MEMORANDUM FOR SEE DISTRIBUTION

SUBJECT: Report No. 06-04C, "Transportability Testing of the Joint Modular Intermodal Platform (JMIP)", TP-94-01, "Transportability Testing Procedures"

2. The POC is the undersigned, SJMAC-DEV, DSN 956-8908.

FOR THE DIRECTOR:

[Signature]

Encl as

Chief, Validation Engineering Division

DISTRIBUTION:

Commander,
ARDEC Logistics Research & Engineering Directorate (AMSRD-AAR-AIL-P) Al Galonski, Bldg 455, Picatinny Arsenal, NJ 07806-5001
ARDEC Logistics Research & Engineering Directorate (AMSRD-AAR-AIL-F) Robert Holt/Tom Sieffert, Picatinny Arsenal, NJ 07806-5001
U.S. Army Joint Munitions Command (AMSJM-TT) Richard Nesbitt, Rock Island, IL 61299-6000
ARDEC Logistics Research & Engineering Directorate (AMSRD-AAR-AIL-P-(R)) Dave Piskorik, Rock Island, IL 61299-7300
U.S. Army Aviation & Missile Command (AMSAM-MMC-MM-DT), Redstone Arsenal, AL 35898-5070
U.S. Army Materiel Command (AMSAM-LG), 5001 Eisenhower Avenue, Alexandria, VA 22333-0001

(CONT)
SJMAC-DEV

DISTRIBUTION (CONT):
Director,
Defense Technical Information Center, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, VA 22060-6218

Military Traffic Management Command-Transportation Engineering Agency (MTTE-DPE/Mr. Cato), 720 Thimble Shoals Blvd., Newport News, VA 23606-2574

Commandant,
U.S. Army Ordnance Missile & Munitions Center & School
(ATSK-CMT-Z), James Kisner, Redstone Arsenal, AL 35897-6095

U.S. Army Transportation School (ATSP-CDT), Fort Eustis, VA 23604
TRANSPORTABILITY TESTING OF THE JOINT MODULAR INTERMODAL PLATFORM (JMIP)

TP-94-01,
"TRANSPORTABILITY TESTING PROCEDURES"

Prepared for:

TACOM/ARDEC
Logistics Research and Development Activity
ATTN: AMSRD-AAR-AIL-F
Picatinny Arsenal, NJ 07806

DEFENSE AMMUNITION CENTER
VALIDATION ENGINEERING DIVISION
MCALESTER, OKLAHOMA 74501-9053
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution.

Additional copies or authority for reprinting may be obtained by written request from:

Director
U.S. Army Defense Ammunition Center
ATTN: SJMAC-DEV
1 C Tree Road, Bldg. 35
McAlester, OK 74501-9053

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.
ABSTRACT

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMACE-DEV), was tasked by the Logistics Research and Development Activity (AMSRD-AAR-AIL-F), Picatinny Arsenal, NJ to conduct transportability retesting on the Joint Modular Intermodal Platform (JMIP) manufactured by SEA BOX Inc, East Riverton, NJ. The testing was conducted in accordance with TP-94-01, Revision 2, June 2004, “Transportability Testing Procedures.”

The change on the JMIP from the unit previously tested (Report 06-04 A3) was that the pin and locking mechanism that supported the A-frame in the container transport position was redesigned.

The objective of the testing was to evaluate the change in the design of the pin and locking mechanism that secured the A-frame in the container transport position when transportability tested in accordance with TP-94-01, Revision 2, June 2004.

The following observations resulted from the testing of JMIP:

1. Movement of the adjustment bolt on the cams did occur during the testing. The movement of the cam locking bolt was not significant enough to cause excessive movement of the JMIP. Future designs of the cam locking devices should prevent the bolts from moving in or out.

2. The pin and locking mechanism that held the A-frame in the container transport position completed the testing without failure or damage.
The JMIP, with interface frames, as currently designed, is adequate to be used to transport the Navy JMIC containers with ammunition, on/off road, in an intermodal container during the LMUA.

The maximum gross weight (platform and payload weight) is not to exceed **15,000 pounds** during the LMUA.

Prepared by:

Reviewed by:

PHILIP W. BARICKMAN
Lead Validation Engineer

JERRY W. BEAVER
Chief, Validation Engineering Division
Transportability Testing of the Joint Modular Intermodal Platform (JMIP)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>A. BACKGROUND</td>
<td>1-1</td>
</tr>
<tr>
<td>B. AUTHORITY</td>
<td>1-1</td>
</tr>
<tr>
<td>C. OBJECTIVE</td>
<td>1-1</td>
</tr>
<tr>
<td>D. OBSERVATIONS</td>
<td>1-1</td>
</tr>
<tr>
<td>E. CONCLUSION</td>
<td>1-2</td>
</tr>
<tr>
<td>2. ATTENDEES</td>
<td>2-1</td>
</tr>
<tr>
<td>3. TEST EQUIPMENT</td>
<td>3-1</td>
</tr>
<tr>
<td>4. TEST PROCEDURES</td>
<td>4-1</td>
</tr>
<tr>
<td>A. RAIL TEST</td>
<td>4-1</td>
</tr>
<tr>
<td>B. ON/OFF ROAD TESTS</td>
<td>4-3</td>
</tr>
<tr>
<td>1. HAZARD COURSE</td>
<td>4-3</td>
</tr>
<tr>
<td>2. ROAD TRIP</td>
<td>4-4</td>
</tr>
<tr>
<td>3. PANIC STOPS</td>
<td>4-4</td>
</tr>
<tr>
<td>4. WASHBOARD COURSE</td>
<td>4-4</td>
</tr>
<tr>
<td>C. OCEAN-GOING VESSEL TEST. STS</td>
<td>4-4</td>
</tr>
<tr>
<td>5. TEST RESULTS</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 TESTING DATE –17 November 2006</td>
<td>5-1</td>
</tr>
<tr>
<td>A. ON/OFF ROAD TESTS</td>
<td>5-2</td>
</tr>
<tr>
<td>1. HAZARD COURSE</td>
<td>5-2</td>
</tr>
<tr>
<td>2. ROAD TRIP</td>
<td>5-3</td>
</tr>
<tr>
<td>3. PANIC STOPS</td>
<td>5-3</td>
</tr>
<tr>
<td>4. HAZARD COURSE</td>
<td>5-4</td>
</tr>
<tr>
<td>5. WASHBOARD COURSE</td>
<td>5-5</td>
</tr>
<tr>
<td>B. OBSERVATIONS</td>
<td>5-5</td>
</tr>
<tr>
<td>C. CONCLUSIONS</td>
<td>5-5</td>
</tr>
<tr>
<td>DRAWINGS</td>
<td>6-1</td>
</tr>
</tbody>
</table>
PART 1 – INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJM-DEV), was tasked by the Logistics Research and Development Activity (AMSRD-AAR-AI-L-F), Picatinny Arsenal, NJ to conduct transportability retesting on the Joint Modular Intermodal Platform (JMIP) manufactured by SEA BOX Inc, East Riverton, NJ. The testing was conducted in accordance with TP-94-01, Revision 2, June 2004 “Transportability Testing Procedures.”

The change on the JMIP from the unit previously tested (Report 06-04 A3) was that the pin and locking mechanism that supported the A-frame in the container transport position was redesigned.

B. AUTHORITY. This test was conducted IAW mission responsibilities delegated by the U.S. Army Joint Munitions Command (JMC), Rock Island, IL. Reference is made to the following:

C. OBJECTIVE. The objective of the testing was to evaluate the change in design of the pin and locking mechanism that secured the A-frame in the container transport position when transportability tested in accordance with TP-94-01, Revision 2, June 2004.

D. OBSERVATIONS.

1. Movement of the adjustment bolt on the cams did occur during the testing. The movement of the cam locking bolt was not significant enough to cause excessive movement of the JMIP. Future designs of the cam locking devices should prevent the bolts from moving in or out.
2. The pin and locking mechanism that held the A-frame in the container transport position completed the testing without failure or damage.

E. CONCLUSION.

The JMIP, with interface frames, as currently designed, is adequate to be used to transport the Navy JMIC containers with ammunition, on/off road, in an intermodal container during the LMUA.

The maximum gross weight (platform and payload weight) is not to exceed 15,000 pounds during the LMUA.
<table>
<thead>
<tr>
<th>ATTENDEE</th>
<th>MAILING ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip Barickman</td>
<td>Director</td>
</tr>
<tr>
<td>DSN 956-8992</td>
<td>U.S. Army Defense Ammunition Center</td>
</tr>
<tr>
<td>(918) 420-8992</td>
<td>ATTN: SJMAC-DEV</td>
</tr>
<tr>
<td></td>
<td>1 C Tree Road, Bldg. 35</td>
</tr>
<tr>
<td></td>
<td>McAlester, OK 74501-9053</td>
</tr>
</tbody>
</table>
PART 3 - TEST EQUIPMENT

1. Joint Modular Intermodal Platform
 Manufactured by SEA BOX, East Riverton, NJ
 Model Number: J-MIP LN702
 Serial Number: 00002
 Date of Manufacture: 27 February 2006
 Tare Weight: 3,960 pounds

2. Joint Modular Intermodal Container
 Manufactured by British Aerospace Engineering
 Weight: 310 pounds
 Length: 51-3/4 inches
 Width: 43-3/4 inches
 Height: 43-1/4 inches

3. Joint Modular Intermodal Container
 Designed by Naval PHST Center - Earle, NJ
 Weight: 325 pounds
 Length: 51-3/4 inches
 Width: 43-3/4 inches
 Height: 43 inches

4. Truck, Tractor, MTV, M1088 A1
 ID #: J0229
 NSN: 232001-447-3893
 VSN: NL1FSC
 MFG Serial #: T-018488EFJM
 Weight: 19,340 pounds

5. Semitrailer, flatbed, breakbulk/container transporter, 34 ton
Model #: M872A1
Manufactured by Heller Truck Body Corporation, Hillsdale, NJ
ID #: 11-1505 NX05NZ
NSN: 2330 01 109 8006
Weight: 19,240 pounds

8. Intermodal Container
 ID # CMCU 200006-8
 Date of Manufacture: 06/99
 Manufactured by Charleston Marine Containers, Charleston, SC
 Tare Weight: 4,870 pounds
 Maximum Gross Weight: 67,200 pounds
PART 4 - TEST PROCEDURES

The test procedures outlined in this section were extracted from TP-94-01, "Transportability Testing Procedures," Revision 2, June 2004, for validating tactical vehicles and outloading procedures used for shipping munitions by tactical truck, railcar, and ocean-going vessel.

The rail impact will be conducted with the loaded intermodal container secured directly to the railcar. Inert (non-explosive) items were used to build the load. The test loads were prepared using the blocking and bracing procedures proposed for use with munitions (see Part 6- Drawings for procedures). The weight and physical characteristics (weights, physical dimensions, center of gravity, etc.) of the test loads were similar to live (explosive) ammunition.

A. RAIL TEST. RAIL IMPACT TEST METHOD. The test load or vehicle will be secured to a flatcar. The equipment needed to perform the test will include the specimen (hammer) car, four empty railroad cars connected together to serve as the anvil, and a railroad locomotive. The anvil cars will be positioned on a level section of track with air and hand brakes set and with draft gears compressed. The locomotive unit will push the specimen car toward the anvil at a predetermined speed, then disconnect from the specimen car approximately 50 yards away from the anvil cars allowing the specimen car to roll freely along the track until it strikes the anvil. This will constitute an impact. Impacting will be accomplished at speeds of 4, 6, and 8.1 mph in one direction and at a speed of 8.1 mph in the reverse direction. The tolerance for the speeds is plus 0.5 mph, minus 0.5 mph for the 4 mph and 6 mph impacts, and plus 0.5 mph, minus 0 mph for the 8.1 mph impacts. The impact speeds will be determined by using an electronic counter to measure the time for the specimen car to traverse an 11-foot distance immediately prior to contact with the anvil cars (see Figure 1).
SPECimen car is released by Switch Engine to attain: Impact No. 1 @ 4 MPH, Impact No. 2 @ 6 MPH, Impact No. 3 @ 8.1 MPH. Then the car is reversed and released by switch engine to attain: Impact No. 4 @ 8.1 MPH.

4 Buffer Cars (Anvil) with Draft Gear Compressed and Air Brakes in a set position. Anvil Car total weight 250,000 lbs (approx.)

Figure 1. Rail Impact Sketch
B. **ON/OFF ROAD TEST.**

1. **HAZARD COURSE.** The test load or vehicle will be transported over the 200-foot-long segment of concrete-paved road consisting of two series of railroad ties projecting 6 inches above the level of the road surface. The hazard course will be traversed two times (see Figure 2).

![Figure 2. Hazard Course Sketch](image)

a. The first series of 6 ties are spaced on 10-foot centers and alternately positioned on opposite sides of the road centerline for a distance of 50 feet.

b. Following the first series of ties, a paved roadway of 75 feet separates the first and second series of railroad ties.
c. The second series of 7 ties are spaced on 8-foot centers and alternately positioned on opposite sides of the road centerline for a distance of 48 feet.

d. The test load is driven across the hazard course at speeds that will produce the most violent vertical and side-to-side rolling reaction obtainable in traversing the hazard course (approximately 5 mph).

2. **ROAD TRIP.** The test load or vehicle will be transported for a distance of 30 miles over a combination of roads surfaced with gravel, concrete, and asphalt. The test route will include curves, corners, railroad crossings and stops and starts. The test load or vehicle will travel at the maximum speed for the particular road being traversed, except as limited by legal restrictions.

3. **PANIC STOPS.** During the road trip, the test load or vehicle will be subjected to three (3) full airbrake stops while traveling in the forward direction and one in the reverse direction while traveling down a 7 percent grade. The first three stops are at 5, 10, and 15 mph while the stop in the reverse direction is approximately 5 mph. This testing will not be required if the Rail Impact Test is performed.

4. **WASHBOARD COURSE.** The test load or vehicle will be driven over the washboard course at a speed that produces the most violent response in the vertical direction.

C. **OCEAN-GOING VESSEL TEST.** Shipboard Transportation Simulator (Test Method 5). The Shipboard Transportation Simulator (STS) is used for testing loads in 8-foot-wide by 20-foot-long intermodal freight containers. The specimen shall be positioned onto the STS and securely locked in place using the cam lock at each corner. Using the procedure detailed in the operating instructions, the STS shall begin oscillating at an angle of 30 degrees, plus or minus 2 degrees, either side of vertical center and a frequency of 2 cycles-per-
minute (30 seconds, plus or minus 2 seconds) for a duration of two (2) hours. This frequency shall be observed for apparent defects that could cause a safety hazard. The frequency of oscillation shall then be increased to 4 cycles-per-minute (15 seconds, plus or minus one second per cycle) and the apparatus operated for two (2) hours. If an inspection of the load does not indicate an impending failure, the frequency of oscillation shall be further increased to 5 cycles-per-minute (12 seconds, plus or minus one second per cycle), and the apparatus operated for four (4) hours. The operation does not necessarily have to be continuous; however, no changes or adjustments to the load or load restraints shall be permitted at any time during the test. After once being set in place, the test load (specimen) shall not be removed from the apparatus until the test has been completed or is terminated.

![Figure 3. Washboard Course Sketch](image-url)
PART 5 - TEST RESULTS

5.1
Test Specimen: SEA BOX JMIP in an Intermodal Container.
Payload: 4 BAE JMICs and 1 Navy JMIC.
Testing Date: 17 November 2006
Gross Weight: 16,740 pounds (Including JMIP, interface frames, JMICs and intermodal container).

Note: The pin and locking mechanism to hold the A-frame in the container transport position had been redesigned on the JMIP. The previous design was a pin that engaged a block that was welded to the A-frame (see Photo 1). The new design used a lever operated pin to engage a hole in the A-frame (see Photo 2).

Photo 1. Previous Container Transport Position Pin Design
A. **ON/OFF ROAD TESTS.**

1. **HAZARD COURSE.**
Remarks:
1. Figure 4 lists the average speeds of the test load through the Hazard Course.
2. The adjustment bolts on the cams moved during Passes 1 & 2. The JMIP remained secure in the container.
3. Inspection following the completion of Pass #1 revealed that the JMIP had moved toward the driver's side 0.25 inches.
4. No damage or failure occurred with the pin and locking mechanism that held the A-frame in the container transport position.

2. ROAD TRIP.

Remarks:
1. The Road Trip was conducted between the Road Hazard Course Passes #2 and #3.
2. Inspection following the Road Trip revealed no damage or movement of the JMIP or the pin and locking mechanism.

3. PANIC STOPS.
 a. Inspection following the Panic Stops revealed no damage to the JMIP or the pin and locking mechanism.
 b. Inspection following the 10 MPH panic stop revealed that the JMIP had moved 0.125 inches toward the closed end of the container.
4. **HAZARD COURSE.**

<table>
<thead>
<tr>
<th>Pass No.</th>
<th>Elapsed Time</th>
<th>Avg. Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>24 Seconds</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>25 Seconds</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 5.

Remarks:
1. Figure 5 lists the average speeds of the test load through the Hazard Course.
2. The adjustment bolts on the cams moved during Passes #3 & #4. The JMIP remained secure in the container. Following Pass #3 one cam was not fully engaged in the container shoring slot. (See Photo 4).
3. Inspection following the Road Trip revealed no damage or movement of the JMIP or the pin and locking mechanism.

Photo 4. Cam not fully engaging shoring slot.
5. **WASHBOARD COURSE.**

Remark: Inspection following the Road Trip revealed no damage or movement of the JMIP or the pin and locking mechanism.

Photo 5. Washboard Course Testing JMIP.

B. OBSERVATIONS.

1. Some movement of the adjustment bolt on the cams did occur during the testing. The movement of the cam locking bolt was not significant enough to cause excessive movement of the JMIP. Future designs of the cam locking devices should prevent the bolts from moving in or out.

2. The pin and locking mechanism that held the A-frame in the container transport position completed the testing without failure or damage.

C. CONCLUSION. The JMIP, with interface frames, as currently designed, is adequate to be used to transport the Navy JMIC containers with ammunition, on/off road, in an intermodal container during the LMUA.

The maximum gross weight (platform and payload weight) is **not to exceed 15,000 pounds** during the LMUA.
PART 6 – DRAWINGS

The following drawing represents the load configuration that was subjected to the test criteria.
TEST SKETCH

LOADING AND BRACING OF JOINT MODULAR INTERMODAL CONTAINERS (JMICS) ON THE JOINT MODULAR INTERMODAL PLATFORM (JMIP)

THIS EIGHT PAGE DOCUMENT DEPICTS NAVY AND BAE JMIC PROTOTYPES ON A SEABOX PROTOTYPE JMIP FOR TRANSPORTABILITY TESTING TO TEST OF NEW PINS ON BALE ARM

PREPARED DURING JULY 2006 BY:
U.S. ARMY DEFENSE AMMUNITION CENTER
ATTN: SJMAC-DET
POC: MICHAEL BARTOSIAK
DSN 956-8083
COMM (918) 420-8083
FAX (918) 420-8811
E-MAIL: MICHAEL.BARTOSIAK@US.ARMY.MIL

LAURA A. FIEFFER
CHIEF, TRANSPORTATION ENGINEERING DIVISION
NAVY JMIC LOAD A (2 REQD). SEE LOAD DETAILS ON PAGE 3.

INTERFACE FRAMES (4 REQD). <SIMPLIFIED MODEL SHOWN>.

BAE JMIC (1 REQD). SEE LOAD DETAILS ON PAGE 7.

ISOMETRIC VIEW

LOAD AS SHOWN

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
<th>WEIGHT (APPROX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVY JMIC LOAD A</td>
<td>2</td>
<td>5,942 LBS</td>
</tr>
<tr>
<td>NAVY JMIC LOAD B</td>
<td>2</td>
<td>4,728 LBS</td>
</tr>
<tr>
<td>BAE JMIC (4 BOXES)</td>
<td>4</td>
<td>909 LBS</td>
</tr>
<tr>
<td>INTERFACE FRAMES</td>
<td>4</td>
<td>580 LBS</td>
</tr>
<tr>
<td>JMIP</td>
<td>1</td>
<td>3,950 LBS</td>
</tr>
<tr>
<td>TOTAL WEIGHT</td>
<td></td>
<td>16,109 LBS</td>
</tr>
</tbody>
</table>

5 JMIC UNIT LOAD ON JOINT MODULAR INTERMODAL PLATFORM (JMIP)
TOP FILL ASSEMBLY (1 REQD), SEE DETAIL ON PAGE 4.

NAVY MIC UNIT LOAD A (2 REQD), SEE DETAIL ON PAGE 4.

M548 BOXES (20 REQD)

FRONT/REAR FILL ASSEMBLY (2 REQD), SEE DETAIL ON PAGE 4.

DETAIL OF NAVY PANEL BOARD FEET
1" x (2-57 18)
CLASY PANEL NAVY - - -
1" x 1" -
LBS
1/2 LBS
CUBE

20 M548 BOXES @ 325 LBS 2,500 LBS
DUNNAGE ----------------- 168 LBS
CLOSED PANEL NAVY MIC 325 LBS

TOTAL WEIGHT 2,971 LBS (APPROX)
CUBE 56.4 CU FT (APPROX)

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" x 4"</td>
<td>52</td>
<td>18</td>
</tr>
<tr>
<td>2" x 4"</td>
<td>64</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAILS</th>
<th>NO. REQD</th>
<th>POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d (1-1/4")</td>
<td>84</td>
<td>.16</td>
</tr>
<tr>
<td>6d (2")</td>
<td>60</td>
<td>.35</td>
</tr>
<tr>
<td>10d (3")</td>
<td>36</td>
<td>.54</td>
</tr>
</tbody>
</table>

NAVY PANEL MJIC 1 REQD 325 LBS
1/2 PLYWOOD 17 SQ FT 23 LBS
END FILL ASSEMBLY A
(1 REQD). SEE END
FILL ASSEMBLY DETAIL
ON PAGE 6.

END FILL ASSEMBLY B
(1 REQD). SEE END
FILL ASSEMBLY DETAIL
ON PAGE 6.

C445 WOODEN BOXES
(8 REQD).

NAVY JMIC LOAD B
(2 REQD)

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" X 4"</td>
<td>65</td>
<td>44</td>
</tr>
<tr>
<td>NAILS</td>
<td>NO. REQD</td>
<td>POUNDS</td>
</tr>
<tr>
<td>6d (2")</td>
<td>60</td>
<td>.35</td>
</tr>
<tr>
<td>10d (3")</td>
<td>32</td>
<td>.48</td>
</tr>
<tr>
<td>NAVY JMIC</td>
<td>1 REQD</td>
<td>325 LBS</td>
</tr>
<tr>
<td>1/2 PLYWOOD</td>
<td>22 SQ FT</td>
<td>30 LBS</td>
</tr>
</tbody>
</table>
HOLD DOWN PIECE
2" X 2" X 48-1/2"
(1 REQD). NAIL TO
PLYWOOD W1-3d
NAIL EVERY 6 INCHES.

FILL PIECE
2" X 4" X 48-1/2" FOR
ASSEMBLY B.
(3 REQD). NAIL TO
PLYWOOD W1-3d
NAIL EVERY 6 INCHES.

PLYWOOD
31-7/8" X 48-1/2" X 1/2"
(1 REQD).

END FILL ASSEMBLY
(ASSEMBLY A - 1 REQD)
(ASSEMBLY B - 1 REQD)
END FILL ASSEMBLIES (2 REQD). SEE END FILL ASSEMBLY A DETAIL ON PAGE 8.

STRUTS, 2" X 4" X CUT TO FIT (37-1/2 REF) (8 REQD). NAIL TO LEDGE PIECES ON END FILL ASSEMBLIES W/2-10d NAILS AT EACH JOINT.

C445 WOODEN BOXES (4 REQD).

4 C445 BOXES @ 120 LBS .. 480 LBS
DUNNAGE ... 119 LBS
BAE JMIC ... 310 LBS

TOTAL WEIGHT .. 907 LBS (APPROX)
CUBE ... 56.7 CU FT (APPROX)

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" X 4"</td>
<td>65</td>
<td>44</td>
</tr>
<tr>
<td>NAILS</td>
<td>NO. REQD</td>
<td>POUNDS</td>
</tr>
<tr>
<td>6d (2")</td>
<td>60</td>
<td>.35</td>
</tr>
<tr>
<td>10d (3")</td>
<td>32</td>
<td>.48</td>
</tr>
<tr>
<td>BAE JMIC</td>
<td>1 REQD</td>
<td>310 LBS</td>
</tr>
<tr>
<td>1/2 PLYWOOD</td>
<td>22 SQ FT</td>
<td>30 LBS</td>
</tr>
</tbody>
</table>
END FILL ASSEMBLY A
(2 REQD)

FILL PIECE, 2" X 4" X 48" (3 REQD). NAIL TO PLYWOOD W/1-6d NAIL EVERY 8".

LEDGE PIECE 2" X 4" X 48" (2 REQD). NAIL TO PLYWOOD W/1-6d NAIL EVERY 8".

PLYWOOD, 48" X 32" X 1/2" (1 REQD)