliber “wedge-cylinder” projectile with
striking velocities ranging from nominally 500 to 1,400 feet per second as seen in the Run Log in
Table 8, below. For a qualitative comparison we included a single test using a “standard US
Army Fragment Simulator.” This small (1.13 grams), asymmetrical projectile produced a
penetration depths very similar to those produced by 0.25-inch, spherical projectiles (1.04
grams), in 15% gelatin targets.

TABLE 8. Ballistic Experiments on Homogeneous 10, 15, and 20% Gelatin Targets

Run #
Projectile

Diameter (in)
Projectile

Shape
Projectile

Mass (gms)
Target

Material
Velocity

(fps)
Projectile Resting

Depth (in)
Maximum Visible
Penetration (in)

Q2-01 0.250 Sphere 1.04 15% Gelatin 1300 9.0 9.0
Q2-02 0.250 Sphere 1.04 15% Gelatin 680 4.7 4.6

Q2-03 0.300 Wedge 4.10 15% Gelatin 730 6.9 6.8
Q2-04 0.300 Wedge 4.10 15% Gelatin 690 6.4 6.4
Q2-05 0.250 Sphere 1.04 15% Gelatin 900 6.8 6.8
Q2-06 0.250 Sphere 1.04 15% Gelatin 460 3.2 3.2

Q2-07 0.250 Sphere 1.04 15% Gelatin 1390 thru thru
Q2-08 0.300 Wedge 4.10 15% Gelatin 700 6.7 6.7
Q2-09 0.220 Frag Sim 1.13 15% Gelatin 1060 6.9 6.9
Q2-10 0.300 Wedge 4.10 15% Gelatin 900 7.2 7.6
Q2-11 0.300 Wedge 4.10 15% Gelatin 1000N 7.6 7.9

Q2-12 0.300 Wedge 4.10 20% Gelatin 1050 6.8 7.1
Q2-13 0.300 Wedge 4.10 20% Gelatin 1400 9.2 9.6
Q2-14 0.250 Sphere 1.04 10% Gelatin 600 8.3 8.3
Q2-15 0.250 Sphere 1.04 10% Gelatin 560 8.0 8.0
Q2-16 0.250 Sphere 1.04 15% Gelatin 940 6.0 6.1

Q2-17 0.300 Wedge 4.10 10% Gelatin 470 7.3 7.4

An important objective of this test series was to explore techniques for mapping, in real time,
projectile trajectories, especially for the asymmetrical “wedge” projectiles. As expected, high
framing rate photography was best suited for this purpose, in transparent targets. These
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photographic records reveal projectile location, orientation and velocity, and also formation and
collapse of the temporary wound tract.

We have derived projectile pitch data from this record and one example is presented in Figure 63.
below. In addition, projectile deceleration as a function of penetration depth was obtained as well
as cavity wall dynamics.
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FIGURE 63. Cut-Cylinder Rotation Angle versus Penetration Depth for Experiment Q2-13.
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KEY RESEARCH ACCOMPLISHMENTS AND CONCLUSIONS

 A model of tissue response from a survivable penetrating wound to the human left
ventricle was developed. The model described the residual wound tract and qualitatively
was consistent with anecdotal data from military trauma surgeons regarding these
wounds. The predicted wound geometries was also consistent with animal testing.

 The model also described the tissue dynamics of the wound tract from a beating heart,
including modulation of the pressure in the wound tract. This was discovered to be an
important effect in that for small diameter wounds, the tract periodically opens and closes
permitting and obscuring blood loss form the wound. Failure to include his effect results
in gross overestimation of blood loss and skewed results for predicted outcomes.

 Stress waves propagating over heart form the ballistic impact are sufficient, based on
previous research, to cause transient ion upset in the neighborhood of the wound tract.
This upset is sufficient to disrupt the polarization wave causing contraction of the heart.
This disruption can cause arrhythmias that can transition into potentially lethal
fibrillation. These effects were not further considered in this effort but should be
considered in the future.

 A technique was developed to model relevant human tissue dynamic properties based on
quasistatic mechanical property data for these tissues. This is important in that dynamic
mechanical property data is not available for human tissue and these sets of data are
critical input for any subsequent analysis of projectile penetration. The methodology was
validated by using various formulations of gelatin where only static mechanical property
data was available and correlating with experimental measurements (using high speed
digital video) of projectile velocity, projectile rotational kinematics, projectile trajectory,
transient target response, and residual cavity (wound tract) in the target as a function of
time during and immediately following projectile penetration.
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REPORTABLE OUTCOMES

The following five peer-reviewed papers were published from this project. Copies of these
papers are included in the indicated appendices for the reader’s convenience.

(1) Eisler, R. D., Stone, S. F., and Chatterjee, A, K., Analytical Simulation of Penetrating
Wounds to the Heart, MMVR 2005. See Appendix N.

(2) El-Raheb, M., An Acoustic Model for Wave Propagation in a Weak Layer, JOURNAL OF
APPLIED MECHANICS, Vol. 72, September 2005, pages 744-751. See Appendix J.

(3) El-Raheb, M., Transient Waves in an Inhomogeneous Hollow Infinite Cylinder,
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, Accepted with Revision, 7
February 2005. See Appendix M.

(4) El-Raheb, M., Wave Propagation in a Hollow Cylinder Due to Prescribed Velocity at the
Boundary, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, Accepted with
Revision, 8 March 2005. See Appendix K.

(5) El-Raheb, M., Transient Response in a Finite Hollow Cylinder from Time-Delayed
Prescribed Motion at the Boundary, JOURNAL OF SOUND AND VIBRATION, Accepted with
Revision, 11 March 2005. See Appendix L.
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CONCLUSIONS

ATK Mission Research was sponsored by DARPA’s Virtual Soldier program to analytically
simulate residual wound tracts and tissue dynamics associated with a survivable wound from an
explosively driven fragment penetrating the left ventricular wall of the human heart. The resulting
ATK Mission Research wound description was used in the DARPA/University of Michigan Virtual
Soldier program as initial conditions for describing blood loss and occurrence of hemorrhagic
shock. A key finding was that the tissue dynamics of the wound tract from a beating heart,
particularly for small diameter wounds that are survivable, are critical in the resulting blood loss
calculations. The wound tract periodically opens and collapses due to modulation of pressure within
the tract. This intermittent open and closing of the wound intermittently prevents and permits blood
loss form the wound. Failure to include the tissue dynamics in the blood loss calculations results in
a gross overestimation of blood loss and skewed results for predicted outcomes.

Stress waves propagating over heart form the ballistic impact are sufficient, based on previous
research, to cause transient ion upset in the neighborhood of the wound tract. This upset is sufficient
to disrupt the polarization wave causing contraction of the heart. This disruption can cause
arrhythmias that can transition into potentially lethal fibrillation. These effects were not further
considered in this effort but should be considered in the future.

Finally, a technique was developed to model relevant human tissue dynamic properties based on
quasistatic mechanical property data for these tissues. This is important in that dynamic mechanical
property data is not available for human tissue (although quasistatic mechanical property data is)
and dynamic mechanical property data is critical input to any subsequent analysis of projectile
penetration into tissue. The ATK Mission Research methodology was validated by using various
formulations of gelatin that from previous research were shown to be phenomenologically similar to
soft tissue in terms of projectile-tissue interaction. Static mechanical property data was used for
these “unknown” formulations of gelatin targets and used to successfully correlate with
experimental measurements (using high speed digital video) of projectile velocity, projectile
rotational kinematics, projectile trajectory, transient target response, and residual cavity (wound
tract) in the target as a function of time during and immediately following projectile penetration.

Two additional tasks, unrelated to the base effort described above, were added to the Mission
Research SOW. The first of these tasks included using a modified Nail Gun developed by the US
Army Institute of Surgical Research (ISR) on ordnance gelatin targets and comparing residual
damage produced in the gelatin by the ISR Nail Gun as compared to the residual damage from
ballistic experiments. A separate letter report and a DVD with high-speed digital video of all
experiments were sent under separate cover for this task. The second task included conducting
hydrocode analysis of body armor SAPI plates subject to non-penetrating projectiles and blast
and is discussed in Appendix O.
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APPENDIX A

ATK MISSION RESEARCH
STATEMENT OF WORK
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MISSION RESEARCH CORPORATION (MRC)
STATEMENT OF WORK

MRC will develop analytic models that describe tissue damage from ballistic impact by a fragment with a
low striking velocity penetrating the heart. Tissue damage will include descriptions of the projectile
trajectory through the heart and tissue damage lateral to the projectile trajectory (the wound tract).

The MRC effort will be divided into two phases. The period of performance for Phase I will be 1 February
2004 though 1 April 2005. The period of performance for the optional second phase will be 1 April 2005
through 1 April 2006. [The period of performance was modified to be consistent with the overall Virtual
Soldier Program. Thus, Phase I extends from 1 March 2004 through July 2005 and Phase II is now 2-1/2
years in duration].

TASK DESCRIPTIONS

Phase I will consist of four tasks: (1) analytical simulation of the projectile trajectory, (2) analytic simulation of the
wound tract, (3) ballistic experiments on tissue and biosimulant materials, and (4) preparation of deliverables.

PHASE I – PROJECTILE SOFT TISSUE INTERACTION

TASK 1 – ANALYTICAL SIMULATION OF PROJECTILE TRAJECTORY

MRC will develop algorithms and required material properties to describe the trajectory and velocity retardation
through biological tissue. This first task will consist of three subtasks: (1) material property measurements; (2)
development of projectile retardation algorithms; and (3) Development of algorithms for a user prescribed projectile.

1.1 Tissue Mechanical Properties
MRC will measure relevant properties of biosimulant and tissue materials representative of targets tested in
Task 3.

1.2 Projectile Retardation
MRC will develop algorithms in terms of static and dynamic material properties either available in the
literature or from Task 1.1 that describe velocity retardation and the path of a prescribed standard projectile
through tissue and biosimulant targets.

1.3 Simulation of Arbitrary Projectile
MRC will generalize the algorithms developed in subtask 1.2 for a standard projectile to an arbitrary low
velocity projectile.

TASK 2 – ANALYTIC SIMULATION OF WOUND TRACT

Using the projectile velocity retardation and trajectory described in Task 1, MRC will use the transient tissue
response model developed in subtask 2.1 to simulate damage lateral to the projectile trajectory in subtask 2.2.
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2.1 Analytic Simulation of Tissue Transient Response
MRC will develop transient dynamic response models of the wound tract.

2.1 Analytic Simulation of Wound Tract Geometry
MRC will simulate wound tract geometry using the transient response models developed in subtask 2.1. MRC will
also assist in integration of the wound tract model into the human Holomer being developed by the University of
Michigan for DARPA’s Virtual Soldier project.

TASK 3 – BALLISTIC EXPERIMENTS ON TISSUE AND SURROGATE MATERIALS

MRC will conduct ballistic impact experiments with suitably designed launchers and projectiles on instrumented
homogeneous and non-homogeneous ordnance gelatin targets. Hybrid targets will also be developed that include
pressurized and un-pressurized porcine hearts in a gelatin matrix. MRC will obtain impact/penetration data and data
relative to stress wave formation and propagation in porcine tissue and in the chambers of the heart. The data from
these experiments will be correlated to models developed in Tasks 1 and 2.

TASK 4 – PREPARATION OF DELIVERABLES

Deliverables will be threefold and include: (1) quarterly status reports, (2) attendance and presentation at designated
quarterly technical interchange meetings, and (3) a Phase I final report.

PHASE II (OPTION) – PROJECTILE TISSUE INTERACTION INCLUDING
FLUID, BONE, AND POROUS TISSUE

TASK 5 – PHASE II ANALYTICAL SIMULATION OF PROJECTILE TRAJECTORY

MRC will develop algorithms and required material properties to describe the trajectory and velocity retardation
through biological tissue, including bone, fluid interfaces, and porous materials. This task will consist of three
subtasks: (1) material property measurements; (2) development of projectile retardation algorithms; and (3)
Development of algorithms for user prescribed projectiles.

TASK 6 – PHASE II ANALYTIC SIMULATION OF WOUND TRACT

Using the projectile velocity retardation and trajectory described in Task 5, MRC will use a transient tissue response
model developed to simulate fracture and damage lateral to the projectile trajectory.

TASK 7 – PHASE II BALLISTIC EXPERIMENTS ON TISSUE AND SURROGATE MATERIALS

MRC will conduct ballistic impact experiments with suitably designed launchers and projectiles on instrumented
homogeneous and non-homogeneous ordnance gelatin targets. Hybrid targets will also be developed that include
biological tissue in a gelatin matrix. MRC will obtain impact/penetration data and data relative to stress wave
formation and propagation. The data from these experiments will be correlated to models developed in Tasks 5 and
6.

TASK 8 – PHASE II PREPARATION OF DELIVERABLES

Deliverables will be threefold and include: (1) quarterly status reports, (2) attendance and presentation at designated
quarterly technical interchange meetings, and (3) a Phase II final report.
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APPENDIX B

STATIC SOLUTION OF CYLINDER IN
PLANE-STRAIN WITH

CIRCUMFERENTIAL INHOMOGENEITIES
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Static solution of cylinder in plane-strain with  -inhomogeneity

The static solution of a hollow cylinder in plane-strain is the first step

toward the analysis of transient response. The effect on variables of

circumferential or  -inhomogeneity from an axisymmetric pressure applied at the

inner boundary is evaluated.

Static and dynamic solution of the homogeneous hollow cylinder in plane-

strain is a straight–forward mathematical task as the problem yields to an exact

treatment. Radial inhomogeneity requires a more complicated analysis yet the

problem still yields to an exact treatment if a step-wise radial variation in

modulus is assumed. In other words, divide the region p or r r  into rN

equidistant annular segments

1

1

, 1,...,

, ( ) /

j j r

j j j j o p r

r r r j N

r r r r r r N





  

    

pr and or are inner and outer radii, and modulus jE is constant over each segment

yet varies from one segment to the other. r -inhomogeneity is axisymmetric as E

varies only along r but remains constant along  . Consequently, only extensional

waves are excited. The solution adopts transfer matrices of annular segments with

varying properties.

The  -inhomogeneity is substantially more complicated since a step-wise

discretization along the circumference is not possible. The only way to treat the

 -inhomogeneity analytically is by the Galerkin method. Eigenfunctions of the

asymmetric homogeneous dynamic equations are utilized as trial functions in the

inhomogeneous dynamic equations. The static solution is attempted first to

evaluate the stability and convergence of the Galerkin method.

Fig. 2. plots distribution of variables along r for the homogeneous hollow

cylinder made of gelatin with pr =0.25” and or =3” with an axisymmetric unit
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pressure applied at pr r . Fig. 2a plots radial displacement u and Fig. 2b plots

radial and circumferential stresses ,rr   . Note the exponential decay of all

variables with r . Also note that magnitudes of rr and  are the same at the

inner wall and equal the applied unit pressure.

Consider a  -inhomogeneity in the form

 0( ) 1 0.5cos(2 )E E  

meaning that modulus is made of an axisymmetric component with magnitude oE

superimposed to a component of magnitude 00.5E that varies along  following a

cos(2 ) distribution. In this way, maximum magnitude is 01.5maxE E at 0  and

  , and minimum magnitude is 00.5minE E at / 2  , yielding an /max minE E = 3.

Fig. 3(a1-d1) plots r distribution of variable with 0, / 4, / 2   as parameter,

while Fig. 3(a2-d2) plots  distribution with , 2 , 4 , 8p p p pr r r r r as parameter. u

and circumferential displacement  have approximately the same magnitude yet they

are almost half the axisymmetric u in Figure 2a. Both u and  vary periodically

along  as shown in Fig. 3(a2,b2). rr achieves its maximum magnitude of unity at

the inner boundary consistent with the boundary condition there (see Fig. 3(c1-

c2)). An interesting and important finding is the magnitudes of  (Fig. 3(d1-

d2)) and axial stress zz (Fig. 3(e1-e2)) at the inner boundary. max is

approximately 13 times larger than applied pressure while maxzz is almost 6 times

higher than applied pressure. This can be attributed to the  motion that exists

for the inhomogeneous asymmetric case while it vanishes identically for the

homogeneous axisymmetric case. Note that remote from the inner boundary pr r ,
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magnitudes of max and maxzz are almost twice the applied pressure. Note that for

/ 4   changes from compression to extension suggesting that circumferential

asymmetry produces a magnified tensile  enhancing radial tearing of tissue.
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APPENDIX C

SIMPLIFIED PLANE-STRAIN
ANALYTICAL RESULTS
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APPENDIX D

LISTING OF PROJECTILE TRAJECTORY
MATHCAD CODE
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MATHCAD CODE

DETERMINATION OF WOUND TRACK

TRANSLATIONAL AND ROTATIONAL MOTION OF

A CUT CYLINDER INSIDE A TARGET
DEVELOPMENT OF GENERAL MODULAR CODE APPLICABLE TO AN ARBITRARY SHAPED
PROJECTILE

Moment of Inertia about the Combined Center of Mass G
Geometry of Cut Cylinder

Cylinder Base Radius a 1

Length of Cylinder L 4

Cutting Angle d 30 deg

 d


180


c


2


(Complimentary Angle)

Lp 2 a tan  

Lp2 L Lp

L 4

Lp 1.155

Lp2 2.845

Total Volume: V  a
2

 Lp2
Lp

2











Cut Volume V2 a
2 Lp

2


Volume 1 V1 V V2

V 10.753

V2 1.814

V1 8.939

Analysis of Section One: Upper Cut Section
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Sectional Functions

xn b( )  asin
b

a











s
4

3
a

1
b

a









2










3

2

 2  sin 2  


s



md b( )  asin
b

a











s
a

2

2
 2  sin 2   

s



Cut Mass cutmass    a
3

 tan  

c b   a tan  
b

a
1










x-distance of CM from A, the base center
of the cut-section

xdis  

tan  
1

1

bc b   md b( )




d

cutmass  


y-distance of CM from A, the base center
of the cut-section

ydis  

tan  
1

1

bxn b( ) md b( )




d

cutmass  


xd xdis  

yd ydis  

Ixy of Section One about the base center A
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IAxy a   


2


tan tan  

L 2
a

tan  


Int

0

L

xx L x( )

3

2
 2 a tan L x( ) tan

2
 

3

2









d

ans
2

3
Int

ans


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Parameter Definitions

I G V B A IA n( ) GB B G

GA A G

fac1 GB 2 GB
n 2

fac2 GA 2 GA
n 2

ans IA fac1 fac2( ) V

n 3if

k1 n 3

k2 k1 1

k2 k2 3 floor
k2 1

3











fac1 GB
k1

GB
k2



fac2 GA
k1

GA
k2



ans IA fac1 fac2( ) V

otherwise

ans



G = Center of Mass of V
B= MI about desired point
A=MI about known point
n=MI index code
n=1 for xx, =2, for yy, 3 for zz
n=4 for xy, =5 for yz and =6 for zx
Check Algorithm
n 6

k1 n 3

k2 k1 1

k2 k2 3 floor
k2 1

3











k1 3

k2 1
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Coordinates of Various Key Locations wrt. the uncut base section center O as origin, x-axis along the cylinder
axis, y-axis along the cross-sectional axis of symmetry

A

Lp2

0

0













G1

Lp2

2

0

0















G2

xd

yd

0











A

G3 A

Lp

2

0

0















A

2.845

0

0













G1

1.423

0

0













G2

3.206

0.25

0













G3

3.423

0

0













g1g2 G2 G1

g1g
V2

V
g1g2

G G1 g1g
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gg3 G3 G

g3g G G3

ga G A

g2g3 G3 G2

g2g G G2

G

1.723

0.042

0













gg3

1.699

0.042

0













g3g

1.699

0.042

0













g2g

1.483

0.208

0













g2g3

0.217

0.25

0













Known Moment of Inertia of Volume 1: V1: About G1, CM of V1

IxxV1G1  a
4


Lp2

2


IyyV1G1  a
2


Lp2

4


Lp2
2

3
a

2












IzzV1G1 IxxV1G1

IxyV1G1 0

IyzV1G1 0

IzxV1G1 0

Known Moment of Inertia of Volume 2: V2: About A, Base Center of Cut Portion
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IxxV2A  a
4


Lp

2


IyyV2A  a
2


Lp

8


Lp
2

3
a

2












IzzV2A IyyV2A

IxyV2A IAxy a  

IyzV2A 0

IzxV2A 0
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Using the Shift Function I G V B A IA n( )

Calculate the Moment of Inertia of the cut cylinder about its center of mass G
Volume V1

IxxV1G I G1 V1 G G1 IxxV1G1 1( )

G

1.723

0.042

0













G1

1.423

0

0













IxxV1G1 4.469

IxxV1G 4.485

V1 8.939

IyyV1G I G1 V1 G G1 IyyV1G1 2( )

IyyV1G1 8.265

IyyV1G 9.074

IzzV1G I G1 V1 G G1 IzzV1G1 3( )

IzzV1G1 4.469

IzzV1G 5.294

IxyV1G I G1 V1 G G1 IxyV1G1 4( )

IxyV1G1 0

IxyV1G 0.113

IyzV1G I G1 V1 G G1 IyzV1G1 5( )

IyzV1G1 0

IyzV1G 0

IzxV1G I G1 V1 G G1 IzxV1G1 6( )

IzxV1G1 0

IzxV1G 0

Volume V2
IxxV2G I G2 V2 G A IxxV2A 1( )

G

1.723

0.042

0













G1

1.423

0

0













IxxV2A 1.814

IxxV2G 1.779

IyyV2G I G2 V2 G A IyyV2A 2( )

V1 8.939
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IyyV2A 0.655

IyyV2G 4.406

G2

3.206

0.25

0













A

2.845

0

0













IzzV2G I G2 V2 G A IzzV2A 3( )

IzzV2A 0.655

IzzV2G 4.371

IxyV2G I G2 V2 G A IxyV2A 4( )

IxyV2A 0.262

IxyV2G 0.657

IyzV2G I G2 V2 G A IyzV2A 5( )

IyzV2A 0

IyzV2G 0

IzxV2G I G2 V2 G A IzxV2A 6( )

IzxV2A 0

IzxV2G 0

Final IG Matrix (Non-Principal)

IxxG IxxV1G IxxV2G

IyyG IyyV1G IyyV2G

IzzG IzzV1G IzzV2G

IxyG IxyV1G IxyV2G

IyzG IyzV1G IyzV2G

IzxG IzxV1G IzxV2G

IG

IxxG

IxyG

0

IxyG

IyyG

0

0

0

IzzG













IG

6.264

0.77

0

0.77

13.48

0

0

0

9.665












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Define Integration point for Various Surfaces for Load Calculation:
1. Flat Surface (base): Labelled S3
2. Slant Plane Surface: labelled S4
3. Curved Surface: Uncut: Labelled S1
4. Curved Surface: Cut: Labelled S2
Body-fixed Axes System for Coordinate Descriptions
Center at the center of the flat base: Origin at G for Body-fixed F-frame used in the analysis
x-axis along the uncut cylinder axis
y-axis is on the plane through the high and low end of the cut surface
z-axis forms the right handed orthogonal system

Check MCAD Runge-Kutta Method: Using External Functions for Derivatives

 0.2

row1 xv( ) fac xv
1 2 xv

2 2

s  xv
1

 xv
2

 fac xv
1



s



x
0

1











D t x( )

 x
1

 x
2

 x
1 2 x

2 2





x
1



 x
2

 x
1

 x
1 2 x

2 2





x
2

















row2 xv( ) fac xv
1 2 xv

2 2

s  xv
2

 xv
1

 fac xv
2



s



Z rkfixed x 0 20 100 D( )

n 0 1 100

0.5 0 0.5 1
0.5

0

0.5

Z n 2

Z n 3

D t x( )
row1 x( )

row2 x( )











Using Vector Method
Zn rkfixed x 0 20 100 D( )
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n 0 1 100

Comparison Between Conventional and Vector Method

0.5 0 0.5 1
0.6

0.4

0.2

0

0.2

Zn n 2

Z n 2

Zn n 3 Z n 3

OK

Check the possibility of solving a 18-row vector using MCAD Runge-Kutta Coding

Physical Description of x-elements:

x1-x3: Center of Mass G in N-frame
x4-x6: Velocity of G in N-frame
x7-x9: Components of Angular Velocity in F-frame
x10-x12: Components of unit Vector along Gx in N-frame
x13-x15: Components of unit Vector along Gy in N-frame
x16-x18: Components of unit Vector along Gz in N-frame
N-frame: OXYZ Fixed Newtonian Frame
F-frame: Gxyz Rotating Frame attached to the projectile

Note:
There are two integrands for each of S1-S4 surfaces: These integrands are vectors. First integrand is a force
per unit area while second is the moment of this force about G. Components of these vectors are taken along
the Newtonian axes for the motion of G while they are taken along the F-frame axes for motion about G.

Initial conditions on x
x0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0( )

x0 x0
T



Location Dependent Retardation
Coefficients in Newtonian Frame

 pn( ) pn
1

pn
2

 pn
3



 pn( ) 2  pn( )

 pn( ) 3  pn( )

Motion of the Center of Mass G: Vector-Integrand over S1 surface in Newtonian Frame
Force Integrand for the S1-Surface
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FIGS12 xv x   gn

xv
1

xv
2

xv
3















TFN

xv
10

xv
11

xv
12

xv
13

xv
14

xv
15

xv
16

xv
17

xv
18















TNF TFN
1



opf

x

a sin  

a cos  













gpf opf G

gpn TFN gpf

pn gn gpn



xv
7

xv
8

xv
9















vpgf  gpf

pnf

0

sin  

cos  













vgn

xv
4

xv
5

xv
6















vgf TNF vgn

vpf vgf  gpf

vn vpf pnf

sf

0

0

0













sf  pn( )  pn( ) vn  pn( ) vn
2

  vn 0if

sf


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FIGS1 xv x  

Force Integral Over S1 Surface: F-Frame

In F-Frame

FS1y xv( ) a

0

Lp2 ( )

x

0

2 

FIGS12 xv x   sin  




d














d

FS1z xv( ) a

0

Lp2 ( )

x

0

2 

FIGS12 xv x   cos  




d














d

In N-Frame

FS1X xv( ) xv
13

FS1y xv( ) xv
16

FS1z xv( )

FS1Y xv( ) xv
14

FS1y xv( ) xv
17

FS1z xv( )

FS1Z xv( ) xv
15

FS1y xv( ) xv
18

FS1z xv( )

Force Integral Over S2 Surface: F-Frame
Define

 x( ) asin
x

a tan  
1










Components
In F-Frame

FS2y xv( ) a

Lp2 ( )

L

x

 x( )

  x( )

FIGS12 xv x   sin  




d














d

FS2z xv( ) a

Lp2 ( )

L

x

 x( )

  x( )

FIGS12 xv x   cos  




d














d
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In N-Frame

FS2X xv( ) xv
13

FS2y xv( ) xv
16

FS2z xv( )

FS2Y xv( ) xv
14

FS2y xv( ) xv
17

FS2z xv( )

FS2Z xv( ) xv
15

FS2y xv( ) xv
18

FS2z xv( )

Define

Lp3 Lp2
Lp

2


Force Integrand Over S4 Angled Flat Surface: F-Frame

Range of Integration for S4 Surface
0<=r<=1, 0<=<=2


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FIGS4 xv r   gn

xv
1

xv
2

xv
3















TFN

xv
10

xv
11

xv
12

xv
13

xv
14

xv
15

xv
16

xv
17

xv
18















TNF TFN
1



opf

Lp3 a tan   r sin  

a r sin  

a r cos  













gpf opf G

gpn TFN gpf

pn gn gpn



xv
7

xv
8

xv
9















vpgf  gpf

pnf

cos  

sin  

0













vgn

xv
4

xv
5

xv
6















vgf TNF vgn

vpf vgf  gpf

vn vpf pnf

sf

0

0

0













sf  pn( )  pn( ) vn  pn( ) vn
2

  vn 0if

sf


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Force Integral Over S4 Surface: F-Frame

In F-Frame

FS4x xv( ) a cos  

0

1

r

0

2 

FIGS4 xv r  




d














d

FS4y xv( ) a sin  

0

1

r

0

2 

FIGS4 xv r  




d














d

In N-Frame

FS4X xv( ) xv
10

FS4x xv( ) xv
13

FS4y xv( )

FS4Y xv( ) xv
11

FS4x xv( ) xv
14

FS4y xv( )

FS4Z xv( ) xv
12

FS4x xv( ) xv
15

FS4y xv( )

Range of Integration for S3 Surface
0<=r<=1, 0<=<=2

Force Integrand Over S3 Uncut Flat Surface: F-Frame
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FIGS3 xv r   gn

xv
1

xv
2

xv
3








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



TFN
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xv
13

xv
14

xv
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xv
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17

xv
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
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









TNF TFN
1



opf

0

r sin  

r cos  













gpf opf G

gpn TFN gpf

pn gn gpn



xv
7

xv
8

xv
9















vpgf  gpf

pnf

1

0

0













vgn

xv
4

xv
5

xv
6















vgf TNF vgn

vpf vgf  gpf

vn vpf pnf

sf

0

0

0













sf  pn( )  pn( ) vn  pn( ) vn
2

  vn 0if

sf


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Force Integral Over S3 Surface: F-Frame

In F-Frame

FS3x xv( ) a cos  

0

1

r

0

2 

FIGS3 xv r  




d














d

FS3y xv( ) a sin  

0

1

r

0

2 

FIGS3 xv r  




d














d

In N-Frame

FS3X xv( ) xv
10

FS3x xv( ) xv
13

FS3y xv( )

FS3Y xv( ) xv
11

FS3x xv( ) xv
14

FS3y xv( )

FS3Z xv( ) xv
12

FS3x xv( ) xv
15

FS3y xv( )
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Evaluating Moment Integrals

IGI IG
1



vec

0.994

0.4

0













eigenvecs IG( )

0.994

0.105

0

0.105

0.994

0

0

0

1













test1 IGvec  vec

test1

0

0

2.231













IGI test1

0

0

0.231













IGI IGvec  vec 

0

0

0.231












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APPENDIX E

STATIC ANALYSIS PREREQUISITE TO 3-
D AXISYMMETRIC MODEL OF WAVE

PROPAGATION IN CYLINDRICAL
TISSUE PERFORATED BY CONCENTRIC

CYLINDRICAL PROJECTILE
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In what follows, all dependent variables pertaining to the static solution will be subscripted by

s . The static axisymmetric equations in terms of displacements are

 
   

2
1

2
0

2 2 2

ˆ( 2 ) ( ) 0

ˆ( ) 1/ ( 2 ) 0

ˆ 1/ / , 0,1

zz s rz s

z r s zz s

n rr r

u w

r u w

r n r n

    

    

       

         

      

(A1)

Equations (A1) decouple to

 

 

2
2
1

2
2
0

ˆ( 2 ) 0

ˆ( 2 ) 0

zz s

zz s

u

w

  

  

    

    
(A2)

For the radial traction problem satisfying 0zzs  at (0, )z l , separation of variables is as follows.

Summing over all zk yields

1

( , ) ( )sin( )
M

s ms zm
m

u r z u r k z


 (A3a)

1

( , ) ( ) cos( ) , /
M

s ms zm zm
m

w r z w r k z k m l


  (A3b)

Substituting (A3) in (A2) produces uncoupled equations in r for each zmk

 

 

2
2 2
1

2
2 2
0

ˆ ( ) 0

ˆ ( ) 0

zm ms

zm ms

k u r

k w r

  

  
(A4)

In what follows, subscript m will be dropped for shortness. Equations (A4) admit the solutions

   
1 1 2 1

3 0 1 4 0 1

( ) ( ) ( )

( ) ( ) ( ) ( )

s z z

z z z z z z

u r C I k r C K k r

C k r I k r I k r C k r K k r K k r

 

   
(A5a)

   
1 0 2 0

3 1 0 1 4 1 0 1

1 2

( ) ( ) ( )

( ) ( ) ( ) ( )

( 3 ) /( ) , /( )

s z z

z z z z z z

w r C I k r C K k r

C I k r k r I k r C K k r k r K k r 

        

 

    

    

(A5b)
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Substituting (A5a,b) in the constitutive relations yields

    

  
  

1 0 1 2 0 1

2
3 2 0 1

2
4 2 0 1

( ) 2 ( ) ( ) /( ) ( ) ( ) /( )

2 ( ) 1 ( ) ( ) /( )

2 ( ) 1 ( ) ( ) /( )

rrs z z z z z z z

z z z z z

z z z z z

r k C I k r I k r k r C K k r K k r k r

k C I k r k r I k r k r

k C K k r k r K k r k r

 

 

 

   

   

  

(A6a)

 

 

 

1 1 2 1

3 2 0 1

4 2 0 1

( ) 2 ( ) /( ) ( ) /( )

2 (1 ) ( ) ( ) /( )

2 (1 ) ( ) ( ) /( )

s z z z z z

z z z z

z z z z

r k C I k r k r C K k r k r

k C I ik r I k r k r

k C K k r K k r k r

 

 

 

 

  

   

(A6b)

 

 

 

1 0 2 0

3 1 2 0 1

4 1 2 0 1

( ) 2 ( ) ( )

2 ( ) ( ) ( )

2 ( ) ( ) ( )

zzs z z z

z z z z

z z z z

r k C I k r C K k r

k C I k r k r I k r

k C K k r k r K k r

 

  

  

  

   

  

(A6c)

 

 

 

1 1 2 1

3 0 2 1

4 0 2 1

( ) 2 ( ) ( )

2 ( ) (1 ) ( )

2 ( ) (1 ) ( )

rzs z z z

z z z z

z z z z

r k C I k r C K k r

k C k r I k r I k r

k C k r K k r K k r

 

 

 

 

  

   

(A6d)

Tractions at the inner and outer surfaces of the tube are expressed as

 ( , ) ( ) ( )

( , ) 0

rrs p r a b

rzs p

r z p H z z H z z

r z





   


(A7a)

( , ) ( , ) 0rrs o rzs or z r z   (A7b)

rp is a uniform radial traction prescribed at pr r in the interval a bz z z  . Substituting (A6a) and

(A6d) in (A7a) and (A7b) and enforcing orthogonality of sin( )zk z and cos( )zk z produces M (4 4)

uncoupled matrix equations in the coefficients , 1, 4kmC k 

cm m mM C = f (A8)

Coefficients of cmM are the radial functions multiplying kmC in (A6a) and (A6d) evaluated at pr r

and or r , and mf is a vector defined by

 1

2 3 4

2 cos( ) cos( ) /( )

0

m r zm b zm a zm

m m m

f p k z k z k l

f f f

  

  
(A9)
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For the axial traction problem satisfying vanishing shear stress 0rzs  at (0, )z l , the expansion in

(A3) becomes

1

1

( , ) ( ) cos( )

( , ) ( )sin( ) , /

M

s ms zm
m

M

s ms zm zm
m

u r z u r k z

w r z w r k z k m l







 




(A10)

The boundary conditions are

 

( , ) 0

( , ) ( ) ( )

rrs p

rzs p z a b

r z

r z p H z z H z z







   
(A7a)

( , ) ( , ) 0rrs o rzs or z r z   (A7b)

zp is a uniform axial traction applied at pr r in the interval a bz z z  . Expressions for

displacements and stresses resemble those of the radial problem and are omitted here for shortness.

In all results to follow, geometric and material properties of the cylinder are listed in Table A-1. Figure
1 (a1) plots the static deformed generator from a unit radial displacement prescribed at the footprint

( , ) ( ) ( )so p a bu r z H z z H z z    (A8a)

In (A8) az =1.5” and bz =2.5”. The resulting normalized ( , )rrs pr z distribution plotted in Figure 1 (b1)

shows a rise near az and bz of 1.5 times its magnitude at the plateau. Fig. 1(a2,b2) plot static

deformed generator and normalized ( , )rrs pr z distribution for a unit axial displacement prescribed at

the footprint

( , ) ( ) ( )so p a bw r z H z z H z z    (A8b)

In this case, rrs rises near az and bz to 1.7 times its magnitude at the plateau.
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Table A-1. Cylinder properties

E (
2/lb in )

4
4.5 × 10

 (
2 4/lb s in )

-5
8.7 × 10

 0.48

l (in) 4

pr (in) 0.25

or (in) 3

dc (in/s) 4
6.74 × 10

sc (in/s) 4
1.322 × 10
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APPENDIX F

MODAL ANALYSIS
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The dynamic solution ( , , )d r z tu satisfies the homogeneous boundary conditions

( , , ) 0 , ( , , ) 0

( , , ) 0 , ( , , ) 0

rr p rz p

rr o rz o

r z t r z t

r z t r z t

 

 

 

 
(B1)

Substituting (16a) and (16d) in (B1) yields the matrix equation

eM C = 0 (B2)

eM is a 44 square matrix,  1 2 3 4, , ,
T

C C C CC = is the vector of unknown coefficients and

 2 2 2
11 0 1

13 0 1

21 1

2 2
23 1

( 2 ) ( ) 2 ( ) /( )

2 ( ) ( ) /( )

2 ( )

( ) ( )

e e z e p e e p e p

e s z s p s p s p

e e z e p

e s z s

M k k J k r k J k r k r

M k k J k r J k r k r

M k k J k r

M k k J k r

   







    

   

 

  

(B3)

12 14 22 24, , ,e e e eM M M M have the same form as 11 13 21 23, , ,e e e eM M M M with nJ replaced by nY .

Similarly, 3 4,e k e kM M 1,4k  have the same form as 1 2,e k e kM M 1,4k  , with pr replaced by or .

From the definitions of ek and sk in (12), ek is imaginary when , ( 2 ) /z d dk c c      , and

sk is imaginary when , /z s sk c c    . Below these cut-off frequencies, nJ and nY are replaced

by nI and nK with appropriate changes in sign. For each m in zk , a non-trivial solution to (B2) yields

the implicit eigenvalue problem

 | | 0 ; ( , )em m j m jdet r z  M (B4)

 ; ( , )m j m j r z  is the Eigen-dyad corresponding to the thm axial wave-number.
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APPENDIX G

PLANE-STRAIN PROBLEM
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The radial plane-strain problem is that of an infinite hollow cylinder where 0zz zw     . The dynamic

equation in u then reduces to

 

2 2
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2 2 2
1
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ˆ 1/ 1/ , /

(1 ) / (1 )(1 2 )

tt p o
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   

(C1)

The boundary conditions are

( , ) ( ) , ( , ) 0p p rr ou r t f t r t  (C2)

( )pf t is the time dependent displacement profile prescribed at pr r . The constitutive law takes the form
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(C3b)

Express ( , )u r t as a superposition of a static and a dynamic solution

( , ) ( ) ( ) ( , )s p du r t u r f t u r t  (C4)

( )su r is the static solution satisfying the inhomogeneous boundary conditions

( ) 1 , ( ) 0s p rrs ou r r  (C5)

( , )du r t is the dynamic solution satisfying the homogeneous form of boundary conditions (C2). Expand ( , )du r t in

the Eigen functions ( )j r of (C1)

1 2 1 2 1 1

( , ) ( ) ( )

( ) ( ) ( ) , ( ) / ( )

d j j
j

j r j r j r j p r j p

u r t a t r

r J k r c Y k r c J k r Y k r







   


(C6)

Substituting (C6) in the homogeneous form of (C2) yields the dispersion relation
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( ) stands for derivative with respect to the argument. (C7) determines the wave numbers r jk . The static solution

to
2
1 0su  is

   
12 2
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p p c p p
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(C8)

The constitutive law is given by (C3b). Substituting (C6) and (C8) in (C4) and enforcing orthogonality of ( )j r

yields
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(C9)

( ) stands for time derivative. The integrals in j jN and a jN are evaluated analytically in terms of nJ and nY for

0,1, 2n  .

For the radial plane-stress problem, 0zz zw     yielding the equation
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(C10) has the same form as (C1) but with a lower speed of propagation since
1/ 2

(1 2 ) / (1 )/ dc c    is small

when  is close to 1/2. The constitutive law simplifies to
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If prescribed displacement at pr r is the same for both plane stress and plane strain, then strains are approximately

the same. It follows that stresses in (C11) are smaller than those in (C3b) by a factor of  
2

/ dc c . In the present
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application, if material of the cylinder fails radially within the footprint a bz z z  , then the approximate state of

plane-strain changes to that of plane-stress reducing transmitted pressure substantially.
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APPENDIX H

EFFECTS OF TARGET PROPERTIES ON FRAGMENT

PENETRATION – SENSITIVITY STUDY
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SUMMARY

The penetration response of a Gelatin target which is being used as a first order simulant of human heart tissue was
studied. The target was subjected to a normal impact at 300 ft./sec. by a steel fragment in the form of a disk with a
4:1 diameter to length ratio. The response was modeled using the Autodyn 2D hydrocode. The failure strength, shear
modulus and erosion properties of the target were varied. Of interest was the penetration depth versus time profiles.
Also, the left ventricle of the heart was the focus of interest. To first order, this region was assumed to be less than 2
inches deep with the front and rear walls less than 0.5 inches thick. The inner portion is assumed to be filled with
blood.

The calculated penetration depths using the baseline Gelatin model was slightly less that 1 inch. Varying the target
properties led to penetration depths between 0.1 and greater than 1.2 inches thus potentially putting the fragment
somewhere between the inner wall and fluid core. The baseline strength was assumed to be 25 bars. Increasing this
level by a factor of 10 had the biggest effect resulting in more than a factor of 10 reduction in penetration depth.

The baseline shear modulus was assumed to be 125 bars. Reducing this level by a factor of 10 resulted in an increase
in the penetration depth of about 30%.

The baseline erosion strain was assumed to be 200%. This is the level of strain at which the material is assumed to
completely fail and the cells removed from the grid. Doubling this level resulted in a reduction in penetration depth
of about 20%.

Based upon these analysis, it is estimated that a factor of 5-10 in shear modulus and/or failure strength will have a
significant effect on penetration depth.

BACKGROUND

We are interested in the problem of a small caliber fragment penetrating a human chest cavity, impacting and
partially penetrating the heart. The resulting physical damage is manifest in 3 ways:

(1) The projectile generates a wound cavity resulting from the tearing of the material during penetration.
This cavity can partially close back on itself but often leaves a residual hole.

(2) The walls of the cavity can be damaged due to both the penetration process and the wall stresses
created during the penetration

(3) Tissue remote from the wound cavity can be damaged due to the propagation of stress waves generated
by the penetration.

It has been shown by experiment and analysis that the damage and damage trajectory depends to first order on the
fragment properties including: projectile velocity, shape, orientation upon impact, and material. The damage also
strongly depends upon the tissue material properties and spatial dependence of these properties.

The heart is composed of a number of regions each having its own geometry and material properties. These materials
are in general characterized as nonlinear anisotropic with a range of failure strengths. It is not practical or probably
required to include the detailed variation of these properties in predicting the critical damage. In order to understand
how much uncertainty can be allowed, a series of sensitivity based experiments and numerical predictions are
ongoing.
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ANALYSIS

A series of 2D axisymmetric hydrocode runs were made using the Autodyn code. In the runs, a steel fragment disc, 7
mm  1.8 mm, impacts a 3.4 inch thick  5 inch high elliptical Gelatin heart simulant at 300 ft./sec.

A baseline case is run using the nominal Gelatin material model. Excursions on the Gelatin shear modulus, strength
and erosion strain were made with the velocity and penetration depth versus time calculated.

RESULTS

A snapshot of the fragment penetrating the target is shown in Figure D-1. Notice that the ‘wound’ cavity has a
conical like shape expanding behind the penetrating fragment.

FIGURE D-1. Snapshot of Penetration Cavity at ~ 1 msec.

The penetration versus time is shown in Figure D-2. The baseline response is shown as the blue curve. Increasing the
failure strength by a factor of 10 results in the lower red curve. Reducing the shear modulus by a factor of 10 results
in the upper maroon curve. Reductions in the failure strength and erosion strain result in the intermediate curves. It is
seen that a factor of 10 uncertainty in failure strength or shear modulus can have a significant effect on penetration
depth.
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FIGURE D-2. Penetration Depth vs. Time0.0 0.2 0.4 0.6 0.8 1.0
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APPENDIX I

COMPARISON OF LONG ROD VERSUS WEDGE

FRAGMENT PENETRATION INTO GELATIN
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BACKGROUND

Penetration tests are being performed in support of the Virtual Human program using various ‘Nail’ like projectiles
to investigate certain physical and biological functions. These projectiles are driven into and then stopped at
prescribed depths in the targets and thus undergo forced acceleration and then deceleration. The effects of this
acceleration vs. time history on target response as compared to what would happen with a projectile which impacts
with a known velocity, i.e. launched remains to be explored and is not addressed in this Appendix. Similarly, the
details of the target failure which depend upon the failure model and the extend to which Gelatin and biological
materials differ also remains to be explored and is not addressed in this Appendix.

The purpose of this study is to explore the similarities and differences one would expect from projectiles with
geometries of interest given similar impact conditions and target parameters. To that end, we assumed that the
projectiles were given initial velocities and then modeled the penetration into thick gelatin targets.

APPROACH

A series of 2D hydrocode runs were made using various Long Rod and wedge fragments penetrating a gelatin target.
Of interest were the (1) deformation patterns, (2) velocity deceleration profiles, and (3) distribution of energy as a
function of time.

As a baseline, we explored the effect of a steel wedge fragment. Recall that we had explored this effect earlier
wherein we assumed impact velocities on the order of 1000 ft/sec. The early time predicted motion correlated well
with that observed in the GBL experiments. However the penetration depths in gelatin were greater that actual heart
thicknesses so we decided to re-do the analysis using impact velocities which would result in the projectile remaining
in the assumed approximately 4” thick simulated heart.

We then turned the wedge around and contrasted the response with the tip-forward impact. This was done to
illustrate the differences in response depending on the orientation of the fragment on impact. The difference in
response was not due to differences in kinetic energy (which was the same for both cases).

Finally, we selected a ‘long rod’ penetrator with what we believed to be a representative ‘Nail’ projectile geometry
which we assumed to be a 4” long by 10 mm diameter circular rod with a hemispherical cap impacting normal to the
target. We explored several impact velocities until we came up with one which would cause the ‘Nail’ to (1)
penetrate but stop in the gelatin and (2) penetrate and continue out the back.

SUMMARY

The wound track, energy transfer and resulting damage in gelatin are a strong function of the fragment geometry and
fragment striking angle and velocity. Projectiles with irregular geometries will tumble while projectiles with large
aspect ratios will penetrate with little relative retardation. The retardation and energy transfer characteristics of
‘Wedge’ and ‘Nail’ like projectiles can be very different as demonstrated in this analysis.
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RESULTS

(1) Steel Wedge ‘Forward’ Impacts: Impact Velocities Less 66 m/sec.

The deceleration velocity vs. time profile is shown in Figure E-1. In the case of the higher velocity impact (~220
ft/sec) the penetration process is violent with the projectile causing massive damage ahead of its path. The target
material just fails and subsequently provides little penetration resistance thus the projectile velocity reaches a
constant state. In the case of the lower velocity impact (~110 ft/sec) The projectile tumbles and moves off the path of
its original velocity vector and then is stopped by the target and remains imbedded.

FIGURE E-1. Deceleration Velocity vs. Time for Wedge ‘Forward’ Impacts

The deformation/pressure fields at 1.2 msec. after impact are shown in Figure E-2.
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FIGURE E-2. Deformation/Pressure Snapshot for ‘Forward’ Wedge @ 110 ft/sec.

(2) Steel Wedge ‘Backward’: Impacts Velocities Less Than 66 m/sec.

In this case, the fragment impacted with cylindrical end first. A comparison of the deceleration velocity for the
‘forward’ and ‘backward’ impact orientations is shown in Figure E-3. Notice the very different behavior. The
‘forward’ first projectile tumbles at early time presenting a much larger projected area and is stopped by the target.
The ‘backward’ first projectile acts like a rod for a long time and then and undergoes only slight rotations and thus
decelerates at a much slower rate.

Figure E-3. Deceleration Velocity vs. Time ‘Forward’,’Backward’ Wedge @ 110 ft/sec.

A snapshot of the deformation/pressure field is shown in Figure E-4.
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FIGURE E-4. Deformation/Pressure Snapshot for ‘Backward’ Wedge@110 ft/sec.

(3) Steel ‘Long Nail’: Impacts at Velocities Less Than 33 m/sec.

A series of runs were made using a 4” long ‘Nail’ projectile. It was speculated that this type of projectile because of
its large aspect ratio and additional momentum/kinetic energy would be fairly penetrating and that was born out in
the analysis. Typical velocity deceleration vs. time profiles are shown in Figure E-5. The projectile basically
penetrates the target undisturbed at 110 ft/sec. in contrast to the wedge which stopped in the middle of the target. The
impact velocity would have to be reduce to less than approximately 50 ft./sec. to prevent penetration.

FIGURE E-5. Deceleration Velocity vs. Time ‘Long Nail’

mailto:Wedge@110ft/sec
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A snapshot of the deformation pattern/pressure state is shown in Figure E-6. Notice that the projectile has caused
massive ‘failure’ of the target while continuing to penetrate.

FIGURE E-6. Deformation/Pressure Snapshot for ‘Long Nail’@110 ft/sec

(4) Steel ‘Short Nail’: Impacts at Velocities Less Than 33 m/sec.

A series of runs were made where the length of the ‘Nail’ was reduced from 4” to about 1.5”. This still left an aspect
ration of 4:1. The resulting velocity deceleration vs. time results are shown in Figure E-7. It is seen that the projectile
actually is decelerating more quickly than the ‘long’ nail as expected. This will continue as the aspect ratio, and
impact momentum is further reduced.
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FIGURE E-7. Deceleration Velocity vs. Time ‘Short Nail’

The ‘Short Nail’ still creates substantial target damage behind the projectile at an impact velocity of 110ft./sec. as
shown in Figure E-8.

FIGURE E-8. Deformation/Pressure Snapshot for ‘Short Nail’@110 ft/sec

(5) Energy Partitioning in Targets as a Function of Impacting Fragment Parameters

Upon impact and during subsequent penetration the projectiles transfer energy and momentum to the targets. The
energy is partitioned into Kinetic and Strain energy. The fragment and target properties and impact velocity will
determine the energy partitioning.
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Results for those components of the kinetic and internal portions of the energy in the target are shown in Figures E-9
through E-11. Shown in the plots is total energy in the projectile + projectile as a function of time (minus the energy
lost to failed material and numerical error), the total energy transmitted to the target (h130), and the kinetic, internal
energy components transmitted to the target.

Results for the ‘forward’/’backward’ wedge impacts at 110 ft./sec. are shown in Figures E-9 and E-10. First, it is
seen that substantial energy is lost to material failure as the projectile tumbles. Second, the kinetic energy in the
target is an important portion of the total energy in the target, especially for the ‘backward’ projectile. Finally, when
the energy in the target peaks, it is about 1/3 of the total of the projectile + target energy which is substantial.

FIGURE E-9. Energy Partitioning during ‘Forward’ Wedge Impact

FIGURE E-10. Energy Partitioning during ‘Backward’ Wedge Impact



ATK MISSION RESEARCH W81XWH-04-C-0084

– 153 –

In the case of the ‘Nail’ impacts the results are different as shown in Figure E-11. The solid black and violet lines
represent the total energy in the problem for the cases of 110 and 220 ft/sec. striking velocities. Note that these levels
do not vary much with time indicating little energy loss due to failure and (numerical error). The cyan line represents
the total energy in the target for the ‘Long Nail’ case. Notice that this is a very small fraction of the incident
projectile energy, probably less than 5%. The darker blue line is the total energy in the target for the case on the
‘Short Nail’ which increases with time as the target slows the projectile down.

If we were to continue to reduce the aspect ratio of the ‘Nail’ we should approach the result for the ‘backward’
wedge.

FIGURE E-11. Energy Partitioning during Impact of ‘Nails’
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ABSTRACT

An acoustic model is developed for transient wave propagation in a weak

layer excited by prescribed pressure or prescribed acceleration at the boundary.

The validity of the acoustic model is investigated for the two excitations. A

comparison of transient response from the acoustic model and a 3-D axisymmetric

elastic model reveals that for prescribed acceleration the acoustic model fails to

capture important features of the elastic model even as Poisson ratio 

approaches 1/2. However for prescribed pressure, the two models agree since shear

stress is reduced. For prescribed acceleration adopting the modal approach, the

mixed boundary-value problem on the excited boundary is converted to a pure

traction problem utilizing the influence method. To validate the elaborate modal

approach a finite difference model is also developed.
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1. Introduction

Laboratory simulation of blunt trauma in living tissue relies on measuring

propagation of stress waves from low velocity impact in a weak viscoelastic

material such as ordnance gelatin. It has acoustic impedance close to that of

water yet living tissue dissipates energy from viscoelasticity and possesses shear

rigidity controlling transverse propagation. It has been widely assumed that

gelatin is similar to water because it has approximately the same density and bulk

speed of sound. In a weak solid like gelatin, effects of the free surface and

lateral propagation of a forcing pulse are controlled by shear modulus G and the

speed of shear waves respectively. These types of propagation are independent of a

loss mechanism like viscoelasticity. Loss produces an attenuation of the pulse

over and above that from dispersion. It reduces the participation of high

frequency modes by smoothing average response and its gradients.

In a fluid like water, propagation is mostly volumetric, with shear related to

dissipation that is proportional to velocity gradient and kinematic viscosity. At

the free surface a different kind of wave develops controlled by gravity and depth

of the fluid. It can be argued that although water and gelatin have very similar

acoustic impedances, shear rigidity of gelatin may control how a stress wave

propagates laterally and its character at and close to the free surface. If

gelatin is like water then it can be treated as an acoustic fluid governed by the

wave equation. In this work the wave equation is derived as a limiting case of the

linear elasto-dynamic equations of a homogeneous solid. In fact when Poisson ratio

assumes the value of 1/2, the elastic field converts to the acoustic field. One

issue addressed in this work is the sensitivity of the solution to Poisson ratio

close to 1/2.

To measure transmission of stress waves produced by low velocity impact on

gelatin, a layer is bonded onto a metallic substrate instrumented by sensitive

carbon gauges. Upon impact, stress waves propagate across the layer reaching the
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substrate with substantial reduction in intensity from dispersion and viscous

losses. Measuring impact and transmitted pressures are needed to construct the

material’s constitutive model. Carefully controlled experiments with sufficient

accuracy reproducing transient histories for correlation with computed results are

very hard to execute. The problem lies in the weakness of the material. Gauges can

neither be placed inside the material while gauges at the interface between

material and metal substrate suffer from lack of cohesion adding uncertainty to

measured data. This difficulty forces investigators to rely on sensitivity studies

from analysis and general purpose discretization programs in order to understand

phenomena. Moreover, literature in this field addresses quasi-static measurements

of elongation omitting important dynamic effects such as strain-rate dependence in

the microsecond regime. The simulation of these experiments led to the realization

that approximating gelatin as a viscous fluid is valid only for unrealistic impact

conditions when pressure over the footprint is uniform.

Acoustic wave propagation governed by the Helmholtz equation has been treated

extensively in the literature. Solution techniques range from the analytical for

simple geometries to numerical for problems with complicated geometry, medium

inhomogeneity and nonlinearity. Theil [1] treats the 1-D viscoelastically damped

wave equation analytically. Yserentant [2] shows how a consistent discretization

of the acoustic equation can be recovered from the particle model of compressible

fluids (see Ref. [3]). Sina and Khashayar [4] solve the 3-D wave equation

analytically for arbitrary non-homogeneous media adopting the differential

transfer matrix. Sujith et. Al. [5] present an exact solution to 1-D transient

waves in curvilinear coordinates adopting transformation of variables suggested by

the WKB approximation. Hamdi et. Al. [6] present exact solitary wave solutions of

the 1-D wave propagation in nonlinear media with dispersion. Yang [7] solves

numerically the wave equation with attenuation from linear friction utilizing grid

modification to track wave fronts accurately. Narayan [8] solves the 3-D transient
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acoustics in inhomogeneous media by finite difference and Schemann and Bornemann

[9] apply the adaptive Rothe integrator. Bailly and Juve [10] present a numerical

solution to the 2-D acoustic propagation from transient sources using the

dispersion-relation-preserving scheme in space and a fourth-order Runge-Kutta in

time. Wagner et. Al. [11] and Gaul and Wenzel [12] use a hybrid boundary element

method for frequency and transient acoustic response in bounded and unbounded

regions. Mehdizadeh and Paraschivoiu [13] develop a spectral element method to

solve the 3-D Helmholtz equation retaining accuracy for large wave numbers. None

of the references above addresses 3-D transient propagation from impact

analytically.

Acoustic wave propagation in a free disk is developed here adopting a modal

analysis validated by a finite difference method. Transient response to prescribed

pressure and prescribed acceleration at the boundary is analyzed. Since the

primary goal of this work is to investigate the validity of the established belief

that tissue can be treated as a fluid, the acoustic equation is derived from the

elastic equations of a solid in the limit when Poisson ratio and shear stresses

vanish (Appendix A).

Section 2 develops the acoustic model utilizing the modal approach for both

prescribed pressure and prescribed acceleration. In the modal approach,

the forcing function at the boundary is treated adopting the static-

dynamic superposition method (see Berry and Naghdi [14]). The solution is

expressed as a superposition of a static term satisfying the

inhomogeneous boundary conditions, and a dynamic solution in terms of the

eigenfunctions satisfying homogeneous boundary conditions.

Since the projectile’s strength and acoustic impedance are much greater than

those of tissue, the excitation transmitted over the boundary at the

projectile-tissue interface can be approximated as a given time dependent

prescribed motion in contrast to an unknown pressure excitation. However,
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this type of excitation would lead to a mixed boundary condition; i.e.

pressure gradient prescribed over part of the boundary and zero pressure

prescribed over the remaining part. This difficulty can be overcome by

the influence method which superimposes response from a set of unit

pressures with time-dependent weights prescribed on annular portions of

the footprint. These weights are updated at each time step from the

condition that combined acceleration at the center of each ring over the

footprint equals the prescribed instantaneous acceleration. In this way,

the forcing function is converted to pure traction with time-varying

spatial dependence.

Section 3 develops the finite difference approach. Radial and axial

dependence are discretized by central differences while time dependence

is integrated by the Kutta-Runge method.

Section 4 compares acoustic histories from the two approaches validating the

modal approach. Histories of the acoustic model are compared to those

from a 3-D axisymmetric elastic model demonstrating the inadequacy of the

acoustic model when applied to a solid with Poisson ratio near 1/2 and

forced by applied acceleration. Sensitivity of the acoustic histories to

type of excitation and to parameters of the prescribed acceleration

profile is also presented. The effect of Poisson ratio  on peak elastic

stress is evaluated confirming that for prescribed acceleration mismatch

of acoustic and elastic results is not caused by small deviations in

Poisson ratio  from 1/2 in the elastic model. Finally, results from the

two models are compared for prescribed uniform pressure revealing that

the mismatch diminishes when shear stress is reduced.

2. Modal analysis
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In the analysis to follow, all variables are independent of circumferential

angle due to the assumption of axisymmetry. This condition applies for a

cylindrical projectile at normal incidence. Consider a traction-free disk with

radius dr and length h bonded to a rigid sub-strate. Appendix A derives the

acoustic equation in the limit when shear stress vanishes in the linear elasto-

dynamic equations of a solid. In the analysis to follow, r and z denote radial

and axial coordinates. Acoustic propagation in the disk is governed by the

acoustic equation

  21/ 1/ 0r r r z z d b t t dr p c p        (1a)

with the following boundary conditions
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prescribed acceleration

p r t H r H r r f t

p r t f t r r

p r t r r r



  

     


   

 (1c)

,( , ; ) 0 ,

( , ; ) 0 ,

z fixed face or alternatively

free face

p r h t

p r h t

 


(1d)

where ( )H r is the Heaviside function, pr is footprint radius of the external

excitation which is projectile radius, ( )f t is time dependence of prescribed

pressure and ( )wf t is time dependence of prescribed acceleration. Express ( , ; )p r z t

as a superposition of two terms (see Berry and Naghdi [14])

( , ) ( ) ( , ; ) ,
( , ; )

( , ) ( ) ( , ; ) ,
s d

s w d

prescribed pressure

prescribed acceleration

p r z f t p r z t
p r z t

p r z f t p r z t


 

 
 (2)

where ( , )sp r z is the static solution of (1a) with inhomogeneous boundary

conditions (1b-d) assuming ( ) 1f t  or ( ) 1/wf t  , and ( , ; )dp r z t is a dynamic
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solution of (1a) satisfying the homogeneous boundary conditions (1b-d) with

( ) 0f t  or ( ) 0wf t  .

The prescribed acceleration boundary condition in (1c) is mixed. In other

words, part of the boundary has prescribed pressure gradient and the other part

has prescribed pressure. This difficulty can be overcome by dividing the circle

bounding the footprint into 1n  equidistant radial stations with increment pr

1 2 1 10, , , ....., , ,n n k k pr r r r r r r const    

where n pr r . Assume a uniform pressure of unit intensity acting over each

annular segment 1k kr r  that is termed source segment. Where subscript z

denotes partial derivative with respect to z , evaluating the pressure

gradient , ( , ; )z l kP r z t from the
thk source segment at the center of the

thl

segment 1( ) / 2cl l lr r r   that is termed target point and following the expansion

in (2) yields

, , ,( ,0; ) ( ,0) ( ) ( ,0; )z l k cl zs l k cl w zd l k clP r t p r f t p r t   (3)

where , ( ,0; )z s l k clp r t and , ( ,0)z d l k clp r are static and dynamic pressure gradients at

the
thl target point due to the

thk source segment. Enforcing the condition of

prescribed pressure gradient ( )z fp t over the footprint at each time step yields

a set of simultaneous equations in the weights ( )kc t

,
1

( ,0; ) ( ) ( ) , 1
n

z l k cl k z f
k

P r t c t p t l n


   (4)

The combined pressure from all annular source segments is the superposition of

( , ; )l kP r z t factored by time dependent weights ( )kc t
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1

, ,

( , ; ) ( , ; ) ( ) , 1

( , ; ) ( , ) ( ) ( , ; )

n

l k k
k

l k s l k w d l k

p r z t P r z t c t l n

P r z t p r z f t p r z t



  

  




(5a)

Solutions of , ( , ; )s kp r z t and , ( , ; )d kp r z t for each unit source segment are outlined in

what follows. The static solution for the
thk source segment ( , )sp r z takes the form

, , 0
1

,

( , ) ( ) ( )

( ) sinh( ) cosh( )

rm

s k sm k r m
m

sm k mk r m mk r m

p r z z J k r

z k z k z



  




 


(5b)

where 0 ( )r mJ k r is the Bessel function of the first kind and zeroth order.

Substituting (5b) in the boundary conditions (1b,c,d) and enforcing orthogonality

of 0 ( )r mJ k r yields

0 ( ) 0 , 1r m d rJ k r m m   (6a)

 1 1 1 1

, 2 2
1

2 ( ) ( )

( )

k r m k k r m k

m k

d r m d r m

r J k r r J k r

r J k r k


 
 (6b)

,

,
,

,tanh( ) ,

/ tanh( ) ,
m k r m

m k
m k r m

fixed face or alternatively

free face

k h

k h







 


(6c)

Note that in (3)  , ,,0 ( ,0)zs l k cl z s k clp r p r  .

The dynamic solution , ( , ; )d kp r z t satisfies

  2
, ,1/ 1/ 0r r r z z d k b t t d kr p c p        (7)

and the homogeneous boundary conditions in (1b-d). Expand ( , ; )dp r z t in terms of

its orthogonal eigenfunctions

, , 0( , ; ) ( ) ( ) ( )d k mn k d n r m
m n

p r z t a t z J k r (8)
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Applying the homogeneous boundary conditions in (1b,c,d) to 0 ( )r mJ k r and ( )d n z

produces

0 ( ) 0 , 1r m d rJ k r m m   (9a)

1
cos( ) , cos( ) 0 (2 1) ,

( ) , 12

sin( ), sin( ) 0 ,

z n z n z n

dn z

z n z n z n

fixed face

ree face

k z k h k h n
z n n

k h k h k h n f







   

  
   

(9b)

2 2 2 ,z n r m mn mn b mnk k k c k   (9c)

where mn is the eigenfrequency corresponding to mode ( , )m n . Substituting (3) in

(1a) with use made of (5),(6),(8) and (9) and enforcing orthogonality of ( )d n z

and 0 ( )r mJ k r yields

2 4 4
, , ,

, ,

0

( ) ( ) ( ) ; ( ) ( ) /

2
( ) ( ) , 1 , 1

IV IV
mn k mn mn k sd mn k w w w

h

sd mn k s m k d n r z

a t a t N f t f t f t t

N z z dz m m n n
h

 

 

     

    



(10)

In deriving Eq. (10) the term  2 2
0 0( ) , ( 1/ )s w rr rp f t r       vanishes since

static pressure ( , )sp r z satisfies the equation
2
0 0sp  . Acoustic displacements

( , )kw u are determined from (A4)

2
,

2
,

z d k t t k

r d k t t k

p w

p u





   

   
(11)

The solution to (10) is expressed as a Duhamel integral

,

,

0

( ) sin ( ) ( )
t

sd mn k IV
mn k mn w

mn

N
a t t f d


   


   (12)
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Note that in (11) , ,( ,0; ) ( ,0; )z d k cl zd l k clp r t p r t  as defined in (3). Once histories of

,z d kp and ,r d kp are determined from solving (10), histories of kw and ku are

found by integrating (11) numerically.

3. Finite difference
Consider a disk with traction-free boundaries satisfying the conditions

(0, ; ) 0r p z t  (13a)

( , ; ) 0dp r z t  (13b)

( ,0; ) 0z p r t  (13c)

( , ; ) ( ) ( ) ( )

( , ; ) ( ) , 0

( , ; ) 0 ,

p

z w p

p d

prescribed pressure

prescribed acceleration

p r h t H r H r r f t

p r h t f t r r

p r h t r r r



    

     


   

 (13d)

where ( )


denotes time derivative. Unlike the analysis in Section 2 where z has

its origin at the excited boundary, in the finite difference scheme z has its

origin at the non-excited boundary. Condition (13a) is symmetry about the axis of

revolution 0r  , (13b) is traction-free boundary at dr r , (13c) is fixed

boundary at 0z  , and (13d) is prescribed acceleration for 0 pr r  and

traction-free boundary for p dr r r  at z h . Form the rectangular grid

1 , , /( 1)

1 , , /( 1)

r r d r r d r

z z z z z

i n d r r d d r n

j n d z h d d h n

      

      
(14)

In this grid, nodes do not include points on the boundaries. Expressing Eq. (1a)

in central difference to first order yields the following relations depending on

position:

a) Internal points ,r d r z zd r r d d z h d       2 1, 2 1r zi n j n     
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  2
1 1, 2 1, 3 , 4 , 1 , 1 ,

1 2 3 42 2 2 2 2

1/

1 1 1 1 1 1 1
, , 2 ,

2 2

i j i j i j i j i j b i j

r i r r i r r z z

p p p p p c p

d rd d rd d d d

   

   

       

     
            

    



(15a)

b) Corner point at ,r zr d z d   1, 1i j 

2
1 1, 2 3 4 , 4 , 1 ,( ) 1/i j i j i j b i jp p p c p           (15b)

c) Points along axis ,r z zr d d z h d     1 , 2 1zi j n   

2
1 1, 2 3 , 4 , 1 , 1 ,( ) ( ) 1/i j i j i j i j b i jp p p p c p           (15c)

d) Corner point at ,r zr d z h d    1, zi j n 

For prescribed pressure

2
1 1, 2 3 , 4 , 1 , 4( ) 1/ ( )i j i j i j b i jp p p c p f t          (15d)

For prescribed acceleration

2
1 1, 2 3 4 , 4 , 1 ,( ) 1/ ( ) /i j i j i j i j w zp p p c p f t d             

e) Points along boundary ,r d r zd r r d z d     2 1, 1ri n j   

2
1 1, 2 1, 3 4 , 4 , 1 ,( ) 1/i j i j i j i j b i jp p p p c p            (15e)

f) Points along boundary ,r d r zd r r d z h d      2 1,r zi n j n   

For 0 pr r  and prescribed pressure

2
1 1, 2 1, 3 , 4 , 1 , 41/ ( )i j i j i j i j b i jp p p p c p f t           (15f)

For 0 pr r  and prescribed acceleration

2
1 1, 2 1, 3 4 , 4 , 1 ,( ) 1/ ( ) /i j i j i j i j b i j w zp p p p c p f t d              

For p dr r r 

2
1 1, 2 1, 3 , 4 , 1 ,1/ 0i j i j i j i j b i jp p p p c p         
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g) Corner point at ,d r zr r d z d    , 1ri n j 

2
2 1, 3 4 , 4 , 1 ,( ) 1/i j i j i j i jp p p c p         (15g)

h) Points along boundary ,d r z zr r d d z h d      , 2 1r zi n j n   

2
2 1, 3 , 4 , 1 , 1 ,( ) 1/i j i j i j i j b i jp p p p c p         (15h)

i) Corner point at ,d r zr r d z h d     ,r zi n j n 

2
2 1, 3 , 4 , 1 ,1/i j i j i j b i jp p p c p       (15i)

In (15a-i), the differential equation is satisfied only at internal points of

the grid modified by constraints on the boundaries.

Applying (15a-15i) at all internal points in the grid (14) produces a set

of ordinary differential equations in , ( )i jp t cast in the form of tri-diagonal

blocks as follows

 2 ( )b pc t p M p F (16)

1 1

2 2 2

1 1 1r r r

r r

p

n n n

n n

  

 
 
 
 
 
 
 
 

A C

B A C

M

B A C

B A

  

iB and iC are ( )z zn n diagonal matrices, iA is ( )z zn n banded matrix with

bandwidth 3, and F is the global vector of the forcing function in (15d) and

(15f). For each point (1 )zj j n   along an i line in the grid, coefficients of

,i jp in the Laplacian define iA , coefficients of 1,i jp  define iB , and

coefficients of 1,i jp  define iC . The time derivative is expressed in central

difference to first order allowing integration in time.
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Viscous damping is included following the approximate equation (A12)

  2 21 / 1/ 1/ 0b t r r r z z b t tc r p c p          (A12)

This modifies (16) to the first order system

2 2 ( )b p p bc c t



  

p q

q M p M q F



 
(17)

4. Results

The numerical experiments to follow assume a traction-free gelatin disk

12.7 ( 0.5 )mm in thick and 25.4 ( 1 )mm in radius with the boundary z h bonded to a

rigid surface. In the elastic model the gelatin properties are (Eisler, R. [16]):

 
 

9 2 4 2

3 5 2 4

3.1 10 / 4.5 10 / ,

0.93 / 8.7 10 / , 0.48

E dyn cm lb in

g cm lb s in 

   

   
(18a)

The data in (13a) yield a small ratio of Lame constants

/ (1 2 ) /(2 ) 0.0417      resulting in reduced shear stresses and in turn large

displacements. In the acoustic model, bulk modulus bE , density  and speed of

sound bc are then

   
 

 

10 2 5 2

3 4 2 4

4

/ 3(1 2 ) 2.73 10 / 3.95 10 /

0.93 / 0.87 10 /

/ 1.71 / 6.74 10 /

b

b b

E E dyn cm lb in

g cm lb s in

c E km s in s









     

  

   

(18b)

bE is determined from experimental measurements of bc .

To confirm the implementation of the complicated analytical approach

adopting time dependent influence coefficients, results are first compared to

those from the more straight forward numerical finite difference approach derived

in Appendix B. Fig. 1 compares acoustic pressure histories from the two approaches
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for a layer forced by a prescribed trapezoidal pressure pulse of unit intensity

lasting 8 s with 2 s rise and fall times and 4 s plateau applied over a circular

footprint with radius  6.35 0.25pr mm in  . Fig. 1(a1,a2) plots histories at

0.5z h and Fig. 1(b1),(b2)) at z h . For each z , histories at 3 radial stations

/ pr r = 0, 0.5 and 0.9 are superimposed. Fig. 1(a1,b1) shows that the prescribed

pressure pulse quickly changes profile as the wave travels along z . The flat

plateau of the profile acquires a discontinuity in intensity after an interval

1 3.5t s  from the wave front equal to travel time of the wave over pr . Over this

interval intensity diminishes smoothly with z , while over the remaining interval

2 4.5t s  intensity diminishes steeply with z . At z h , intensity over 1t rises

from reflections at the rigid boundary. Histories from the two distinctly

different approaches agree confirming the implementation of the analytical model.

The difference in response between the acoustic model and the 3-D

axisymmetric elastic model is discussed in what follows. Fig. 2(a,b) plots the

eigen-frequency ( )kHz versus radial wave number / /m rm dk r   with axial wave

number n as parameter for the elastic and acoustic models. For each mode ( , )m n ,

 of the acoustic model is 5 times higher than that of the elastic model. The

reason is that in the acoustic model  is proportional to bc while in the elastic

model it is proportional to the flexural phase velocity pc that is bounded by the

shear speed  / 2(1 )sc E    . For 0.48  , / 4.97b sc c  consistent with the ratio

observed in Fig. 2. This is the fundamental difference distinguishing the two

models. Furthermore, the acoustic model cannot capture transverse wave propagation

as no shear is included in the model. Although in the elastic model extensional
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modes exist with frequencies proportional to bc nevertheless flexural modes

dominate the response because of their lower frequencies.

Fig. 3 plots prescribed motion ( ) , ( )w wf t f t  and ( )wf t when acceleration is

prescribed at the footprint. ( )wf t is made of 4 linear segments

1. Linear acceleration: 1 1( )wf t t , 10 t t 

2. Constant acceleration: 2 1 1( )wf t t , 1 2t t t 

3. Linear deceleration: 3 2 2 2 2( ) ( ) ( )w wf t f t t t    , 2 3t t t 

4. Constant velocity: 4 ( ) 0wf t  , 4 3 0( )wf t U , 3 4t t t 

Assuming that the first three time intervals are equal 1 2 3( t t t     , 1)i i it t t   

and 2 1  , then 1 is determined by assigning the constant velocity oU to

4 3( )wf t . In the analysis to follow

 1,3 1 2 3 02 , 14 / 46 /t t t t s U m s ft s          (19)

Fig. 4 compares histories of the elastic and acoustic models from prescribed

acceleration. Displacement at 0z  (Fig. 4(a1),(a2)) conforms to the prescribed

value in Figure 3(c). At 0,z  Fig. 4(b1),(b2) compare histories of axial stress

zz from the elastic model to pressure p from the acoustic model. Peak stress,

pulse duration, distribution of p over the footprint, and shape differ

substantially between the two models. At z h , Fig. 4(c1),(c2) compare zz to p

histories. There, magnitude and pulse width also differ. It is evident from this

comparison that the two models differ appreciably in spite of the fact that in the

elastic model  =0.48 is close to the transition value 1/2.
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The difference between the two models in response from uniform prescribed

pressure and prescribed acceleration is demonstrated in the example to follow. A

uniform pressure pulse duplicating that at 0r  in Fig. 4(b2) is applied at 0z 

(see Fig. 5(b)). The resulting histories of displacement w and pressure p at

z h are shown in Fig. 5(a) and 5(c). Comparing histories in Fig. 4(a2),(c2) to

those in Fig. 5(a),(c) reveals the sensitivity of response to p distribution over

the footprint. Further evidence of this sensitivity appears when comparing p and

w profiles at 0z  of the two cases. For prescribed acceleration p (Fig. 6(a1))

is not uniform while w (Fig. 6(b1)) is almost constant for pr r and

discontinuous at pr r . For prescribed pressure, p (Fig. 6(a2)) duplicates the

external pulse while w (Fig. 6(b2)) increases with r reaching a maximum at pr r

with a discontinuity even stronger than that in Fig. 6(b1).

The parameters characterizing the applied acceleration profile are the final

constant velocity 0U , and time interval 1,3t of acceleration and deceleration to

reach 0U smoothly from rest. Fig. 7 plots maxp against 0U with 1,3t as parameter

and vice versa. As expected, maxp is linear with 0U (Fig. 7(a1),(a2)). In

contrast, maxp is non-linear with 1,3t (Fig. 7(b1),(b2)) following a relation

13max op U t   where the  depends on z . maxp approaches a constant value as

1,3 0t  when slope of the acceleration profile in Fig. 3(a) becomes infinite.

This is the limiting case when 0U is applied instantaneously. For 1,3t < 3 s ,

maxp goes through a transition when its value at z h exceeds that at 0z  . The

transition 1,3t is almost independent of 0U .
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Figure 8(a) shows deformed shapes at 8t s from the elastic model for

 =0.470 and 0.495 keeping bulk modulus bE the same. This requires expressing the

constitutive law in terms of bE and  as in Eq. (A2b). Note that bulging of

material near the perimeter is more pronounced for  = 0.495 than for  =0.470. As

 approaches 1/2, material compressibility diminishes followed by a reduction in

phase velocity along r near the free surface which delays propagation of the wave

front. In turn, conservation of volume and pressure release beyond the perimeter

pr r explains the formation and intensification of the bulge. Indeed, the closer

 gets to 1/2 the steeper the displacement gradient r w along the perimeter

reminiscent of the acoustic w profile in Fig. 6(b1). The effect on peak elastic

stress  zz max
 of  in the range 0.47 0.498  is shown in Fig. 8(b). Although

 zz max
 at 0z  is insensitive to  for 0.495  , its value at z h drops by 76%

due to a 6% increase in  . Unfortunately for attempts to use the acoustic model

to capture elastic features, this makes the discrepancy between acoustic and

elastic results even larger than that in Fig. 4(c1),(c2).

Convergence of the elastic model with number of modes is paramount in the

comparison between elastic and acoustic results. This is especially important

since in the elastic model shear drops modal frequencies substantially (see Fig.

2). A larger modal set in the elastic model may be needed for its results to agree

with the acoustic model that includes volumetric modes only. To verify convergence

of the elastic model, histories from the analysis that produced results in Fig.

4(b1) and Fig. 8(b) are compared to those from the finite volume model employed by

El-Raheb [15] that couples projectile and disk with 40,000 nodes. Properties and

geometry of the projectile are
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 
 
     

    

11 2 6 2

3 5 2 4

1/ 2
5

1.21 10 / 1.76 10 / ,

1 / 9.3 10 / , 0.3

6.35 0.25 , 25.4 1 , 20 / 65 /

(1 ) / (1 )(1 2 ) 4.1 / 1.6 10 /

p

p p

p p p

bp p p p p p

E dyn cm lb in

g cm lb s in

r mm in h mm in U m s ft s

c E km s in s

 

   



   

   

     

      

,p pr h are projectile radius and length, pU is striking velocity and bpc is

dilatational speed of sound. Properties of gelatin are given in (13a,b). Based on

the acoustic impedances  bc of projectile and gelatin, the velocity of gelatin

at the footprint following impact is approximately 14 /oU m s  45 /ft s .

Histories of axial displacement w at the footprint from the two models coincide

(Fig. 9(a1),(a2)) since the asymptotic velocity oU at the footprint is the same

for both models. Fig. 9(b1),(b2) compare histories of axial stress zz at the

footprint from the two models. In the finite volume model, the drop in zz 4 s

after impact (Fig 9(b2)) corresponds to / 2pr bp pt c r the arrival time at 0r  of

tensile reflections from the projectile’s lateral boundary. This is evidenced by

the deviation from linearity of the w histories at prt in Fig 9(a2). In general,

magnitude and shape of the zz histories agree suggesting convergence of the

analytical elastic model.

For prescribed uniform pressure, w histories from elastic and acoustic

models agree (Fig. 10(b1,b2)) except at the footprint 0z  (Fig. 10(a1,a2)). In

Fig. 11, the lead pulse in the zz histories from the two models is followed by a

plateau with lower magnitude. The wave reflected from the constrained face at

z h appears as a peak following the plateau. In the elastic model,

i) Rise time is longer
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ii) History is modulated by a periodic oscillation

iii) Magnitude of the reflection dip is reduced.

For prescribed uniform pressure, the two models agree better than for prescribed

acceleration implying that mismatch between the two models increases with

magnitude of shear stress in the elastic model. Indeed, near the perimeter of the

footprint shear stress is lower for prescribed uniform pressure than it is for

prescribed acceleration because in the later pressure distribution is not uniform

(Ref. [15]).

5. Conclusion

Acoustic wave propagation in a weak layer is treated adopting both a

modal and a finite difference approach. The acoustic equation derives

from the elasto-dynamic equations when shear stress vanishes. Two

types of excitations are considered at the boundary, prescribed

pressure and prescribed acceleration. In the modal approach, the

external excitation is modeled by the static-dynamic superposition

method. Noteworthy results are

1. Acoustic histories from the modal and finite difference approaches coincide.

2. For prescribed acceleration, histories from the acoustic and elastic models

disagree both in magnitude and shape because the resulting pressure is not

uniform. However the two models show agreement for prescribed uniform pressure

because shear stress is reduced.

3. Employing the elastic model reveals that remote from the footprint  zz max


drops sharply as  approaches 1/2 making the discrepancy between acoustic and

elastic results even larger.

4. Convergence of the elastic model with number of modes is verified by

comparing its histories with those from a finite volume model coupling

projectile and disk.
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5. For prescribed acceleration at the boundary, rise time in pressure history

is proportional to 1,3t while maxp is proportional to 13oU t  .

6. Histories from prescribed pressure and prescribed acceleration differ

because of non-uniform pressure distribution over the footprint.

7. For 1,3t < 1,3( )Tt , maxp goes through a transition when its value at the

boundary z h exceeds that at the footprint 0z  . 1,3( )Tt is a function of bE

and  but is almost independent of 0U .

Appendix A. Acoustic equation in the limit of elasto-dynamic equations

Consider the linear axisymmetric elasto-dynamic equations in cylindrical

coordinates

( ) /

/

r rr rr z rz t t

z zz r rz rz t t

r u

r w

    

   

      

     
(A1)

where ,( , , )rr zz rz    are radial, circumferential, axial and shear stresses, and

( , )u w are radial and axial displacements. Bulk modulus bE relates average normal

stress V to volumetric strain V

 2 , (3 2 ) / 3 / 3(1 2 )

( ) / 3

/

V b V b V b

V rr zz

V rr zz r z

E c E E

u u r w





      

   

   

     

  

        u =

(A2a)

where ( , )  are Lame constants and bc is bulk speed of sound. In terms of bE

and  , the constitutive law takes the form

3 3(1 2 )

(1 ) (1 )
ij b V ij b ijE E

 
   

 


 

 
(A2b)

As  1/2, ij V b VE    recovering the bulk relation in (A2a)
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1/ 2 0,rz rr zz dp           (A3)

where ij is Dirac’s delta function. Substituting (A3) in (A1) produces the

linear Euler equation

t t dp   u  (A4)

where u is displacement vector. For a homogeneous fluid, conservation of mass

takes the form

0t t     u) (A5)

The equation of state is

2d
b

d p
c

d
 (A6)

implying that

2
t d b tp c    (A7)

Unlike the elastic solid where deviatoric or shear stresses contribute to

material stiffness and reversible strain energy, in a viscous fluid these

stresses are dissipative and irreversible. They are related to acoustic velocity

by a constitutive law resembling that of an elastic solid

     2 / 3 2 / 3
l i ji j i j t l l t i j i j t x l t x j x iu u u                        (A8)

,i jx x are independent variables and  2 / 3  and  are coefficients of viscosity

for dilatational and deviatoric stains (see Landau and Lifshitz [17] page 48). Eq.

(A8) resembles the constitutive relation (A2b) where 3 /(1 ) bE  and

3(1 2 ) /(1 ) bE   are replaced by  2 / 3  and  . The linearized Navier-Stokes

equations simplify to

    21/ 6 2( /t t d tp           u u) u     (A9)

Conservation of mass and the equation of state are given by (A5) and (A6).
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Substituting for t from (A7) into (A5) yields

2 ( ) 0t d bp c     u (A10)

Equation (A10) is the time derivative of (A2a) with V replaced by p . For a

non-viscous fluid, taking the divergence of (A4), then eliminating u using (A10)

determines the acoustic equation

  21/ 1/ 0r r r z z d b t t dr p c p        (A11)

Equation (A11) is purely hyperbolic non-dispersive.

For a viscous fluid, adopting the procedure that led to (A11) on (A9) and

assuming that 1/ 6  yields the approximate viscous acoustic equation

  2 21 / 1/ 1/ 0b t r r r z z d b t t dc r p c p          (A12)

where  / 2   2( / )cm s is kinematic viscosity.
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Summary

Analyzed is transient response of a hollow cylinder to time dependent radial

and axial velocities prescribed at the cylinder’s inner boundary. Modal and static

solutions are superimposed for solving transient response. Axial dependence is

expressed by two orthogonal sets of periodic functions; one set satisfies

vanishing axial stress at the cylinder ends and applies to the radial traction

problem, and the other set satisfies vanishing shear stress at the ends and

applies to the axial traction problem. The mixed boundary value problem with

velocity prescribed over part of the boundary and vanishing stress prescribed over

the remaining part is analyzed by the method of influence coefficients. This

method superimposes response from several external annular traction segments of

unit intensity with time dependent weights yielding a combined response equal to

the prescribed instantaneous velocity.
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1. Introduction

Trauma in human organs from projectile penetration is caused by two

mechanisms:

i) Tissue damage along projectile path. This interaction is hydrodynamic in

nature where inertial and frictional forces dominate the projectile’s motion

as it decelerates and eventually stops.

ii) Stress waves generated at the cylindrical interface between projectile and

tissue from radial and axial velocities prescribed by the projectiles

during penetration. These waves radiate to neighboring tissue and organs

causing further damage.

The present analysis concerns mechanism ii) above.

As the projectile penetrates into tissue, it moves material by replacing it

with its own volume. When the material fails, it acts more like a fluid, lessening

the amount of material being compressed. In the radial direction, material is

compressed by an expanding cross-section of the projectile’s smoothly curved nose.

As long as the projectile’s speed is much smaller than the speed of stress waves

in the material, the moving projectile can be approximated by radial and axial

velocities prescribed along its boundary. For a projectile speed of 330 ft/s and a

dilatational speed in tissue material of 5600 ft/s, this approximation is valid.

Dynamic response of solid and hollow elastic cylinders has been studied

extensively in the literature as it applies to a variety of engineering and

science problems. A large body of references concerns sound scattering by elastic

cylinders in the frequency domain. Among these are Stanton (1988), Honarvar and

Sinclair (1996), Bao et al. (1997), Wang and Ying (2001). Stepanishen and Janus

(1990) treat transient radiation and scattering from fluid loaded cylinders.

Frequency response of cylinders is analyzed by Grishenko and Meleshko (1978),

Batard et al. (1992), and Grinchenko (1999). Soldatos and Ye (1994) treat

anisotropic laminated cylinders, and Hussein and Heyliger (1998) consider layered
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piezoelectric cylinders. Cheung et al. (2003) analyze the 3-D vibration of solid

and hollow cylinders by the Chebyshev-Ritz method. Very few references discuss

transient response of elastic cylinders. Paul and Murali (1995) determine the

axisymmetric dynamic response of poro-elastic cylinders. Soldatos (1994) presents

a compilation of more than 150 references on frequency response of solid and

annular elastic cylinders, yet not a single one addresses transient response. Yin

and Yue (2002) solve the transient plane-strain response from impulse of infinite

length multi-layered cylinders. From the list above, this is the only reference

relevant to a special case of the present analysis.

The influenced region is simulated by tissue material in the shape of a

hollow cylinder. Let ( , )r z be radial and axial coordinates with origin at one end

of the cylinder axis. The inner cylinder radius pr is that of the penetrating

projectile while its outer radius or and length l are chosen to include the

furthest radial and axial locations affected by penetration. In a coordinate

system ( , )r z centered at one end of the finite cylinder, the projectile lies in

the interval a bz z z  such that b a pz z l  where pl is projectile length. The

tissue material is linear visco-elastic with a constitutive law that includes

first temporal derivatives of stress and strain.

For simplicity and without loss of generality, axial functions satisfying

the differential equations and specific boundary conditions at the two ends of the

cylinder (0, )z l are divided into 2 sets. One set satisfying vanishing axial

stress zz at (0, )z l which has radial and axial displacements ( , )u w proportional

to  sin( / ) , cos( / )m z l m z l  belongs to “problem 1”, where m is an integer wave

number. The other set satisfying vanishing shear stress rz at (0, )z l which has

( , )u w proportional to  cos( / ) , sin( / )m z l m z l  belongs to “problem 2”. The first set
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applies to radial tractions prescribed at the cylindrical footprint

,o a br r z z z   while the second set applies to prescribed axial tractions along

the same footprint. The fact that each set satisfies different boundary conditions

does not affect transient response until waves reflect from the axial boundaries.

Consequently, one problem is solved for each type of forcing excitation and

results are superimposed if both types of excitation are acting simultaneously.

The form of the forcing function closest to the application is radial and

axial velocity prescribed over part of the inner cylindrical boundary, yet this

leads to a mixed boundary condition. This difficulty can be overcome by

superimposing response from a set of unit radial or axial tractions with time

dependent weights prescribed on annular portions of the inner boundary. These

weights are updated at each time step using the condition that combined velocity

response at the center of each annular portion equals the prescribed instantaneous

velocity. In this way, the forcing function is converted to pure radial or axial

traction with time varying spatial dependence.

Section 2 derives frequency and transient response of the hollow cylinder

with finite length. Section 3 presents stress histories from prescribed radial and

axial pressures and velocities at the inner boundary.

2a. Elastic analysis

In the analysis to follow, all subscript will denote components and not

partial derivatives. In cylindrical coordinates, the elastodynamic equations are

2 ( ) ( ) tt       u u u  (1)

 

2 21/ 1/

1/ (1/ ) (

rr r zz

r r z z

r r

r r r



 

        

     e e )e
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( , , )r z are radial, circumferential and axial independent variables,  , ,
T

u wu = is

displacement vector along these directions, ( , )  are Lame constants,  is mass

density and t is time. Re-write (1) as

2 ( 2 ) ( ) ( ) tt         u u u u     (2a)

Noting that

2 ( )       u u u    (2b)

permits casting (1) in the form

( 2 ) ( )  u    u  = tt  u (3)

Define dilatation  and rotation vector  as

,   u u   (4)

Substituting (4) in (3) yields (Love (1944))

( 2 )      = tt  u (5)

Taking the divergence of (5) noting that ( 0     yields

2( 2 ) tt       (6)

Taking the rotation of (5) noting that ( )   0  yields

2
tt    (7)

For axisymmetric motions, 0    and 0r z   reducing (6) and (7) to

2
0

2
1 ,

2 2 2

( 2 )

1/ / , 0,1

tt

tt

n rr r zzr n r n

 

  

  

    

 

        

(8)

Expressing (4) in terms of u yields

1/ ( )r z

z r

r r u w

u w

    

  
(9)
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Decoupling u and w in (9) produces

2
1

2
0 1/ ( )

r z

z r

u

w r r









     

     
(10)

For the radial “problem 1” satisfying 0zz  at (0, )z l , harmonic motions in time

with radian frequency  and simply supported boundaries at (0, )z l yields the

separated solution

   

   

( , , ), ( , , ) ( ) cos( ) , ( )sin( )

( , , ), ( , , ) ( ) sin( ) , ( ) cos( )

TT i t
z z

T T i t
z z

r z t r z t r k z r k z e

u r z t w r z t u r k z w r k z e


 



   


(11)

1i   and /zk m l where m is an integer axial wave number. The z dependence

in (11) yields 0zzu   at the cylinder ends 0,z l . For real ek and sk , equation

(8) admits the solution

1 0 2 0

3 1 4 1

( ) ( ) ( )

( ) ( ) ( )

e e

s s

r C J k r C Y k r

r C J k r C Y k r

  

 
(12)

2 2 2 2 2

2 2 2 2 2

/ , ( 2 ) /

/ , /

e d z d

s s z s

k c k c

k c k c

   

  

   

  

nJ and nY are Bessel functions and ,d sc c are dilatational and shear speeds of

sound. If either ek or sk is imaginary, nJ and nY in (12) are replaced by the

modified Bessel functions nI and nK with appropriate changes in sign.

Substituting (11) and (12) in (10) then solving for ( )u r and ( )w r yields

   

   
1 1 2 1 3 1 4 1

1 0 2 0 3 0 4 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

e e e z s s

z e e s s s

u r k C J k r C Y k r k C J k r C Y k r

w r k C J k r C Y k r k C J k r C Y k r

    

   
(13)

In cylindrical coordinates, the constitutive relations are
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 

2 , 2 /

2 ,

/

rr r

zz z rz z r

r z

u u r

w u w

u u r w

     

    

      

       

     

(14)

For “problem 1”, harmonic motions in time and simply supported boundaries at (0, )l

yield the separated relations

( )sin( )

( )sin( )
( , , )

( )sin( )

( )cos( )

rr rr z

z i t

zz zz z

rz rz z

r k z

r k z
r z t e

r k z

r k z

  

 

 

 

 

   
   
   

   
   
      

(15a)

Boundary conditions at pr r and or r are

 ( , , ) ( ) ( ) ( )

( , , ) 0

( , , ) ( , , ) 0

rr p r a b

rz p

rr o rz o

r z t p t H z z H z z

r z t

r z t r z t





 

   



 

(15b)

( )rp t is a time dependent uniform radial traction acting on the inner cylindrical

boundary pr r in the interval a bz z z  . The z dependence in (15a) yields

0zzu   at the cylinder ends 0,z l . Substituting (11), (13) and (15a) in (14)

yields

 

 
 
 

2 2 2
0 1 1

2 2 2
0 1 2

0 1 3

0 1 4

( ) ( 2 ) ( ) 2 ( ) /( )

( 2 ) ( ) 2 ( ) /( )

2 ( ) ( ) /( )

2 ( ) ( ) /( )

rr e z e e e e

e z e e e e

s z s s s

s z s s s

r k k J k r k J k r k r C

k k Y k r k Y k r k r C

k k J k r J k r k r C

k k Y k r Y k r k r C

    

   





      

      

 

 

(16a)

 

2 2 2
0 1 1

2 2 2
0 1 2

3 1 4 1

( ) ( ) ( ) 2 ( ) /( )

( ) ( ) 2 ( ) /( )

2 ( ) ( ) /( )

z e e e e e

z e e e e e

s z s s s

r k k J k r k J k r k r C

k k Y k r k Y k r k r C

k k C J k r C Y k r k r

  

 



     

    

 

(16b)
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  

 

2 2
1 0 2 0

3 0 4 0

( ) ( 2 ) ( ) ( )

2 ( ) ( )

zz z e e e

s z s s

r k k C J k r C Y k r

k k C J k r C Y k r

   



    

 
(16c)

 

 
1 1 2 1

2 2
3 1 4 1

( ) 2 ( ) ( )

( ) ( ) ( )

rz e z e e

s z s s

r k k C J k r C Y k r

k k C J k r C Y k r

 



  

  
(16d)

Since zz is proportional to sin( )zk z in (15), it vanishes at 0,z l . This

allows a rigid body motion ( , ; ) ( )ow r z t w t when external traction acts along z . To

avoid the rigid body motion, an additional axial functional dependence is

considered for “problem 2”

( ) cos( )
( , , )

( ) sin( )

( ) cos( )

( ) cos( )
( , , )

( ) cos( )

( ) sin( )

z i t

z

rr rr z

z i t

zz zz z

rz rz z

u r k zu
r z t e

w r k zw

r k z

r k z
r z t e

r k z

r k z



  

 

 

 

 

  
   

   

   
   
   

   
   
      

(17a)

that satisfies the following boundary conditions at pr r and or r

 

( , , ) 0

( , , ) ( ) ( ) ( )

( , , ) ( , , ) 0

rr p

rz p z a b

rr o rz o

r z t

r z t p t H z z H z z

r z t r z t





 



   

 

(17b)

( )zp t is a time dependent uniform axial traction acting on the inner cylindrical

boundary pr r in the interval a bz z z  . The z dependence in (18a) yields

0rzw   at the cylinder ends 0,z l . In the analysis to follow, superscripts (1)

and (2) will denote radial and axial problems respectively. Derivations for

problem (2) follow the same steps as those for problem (1) and are omitted here

for shortness. Although conditions at the boundaries 0,z l of each problems are
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different, they do not affect the transient response at times preceding reflection

of waves from these boundaries.

Divide the cylindrical surface  ,p a br r z z z   into 1n  equidistant ring

stations with increment pz

1 2 3 1, , , ....., ,

( 1)

n l l p

l a p

z z z z z z z const

z z l z

   

   
(18)

Assume a uniform pressure of unit intensity to act over each ring segment 1l lz z  .

The elasto-dynamic solution to the
thk ring pressure segment is outlined below.

For each pressure segment, expand each dependent variable in terms of

eigenfunctions that satisfy homogeneous boundary conditions. Express total

displacement ( , ; )k r z tu as a superposition of two terms

(1,2) (1,2) (1,2)( , ; ) ( , ) ( ) ( , ; )k sk p d kr z t r z f t r z t u u u (19)

(1,2) ( , )sk r zu is static displacement vector satisfying (2a) when time derivative

vanishes (Appendix A),
(1,2) ( , ; )d k r z tu is dynamic displacement vector satisfying the

dynamic equation of motion (2a), and ( )pf t is time dependence of the forcing

pressure. For each axial wave number ,m express
(1,2) ( , , )d k r z tu in the eigenfunctions

(1,2) ( , )m j r z (Appendix B)

(1,2) (1,2) (1,2)( , , ) ( ) ( , )d k m j k m j
j m

r z t a t r zu  (20)

(1,2) ( )m j ka t is a generalized coordinate of the
t hj eigenfunction with m axial half

waves from the
thk pressure segment. Substituting (19) and (20) in (2a) and

enforcing orthogonality of
 1,2 ( , )m j r z yields uncoupled equations in

(1,2) ( )m j ka t . For an

undamped elastic cylinder the equation governing
(1,2) ( )m j ka t is
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2
2 (1,2) (1,2)

2
( ) ( )m j m j k m j k

d
a t f t

dt


 
  

 
(21a)

(1,2) (1,2)

(1,2) (1,2) (1,2)

0 0

(1,2) (1,2) (1,2)

0 0

( ) ( ) /

( , ) ( , )

( , ) ( , )

d

d

m j k am j k p mj

r h

m j m j m j

r h

am j k s k m j

f t N f t N

N r z r z dz r dr

N r z r z dz r dr



 

 

 

 u



 



(21b)

m j is the resonant frequency. The solution to (21a) takes the form

(1,2) (1,2)

0

1
( ) sin ( ) ( )

t

m j k m j m j k

m j

a t t f d   


   (22)

Evaluating radial and axial displacements ( , ; )ku r z t for problem (1) and ( , ; )kw r z t

for problem (2) from the
thk pressure segment at each central point 1( ) / 2cl l lz z z  

of a pressure segment yields coefficients of the influence matrices

(1) (1) (1)

(2) (2) (2)

( ) ( ) ( , ) ( , ) ( )

( ) ( ) ( , ) ( , ) ( )

l k m j k mj k p cl s k p cl p
j m

l k m j k mj k p cl s k p cl p
j m

U t a t u r z u r z f t

W t a t w r z w r z f t

 

 




(23)

 (1) (2)( , ) , ( , )mjk p cl mjk p clu r z w r z and  (1) (2)( , ), ( , )sk p cl sk p clu r z w r z are modal and static displacement

dyads at clz from the
thk pressure segment in problems (1) and (2) respectively. In

(21) and (23) ( )pf t is a first approximation to the time dependence of the applied

pressure. One approximation is determined from the plane-strain state when axial

length of cylinder and footprint approaches infinity (Appendix C). Enforcing the

condition of prescribed displacements
(1) ( )pu t and

(2) ( )pw t at each time step yields a

set of simultaneous equations in the weights
(1)
kp and

(2)
kp
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(1) (1)

1

(2) (2)

1

( ) ( ) ( ) , 1,

( ) ( ) ( ) , 1,

n

l k k p
k

n

l k k p
k

U t p t u t l n

W t p t w t l n





 

 




(24)

An approximation to ( )pf t is found from the plane-strain problem of the infinite

length cylinder with prescribed radial displacement at the inner boundary

(Appendix C).

In what follows, superscripts (1,2) are dropped for shortness. For an

elastic material, eigenvalues and resonant frequencies are synonymous. In this

case, the eigenvalues appear in pairs m j and - m j . Consequently equation (22a)

takes the form

( ) ( )m j m j m j k m j k

d d
i i a t f t

dt dt
 

  
    

  
(25a)

0

0

( ) ( ) /

( , ) ( , )

( , ) ( , )

o

p

o

p

m j k a m j k p m j

rl

am j k s k m j

r

rl

m j m j m j

r

f t N f t N

N r z x z r dr dz

N r z r z r dr dz







 

 

u









 

(25b)

2b. Visco-elastic analysis

For a visco-elastic material, m j and ( , )m j r z in (25) are both complex

m j mR j m I ji    (26a)

*

0

( , ) ( , )
o

p

rl

m j m j m j

r

N r z r z r dr dz     (26b)
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* ( , )m j r z is the complex conjugate of the eigenfunction. Unlike the elastic case

where for each eigenfunction the eigenvalue pair is m j and m j , in the visco-

elastic case the pair is m j and
*
m j where

*( ) stands for complex conjugate.

This means that 1m j R m j I m ji    and 2 m j R m j I m ji     . The reason I m j retains

the same sign for both solutions is that I m j is a measure of damping which

reduces amplitude whether the real part is R m j or R m j . Consequently equation

(21a) takes the form

*

2
* *

2

( ) ( )

( ) ( ) ( )

m j m j m j k m j k

m j m j m j m j m j k m j k

d d
i i a t f t

dt dt

d d
i a t f t

dt dt

 

   

  
    

  

 
     

 

(27)

Noting that
*( ) 2m j m j I m ji     and

* 2 2
m j m j Rm j I m j     , (27) simplifies to

2
2 2

2
2 ( ) ( )I m j R m j I m j m j k m j k

d d
a t f t

dt dt
  

 
    

 
(28)

Clearly, I m j acts as a velocity proportional viscous damper. Rewriting (28) in

standard form:

2
2

2

2 2

2 ( ) ( )

;

m j m j m j m j k m j k

I m j

m j m j R m j I m j

m j

d d
a t f t

dt dt
  


   



 
   

 

  

(29)

yields a solution in terms of a Duhamel integral:

( )

0

1
ˆ( ) sin ( ) ( )

ˆ
m j m j

t
t

m j k m j m j k

m j

a t e t f d
  

   


 
   (30)

2ˆ 1m j m j m j   
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The general constitutive law for a linear viscoelastic material takes the

form (see Fung (1965), pp 416-418)

0 0
0 0

, 1
N Nn n

n o nn n
n n

E
t t

 

   

 
   

 

 
  

 
  (31)

,n n   are constants and oE is a modulus. For a sinusoidal time dependence, (31)

assumes the form of a Pade series

0 0

( , ; )

( , ; ) ( ) ( )/
o

N N
n n

n n
n n

N N E

N N i i
 

  

    

   

     
 



 
(32)

( , ; )N N    is a complex valued function of  . The simplest linear visco-elastic

solid limits N and N to 1 reducing (32) to

 
 

1

1

1
(1,1; )

1
o o

i
E E

i






 
    

 


 


(33)

For the constitutive law in (33), approximations to R and I in (26a) are

 

 

1/ 2 1/ 2

1/ 2 1/ 2

(1,1; ) , Im (1,1; )

(1,1; ) Im (1,1; )

R o co I o co

co Ro Io o o oi i

 

 

       

       

 

     

(34)

o is the eigenfrequency of the linear elastic problem.

3. Results

In all results to follow, geometric and material properties of the cylinder

are listed in Table I. Fig. 1(a1) plots the static deformed generator from a unit

radial displacement prescribed at the footprint

( , ) ( ) ( )so p a bu r z H z z H z z    (35a)
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In (35a) az =1.5” and bz =2.5”. The resulting normalized ( , )rrs pr z distribution

plotted in Fig. 1(b1) shows a rise near az and bz of 1.5 times its magnitude at

the plateau. Fig. 1(a2,b2) plot static deformed generator and normalized ( , )rrs pr z

distribution for a unit axial displacement prescribed at the footprint

( , ) ( ) ( )so p a bw r z H z z H z z    (35b)

In this case, rrs rises near az and bz to 1.7 times its magnitude at the plateau.

Fig. 2(a,b) plots resonant frequency  in Hertz versus m with rk as

parameter for the two problems. The two spectra are almost identical for all m

and rk .

In Eq. (23), influence coefficients lkU and lkW require an approximation to

the time dependence of the forcing pressure ( )pf t . One approximation is determined

from the plane-strain state when axial length of cylinder and footprint approaches

infinity (Appendix C). Fig. 3(a-d) plot histories of the plane-strain problem when

a constant velocity oU =330 m/s is prescribed at pr r . There, u history shown as

solid line in Fig. 3(a) reproduces the prescribed ou profile. At 2 pr r and

4 pr r , u histories exhibit the time-delay in wave front from propagation with

finite speed c . The closeness in magnitude of peak rr ,  and zz (Fig.

3(b,c,d)) implies a hydrodynamic state of stress. Geometric stress attenuation

along r is proportional to
1/ 2r
.

The ( )rr pr plane-strain history in Fig. 3(b) serves as the approximation to

( )pf t in the 3-D axisymmetric model as it is the limit when projectile and

cylinder lengths are the same. Fig. 4(a1-d1) plots histories from the prescribed

uniform pressure profile ( )pf t at the center of the footprint 2"z  . The u
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history in Fig. 4(a1) does not follow the prescribed ou profile because applied

pressure is uniform over the footprint. Applying the influence method of Section 2

yields the histories in Fig. 4(a2-d2). The ( )pu r history in Fig. 4(a2) matches the

prescribed ou profile. At the footprint, except for the higher stress peaks,

results from prescribed velocity agree with those from the prescribed plane-strain

pressure profile ( )pf t . At pr r , results from the two forcing methods coincide

implying that the plane-strain pressure profile is a good approximation to the

actual profile determined by the influence method. Geometric stress attenuation

along r is proportional to
3/ 4r

. Fig. 5(a-d) plots histories from prescribed

velocity remote from the footprint at 2.6"z  . There, peak normal stresses are 1/5

those under the footprint (see Fig. 4(b2,c2,d2)). This steep drop in stress across

the edges of the footprint is caused by the low shear rigidity of the material

consistent with the ratio / 1/ 5s dc c  from Table I.

Fig. 6 plots instantaneous ( , ; )rr p or z t distributions for 2 12os t s   in

intervals of 2 s . For 2ot s , the distribution is parabolic with a maximum at

the center of the footprint. As time increases, the distribution becomes flatter

then develops peaks near az and bz resembling the static case in Fig. 1(b1). The

step-like shape of the distribution is an artifact of the finite number of

pressure ring segments dividing the footprint. In Fig. 6, the 8 steps correspond

to 8 ring segments. The distribution becomes smoother as number of ring segments

increases.

For an axial prescribed velocity at pr r along a bz z z  , the approximation

to ( )pf t is determined from the solution of the pure-shear problem of an infinite

cylinder with axial velocity prescribed at pr r derived in Appendix D. Figure
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7(a,b) plots histories of w and rz for the case of pure shear. Since /s dc c =1/5,

the time range in these histories is extended to 40 s to allow for the longer

arrival time at stations remote from the footprint. The rz profile in Fig. 7(b) is

then used as an approximation ( )pf t in computing histories with prescribed

velocity.

Fig. 8(a1,b1) plots histories at the center of the footprint 2"z  from a

uniform ( , , ) ( )r z o p pr z t f t  prescribed over the footprint. Fig. 8(a1) shows that t w

is the same as prescribed velocity 0U  330 ft/s till 10t s , then diminishes to

200 ft/s near 40t s . On the other hand for prescribed velocity, t w in Fig.

8(b2) is constant for all times and equals oU . Magnitude of rz in Fig. 8(b2) is

higher than that in Fig. 8(b1) by approximately a factor of 1.3.

Remote from the footprint at 2.6"z  , histories with prescribed pressure

(Fig. 9(a1-d1)) are compared to those with prescribed velocity (Fig. 9(a2-d2)). In

Fig. 9(a1-d1) all variables are approximately half the corresponding variables in

Fig. 9(a2-d2). Fig. 10 plots rz distribution along the footprint. For 10ot s ,

rz ’s distribution is uniform. As time increases, rz rises steeply near the edges

of the footprint reaching a value double its value at the center at 40ot s .

4 Conclusion
Wave propagation in a hollow cylinder is analyzed for pressure and velocity

prescribed at its inner boundary. The difficulty arising from the mixed boundary

conditions is overcome by the influence coefficient method. An approximation to

the prescribed pressure profile needed in this method is determined from the

plane-strain solution. Noteworthy results are
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1) The stress state close to impact is almost hydrodynamic.

2) Results from prescribed radial velocity agree with those from prescribed

uniform pressure determined from the plane-strain model.

3) In the plane-strain model, stress attenuation along r follows
1/ 2r

while in

the 3-D axisymmetric model it follows
3/ 4r

.

4) For prescribed radial velocity, the instantaneous rr distribution is

parabolic soon after impact, and approaches the static distribution for

large times.

5) Near the center of the footprint, results from prescribed axial velocity

agree with those from prescribed uniform shear stress determined from the

pure-shear model. However, near the edges of the footprint, stresses from

prescribed pressure are half of those from prescribed velocity because in

the later rz rises near the edges by the same factor.

Appendix A. Static problem

In what follows, all dependent variables pertaining to the static solution

will be subscripted by s . The static axisymmetric equations in terms of

displacements are

 
   

2
1

2
0

2 2 2

ˆ( 2 ) ( ) 0

ˆ( ) 1/ ( 2 ) 0

ˆ 1/ / , 0,1

zz s rz s

z r s zz s

n rr r

u w

r u w

r n r n

    

    

       

         

      

(A1)

Equations (A1) decouple to

 

 

2
2
1

2
2
0

ˆ( 2 ) 0

ˆ( 2 ) 0

zz s

zz s

u

w

  

  

    

    
(A2)



ATK MISSION RESEARCH W81XWH-04-C-0084

– 209 –

For the radial traction problem satisfying 0zzs  at (0, )z l , separation of

variables follows Eq. (11) in the text. Summing over all zk yields

1

( , ) ( )sin( )
M

s ms zm
m

u r z u r k z


 (A3a)

1

( , ) ( ) cos( ) , /
M

s ms zm zm
m

w r z w r k z k m l


  (A3b)

Substituting (A3) in (A2) produces uncoupled equations in r for each zmk

 

 

2
2 2
1

2
2 2
0

ˆ ( ) 0

ˆ ( ) 0

zm ms

zm ms

k u r

k w r

  

  
(A4)

In what follows, subscript m will be dropped for shortness. Equations (A4) admit

the solutions

   
1 1 2 1

3 0 1 4 0 1

( ) ( ) ( )

( ) ( ) ( ) ( )

s z z

z z z z z z

u r C I k r C K k r

C k r I k r I k r C k r K k r K k r

 

   
(A5a)

   
1 0 2 0

3 1 0 1 4 1 0 1

1 2

( ) ( ) ( )

( ) ( ) ( ) ( )

( 3 ) /( ) , /( )

s z z

z z z z z z

w r C I k r C K k r

C I k r k r I k r C K k r k r K k r 

        

 

    

    

(A5b)

Substituting (A5a,b) in the constitutive relations (14) and (15a) of the text

yields

    

  
  

1 0 1 2 0 1

2
3 2 0 1

2
4 2 0 1

( ) 2 ( ) ( ) /( ) ( ) ( ) /( )

2 ( ) 1 ( ) ( ) /( )

2 ( ) 1 ( ) ( ) /( )

rrs z z z z z z z

z z z z z

z z z z z

r k C I k r I k r k r C K k r K k r k r

k C I k r k r I k r k r

k C K k r k r K k r k r

 

 

 

   

   

  

(A6a)

 

 

 

1 1 2 1

3 2 0 1

4 2 0 1

( ) 2 ( ) /( ) ( ) /( )

2 (1 ) ( ) ( ) /( )

2 (1 ) ( ) ( ) /( )

s z z z z z

z z z z

z z z z

r k C I k r k r C K k r k r

k C I ik r I k r k r

k C K k r K k r k r

 

 

 

 

  

   

(A6b)
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 

 

 

1 0 2 0

3 1 2 0 1

4 1 2 0 1

( ) 2 ( ) ( )

2 ( ) ( ) ( )

2 ( ) ( ) ( )

zzs z z z

z z z z

z z z z

r k C I k r C K k r

k C I k r k r I k r

k C K k r k r K k r

 

  

  

  

   

  

(A6c)

 

 

 

1 1 2 1

3 0 2 1

4 0 2 1

( ) 2 ( ) ( )

2 ( ) (1 ) ( )

2 ( ) (1 ) ( )

rzs z z z

z z z z

z z z z

r k C I k r C K k r

k C k r I k r I k r

k C k r K k r K k r

 

 

 

 

  

   

(A6d)

Tractions at the inner and outer surfaces of the tube are expressed as

 ( , ) ( ) ( )

( , ) 0

rrs p r a b

rzs p

r z p H z z H z z

r z





   


(A7a)

( , ) ( , ) 0rrs o rzs or z r z   (A7b)

rp is a uniform radial traction prescribed at pr r in the interval a bz z z  .

Substituting (A6a) and (A6d) in (A7a) and (A7b) and enforcing orthogonality of

sin( )zk z and cos( )zk z produces M (4 4) uncoupled matrix equations in the

coefficients , 1, 4kmC k 

cm m mM C = f (A8)

Coefficients of cmM are the radial functions multiplying kmC in (A6a) and (A6d)

evaluated at pr r and or r , and mf is a vector defined by

 1

2 3 4

2 cos( ) cos( ) /( )

0

m r zm b zm a zm

m m m

f p k z k z k l

f f f

  

  
(A9)

For the axial traction problem satisfying vanishing shear stress 0rzs  at

(0, )z l , the expansion in (A3) becomes
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1

1

( , ) ( ) cos( )

( , ) ( )sin( ) , /

M

s ms zm
m

M

s ms zm zm
m

u r z u r k z

w r z w r k z k m l







 




(A10)

The boundary conditions are

 

( , ) 0

( , ) ( ) ( )

rrs p

rzs p z a b

r z

r z p H z z H z z







   
(A7a)

( , ) ( , ) 0rrs o rzs or z r z   (A7b)

zp is a uniform axial traction applied at pr r in the interval a bz z z  .

Expressions for displacements and stresses resemble those of the radial problem

and are omitted here for shortness.

Appendix B. Modal analysis

The dynamic solution ( , , )d r z tu satisfies the homogeneous boundary conditions

( , , ) 0 , ( , , ) 0

( , , ) 0 , ( , , ) 0

rr p rz p

rr o rz o

r z t r z t

r z t r z t

 

 

 

 
(B1)

Substituting (16a) and (16d) in (B1) yields the matrix equation

eM C = 0 (B2)

eM is a 44 square matrix,  1 2 3 4, , ,
T

C C C CC = is the vector of unknown

coefficients and

 2 2 2
11 0 1

13 0 1

21 1

2 2
23 1

( 2 ) ( ) 2 ( ) /( )

2 ( ) ( ) /( )

2 ( )

( ) ( )

e e z e p e e p e p

e s z s p s p s p

e e z e p

e s z s

M k k J k r k J k r k r

M k k J k r J k r k r

M k k J k r

M k k J k r

   







    

   

 

  

(B3)
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12 14 22 24, , ,e e e eM M M M have the same form as 11 13 21 23, , ,e e e eM M M M with nJ replaced

by nY . Similarly, 3 4,e k e kM M 1,4k  have the same form as 1 2,e k e kM M 1,4k  , with

pr replaced by or . From the definitions of ek and sk in (12), ek is imaginary when

, ( 2 ) /z d dk c c      , and sk is imaginary when , /z s sk c c    . Below

these cut-off frequencies, nJ and nY are replaced by nI and nK with appropriate

changes in sign. For each m in zk , a non-trivial solution to (B2) yields the

implicit eigenvalue problem

 | | 0 ; ( , )em m j m jdet r z  M (B4)

 ; ( , )m j m j r z  is the eigen-dyad corresponding to the
thm axial wave-number.

Appendix C. Plane-strain problem

The radial plane-strain problem is that of an infinite hollow cylinder where

0zz zw     . The dynamic equation in u then reduces to

 

2 2
1

2 2 2
1

ˆ 1/ ,

ˆ 1/ 1/ , /

(1 ) / (1 )(1 2 )

tt p o

rr r

u c u r r r

r r c E

E E



 





  

    

      

   

(C1)

The boundary conditions are

( , ) ( ) , ( , ) 0p p rr ou r t f t r t  (C2)

( )pf t is the time dependent displacement profile prescribed at pr r . The

constitutive law takes the form

2 , , ,

, 0

ii V ii

V rr zz

ii rr zz



    

   

  

  
(C3a)
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 

 

 

/(1 ) /

/ /(1 )

/ /(1 )

rr r

r

zz r

E u u r

E u r u

E u r u



 



  

  

  

   

   

   

(C3b)

Express ( , )u r t as a superposition of a static and a dynamic solution

( , ) ( ) ( ) ( , )s p du r t u r f t u r t  (C4)

( )su r is the static solution satisfying the inhomogeneous boundary conditions

( ) 1 , ( ) 0s p rrs ou r r  (C5)

( , )du r t is the dynamic solution satisfying the homogeneous form of boundary

conditions (C2). Expand ( , )du r t in the eigenfunctions ( )j r of (C1)

1 2 1 2 1 1

( , ) ( ) ( )

( ) ( ) ( ) , ( ) / ( )

d j j
j

j r j r j r j p r j p

u r t a t r

r J k r c Y k r c J k r Y k r







   


(C6)

Substituting (C6) in the homogeneous form of (C2) yields the dispersion relation

11 22 12 21

11 1 12 1

21 1 1

22 1 1

0

( ) , ( )

( 2 ) ( ) ( ) /

( 2 ) ( ) ( ) /

r j p r j p

r j r j o r j o o

r j r j o r j o o

J k r Y k r

k J k r J k r r

k Y k r Y k r r

   

 

   

   

 

 

  

  

(C7)

( ) stands for derivative with respect to the argument. (C7) determines the wave

numbers r jk . The static solution to
2
1 0su  is

   
12 2

( ) /

( ) / , 1

s

p p c p p

u r Ar B r

A r r r B r Ar  


 

    
(C8)

The constitutive law is given by (C3b). Substituting (C6) and (C8) in (C4) and

enforcing orthogonality of ( )j r yields
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 2

2

( ) ( ) / ( )

( ) , ( ) ( ) ,
o o

p p

j j j a j j j p

r r

j j j a j s j j d r j

r r

a t a t N N f t

N r r dr N u r r r dr c k



  

  

   



(C9)

( ) stands for time derivative. The integrals in j jN and a jN are evaluated

analytically in terms of nJ and nY for 0,1, 2n  .

For the radial plane-stress problem, 0zz zw     yielding the equation

 

2 2 2 2
1 1

2 2

ˆ ˆ1/ , 1/ 1/

/ (1 ) ,

tt rr r

p c

u c u r r

c E r r r



  

        

   
(C10)

(C10) has the same form as (C1) but with a lower speed of propagation since

1/ 2
(1 2 ) / (1 )/ dc c    is small when  is close to 1/2. The constitutive law

simplifies to

   
2

/ , /

0 , /(1 )

rr r r

zz

E u u r E u r u

E E

  



   

 

     

  
(C11)

If prescribed displacement at pr r is the same for both plane stress and plane

strain, then strains are approximately the same. It follows that stresses in (C11)

are smaller than those in (C3b) by a factor of  
2

/ dc c . In the present

application, if material of the cylinder fails radially within the footprint

a bz z z  , then the approximate state of plane-strain changes to that of plane-

stress reducing transmitted pressure substantially.

Pure shear problem
For the pure shear problem, 0rr zz u      yielding the equation

 

2 2 2 2
0 0

2

ˆ ˆ1/ , 1/

/ 2 (1 ) ,

s tt rr r

s p o

w c w r

c E r r r 

       

   
(D1a)



ATK MISSION RESEARCH W81XWH-04-C-0084

– 215 –

( , ) ( ) , ( , ) 0p p rz ow r t f t r t  (D1b)

 ( , ) / 2(1 ) ( , )rz rr t E w r t    (D1c)

Express w as a superposition of a static and a dynamic solution

( , ) ( ) ( ) ( , )s p dw r t w r f t w r t  (D2a)

2
0
ˆ 0 , ( ) 1 , ( ) 0s s p rzs ow w r r    (D2b)

2 2
0
ˆ 1/ , ( , ) 0 , ( , ) 0d s tt d d p rzd ow c w w r t r t     (D2c)

Since (D2b) admits a rigid body motion, a body-force fb is subtracted from (D2b)

so as to equilibrate the external shear traction and ( )f pb f t is added to (D2c) to

cancel its effect. This yields

2
0

2 2 2
0

ˆ

ˆ 1/ ( )

s f

d s tt d f p

w b

w c w b f t

  

   
(D3)

The solution to sw satisfying the boundary conditions (D2b) is

   
 

 
 

2 2 2 2

2 2

2 2

2 2

( ) 2 ln / 2 ln

( )
(1 ) 2 ln( )

2 / ln / 2

s o o p p

o

rzs

o p p

f o p p

w r r r r r r r

r rE
r

r r r r

b r r r




  




 

 

(D4)

Expand dw in terms of its eigenfunctions ( )j r

 0 0 0 0

( , ) ( ) ( )

( ) ( ) ( ) / ( ) ( )

d j j
j

j r j r j p r j p r j

w r t a t r

r J k r J k r Y k r Y k r







 


(D5)

Substituting (D2a) in (D1a) using (D3) and (D5) and enforcing the orthogonality of

( )j r produces uncoupled equations in ( )ja t
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   2 2

2

( ) ( ) / ( ) / ( )

( ) ( ) , ( ) , ( )
o o o

p p p

j j j a j j j p b j j j s f p

r r r

a j j s b j j j j j

r r r

a t a t N N f t N N c b f t

N r w r r dr N r r dr N r r dr



  

   

    



(D6)

( ) is time derivative and j are roots of the dispersion relation

0 0 0 0( ) ( ) ( ) ( ) 0 , /r j p r j o r j o r j p r j j sJ k r Y k r J k r Y k r k c    (D7)

( ) is derivative with respect to the argument.
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E (
2/lb in )

4
4.5 × 10

 (
2 4/lb s in )

-5
8.7 × 10

 0.48

l (in) 4

pr (in) 0.25

or (in) 3

dc (in/s) 4
6.74 × 10

sc (in/s) 4
1.322 × 10

Table I. Cylinder properties
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Summary

Previous work (to appear in International J. of Solids & Structures, 2005)

on transient response of a hollow cylinder to time dependent radial motion is

extended to include motion of the excitation along the axis of the cylinder.
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1. Introduction

When a projectile penetrates into human tissue, it moves material by

replacing it with its own volume. When the material fails, it acts more like a

fluid, lessening the amount of material being compressed. In the radial direction,

material is compressed by an expanding cross-section of the projectile’s smoothly

curved nose. As long as the projectile’s speed is much smaller than the speed of

stress waves in the material, the moving projectile can be approximated by radial

and axial velocities prescribed along its boundary [1]. For a projectile speed of

300 ft/s and a dilatational speed in tissue material of 5600 ft/s, this

approximation is valid. However, for projectile speed in excess of 1000 ft/s,

projectile motion must be considered in the analysis.

The forcing function is a radial motion prescribed over part of the inner

cylindrical boundary while the remainder part of the boundary is traction-free.

This leads to a mixed boundary value problem whose solution is briefly outlined

for completeness while details may be found in Ref. [1]. In order to convert the

segment of boundary where motion is prescribed to one where traction is

prescribed, response from a set of unit ring tractions with time dependent weights

is superimposed. These weights are updated at each time step using the condition

that the combined displacement response at the center of each ring equals the

prescribed instantaneous displacement. In this way, the forcing function is

converted to pure traction with time varying spatial dependence.

2. Analysis

A brief outline of the principal points of the analysis follows in order to

clarify how the time-delayed forcing function along the cylinder’s axis is

included in the algorithm. In cylindrical coordinates, the axisymmetric

elastodynamic equations are

2 ( ) ( ) tt       u u u  (1)
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 

2 1/

1/ (

rr r zz

r r z z

r

r r

      

   e )e

( , )r z are radial and axial independent variables,  ,
T

u wu = is displacement vector

along these directions, ( , )  are Lame constants,  is mass density and t is

time. For harmonic motions in time and simply supported boundaries at (0, )l the

solution is

   

   

1 1 2 1 3 1 4 1

1 0 2 0 3 0 4 0

( , ) ( ) ( ) ( ) ( ) cos( )

( , ) ( ) ( ) ( ) ( ) sin( )

e e e z s s z

z e e s s s z

u r z k C J k r C Y k r k C J k r C Y k r k z

w r z k C J k r C Y k r k C J k r C Y k r k z

      

     

(2)

with constitutive relations

 

2 , 2 /

2 ,

/

rr r

zz z rz z r

r z

u u r

w u w

u u r w

     

    

      

       

     

(3)

/zk m l . Boundary conditions at pr r and or r are

 ( , , ) ( ) ( ) ( )

( , , ) 0

( , , ) ( , , ) 0

rr p r a b

rz p

rr o rz o

r z t p t H z z H z z

r z t

r z t r z t





 

   



 

(4)

( )rp t is a time dependent uniform radial traction acting on the inner cylindrical

boundary pr r in the interval a bz z z  .

Divide the cylindrical surface  ,p a br r z z z   into 1n  equidistant ring

stations with constant increment pz

 1 2 1 1 1, , ..., , ..., , ( 1) , /l n l p n pz z z z z z l z z z n z        (5)

Assume a uniform pressure of unit intensity to act over each ring segment 1l lz z  .

The elasto-dynamic solution to the
thk ring pressure segment is outlined below.
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For each pressure segment, expand each dependent variable in terms of

eigenfunctions that satisfy homogeneous boundary conditions. Express total

displacement ( , ; )k r z tu as a superposition of two terms

ˆ( , ; ) ( , ) ( ) ( , ; )k sk p d kr z t r z f t r z t u u u (6)

( , )sk r zu is static displacement vector satisfying (1) when time derivative

vanishes, ( , ; )d k r z tu is dynamic displacement vector satisfying the dynamic equation

of motion (1), and ˆ ( )pf t is time dependence of the forcing pressure. For each axial

wave number ,m express ( , , )d k r z tu in the eigenfunctions ( , )m j r z

( , , ) ( ) ( , )d k m j k m j
j m

r z t a t r zu  (7)

( )m j ka t is a generalized coordinate of the
t hj eigenfunction with m axial half

waves from the
thk pressure segment. Substituting (6) and (7) in (1) and enforcing

orthogonality of ( , )mj r z yields uncoupled equations in ( )m j ka t . Evaluating radial

and axial displacements ( , ; )ku r z t and ( , ; )kw r z t from the
thk pressure segment at each

central point 1( ) / 2cl l lz z z   of a pressure segment yields coefficients of the

influence matrices

ˆ( ) ( ) ( , ) ( , ) ( )l k m j k mj k p cl s k p cl p
j m

U t a t u r z u r z f t  (8)

( , )mjk p clu r z and ( , )sk p clu r z are modal and static displacement dyads at clz from the
thk

pressure segment. Since ˆ ( )pf t is arbitrary, it was found from numerical

experiments that a simple ramp is appropriate

  1 1 1
ˆ ( ) / ( ) ( ) ( )pf t t t H t H t t H t t      (9)
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where 1t is rise time of the first line segment in the prescribed acceleration

profile shown in Fig. 2(c). Enforcing the condition of prescribed displacement

( )pu t at each time step yields a set of simultaneous equations in the weights kp

1

( ) ( ) ( ) , 1,
n

l k k p
k

U t p t u t l n


  (10)

In the case of time-delayed prescribed displacement where the projectile

moves axially varying length of the footprint instantaneously, ˆ
pf depends not only

on time t but also on axial coordinate z in the form

   ˆ ˆ ˆ( ) , / /p p pf t t t z V H t z V   (11)

pV is projectile speed and  / pH t z V is the Heaviside function. The significance

of (11) is that at some station z , ˆ
pf acts only when / pt z V otherwise it

vanishes thus the term "time-delayed".

3. Results

In all results to follow, geometric and material properties of the cylinder

are listed in Table I. The footprint extends from az =0.1” to bz =1.6”. The

properties in Table I yield extensional and shear wave speeds dc and sc 5610 ft/s

and 1115 ft/s and the ratio / 5d sc c  .

Fig. 1 plots prescribed radial motions at the cylinder's inner boundary from

a cylindrical projectile with a spherical nose 0.25" in radius and pV =1000 ft/s.

For a moving projectile, prescribed motion starts at one end of the cylinder and

moves inward into the cylinder with the speed of the projectile as shown in Fig. 2

for three different projectile axial positions 0, 5 , 10p pz z z   .
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Since the plane-strain cylinder is the simplest example, it is presented

first for comparison with the finite length cases. Fig. 3(a-e) plots histories of

the plane-strain cylinder for the prescribed motion in Fig. 2 at three radial

stations , 2 , 4p p pr r r r . At pr r (Fig. 3(a)), u follows the prescribed displacement

in Fig. 2(a), and /du dt (Fig. 3(b)) follows prescribed velocity in Fig. 2(b). The

first reflection from the outer boundary or r happens at 80t s as evidenced by

the sudden rise in histories there. At 2 pr r and 4 pr r , u histories exhibit the

time-delay in wave front from propagation with finite speed c . Soon after motion

starts, the closeness in magnitude of peak rr ,  and zz (Fig. 3(c,d,e))

implies a hydrodynamic state of stress. Note the sharp rise in stress history at

80t s when the first reflection from or r is felt at the corresponding z .

Fig. 4 plots histories from prescribed motion uniform over the footprint at

three different axial stations; z = 0.25", 0.8" and 1.7". The first two stations

lie within the length of the footprint pl =1.5" while the z =1.7" station is outside

this interval. In Fig. 4, histories of all dependent variables at each z  station

lie along a column, while histories of a dependent variable for the three

z  stations lie along a row. Soon after start of motion, the u histories at

z =0.25" and 0.8" in Fig. 4(a1,a2) follow the plane-strain case in Fig. 3(a).

However, the first reflection is not accompanied by sharp rises in response as in

plane-strain. At z =1.7", u and /du dt response is attenuated as expected since

that station is remote from the footprint. Magnitude of the w histories is

comparable to those of u at z =0.25". However, w attenuates substantially at the

other stations. An explanation is that w motion is controlled by shear waves

which for the present material are 5 times weaker than extensional waves

controlling u . Soon after start of motion and within the footprint, normal stress
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histories (Fig. 4(d1-d3,e1-e3,f1-f3)) resemble those of the plane-strain case in

that magnitude of the three stress components is approximately the same implying a

hydrostatic state of stress. Agreement of results from plane-strain and finite

cylinder with prescribed uniform motion implies that the plane-strain

approximation is satisfactory for axial stations within the footprint. Also,

magnitude of stress remote from the footprint is comparable to that within the

footprint after the initial hydrostatic transient elapses.

Fig. 5 plots histories from time-delayed prescribed motion. The same

nomenclature applies as in Fig. 4. Comparing histories of u and /du dt in Fig.

4(a1-a3,b1-b3) and Fig. 5(a1-a3,b1-b3) it is apparent that except for the shifted

response at the footprint, magnitude and shape of response are the same. However,

magnitude of w histories in Fig. 5(c1-c3) are almost 1/2 those in Fig. 4(c1-c3).

This is caused by the reduction in shear in the time-delayed prescribed

displacement compared to the uniform case. Comparing stress histories in Fig.

5(d1-d3,e1-e3,f1-f3) and Fig. 4(d1-d3,e1-e3,f1-f3) reveals that soon after start

of motion, the time-delayed case looses the initial hydrostatic transient while

magnitudes following this transient are comparable. This steep drop in stress

across the edges of the footprint is caused by the low shear rigidity of the

material consistent with the ratio / 1/ 5s dc c  .

Figure 6 plots snap-shots of the deformed cylinder generator for the two

types of excitation at 3 times 40 , 80t s s  and 110 s . Note the expanding

footprint in the case of the time-delayed case (Fig. 6(a2-c2)). Fig. 7 plots

instantaneous ( , ; )rr p or z t distributions for 10 110os t s   in intervals of 10 s .

In both types of excitation, pressure at the ends of the footprint is higher than

that at intermediate stations. For the time delayed excitation, Fig. 7(b) shows

the expansion of the footprint with time following prescribed displacement in Fig.

2. The undulation in the ( , ; )rr p or z t distribution is an artifact of the finite
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number of pressure ring segments dividing the footprint. The distribution becomes

smoother as number of ring segments increases.

4 Conclusion
An extension to wave propagation in a hollow cylinder is presented for

motion of the excitation along the cylinder’s axis. Two types of excitation are

considered, a uniform prescribed motion and a time delayed prescribed motion.

Noteworthy results are

6) Soon after motion starts, the normal stress state for the plane-strain

cylinder and finite cylinder with uniform prescribed displacement is almost

hydrostatic. Displacement, velocity and stress responses over the footprint

for these two cases are comparable.

7) Response from time-delayed excitation is similar to that from uniform

excitation in magnitude and form although the former response does not

exhibit the hydrostatic state soon after motion starts.
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E (
2/lb in )

4
4.5 × 10

 (
2 4/lb s in )

-5
8.7 × 10

 0.48

l (in) 4

pr (in) 0.25

or (in) 3

dc (in/s) 4
6.74 × 10

sc (in/s) 4
1.322 × 10

Table I. Cylinder properties
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Summary

Effects on transient waves of circumferential and radial inhomogeneity are

studied in a plane-strain hollow cylinder. A periodic circumferential inhomogeneity

modulating a constant value is analyzed adopting the Galerkin method where trial

functions are chosen as the axisymmetric and asymmetric modes of the homogeneous

cylinder. A periodic radial inhomogeneity is analyzed by dividing the cylinder into

annular segments of constant width. A step-wise variation in modulus is assumed

where modulus is constant over each segment. Adopting transfer matrices, continuity of

state variables at interfaces of segments establishes the global dynamic equilibrium of

the segmented cylinder. The static-dynamic superposition method is employed to solve

for transient response.
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1. Introduction

Propagation of transient stress waves in human tissue during projectile

penetration concerns medical researchers as overpressure from these waves may

cause indirect trauma in human organs. As the projectile penetrates into tissue, it

moves material by replacing it with its own volume. When tissue fails, it acts more like a

fluid, lessening the amount of material being compressed by the moving projectile. In

the radial direction, tissue is compressed by an expanding cross-section of the

projectile’s smoothly curved nose. This rapid expansion generates compressive waves

symmetric about the projectile’s axis that attenuate with distance. El-Raheb (2004)

develops a model that approximates penetrated tissue as a homogeneous hollow finite

cylinder with inner radius that of the projectile and a sufficiently large outer radius to

avoid interference from reflections at the outer boundary during the simulation time. A

radial velocity is prescribed at the cylinder’s inner boundary over the finite projectile

length accounting for radial expansion from projectile axial motion.

This work evaluates the effect on propagation of material inhomogeneity that

may result either from spatial variation in modulus or asymmetric radial tearing. Since

real tissue inhomogeneity is complicated to model, the analysis to follow treats two

uncoupled types of material inhomogeneity; circumferential or  -inhomogeneity and

radial or r -inhomogeneity.  -inhomogeneity is asymmetric as modulus E varies

periodically with angular coordinate  but remains constant along the radial coordinate

r . In this case both extensional and shear waves are excited. r -inhomogeneity is
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axisymmetric as E varies only along r but remains constant along  . In this case only

extensional waves are excited. In practice both  and r inhomogeneities exist in

tissue, nevertheless the two types are presently addressed separately for parametric

evaluation of each type’s effect avoiding the cross-coupling that may result if both were

acting together. Since histories from the homogeneous finite cylinder model (El-Raheb

2004) compared favorably with those from the homogeneous plane-strain model, the

latter model is adopted for studying material inhomogeneity.

Whittier and Jones (1967) studied the propagation of longitudinal and torsional

waves in a bi-material solid cylinder composed of an inner homogeneous core bonded

to an outer homogeneous annular cylinder of different properties. Armenakas (1967),

Reuter (1969), Armenakas (1970), studied flexural waves in bi-material cylinders. Keck

and Armenakas (1971) presented an exact solution for longitudinal waves in an

infinitely long composite hollow cylinder made of three different transversely isotropic

layers. Vibrations of homogeneous hollow plane-strain cylinders was analyzed by Gasis

(1958), Bird et al (1960), and Baltrukonis et al (1960). The references above were

restricted to three concentric axisymmetric layers. Yin and Yue (2002) analyzed the

plain-strain axisymmetric problem with multiple annular layers using Laplace transforms

to integrate time dependence. Heyliger and Jilania (1992) adopted a variational method

and a Ritz approximation to study frequency response of inhomogeneous cylinders and

spheres. Steinberg (1995) formulated the inverse spectral problem to determine

properties of a cylinder with inhomogeneous materials. Inertial  -inhomogeneity from
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point masses attached to the wall of a thin cylinder was analyzed by El-Raheb and

Wagner (1989).

In section 2,  -inhomogeneity is treated adopting the Galerkin method.
Eigenfunctions of the asymmetric homogeneous dynamic equations are utilized as
trial functions in the inhomogeneous dynamic equations. Orthogonality of
radial and circumferential dependence produces an eigenvalue problem with
coupling coefficients as the eigenvector. The static-dynamic superposition
method is adopted to solve the transient response. In section 3, a step-wise
r -inhomogeneity is treated adopting transfer matrices of annular segments
with varying properties. Continuity of stress and displacement at interfaces
of segments yields a global transfer matrix producing eigenstates of the
multi-layered cylinder. Once more, transient response is found adopting the
static-dynamic superposition method. Section 4 discusses transient histories
in hollow cylinders with the two types of inhomogeneity.

2. Circumferential inhomogeneity

Consider the plane-strain dynamic equilibrium equations in cylindrical

coordinates

  / 1/

2 / 1/

, 0 2

r rr rr r tt

r r r tt

p o

r r u

r r

r r r

  

   

    

    

 

      

     

   

(1a)

with boundary conditions

0( , ; ) ( ) , ( , ; ) 0

( , ; ) 0 , ( , ; ) 0

rr p p r p

rr o r o

r t p f t r t

r t r t





   

   

 

 
(1b)

pr and or are cylinder inner and outer radii, , ,rr r    are normal and shear

stresses, ( , )r  are radial and circumferential coordinates, ( , )u  are

corresponding displacements,  is density, t is time, 0p is magnitude of

uniform pressure applied at pr r and ( )pf t is its time dependence. The

constitutive relations are
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2 , , ,

, 0

, , ,

ii ii

rr zz

ij ij

ii rr zz

ij r z zr



    

  

    

   

   

 

(2a)

, / 1/ , 0

1/ /

rr r zz

r r

u u r r

r u r

 

 

   

  

     

    
(2b)

( , )  are the Lame constants. For the homogeneous medium, substituting (2b) in (2a)

then in (1a) yields the dynamic displacement equations

 

 
11 12

21 22

tt

tt

D u D u

D u D

  

   

  

  
(3)

 

 

2 2
11 1 12

2 2
21 22 1

2 2
1

ˆ( 2) 1/ , 1/ ( 1) ( 3) /

ˆ1/ ( 1) ( 3) / , ( 2) /

ˆ 1/ 1/ , / 2 /(1 2 )

r

r

rr r

D r D r r

D r r D r

r r

 

 

  

  

    

            

            

        

 is Poisson ratio. Eq. (3) is the limiting case of Eq. (A1) in Appendix A

when the z dependence vanishes.

Assume a circumferentially inhomogeneous modulus ( )  symmetric about

0  with a Fourier expansion

0
0

( ) ( ) , ( ) sin( ), ( ) cos( )
EN

l l l l
l

e C S l C l       


   (4)

Substituting (4) in (2a,b) then in (1a) produces the equations

   0 11 12 0 11 12
0 1

( ) ( )l l l l tt
l l

e C D u D e l S D u D u      
 

        (5a)

   0 21 22 0 21 22
0 1

( ) ( )l l l l tt
l l

e C D u D e l S D u D       
 

        (5b)

2 2
11 12

2 2
21 22

1/ , 1/ 1/

/ ( 2) / , ( 2) /

r

r

D r D r r

D r r D r



  

      

        

 

 
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To solve (5), the Galerkin method is adopted. u and  are expanded in terms

of orthogonal trial functions satisfying the boundary conditions at the inner

and outer walls of the cylinder pr r and or r . One admissible set is the

eigenfunctions of the homogeneous problem in Eq.(3) with 0  the

axisymmetric term in the ( )  expansion (4). For harmonic motions in time

with radian frequency  and periodicity along  , the solution to (1a) is

 

 
1 2

1 2

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

i t

i t

u r t u r u r e

r t r r e





  

     

 

 
(6a)

  

  

1 11 1 12
0

1 11 12 1
0

( ) /( ) ( ) ( ) / ( )

( ) / ( ) /( ) ( ) ( )

( ) sin( ), ( ) cos( )

n re n re re n re n n rs n
n

n n re n rs n rs rs n rs n
n

n n

u c k n J k r k r J k r c n J k r r C

c n J k r r c k n J k r k r J k r S

S n C n



 

   







  

   

 



 (6b)

( 1u , 1 ) are derived in Eq. (B1) of Appendix B, and ( 2u , 2 ) have the same form

as ( 1u , 1 ) with ( )nJ kr replaced by ( )nY kr and ( 21 22,n nc c ) replacing ( 11 12,n nc c ).

Expressions for ,rr r  similar to those for displacement in (6a) and (6b) can

be expressed as

 

 
1 2

1 2

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

i t
rr rr rr

i t
r r r

r t r r e

r t r r e




  

     

     

 

 
(7a)

  
 

2 2 2
1 11 1

0

2 2
12 1

( 2) ( ) 2( ) ( ) / 2 ( ) /

2 ( ) ( ) / ( ) / ( )

rr n re n re re n re
n

n n rs rs n rs n

c k r n n J k r r k J k r r

c n n J k r r n k J k r r C

  








     

  


(7b)

 

  

2 2
1 11 1

0

2 2 2
12 12

2 ( ) ( ) / ( ) /

2 ( ) / ( ) / ( ) / ( )

r n n re re n re
n

n rs n rs rs n rs n

c n n J k r r n k J k r r

c n n k r J k r r k J k r r S

 








   

   


(7c)
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( 1 1,rr r  ) are derived in Eq. (B2) of Appendix B, ( , )re rsk k are radial wave

numbers defined in Eq. (B1) of Appendix B. ( 2 2,rr r  ) have the same form as

( 1 1,rr r  ) with ( )nJ kr replaced by ( )nY kr and 11 12( , )n nc c replaced by 21 22( , )n nc c .

Re-write (7a) in the form

 
0

( , , ) , ( ) ( )

( ) 0
( )

0 ( )

T i t
rr r n n n

n

n

n

n

r t r e

C

S


   








 



S B c



(8)

( )n rB is a 2 4 matrix of the radial functions in ( , )rr r  multiplying

 11 12 21 22, , ,
T

n n n n nc c c cc in (7b,c). The homogeneous boundary conditions (1a) are

( ) 0 , ( ) 0rr p rr or r   (9a)

( ) 0 , ( ) 0r p r or r    (9b)

Substituting (8) in (9a,b) and enforcing orthogonality of the  dependence

yields a set of uncoupled eigenvalue problems for each circumferential wave

number n

 

( )
,

( )

det | | 0 ( ) , ( ) ;

n p
n n n

n o

n mn

r

r

r r  

 
   

 

  

B
B c 0 B

B

B

(10)

nB is a 4 4 matrix,  ( ), ( )
mn

r r  are the displacement eigenfunctions, mn

are the eigenvalues, and m is radial wave number. In what follows ( )mn r and

( )mn r will be written as mn and mn for shortness since it is known that

they are functions of r only. Expand ( , )u  in the eigenfunctions (9)
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0 1

1 1

( , , ) ( ) ( )

( , , ) ( ) ( )

mn mn n
n m

mn mn n
n m

u r t a t C

r t a t S

  

   

 

 








(11)

Substituting (11) in (5a,b) yields

 

 

( ) ( )
0 11 12

0 0 1

( ) ( )
0 11 12

1 1 1

0 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) sin( ), ( ) cos( )

r r
l l j k kj k

l k j

r r
l l j k kj k

l k j

mn mn n
n m

k k

e C a t D D C

e l S a t D D S

a t C

S k C k

    

    

  

   

  

  

 



 



 

 

 



 



(12a)

 

 

( ) ( )
0 21 22

0 1 1

( ) ( )
0 21 22

1 0 1

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

r r
l l j k kj k

l k j

r r
l l j k kj k

l k j

mn m n n
n m

e C a t D D S

e l S a t D D C

a t S

    

    

  

  

  

 



 



 

 



 



(12b)

In (12a,b) the operators
( )r
i jD are the same as i jD in (5) with the 

dependence eliminated, and ( )


is derivative with respect to t . From Eq.(3),

noting that

 

 

( ) ( ) 2
11 12 0

( ) ( ) 2
21 22 0

/

/

r r
j k j kj k

r r
j k j kj k

D D

D D

     

     

  

  
(13)

reduces (12) to

 

2

0 0 1

2 2
0

1 1 1

0 1

( ) ( ) ( )

/ ( ) ( ) / / / ( )

( ) ( )

l l j k j k j k k
l k j

l l j k j k j k j k k
l k j

mn mn n
n m

e C a t C

e l S a t n r r r S

a t C

   

      

 

  

  

 



   



 

 

 

(14a)
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 

2

0 1 1

2 2
0

1 0 1

1 1

( ) ( ) ( )

/ ( ) ( ) / ( 2) / ( 2) / ( )

( ) ( )

l l j k j k j k k
l k j

l l j k j k j k j k k
l k j

mn mn n
n m

e C a t S

e l S a t r r n r C

a t S

   

         

 

  

  

 



    



 

 

 

(14b)

For each ( , )m n dyad, multiplying both sides of Eq. (14a) by cos( )m n n  and

both sides of (14b) by sin( )mn n  , integrating over the domain p or r r  ,

0 2   then adding the two resulting equations produces

(1) (1) (2) (2) 2
0 , ,

0 1

(3) (3) (4) (4)
0 , ,

0 1

(1 ) ( ) ( )

/ ( ) 0

n mn mn nk mn j k nk mn j k j k j k
k j

nk m n j k nk mn j k j k
k j

N a t R R a t

R R a t

  

 

 

 

      

     







(15a)

 2 2 , 0,1,.., , 1,2,..,
o

p

r

mn mn m n r

r

N r dr n N m N    

2 2
(1) (2)

0 00 0

2 2
(3) (4)

1 10 0

( ) ( ) ( ) , ( ) ( ) ( )

( ) ( ) ( ) , ( ) ( ) ( )

nk l l k n nk l l k n
l l

nk l l k n nk l l k n
l l

e C C C d e C S S d

e l S S C d e l S C S d

 

 

       

       

 

 

   

   

  

  

(15b)

 

 

(1) (2)
, ,

(3) 2 2
,

(4) 2 2
,

,

/ / /

/ ( 2) / ( 2) /

o o

p p

o

p

o

p

r r

mn jk mn jk mn jk mn jk

r r

r

mn jk mn j k j k j k

r

r

mn jk mn j k j k j k

r

R r dr R r dr

R k r r r r dr

R r r k r r dr

   

   

      

 

   

    

 





(15c)

0n is the Kronecker delta and ( ) is derivative w.r.t. r . In arriving at

(14a) the orthogonality of ( , )m n mn  was utilized. For a homogeneous
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material,
(3) (4) 0nk nk    ,

(1)
nk =

(2)
nk = 0(1 )n  and

(1) (2)
, ,mn j k mn j k mn m j nkR R N   

reducing (11a) to the simple form

2( ) ( ) 0mn mn mna t a t  (16)

To diagonalize (14a), form the coupled eigenproblem

 2

2 (1) (1) (2) (2) (3) (3) (4) (4)
, , , 0 , ,

, 0

,

/

(1 )

T

c c c mn

c mn j k j k nk mn j k nk mn j k nk mn j k nk mn j k

c mn j k n mn m j nk

a

K R R R R

M N



  

   

  

           

 

K - M a = 0 a =

(17)

cK is a stiffness matrix of order ( ) ( )r rN N N N  , cM is a diagonal mass

matrix of the same order. The eigenproblem (13) yields the orthogonal eigenset

 ( , ) ;ci cir   where ( , )ci r  is the
thi eigenvector coupling the constituent

modes  ,mn mn  by the coupling coefficients  ,

T

mn ia , and ci are the

corresponding eigen-frequencies. The coupled state vector

 , , , , ,
T

c c c rr c c zz c r cu      S can be expanded in terms of ( , )ci r  as

( , ; ) ( ) ( , )c i ci
i

r t c t r S  (18a)

 

,( , ) ( , )

( , ) , , , , ,

cl mn l mn
n m

T

ci c c rr c c zz c r c i

r a r

r u  

 

     





 S


(18b)

mnS is the state eigenvector of the ( , )thm n constituent mode and , ,...,ci ci r ciu  

are components of the
thi coupled eigenvector ( , )ci r  .

Express displacement ( , ; )r tu as a superposition of two terms

( , ; ) ( , ) ( ) ( , ; )s p dr t r f t r t   u u u (19)
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( , )s r u is static displacement vector satisfying (5) with vanishing time

dependence and boundary conditions (1b) with ( ) 1pf t  (see Appendix C),

( , ; )d r tu is dynamic displacement vector satisfying (5) and boundary

conditions (1b) with ( ) 0pf t 

0
0 0

1 1

( , ) ( ) ( ) , ( , ) ( )

,

s s sn n s sn n
n n

s n mn mn s n mn mn
m m

u r u r U C r V S

U b V b

    

 

 

 

  

 

 

 
(20)

0 ( )su r is the axisymmetric radial displacement satisfying the inhomogeneous

boundary condition (1b) with ( ) 1pf t  (see Appendix C). Expand ( , ; )d r tu in the

eigenfunctions ( , )ci ciu 

,
0 1

,
1 1

( , ; ) ( ) ( , ) , ( , ) ( )

( , ; ) ( ) ( , ) , ( , ) ( )

d i ci ci mn i mn n
i n m

d i ci ci mn i mn n
i n m

u r t c t u r u r a C

r t c t r r a S

    

       

 

 

 

 

 

 
(21)

( )ic t is generalized coordinate of the
t hi coupled eigenfunction. Substituting

(19),(20) and (21) in (5) and enforcing orthogonality of the  ,ci ciu  set

yields uncoupled equations in ( )ic t

2( ) ( ) ( )i ci i ic t c t f t  (22a)
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   

 

   

2
2 2 2 2

0 , ,
00

2

0

0 0 0, , ,
1

, , ,
1

( ) ( ) /

(1 )

2

,

o o

p p

o

p

o o

p p

i s i p i i

r r

i i ci ci n n i n i
nr r

r

s i ci s ci s

r

r r

s s i n i s n n i s n
nr r

n i mn i mn n i
m

f t N f t N

N u r dr d U V r dr

N u u r dr d

U u U r dr U U V V r dr

U a V





   

  

 











    

 

   

 

  

 

 





,
1

mn i mn
m

a 



(22b)

mnb are coupling coefficients of the coupled static solution. Eq. (22a) admits

the solution

0

1
( ) sin ( ) ( )

t

i ci i

ci

c t t f d   


   (23a)

If ( )pf t is piecewise linear with sn conjoined segments

 

   

 

1
1

1 1 1 1

1

1 1 1 1
1

( ) ( ) ( ) ( )

( ) ( ) , ( ) , ( ) 0

( ) ( ) ( ) ( )

/

s

s

s s

n

p j j j j j
j

j p j p j j j j p j p

n

p n n j j j
j

f t t t H t t H t t

f t f t t t f t t f t

f t t t t t t

 

 

      




 



  


       

     

     





(23b)

then (23a) can be integrated analytically with an accuracy independent of the

time interval.

3. Radial inhomogeneity

Consider a step-wise radial variation in modulus as follows. Divide the

region p or r r  into rN equidistant annular segments

1

1

, 1,...,

( ) /

j j r

j j j o p r

r r r j N

r r r r r r N





  

      
(24)
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Assume that  1 2,
T

j j jc cc is constant over each segment but varies from segment

to segment. Since axial symmetry holds, the following equation applies to the

thj segment

 2( 2 ) 1/ 1/j rr r j tt jr r u u         (25)

For harmonic motions in time with radian frequency  , Eq. (25) admits the

solution for the
thj segment

1 1 2 1

2

( , ) ( ) , ( ) ( ) ( )

/ , ( 2 ) /

i t
j j j j e j j e j

e j e j e j j

u r t u r e u r c J k r c Y k r

k c c



   

  

  
(26)

Substituting (26) in the constitutive relations (2a,b) yields

 
 

1 0 1

2 0 1

( 2) ( ) 2 ( ) /

( 2) ( ) 2 ( ) /

rrj j j e j e j e j

j j e j e j e j

c k J k r J k r r

c k Y k r Y k r r

  

 

   

   
(27)

For each annular segment, express the state vector  ,
T

j rrj juS in terms of

the constant vector  1 2,
T

j j jc cc

( ) ( )j j jr rS B c (28)

( )j rB is a matrix with coefficients the functions multiplying 1 2( , )j jc c in (26)

and (27). Evaluating (28) at the two ends of the
thj segment then eliminating

jc determines the (2x2) transfer matrix jT relating state vectors at the ends

of a segment

1
1 1( ) ( ) , ( ) ( )j

j j j j j j kl j j j jr r t r r
 

    S T S T B B (29a)

1( ) ( )j j j j jr rc B S (29b)
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Enforcing continuity of jS at interfaces of segments and homogeneous boundary

conditions (8a) at pr r and or r yields the global transfer matrix GT in

tri-diagonal block form and the corresponding global GS which is the ensemble

of all jS

 1 1 2 2

det | | 0

( ), ( ),.., ( ),.., ( )
r r

G G G

T

G j j N Nr r r r

   



T S 0 T

S S S S S
(30)

1 1
11 12

1 1
21 22

2 2
11 12

2 2
21 22

11 12

21 22

1 0

1 0

0 1

1 0

0 1

. .

. . 1 0

0 1

1 0

r r

r r

G

N N

N N

t t

t t

t t

t t

t t

t t

 
  
 
 
 
  
 
 
 
 

 
  

T

-

Eq. (30) determines the eigenset  ;G S and in turn  1 2, ,.., ,..,
r

T

j j NC c c c c from

(29b).

To solve the transient response problem, decompose the displacement

( ; )u r t as a superposition of two terms in the manner as was done for the

circumferential inhomogeneity

( , ) ( ) ( ) ( , )s p du r t u r f t u r t  (31)

( )su r is static displacement satisfying (25) with vanishing time dependence

and boundary conditions (1b) with ( ) 1pf t  , and ( ; )du r t is dynamic displacement
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satisfying (25) and boundary conditions (1b) with ( ) 0pf t  . The static state

vector { , }T
s j rrs s juS of the

thj segment takes the form

2
1 2( ) 2( ) 2 /rrs j j s j j s jr c c r      (32a)

1 2( ) /sj s j s ju r c r c r  (32b)

The global static transfer matrix is determined following the steps that led

to Eq. (28) and (29)

 

 
0 0 0

1 1 2 2

, ,0,0,...,0

( ) , ( ) ,.., ( ) ,.., ( )
r r

T

G s G s

T

G s s s s j j s N N

p

r r r r

  



T S p p

S S S S S
(33)

Expand du in its eigenfunctions ( )m r

  1 1 2 1 1
1

( , ) ( ) ( )

( ) ( ) ( ) ( ) ( )
r

d m m
m

N

m e j m j m e j m j m e j m j j
j

u r t a t r

r k c J k r c Y k r H r r H r r



 




    




(34)

( )H r is the Heaviside function, /e j m m e jk c and m is the
thm eigenvalue.

Substituting (32a,b) in (31) then in (25) and enforcing orthogonality of the

 m set yields uncoupled equations in ( )ma t

2

2

( ) ( ) ( )

( ) ( ) / , = , =
o o

p p

m m m m

r r

m s m p m m m sm m s

r r

a t a t f t

f t N f t N N r dr N u r dr



 

 

  




(35)

Eq. (35) admits the solution

0

1
( ) sin ( ) ( )

t

m m m

m

a t t f d   


   (36)
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4. Results

Consider a plane-strain cylinder with properties

9 2 3
0 3.1 10 / , 0.93 / , 0.48

0.635 , 7.62p o

E dyn cm g cm

r cm r cm

    

 
(37)

This yields extensional and shear wave speeds ec and sc 1.71 and 0.34 km/s

and the ratio / 5e sc c  . Fig. 1 plots the resonant frequency spectrum  versus

discrete n with radial wave number m as parameter. Although each frequency

corresponds to a discrete integer n value, the points are joined to

facilitate discerning constant m lines in the explanation to follow. Lines

of constant m are almost parallel with slope proportional to sc . A constant

m -line mL changes slope and coalesces with the next constant m -line 1mL 

without crossing it. Coalescence without crossing is necessary for uniqueness

of the eigen-states. Near coalescence, mL reverts to its original slope while

1mL  proceeds through similar steps to coalesce with 2mL  and so on. Remote

from coalescence, these lines have a slope proportional to sc and correspond

to shear modes. Near coalescence, envelopes are also straight lines with slope

proportional to ec and correspond to extensional modes. Shear modes are denser

than extensional modes when /e sc c is large as in the present case. Coupling of

shear and extensional modes for 1n  is what distinguishes asymmetric from

axisymmetric motions.

Since the static solution is prerequisite to solving transient response,

understanding the effect of  -inhomogeneity on the static problem will help

understanding its effect on transient response. The first step starts with the

simple case of the static axisymmetric homogeneous cylinder with unit
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prescribed pressure at its inner boundary pr r . Fig. 2 plots radial

distribution of displacement 0u and stresses 0rr and 0 . Remote from pr r ,

0 1/u r and 0( rr ,
2

0 ) 1/ r  , with magnitude equal to applied pressure 0p .

As expected, 0rr is compressive and 0 is tensile since internal pressure

expands the cylinder along the radius.

Consider the plane-strain cylinder with  -inhomogeneity in the form of

Eq. (4) including only 2 terms

 0( ) 1 0.5cos(2 )     (38)

( )  in (38) is symmetric about 0  and / 2  requiring that only even

n ’s be included in the expansion (C8) of Appendix C. Convergence of the

static solution was achieved with 60m  and 0,2,4n  . Fig. 3(a1-e1) plots

dependent variable along r with  as parameter and Fig. 3(a2-e2) plots these

variables along  with r as parameter. At 0  where E is largest (Fig.

3(a1)), cu decreases along r like 0u in Fig. 2(a) with peak ( ,0)cmx pu r at pr r

slightly less than that of 0u . As  increases, ( , / 4)cmx pu r  diminishes to

almost 1/2 ( ,0)cmx pu r . Along  (Fig. 3(a2)), cu is periodic following

approximately the cos(2 ) distribution of ( )  . This means that along a

constant r -line, the cross-section is squashed with larger curvature at 0 

and smallest curvature at / 2  . This results in flexure of the cross-

section adding to c a periodic stress component that changes from

compressive at 0  to tensile at / 2  . Indeed Fig. 3(d1,d2) shows a

compressive over-stress at 0  with magnitude 6 0p and a tensile over-stress
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with magnitude 2 0p . The same argument applies to zzc in Fig. 3(e1,e2). Note

that in Fig. 2 0zz is not plotted since it is small since

2 2 2 2 2
0 0 0/(1 ) /( ) / 1zz p o p p or r r r r       . It appears then that in the static case,

 -inhomogeneity magnifies compressive and tensile stresses because of flexure

at and near the inner boundary, and raises axial stress substantially from the

homogeneous case.

Consider transient response of a homogeneous plane-strain cylinder

forced by a 10 s trapezoidal pulse of unit intensity, with 1 s rise and fall

times and a 8 s plateau. Fig. 4 plots histories of dependent variables within

a 60 s time range. Fig. 4(a) shows u histories at 3 different radial

stations. u increases almost linearly while the forcing pulse is nonzero then

drops smoothly until waves reflect from the free boundary or r . Note the

time delay in response for 2 pr r and 4 pr r equal to travel time of

extensional waves to reach these stations from pr r . Fig. 4(b) plots velocity

history. Velocity increases steeply with rise time that of the forcing pulse,

then continues to increase at a reduced rate until the forcing pulse elapses

consistent with the shape of the u history in Fig. 4(a). The smooth rise

during the plateau portion of the pulse is characteristic of cylindrical

symmetry as it is flat in 1-D and 2-D. rr follows the shape of the forcing

pulse closely since it must satisfy the boundary condition at pr r (see Fig.

4(c)). However,  while being tensile for all r in the static case (Fig.

2(b)), is compressive throughout the duration of the pulse then changes to

tensile after the pulse elapses. An explanation is that shortly after the

pulse is applied, a narrow annular region bounded by the extensional wave-
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front undergoes stress while the wave-front acts as a solid but moving

boundary. During this time, the state of stress in this instantaneously

confined annular region is almost hydrostatic where all three normal stress

components are approximately equal. Release of pressure at the end of the

pulse and radial motion of the wave-front reverts to the free motion when 

changes to tensile.

Consider transient response of the plane-strain cylinder with the  -

inhomogeneity given by (38). Fig. 5 plots histories of each dependent variable

along a column for a specific  . Three values of  are chosen: 0, / 4 , / 2  .

Unless specified on the ordinate of some variable, labels along a row are the

same for all  . Exceptions to this rule are when the variable at 0  is

substantially larger than that for other values of  . At 0  (Fig. 5(a1)),

magnitudes of the u histories are approximately half those for the other

 ’s. This may seem counter intuitive as it is the opposite of the static case

(Fig. 3(a1,a2)). Yet, the explanation is the same as that for the sign of 

in the homogeneous cylinder (Fig. 4(d)). Shortly after the pulse is applied,

the wave-front confines a narrow annular region near pr r where the state of

stress is hydrostatic. Since at 0  , modulus is 3 times larger than at

/ 2  , and since hydrostatic displacement is inversely proportional to

modulus, the result in Fig. 5(a1) is obtained. Histories of circumferential

displacement  are plotted only for / 4  (Fig. 5(b2)) since sin( )n 

vanishes at 0  and / 2  for n =2 and n =4. Magnitude of  is

approximately 1/5 that of u for the  shown. Also, travel time is

approximately 5 times that for u in Fig. 5(a2). This implies that 

propagates at the speed of shear waves sc . Histories of rr (Fig. 5(c1-c3))
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qualitatively resemble the corresponding ones of the homogeneous cylinder

(Fig. 4(c)). The difference is that magnitude of rr reduces with modulus as

evidenced by comparing Fig. 5(c1) to Fig. 5(c2,c3). Histories of  at 0 

(Fig. 5(d1)) are particularly interesting. Throughout the duration of the

pulse, response is comparable to the homogeneous cylinder. After the pulse

elapses,  becomes tensile reaching a peak 3.5 0p at 90t s . The first

peak of  occurs at the 1/4 period of the coupled fundamental resonance

with a frequency of 2.6 KHz compared to the fundamental axisymmetric resonance

of the homogeneous cylinder at 6.1 KHz. For an impulsive pressure, setting

( ) ( )if    in (23a) yields ( ) sin( ) /i i ia t t  implying that the largest

amplitude of free oscillation is inversely proportional to the fundamental

resonance. This explains the larger  amplitude of the inhomogeneous

cylinder compared the homogeneous one. Histories of zz (Fig. 5(e1-e3))

resemble those of rr (Fig. 5(c1-c3)) except that magnitude at 0  is

approximately double that at / 4  . Finally, velocity histories (Fig. 5(f1-

f3)) follow the u histories (Fig. 5(a1-a3)) in that magnitude of velocity at

0  is lower than that at / 4  and at / 2  .

In the case of r-inhomogeneity assume the following distribution of

modulus ( )E r

  0( ) 1 0.5sin 4 ( ) /( )p o pE r E r r r r    (39)

where 0E and all other properties are given in (37). In this way, the highest

to lowest ( )E r ratio is 3 similar to the  -inhomogeneity. The cylinder is

divided into 45 annular constant width segments each assigned a constant ( )iE r
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following (39) with ir being the mean radius of the
thi segment. The

corresponding stepwise ec distribution is shown in Fig. 6. The cylinder is

forced by the same 10 s trapezoidal pulse used in the case of the  -

inhomogeneity. Fig. 7(a-e) plots histories of the cylinder in the interval

0 80t s  . Throughout the duration of the pulse, histories of the cylinder

with r-inhomogeneity are almost the same as those of the homogeneous case (see

Fig. 4). During this time, response is confined to a narrow ring close to

pr r , where magnitude depends only on properties in this region. After the

pulse elapses and the wave-front moves outward, response then differs from the

homogeneous case especially after reflection from the outer boundary or r .

It is evident from the examples above that for the same level of

inhomogeneity,  -inhomogeneity has a more pronounced effect on transient

response both in shape and magnitude. The fundamental reason is that with a

 -inhomogeneity, asymmetric waves are excited that include both extensional

and shear components adding to the spectrum modes with lower frequency. These

modes magnify amplitude of free motion for all dependent variables.

5. Conclusion

Transient response of a plane-strain hollow cylinder was analyzed for

both  and r inhomogeneity. For a  -inhomogeneity with periodic modulation

noteworthy results are

1. Dependent variables acquire a periodicity along the circumference

2. Static  and zz are magnified at 0  and pr r compared to the

homogeneous case



ATK MISSION RESEARCH W81XWH-04-C-0084

– 265 –

3. Static  is modulated by a flexural components that is compressive

along the axis of highest modulus and tensile along the axis of

weakest modulus

4. Asymmetric waves are induced that include extensional and shear

components adding modes with lower frequencies to the spectrum. This

in turn magnifies amplitude of  and zz after the forcing pulse

elapses and free harmonic motion starts.

For a periodic r-inhomogeneity the principal results are

1. When the forcing pulse is acting, response resembles the homogeneous

case

2. Differences in response appear after the pulse elapse especially

after reflection from the outer boundary

3. Fixing the level of inhomogeneity,  -inhomogeneity has a more

pronounced effect on response than r-inhomogeneity because of the

absence of shear waves in the latter.

Asymmetric dynamic solution of homogeneous finite cylinder

For periodic motions in time, The Navier equations of elastodynamics can

be written in vector form as

2( ) ( ) ( )      u u u 0     (A1)

where  and  are Lame ’s constants,  is density, u is displacement

vector, and  is radian frequency. For cylindrical coordinates ( , , )r z where

z is along the axis of revolution, u can be expressed in terms of three

scalar potentials , ,   as follows

( ) ( )z z

r zu w

  



     

  

u e e

u e e e

   
(A2)



ATK MISSION RESEARCH W81XWH-04-C-0084

– 266 –

where , ,r ze e e are a unit vectors along , ,r z . Substituting (A2) in (A1)

then taking the divergence yields

2 2 2 2

2

0 , 1/ 1/

/ , ( 2 ) /

e rr r zz

e e e

k r r

k c c

 

   

           

  
(A3)

Substituting (A2) in (A1) and taking the curl yields

2 2

2 2

2

0

0

/ , /

s

s

s s s

k

k

k c c

 

 

  

  

  

 

(A4)

For simply-supported boundary conditions at 0,z l and periodicity along  ,

, ,   can be expressed in terms of Bessel functions in r and harmonic

functions in  and z

 

 

 

11 21

12 22

13 23

( , , ) ( ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) ( )

n re n re m n

n rs n rs m n

n rs n rs m n

r z c J k r c Y k r S z C

r z c J k r c Y k r S z S

r z c J k r c Y k r C z C

  

  

  

 

 

 

(A5a)

2 2 2 2 2 2

( ) sin( ) , ( ) cos( )

( ) sin( ) , ( ) cos( )

, , /

1, 2,..., , 0,1,...,

n n

m zm m zm

re e zm rs s zm zm

S n C n

S z k z C z k z

k k k k k k k m l

m M n N

   



 

 

    

 

(A5b)

m is an integer axial wave number that follows from the exact solution of

the separated axial dependence satisfying simply supported boundary conditions

at 0,z l which require that ( , , ) ( , , ) ( , , ) 0zzu r z r z r z       at 0,z l .

Similarly, n is an integer circumferential wave number that follows from the

exact solution of the separated circumferential dependence satisfying

continuity of dependent variable along the cylinder’s circumference. Subscript
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m in zmk will be dropped hereafter for shortness. If D is a dependent

variable, then

     1 1 1 1 2 1, ; , , ,n n n n n n n nJ J Y Y J J Y Y    D D D (A6)

Since 2D has the same form as 1D except that the primitives 1,n nJ J  in 1D

are replaced by 1,n nY Y  in 2D , only expressions for 1D will be listed below

for shortness. Substituting (A5) in (A2) produces expressions for

displacements

 

 

1 11 1 12

13 1

( ) /( ) ( ) ( ) /

( ) /( ) ( ) ( ) ( )

mn re n re re n re mn n rs
n m

mn rs z n rs rs n rs m n

u c k n J k r k r J k r c n J k r r

c k k n J k r k r J k r S z C 





  

 


(A7a)

  



1 11 12 1

13

( ) / ( ) /( ) ( )

( ) / ( ) ( )

mn n re mn rs n rs rs n rs
n m

mn z n rs m n

c n J k r r c k n J k r k r J k r

c n k J k r r S z S





   




(A7b)

 2
1 11 13( ) ( ) ( ) ( )mn z n re mn rs n rs m n

n m

w c k J k r c k J k r C z C   (A7c)

The constitutive relations are

2 , , ,

, , ,

ii ii

rr zz

ij ij

ii rr zz

ij r z zr



    

  

    

   

   

 

(A8)

, / 1/ ,

1/ /

1/ ,

rr r zz z

r r

z z zr r z

u u r r w

r u r

r w w u

 

 

 

   

  

  

     

    

       

(A9)

Substituting (A7) in (A9) then in (A8) produces

  
 

  

2 2 2 2
1 11 1

2 2
12 1

2 2 2
13 1

( 2)( ) 2( ) ( ) ( ) / 2 ( ) /

2 ( ) ( ) / ( ) /

2 ( ) ( ) / ( ) / ( ) ( )

rr mn re z n re re n re
n m

mn n rs rs n rs

mn z rs n rs rs n rs m n

c k r n n k r J k r r k J k r r

c n n J k r r n k J k r r

c k n n k r J k r r k J k r r S z C

   









      

  

   



(A10a)
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  
 
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






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  



(A10b)

  2 2 2
1 11 13( 2) ( ) 2 ( ) ( ) ( )zz mn z re n re mn z rs n rs m n

n m

c k k J k r c k k J k r S z C         (A10c)
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  

  

1 11 12 1

2 2
13
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(A10e)
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 
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13 1
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( ) ( ) / ( ) ( ) ( )
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c k nJ k r r k J k r c nk J k r r

c k k nJ k r r k J k r C z C

 







  
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(A10f)

( ) sin( ) , ( ) cos( ) , 0,1,...,

/ , / , /

n n

re e e rs s s

S n C n n N

k k c k k c

   

    

  

    

The Bessel functions in (A5a) through (A10) are real when  is greater than

both shear and extensional cut-off frequencies of the
thm axial mode

( ) ( )
, ,,m m

co e z e e z co s z s s zk c k k k c k k           (A11)

Since e sc c then (A5a) through (A10) are valid when z ek c  . However, if

z s z ek c k c  then ( ) , ( )n re n reJ k r Y k r are replaced by ( ) , ( )n re n reI k r K k r . Similarly,

if z sk c  then ( ) , ( )n rs n rsJ k r Y k r are replaced by ( ) , ( )n rs n rsI k r K k r . Expressions

for displacement and stress similar in form to (A7) and (A10) follow with

appropriate changes in sign but will not be listed here for shortness.
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Appendix B: Asymmetric dynamic solution of plane-strain cylinder

For the plane-strain problem, displacements and stresses are found from

Appendix A when the z dependence and axial displacement w vanish.

Expressions for u and  are

  

  

1 11 1 12

1 11 12 1

( ) /( ) ( ) ( ) / ( )

( ) / ( ) /( ) ( ) ( )

n re n re re n re n n rs n
n

n n re n rs n rs rs n rs n
n

u c k n J k r k r J k r c n J k r r C

c n J k r r c k n J k r k r J k r S



 





  

   




(B1)

( ) sin( ) , ( ) cos( ) , 0,1,...,

/ , /

n n

re e e rs s s

S n C n n N

k k c k k c

   

 

  

   

Expressions for stresses , , ,rr zz r     are

  
 

2 2 2
1 11 1

2 2
12 1

( 2) ( ) 2( ) ( ) / 2 ( ) /

2 ( ) ( ) / ( ) / ( )

rr n re n re re n re
n

n n rs rs n rs n

c k r n n J k r r k J k r r

c n n J k r r n k J k r r C

  







     

  


(B2a)

  
 

2 2 2
1 11 1

2 2
12 1

2( ) ( ) ( ) / 2 ( ) /

2 ( ) ( ) / ( ) / ( )

n e n re re n re
n

n n rs rs n rs n

c n n k r J k r r k J k r r

c n n J k r r n k J k r r C

  







    

   


(B2b)

 2
1 112 ( ) ( )zz n re n re n

n

c k J k r C     (B2c)

 

  

2 2
1 11 1

2 2 2
12 12

2 ( ) ( ) / ( ) /

2 ( ) / ( ) / ( ) / ( )

r n n re re n re
n

n rs n rs rs n rs n

c n n J k r r n k J k r r

c n n k r J k r r k J k r r S

 







   

   


(B2d)

Appendix C. Asymmetric static solution of plane-strain cylinder

For the homogeneous cylinder with material properties 0 0( , )  , the

static solution is obtained by solving Eq. (1a) with vanishing time
dependence. The solution takes the form

( , ) ( ) , ( , ) ( )s u n nu r c r C r c r S 
      (C1)
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where uc and c are constant coefficients. Substituting (C1) in (1a) yields

the equations

   

   

2 2
0 0 0 0 0 0 0

2 2
0 0 0 0 0 0 0

( 2 ) ( 1) ( ) ( 3 ) 0

( ) ( 3 ) ( 2 ) ( 1) 0

u

u

n c n c

n c n c





        

        

       

       
(C2)

A non-trivial solution requires that the determinant of the coefficients of

uc and c vanish. This yields a fourth order polynomial in  with 4 roots

( 1)n    (C3)

The solution (C1) then takes the form

4

,
0 1

( , ) ( )n i

s u ni n
n i

u r c r C


 
 

 (C4a)

4

,
0 1

( , ) ( )n i

s ni n
n i

r c r S


  
 

 (C4b)

Substituting each of the roots of (C3) in (C2) determines a relation between

,u nic and ,nic

 
 

2 2
0 0 0

, ,

0 0 0 0

( 2 ) ( 1)

( ) ( 3 )

ni

ni u ni

ni

n
c c

n


   

    

  
 

  
(C5)

Substituting (C4) into the constitutive relations (2) gives

   
4

1

, 0 0 , 0
0 1

( , ) 1 2 ( )n i

rrs u ni ni ni ni n
n i

r c c n r C
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       


 

   

   
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1

, 0 0 , 0 0
0 1

( , ) 1 2 ( 2 ) ( )n i

s u ni ni ni n
n i

r c c n r C


        


 

    

  
4

1

0 , ,
0 1

( , ) 1 ( )n i

zzs u ni ni ni n
n i

r c c n r C


    


 

  

  
4

1

0 , ,
0 1

( , ) 1 ( )n i

r s u ni ni ni n
n i

r c n c r S


     


 

    (C6)
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Substituting (C5) in the boundary conditions

0

( ) ( ) , ( ) 0
N

rrs p n n rrs o
n

r p C r


  


  (C7a)

( ) 0 , ( ) 0r s p r s or r    (C7b)

yields N uncoupled linear equations in each set of coefficients ,u nic and

,nic .

For the cylinder with  -inhomogeneity in E given by (4), the static

equations (5a,b) with vanishing time derivative are solved by the Galerkin

method. A set of orthogonal trial functions is assumed each satisfying the

homogeneous differential equations (3) and boundary conditions (9). Candidate

functions are the eigenfunctions of the homogeneous cylinder with 0n  . Since

the total static solution is made of the axisymmetric static solution modified

by an asymmetric part accounting for material inhomogeneity, that static

solution is added to the set of trial functions. In this way, the displacement

expansion takes the form

0
0 1

1 1

( , ) ( ) ( )

( , ) ( )

s mn mn n s
n m

s mn mn n
n m

u r b C u r

r b S

  

   

 

 

 






(C8)

 ( ), ( )
nm

r r  are the eigenfunctions of the homogeneous problem determined by

(10) satisfying the homogeneous boundary conditions (9), and 0 ( )su r is static

axisymmetric radial displacement defined by (C4a) with 0n  , satisfying the

inhomogeneous boundary conditions (C7a)

   2 2 2 2
0 0 0 0 0 0 0( ) /( 1) / 2 ( ) , //s p o o pu r p r r r r r r          (C9)
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Substituting (C8) in the static equivalent of (5a,b), then multiplying (5a) by

cos( )m n n  and (5b) by sin( )mn n  , integrating over the domain p or r r  ,

0 2   then adding the two equations produces

    

(1) (1) (2) (2) 2
, ,

0 1

(3) (3) (4) (4) (4) (0)
0 , , 0 0 0

0 1

2(0) 2 2 2/ 1 /
o

p

nk mn j k nk mn j k j k j k
k j

nk mn j k nk mn j k j k n n mn
k j

r

mn p o p mn o

r

R R b

R R b p R

R r r r r r dr

 

 



 

 

    

       

   







(C10)

All other quantities in (C10) are defined in (15b,c). The linear simultaneous

equations (C10) determine the coefficients j kb .

Since the functions  ( ), ( )
nm

r r  are only trial functions and not

solutions of the static equations, not all functions are physically

admissible. In fact, the lowest mode 1m  for 2n  is dropped for reasons to

follow. Fig. C1(a1) plots normalized 0 ( )su r which varies exponentially with r .

Fig. C1(b1) and C1(c1) plot 01( )r and 11( )r which follow the same

qualitative behavior. For modes 21( )r , 31( )r , 41( )r etc., this trend changes

as shown in Fig. C1(a2,b2,c2) as these functions increase with r . These

shapes although consistent with extensional dynamic resonances, are

inconsistent with static deformation from pressure at the inner boundary as

shown in Fig. C1(a1). Functions with higher wave number as 22 ( )r , 32 ( )r ,

42 ( )r etc. (Fig. C1(a3,b3,c3)) are all admissible. It then follows that for

2n  extensional modes with 1m  are inadmissible trial functions excluded

in the expansion (C8).
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ANALYTIC SIMULATION OFANALYTIC SIMULATION OF
TISSUE DAMAGE FROMTISSUE DAMAGE FROM

PENETRATING WOUNDS TOPENETRATING WOUNDS TO
THE HEARTTHE HEART (PART 1)(PART 1)

PHASE I OBJECTIVE

Develop analytic models describing tissue damage from ballistic impact by low
velocity fragments (categories of fragments shown at bottom) penetrating heart.
Tissue damage includes descriptions of projectile trajectory through heart and
tissue damage lateral to projectile trajectory (wound tract).

• TASK 1 – ANALYTICAL SIMULATION OF PROJECTILE TRAJECTORY
- Tissue Mechanical Properties
- Projectile Retardation
- Simulation of Arbitrary Projectile

• TASK 2 – ANALYTIC SIMULATION OF WOUND TRACT
- Analytic Simulation of Tissue Transient Response
- Analytic Simulation of Wound Tract Geometry

• TASK 3 – BALLISTIC EXPERIMENTS ON TISSUE SURROGATES

SCOPE

Platelet
“Chunky” Equivalent

Sphere
Slender High Aspect Ratio Fragment

L

D


D


L  0

D
D

L

L

D
D

L

L

1
L

D


 1
L

D

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PROBLEMS/ISSUES

• GENERAL PURPOSE NUMERICAL DISCRETIZATION TOOLS SUCH AS
FINITE ELEMENT CODES CANNOT PROPERLY ADDRESS PROJECTILE-
TISSUE INTERACTION

– Require high strain rate material properties for human tissue as input which do
not exist and cannot be acquired
- High penetration velocities - tissue interaction with projectile fluid-like

- Low penetration velocities - target response is like hyperelastic and
viscoplastic solid

- Most of wound tract established at intermediate velocities where multiphase
material interacts with projectile at high strain rates

– Require detailed material models of failure which is local process
• Relevant material properties do not exist and probably cannot be acquired
• Analysis requires highly refined mesh (frequency content > MHz) not

consistent with late-time structural response (frequency content Hz  kHz)
• HYBRID APPROACH WITH ANALYTIC MODEL THAT DESCRIBES

RESPONSE LOCAL TO WOUND TRACT AND PROVIDES INITIAL/BOUNDARY
CONDITIONS TO NUMERICAL DISCRETIZATION SCHEME FOR GLOBAL
RESPONSE
– Require feedback loops between global and local models

CLAIMS/ASSUMPTIONS

• Observation. Empirically observed that penetration depth, (v), as a function of striking velocity, v, of a
spherical projectile into soft materials like gelatin (and presumably soft tissue as well) have sigmoidally shaped
curves bounded by low velocity and high velocity asymptotes

• Retarding force on spherical projectile can be derived from the =(v)

– More complicated projectile geometries can be represented as ensemble of spherical projectiles where
retarding forces can be derived by integrating resultant forces from constituent spheres about projectile
geometry.

• For Unknown Material (e.g., Human Tissue) . The Taylor series expansion of the asymptotes for the curves
can be rigorously derived.*

- Limits of these asymptotes as v0 and v have dominate leading terms

- Coefficients of terms can be expressed in terms of independently measured material properties which
can be used to construct =(v) for unknown materials

- =(v) for intermediate velocities can be established by matching slopes of high and low velocity
asymptotes.

- Allows determination of projectile retarding forces in unknown materials where quasistatic properties are
available

• Projectile rotational kinematics and trajectory can be determined by continuum techniques once retarding
forces specified

• Testing methodology by measuring quasistatic material properties and reconstructing =(v) for unknown
materials which is then correlated with experimental =(v) from ballistic testing

* A.K. Chatterjee and R. D. Eisler, et al. Ballistic Penetration into Gelatin, IMPACT, WAVES, AND FRACTURE, Proceedings Of
The Werner Goldsmith Symposium, sponsored by the Applied Mechanics Division of the American Society of Mechanical
Engineers and the University of California at Los Angeles, Los Angeles, 28 - 30 June 1995, ASME Applied Mechanics Division,
Volume 205, pp. 9-20, 1995
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METHODOLOGY

Retarding Forces on
Spherical Projectile

Projectile Kinematics
of General Projectile

Experimental Data on
Penetration Depth

versus Striking Velocity
for Spherical Projectiles

High and Low Velocity
Asymptotes
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TASK 1 – Analytic Simulation
of Projectile Trajectory

TASK 2 – Wound
Tract Model

Lattice of nonlinear
springs with shear

springs
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on top of projectile

Projectile wake dynamic
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SIMULATED RESULTS FROM ANALYTICAL CODE
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NEXT STEP: FRAGMENT IMPACT INTO HUMAN LEFT
VENTRICLE

Fragment Ballistic Impact

Impact of Cylindrical
Projectile on LV

Pericardium

Pressure Contours on
Impact Surface of LV

Myocardium from
Impact by Cylinder

Wound Tract Through
Thickness of LV from

Cylinder

Pressure Contours on
Impact Surface of Left

Ventricle (LV)
Myocardium from
Impact by Wedge

Pressure Contours
Through Thickness of
LV Myocardium from

Impact by Wedge

Strain Contours
Through Thickness of
LV Myocardium from

Impact by Wedge



ATK MISSION RESEARCH W81XWH-04-C-0084

– 287 –

APPENDIX O

BRIDGE EFFORT

BEHIND ARMOR RESPONSE TO NON-PENETRATING

PROJECTILES AND BLAST
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A series of 2D Hydro code calculations was conducted to address various mechanical response
modes of ceramic breast plates used in current body armor. Of particular interest were stresses
promoted at the interface between the ‘catcher’ portion of the vest and human tissue behind the
plate for an incident threat (blast or projectile) that is defeated by the armor. Moreover, future
upgrades entail increasing the performance (ballistic limit) of the plate so this in turn will also
increase the stresses transmitted to the tissue.

The initial analysis yielded good correlation with published ballistic limits for the baseline 4.8
Pounds per Square Foot (psf) protective vest design. This plate is designed to defeat a 7.62 M80
ball round at muzzle velocity. The baseline plate consists of a 0.27-inch thick Boron Carbide
Plate fixed to 0.29-inch (45 layer) Spectra Shield. Subsequent analysis included and enhanced
design with an areal density of 5.9 psf which was designed to defeat a 7.62 APM2 threat. At a
nominal striking velocity of 2900 fps (muzzle velocity) normal to the plate impact surface, the
stresses at the interface between the Spectra Shield backer-plate and human tissue were
significantly reduced compared to the impact surface stresses. However, these stresses were still
significant. The high mechanical impedance of the ceramic plate which is designed to cause high
impact stresses that fragment the incident projectile also result in high stresses promoted in
underlying tissue.

The 2D hydrocode model that was developed for this effort is shown in Figure 0-1.

FIGURE 0-1. Hydro code Model for Baseline SAPI Configuration
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Snapshots of the early time (3.6 µsecs.) and late time (73 µsecs.) material response of the
projectile and target are shown in Figures O-2a and b. At early time it is seen that the nose of the
projectile has failed as well as the front surface of the ceramic. At late time it is seen that the
projectile has been defeated and is fragmented. A cone of the ceramic material has failed and
there is significant deformation and initial failure near the centerline of the Spectra Shield back-
plate.

The velocity versus time in the center potion of the projectile for the cases of a nominal 2900 fps
(no penetration) and a 3000 fps (penetration) are shown in Figure O-3. It is predicted that
ceramic and projectile failure occur around 30 µsec leading to the ‘blip’ in the velocity shown in
the associated figures

FIGURE O-2a, b. Early/Late Time Material Response of Projectile/Target at Nominal
Striking Velocity

FIGURE O-3. Velocity versus Time for
2900 and 3000 fps
Striking Velocities (2900
fps event is defeated and
3000 fps event fully
Penetrates armor).
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The resulting projectile/target response for the 3000 fps impact case at late time (72 µsecs.) is
shown in Figure O-4. Note that the projectile has failed but penetrated the Spectra Shield.

FIGURE O-4. Late Time Material Response of Projectile/Target at 3000 fps Striking
Velocity

Once correlation was achieved with published data for the ceramic breast plate in isolation, the
analysis was repeated using the configuration above backed by 0.2-inches of ordnance gelatin
simulating human tissue. Of interest in this case was the stresses developed in the gelatin given
that the Spectra Shield was not penetrated. The geometry is shown in Figure O-5

Figure O-5. Hydrocode Model for Ceramic Breast Plate and Gelatin Backing
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The state of the materials at late elapsed times following impact assuming Gelatin is bonded to
the Spectra Shield (SS) is shown in Figures O-6a and b. The location of the corresponding
materials is shown in Figure O-7.

FIGURE 6 a,b. Late-Time Material Failure of Ceramic Breast Plate and Gelatin
Configuration

FIGURE O-7. Late-Time Material Location for Ceramic Breast Plate and Gelatin
Configuration

The thru the thickness stress versus time histories for the ceramic/SS interface (Gauge 23), rear
of SS (Gauge 27), near front surface of gelatin (Gauge 28) and middle of gelatin (Gauge 30) are
shown in Figure O-8a. The near impact surface stress is compared with the ceramic/SS interface
stress in Figure O-8b.
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FIGURE O-8a ,b. Stress versus Time for Various Locations in Ceramic Breast Plate and
Gelatin Configuration

A comparison of the peak stresses at various locations is given in Table O-1. It is seen that a
substantial amount of attenuation occurs as the impact induced pulse propagates thru the various
layers but the stresses created in the gelatin are still sufficient to cause tissue damage.

TABLE O-1. Summary of Peak Stresses in Materials

Location Peak Stress (ksi) % of Peak Stress Failure Stress
(ksi)

Near Impact Site 1700 100
Ceramic/SS Interface 100 6
Back of SS 5 0.3
Near Front Surface of
Gelatin

15 0.6 0.4

Middle of Gelatin 7 0.4 0.4

The late time state of the various materials is shown in Figure O-9.



ATK MISSION RESEARCH W81XWH-04-C-0084

– 293 –

FIGURE O-9. Late-Time Material State for Ceramic Breast Plate and Gelatin Configuration

An additional set of hydrocode calculations were conducted to address the response of behind
armor tissue to non-penetrating APM2 and blast wave loading. Of interest are the character of the
stress pulse and the deformation of the tissue stimulant behind the armor. An APM2 projectile
traveling at 2900 fps and a blast wave of several hundred µsec and 1 Bar peak stress and a
rapidly rising blast pulse of several msec and a 6.8 Bar rapidly rising blast pulse were modeled.

The projectile which did not penetrate the vest transferred much of its momentum to the vest
which then impacted the tissue simulant. Damage in the Spectra Shield resulted in damage to the
gelatin. The projectile then rebounded resulting in enhanced momentum transfer to the target.
The lower peak pressure blast pulse cased significant deformation in the gelatin and ceramic
breast plate enhanced which also promoted significant induced stresses. The higher magnitude
pressure blast pulse caused significant damage to the tissue simulant.

A 2D hydro code model was constructed as shown in Figure O-10. In this case the tissue
stimulant was ‘stood’ off from the Spectra Shield by approximately 1.6 mm which just allows the
Spectra Shield to impact the gelatin. The rear of the gelatin is assumed to be a transmitting
boundary thus allowing the stress pulse to be transmitted without and reflection at the boundary.
The first simulation was run using the APM2 projectile. The tissue simulant is restrained from
moving in the direction of the projectile impact.
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Figure O-10. Hydrocode Model for Ceramic Breast Plate and Gelatin Configuration

Snapshots of the stress contours in the materials just after contact of the Spectra Shield on the
gelatin (57 µsecs.) and late time (210 µsecs.) when significant deformation of the gelatin occurs
are shown in Figure O-11a and b.

FIGURE O-11a ,b. Early/Late Time Material Response of Projectile/Tissue
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A plot of stress versus time in the tissue simulant along the centerline is shown in Figure O-12.
Note that the stress pulse with any significant duration (5 µsecs) and has an average magnitude of
about 300 bars. The gelatin displaces about 1.6 mm in the 210 msecs time-interval in which the
problem was run

FIGURE O-12. Stress vs. Time Near Front of Gelatin

The second set of analysis was conducted assuming a prescribed blast wave loading on the
ceramic front surface of the target. In this case the pulse was assumed to rise rapidly over 20
µsecs to a peak pressure of 1 bar (100 KPa) and decay linearly to zero in 230 µsecs. The model is
shown in Figure O-13.

.

FIGURE O-13. Model of Ceramic Breast Plate and Gelatin Configuration
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The thru the thickness stress versus time for a point near the front of the gelatin is shown in
Figure O-14. Note that at about 0.41 msec the rear of the Spectra Shield impacts the gelatin
causing a very short duration pressure spike. The stress contours at this impact time are shown in
figure O-15. Recall that the peak impact stress is 100kPa. The peak stress in the gelatin is more
than twice this value.

Figure O-14. Stress vs. Time Near Front of Gelatin

FIGURE O-15. Stress vs. Time Near Front of Gelatin



ATK MISSION RESEARCH W81XWH-04-C-0084

– 297 –

The impulse delivered by the surface loading pulse results in momentum generation in the
targets. The time history of the momentum in the various layers is shown in Figure O-16. Note
that the tissue simulant ultimately contains about 10% of the momentum of the target.

Figure O-16. Momentum versus Time in the Various Layers

The final set of analysis was conducted assuming a more severe blast wave loading on the front
surface of the target. In this case the pulse was assumed to rise rapidly over 20 µsecs to a peak
pressure of 6.8 bar (680 KPa) and decay linearly to zero in 5 msecs. The thru the thickness
stresses versus time near the ceramic, Spectra Shield and tissue front surfaces are shown in
Figure O-17. It is noted that at about 0.12 msec the rear of the Spectra Shield impacts the gelatin
causing a very short duration pressure spike. Recall the peak impact stress is 680 KPa. The peak
stress in the gelatin is ~ 3 times this value. In this loading case, the gelatin is predicted to undergo
significant failure as shown in Figure O-18.

The impulse delivered by the surface loading pulse results in momentum generation in the
targets. The time history of the momentum in the various layers is shown in Figure O-19 and is
significantly different in character than that shown for the previous loading case. Note that the
gelatin again ultimately contains about 10% of the momentum of the target.

Both the projectile and the blast pulses will cause the vest to impact the gelatin causing
significant deformation and stress. The peak stresses transmitted to the gelatin could in theory be
mitigated by designing ‘poorer’ mechanical coupling of the vest via clothing or a larger standoff.
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FIGURE O-17. Stress versus Time in the Various Layers

FIGURE O-18. Material State at 1 msec.
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FIGURE O-19. Momentum versus Time in the Various Layers

A comparison of the peak stresses at various locations is given in Table O-2. It is seen that a
substantial amount of attenuation occurs as the impact induced pulse propagates through the
various layers but the stresses created in the tissue are still significant.

TABLE O-2. Summary of Peak Stresses in Materials

Location Peak Stress (ksi) % of Peak Stress Failure Stress
(ksi)

Near Impact Site 1700 100
Ceramic/SS Interface 100 6
Back of SS 5 0.3
Near Front Surface of
Gelatin

15 0.6 0.4

Middle of Gelatin 7 0.4 0.4


