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ABSTRACT

Efforts  are  being made  to  exploit  the  full-polarimetric  radar  scattering nature of  ground targets  to  extract

maximum information, enabling target identification and classification. These efforts have taken varied approaches to

decomposing the polarimetric scattering matrix into more meaningful, phenomenological parameter spaces. The Euler

parameters have potential value in target classification but have historically met with limited success due to ambiguities

that arise in the decomposition as well as the parameters sensitivity to noise and target movement. Using polarimetric

ISAR signatures obtained from stationary targets in compact radar ranges at the University of Massachusetts Lowell

Submillimeter  Technology Laboratory (STL)1,2,3,4 and  the  U.S.  Army National  Ground Intelligence  Center  (NGIC),

correlation studies were performed in the Euler parameter space to assess to its impact on improving target classification.

Methods for deriving explicit transform equations that minimize ambiguities will be presented, as well as the results of

the correlation studies.
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1.0 INTRODUCTION

The U.S. Army National Ground Intelligence Center (NGIC) sponsored and directed a radar imaging project

exploring the reproducibility of high-resolution target signatures, specifically of main battle tanks (MBT). The project

entailed acquiring  full-polarimetric Ka-band radar signature data at Edlin AFB, in addition to its sub millimeter-wave

compact radar range equivalent. Using exact 1/16th scale replicas designed and fabricated through the ERADS program,

the equivalent signatures were collected using the NGIC Ka-band compact radar range in conjunction with the University

of Massachusetts Lowell Submillimeter Technology Laboratory (STL). Under NGIC's sponsorship, the full-polarimetric

signatures were processed and analyzed to evaluate methods for improving target identification. The foremost method

comprises correlating ISAR images of the targets  in magnitude space. The effort to transform the Ka-band MBT ISAR

images into Euler parameter space is an extension of the original project.
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2.0 ISAR IMAGERY IN MAGNITUDE SPACE

A typical Inverse Synthetic Aperture Radar (ISAR) configuration contains a coherent radar source and receiver

co-aligned for  the  purpose  of  measuring  the  back-scattered  radiation.  When  the  radar  sweeps  through  a  band  of

frequencies, the  Doppler effect enables a  Fourier transform of the resulting data to reveal a down-range profile of the

target's spatial scattering distribution. Similarly, when  the scattering target is rotated through a small angle, the Doppler

effect enables a  Fourier transform of the resulting data to reveal a cross-range profile of the target's spatial scattering

distribution. When both approaches are combined, a two-dimensional spatial image of the target's scattering properties

may be created. The use of a full-polarimetric ISAR system enables the measurement of the magnitude and phase of the

reflected signal for an orthogonal set of polarization states. A two-dimensional ISAR image can be formed, wherein each

resolution  cell  contains  all  of  the  scattering  information  available  for  the  target  in  that  cell.  This  information  is

represented by the scattering matrix S,

(1)

where, Svh for example, corresponds to the amplitude and phase of back-scattered radiation measured when horizontally-

polarized waves are transmitted and vertically-polarized waves are received. Traditionally, the phases are neglected and

the  magnitudes  are  imaged  separately (Figure  1).  To  completely  characterize  a  target,  a  set  of  ISAR  images  at

incremental  azimuths  are obtained,  spanning  the full 360° rotation. Correlation studies of ISAR images are being

pursued under the support of NGIC, for the purpose of improving target identification.4 When two separate targets are

imaged at the same center frequency, resolution, azimuth and elevation, the similarity of the ISAR images is a indication

of the  similitude of the targets.  For a given corresponding resolution cell on both targets, the difference of the RCS

values in dBsm divided by the sum of the values gives the relative difference in magnitude scattering between the two

targets. The average of all of the cell comparisons in the image gives the average percent difference for that azimuth look

angle. When such an image to image correlation is made for all of the ISAR images over the 360° azimuth sweep, the

resulting average percent difference can be taken to represent the total physical difference between the two targets. Target

recognition can be achieved when the average percent difference between a known and unknown target becomes minimal

when compared to a host of targets. 

Figure 1. ISAR RCS Magnitude Images (dBsm) of the T-72BK Tank Fingerprint

S=[S hh S hv

S vh S vv]



3.0 ISAR IMAGERY IN EULER PARAMETER SPACE

In magnitude space, the scattering information has limited physical meaning and technological usefulness. The

problem is to transform the scattering matrix so as to establish more physically relevant parameters, and to reduce the

limitations seemingly inherent in the transform process.  Autonne5 showed that a complex symmetric matrix  S, can be

diagonalized by applying a consimilarity transform  in the following way,

(2)

The unitary transform matrix U is constructed out of the conjugate eigenvectors, x, that satisfy the conjugate eigenvalue

equation,

   S xi = λi xi*                                                                                                                                         (3)

Kennaugh6 related  this mathematical  concept  to radar  polarimetry by designating  S  as the scattering matrix,  and by

describing the conjugate eigenvectors as optimal polarization states.  Once the scattering matrix is decomposed into a

transform matrix U and a diagonal eigenvalue matrix SD, physically meaningful parameters can be defined using

(4)

(5)

These are the Euler parameters and have the following physical meanings as established by Huynen7:  m is the maximum

magnitude of target reflectivity. The parameter ψ denotes the orientation angle at which the maximum reflectivity occurs.

Furthermore, τ is the symmetry angle, υ is the bounce angle, and γ represents the polarizability angle. The goal is to find

the explicit transform equations that define the Euler parameters in terms of the original scattering matrix. Once found

and applied, the ISAR images in magnitude space can be transformed into images in Euler parameter space.

The scattering matrix  S (1) can be simplified and put into more useful notation. Reciprocity for  mono static

measurements ensures Shv = Svh . This reduces the meaningful data in the scattering matrix to three complex numbers, or

six real components. There is an overall phase factor which represents the distance to the object. Because it is dependent

on the radar and not the object itself, it is meaningless in our present analysis and is factored out. The scattering matrix

becomes 

S=ei g[a ei b c
c d ei f ]  where     a = |Shh|, b = Arg(Shh) - Arg(Shv), c = |Shv|, d = |Svv|,                                             (6)

f = Arg(Svv) - Arg(Shv),  g = Arg(Shv)

S D=U T S U

S D=[m ei 2 0
0 m tan2e−i 2]

U=[cos cos −i sin sin  −sin cos i cos sin 
sin cos i cos sin  cos cos i sin sin  ]



Thus the scattering matrix has been reduced to five meaningful parameters,  a, b, c, d, f.  For future convenience, the

following parameters can be defined:

(7)

(8)

(9)

The coneigenvalue equation (3) can be cast into a modified form and treated as a regular eigenvalue equation. 

    S S* xi = |λi|2 xi                                                                                                                                                                                                                                                                                   (10)

The  eigenvalues  of  the above equation can easily be  found,  which then yields  the square  of the magnitude of  the

eigenvalues of the original coneigenvalue equation. From these, the first two Euler parameters, m and γ are found, 

(11)

(12)

 

In order to reduce ambiguities and simplify derivation,  an intermediate form for the transform matrix U is used,

(13)

The approach consists of deriving the final variables in terms of the intermediate variables and the intermediate variables

in  terms  of  the  original  known variables.  Once  found,  the  intermediate  variables  may be  removed  and  the  Euler

parameters can be known in terms of the scattering matrix data. The final variables can be related to the intermediate

variables by equating the transform matrix U in the final form (5) to the transform matrix in the intermediate form (13).

After equating components, the following relations are derived.

(14)

(15)

(16)

To derive the intermediate variables p and α in terms of the known parameters the consimilarity transform equation (2) is

M =a4d 44 a2 c24 c2 d 2−2 a2 d 28 a d c2 cos b f 

N=a22 c2d 2

L=a2−d 224 c2a cos bd cos  f 2

m= NM
2

=tan−1[ N−M
NM ]

1/4

U= 1

1∣p∣2 [ ei −p✳ e−i

p ei e−i ]

=1
2

sin−1 2ℑ p
1∣p∣2 

=tan−1 2ℜ p

1∣p∣22−4ℑ p21−∣p∣2
tan =−tan  tan 



used. Substituting the intermediate form of the transform matrix  U (13),  the known scattering matrix  S (6),  and the

diagonalized scattering matrix SD (4) into the transform equation, the following form results,

(17) 

It should be noted that the magnitude of the eigenvalues in the diagonalized scattering matrix on the left side have already

been found and substituted in. After multiplying out the matrices and equating the bottom left components, the set of

equations is solved for p

(18)

With  relationships  between  intermediate  variables  and  final  variables  as  well  as  between original  variables  and

intermediate variables, the two systems can be linked to eliminate the intermediate variables. Substituting p (18) into the

equations  for τ (14) and ψ (15), the final forms of the next two Euler parameters are found,

(19)

(20)

Applying the results found above and the relations in (16), the intermediate variable α is established,

(21)

Returning to the coneigenvalue equation (3) and using the  intermediate transform matrix, two matrix equations result.

After  substituting the values for p (18) and α (21), one can solve for the last Euler parameter, 

where                                         (22)

 

 

      l = 0  if  x > 0,   π  if  x < 0 and y > 0,  -π  if  x < 0 and y < 0

      n = -π/2, 0,  π/2 chosen so that −π
4

≤υ≤π
4

The final equations relating the Euler parameters to the scattering matrix have been found (11), (12), (20), (19),

[NM ei 2 0
0 N−M e−i 2]= 2 ei g

1∣p∣2 [ ei p ei

−p✳ e−i e−i ][a ei b c
c d ei f ][ ei − p✳ e−i

p ei e−i ]

p= 2c a ei bd e−i f 
M a2−d 2

=1
2

sin−1 2 c a sin b−d sin  f 
M 

=tan−1 2 c a cos bd cos  f 
a2−d 2L 

=tan−1[ a sin b−d sin  f 
a cos bd cos f  a2−d 2−L

M L ]

=lntan−1[ a sin b−d sin  f 
a cosbd cos f  a2−d 2−L

M L ] 1
4

tan−1 y / x

y=2 d 2−N−M a2sin 2b−2 a2−NM d 2 sin 2 f a2−d 2M 2−8 c4 a d
2 c2 sin b− f 

x=2 d 2−N−M a2 cos2b2 a2−NM d 2 cos 2 f a2−d 2M 2−8c4 a d
2c2 cosb− f 



(22).  Using these  transform equations,  an ISAR image in  magnitude space  can be  converted  to  an image in  Euler

parameter space. A simple test object known as Slicy (Figure 2) contains flat plates, sharp edges, corners, cylinders, and

trihedral. The ISAR images of Slicy in Euler parameter space at 40° elevation and 90° azimuth (Figure 3) allow for an

intuitive visualization of  ISAR images in Euler parameter space. 

In the imaging process, the maximum magnitude image is used to threshold away meaningless data cells in the

remaining images. Physically, this implies that data cells with a reflectivity that is below  the noise threshold will not have

meaningful values for the other parameters. While the use of a simple object allows for an intuitive understanding of the

meaning of each Euler  parameter,  a  more realistic  object,  the T-72BK Main Battle Tank conveys the more  typical

appearance of ISAR images in Euler parameter space (Figure 4).

              Figure 2. Slicy                                      Figure 3. ISAR Images of Slicy in Euler Parameter Space



Figure 4. ISAR Images in Euler Parameter Space of the T-72BK Tank Fingerprint 



4.0 TRANSFORM EQUATION AMBIGUITIES

In order to test the accuracy of the derivations and assess the extent of ambiguities leading to false results, a

numerical analysis can be performed. For any known set of Euler parameters, the corresponding scattering matrix can be

computed using S=U ✳ S D U † . Using the transform equations derived above, the corresponding Euler parameters

can than be rederived and compared to the original in order to assess the accuracy of the transform equations. 

When tested  with  1,000,000  random sets  of  Euler  parameters,  each  transform equation  was shown to  be

99.9999% accurate or better. The absence of 100% accuracy indicates the presence of a  limited set of singular points

that give rise to ambiguities. To investigate the ambiguities,  1,000,000 random sets of Euler parameters were used again,

rounded to the nearest integer degree and the nearest 5 degrees (Table 1).

Random Random, rounded to integer

degrees

Random, rounded to nearest

5 degrees
m 100.00 100.00 100.00
ψ 100.00 97.26 87.19
τ 100.00 98.91 94.72
υ 99.9999 95.71 80.09
γ 100.00 100.00 100.00

Table 1. % Accuracy of Transform Equations for 1 Million Tests

The results indicate that the ambiguous parameter sets lie at extremes, such as the maximum values, minimum

values, or multiples of 5 degrees.  While the accuracy appears high enough for real-world application purposes, it must be

remembered that  man made targets contain discrete shapes and will tend to have parameter values near the extremes.

Future work will include characterizing and removing these ambiguities. 

5.0 CORRELATION STUDIES

Correlation studies between similar and dissimilar targets have been performed to assess the usefulness of using

ISAR images in Euler parameter space to enhance target classification. The correlation equation used depends on the

physical meaning of the parameter used (Table 2), where the  magnitude parameters use the difference divided by the

sum in dbSM, and the angular parameters use the difference divided by the maximum sum in degrees.



|Shh| ∣x2−x1∣
∣x2∣∣x1∣

m ∣x2−x1∣
∣x2∣∣x1∣

ψ ∣x2−x1∣
180

τ ∣x2−x1∣
90

υ ∣x2−x1∣
90

γ ∣x2−x1∣
45

Table 2. Percent Difference Equations used in Correlation Studies

The  appropriate  comparison  equation  is  used  to  find  the  percent  difference  between  corresponding  two

resolution cells on the two targets to be compared in a certain parameter space. The procedure is carried out for all cells

in the ISAR image and an average percent difference (APD) results. The process is repeated for a full 360° azimuth

sweep and a histogram is created representing the overall APD as a function of azimuth between two targets in a certain

parameter space. The end purpose is a minimal APD for similar targets and high APD for dissimilar targets in order to

improve target recognition. All comparisons were made between T-72 class tanks and their 16th-scale fingerprint models

(Figures 5-10). 

Figure 5. Magnitude Space Correlations of Similar and Dissimilar Targets



Figure 6. m Space Correlations of Similar and Dissimilar Targets

Figure 7. psi Space Correlations of Similar and Dissimilar Targets

Figure 8. tau Space Correlations of Similar and Dissimilar Targets



Figure 9. nu Space Correlations of Similar and Dissimilar Targets

Figure 10. gamma Space Correlations of Similar and Dissimilar Targets

6.0 CONCLUSIONS

The transform equations have been explicitly derived relating the Euler parameters to the original scattering

matrix. Upon numerical analysis, the derived transform equations show high accuracy for non-integer Euler parameters,

but degraded accuracy for integer parameters due to ambiguities. The results of the correlation studies indicate that  in the

current form, use of ISAR images in Euler parameter Space for target identification is inconclusive. Further analysis is

required to characterize the ambiguities and assess the possibility of removing them.
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