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Abstract. Tracking deforming objects involves estimating the global
motion of the object and its local deformations as functions of time.
Tracking algorithms using Kalman filters or particle filters have been
proposed for tracking such objects, but these have limitations due to the
lack of dynamic shape information. In this paper, we propose a novel
method based on employing a locally linear embedding in order to incor-
porate dynamic shape information into the particle filtering framework
for tracking highly deformable objects in the presence of noise and clut-
ter.

1 Introduction

The problem of tracking moving and deforming objects has been a topic of sub-
stantial research in the field of active vision; see [1,2] and the references therein.
There is also an extensive literature with various proposals for tracking objects
with static shape prior [3]. This paper proposes a novel method to incorporate
dynamic shape priors into the particle filtering framework for tracking highly
deformable objects in the presence of noise and clutter.

In order to appreciate this methodology, we briefly review some previous re-
lated work. The possible parameterizations of planar shapes described as closed
contours are of course very important. Various finite dimensional parameteriza-
tions of continuous curves have been proposed, perhaps most prominently the
B-spline representation used for a “snake model” as in [2]. Isard and Blake (see
[1] and the references therein) use the B-spline representation for contours of
objects and propose the CONDENSATION algorithm [1] which treats the affine
group parameters as the state vector, learns a prior dynamical model for them,
and uses a particle filter [4] to estimate them from the (possibly) noisy observa-
tions. Since this approach only tracks affine parameters, it cannot handle local
deformations of the deforming object.

Another approach for representing contours is via the level set method [5,
6] where the contour is represented as the zero level set of a higher dimensional
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function, usually the signed distance function [5]. For segmenting an object, an
initial guess of the contour (represented using the level set function) is deformed
until it minimizes an image-based energy functional. Some previous work on
tracking using level set methods is given in [3,7-10].

Shape information is quite useful when tracking in clutter, especially if the
object to be tracked gets occluded. Hence, a number of methods have been pro-
posed [3] which incorporate a static shape prior into the tracking framework. The
approach of these works is based on the idea that the object being tracked does
not undergo a deformation (modulo a rigid transformation). Another method
to obtain a shape prior is using PCA (principal component analysis) [11]. In
this case, it is assumed that the shape can undergo small variations which can
be captured by doing linear PCA. However, linear PCA is quite inadequate in
representing the shape variations if the object being tracked undergoes large
deformations (as will be explained in detail in the subsequent sections).

The authors in [12] use a particle filtering algorithm for geometric active con-
tours to track highly deformable objects. The tracker however fails to maintain
the shape of the object being tracked in case of occlusion. The present work
extends the method proposed in [12] by incorporating dynamic shape priors into
the particle filtering framework based on the use of a Locally Linear Embedding
(LLE). LLE [13, 14] attempts to discover the nonlinear structure in high dimen-
sional data by exploiting the local symmetries of linear reconstructions. To the
best of our knowledge, this is the first time LLE has been used for shape analy-
sis and tracking. Another approach closely related to our work was proposed in
[15], wherein exemplars were used to learn the distribution of possible shapes.
A different method in [16] separates the space of possible shapes into different
clusters and learns a transition matrix to transition from one patch of shapes
to the next. Our approach is different from those in [15,16] in that we do not
learn the dynamics of shape variation apriori. The only knowledge required in
our method is a possible set of shapes of the deforming object.

The literature reviewed above is by no means exhaustive. Due to paucity of
space we have only quoted a few related works. The rest of the paper is organized
as follows: Section 2 gives the motivation and briefly describes the concepts of
LLE, shape similarity measures, and curve evolution. Section 3 develops the
state space model in detail and Section 4 describes the experiments conducted
to test the proposed method. Some conclusions and further research directions
are discussed in Section 5.

2 Preliminaries

Principal component analysis (PCA) is one of the most popular forms of dimen-
sionality reduction techniques. In PCA, one computes the linear projections of
greatest variance from the top eigenvectors of the data covariance matrix. Its first
application to shape analysis [11] in the level set framework was accomplished
by embedding a curve C' as the zero level set of a signed distance function @. By
doing this, a small set of coefficients can be utilized for a shape prior in various



segmentation tasks as shown in [11,17]. However, linear PCA assumes that any
required shape can be represented using a linear combination of eigen-shapes,
i.e., any new shape @ can be obtained by [17], & = & + Ez L wiP;, where w; are
Welghts assigned to each eigenshape @; and & is the mean shape. Thus, PCA
assumes that the set of training shapes lie on a linear manifold.

More specifically, let us consider shapes of certain objects with large defor-
mations, for example, Figure 1 shows a set of few shapes of a man. PCA was
performed on 75 such shapes (embedded in a signed distance function). Figure 2
shows the original and the reconstructed shape. Thus, linear PCA cannot be
used to obtain a shape prior if the training set lies on a non-linear manifold.

ENENENENENES

Fig. 1. Few shapes of a man from a training set. Note the large deformation in shape.

EEENER

Fig. 2. Left: Original shape, Middle: projection in the PCA basis, Right: LLE (2 nearest
neighbors).

In [18], the authors proposed an unsupervised Locally Linear Embedding
(LLE) algorithm that computes low dimensional, neighborhood preserving em-
beddings of high dimensional data. LLE attempts to discover nonlinear structure
in high dimensional data by exploiting the local symmetries of linear combina-
tions. It has been used in many pattern recognition problems for classification.
In this work, we use it in the particle filtering framework for providing dynamic
shape prior.

2.1 Locally Linear Embedding for Shape Analysis

The LLE algorithm [14] is based on certain simple geometric intuitions. Suppose
the data consists of N vectors @; sampled from some smooth underlying mani-
fold. Provided there is sufficient data, we expect each data point and its neighbors
to lie on or close to a locally linear patch of the manifold. We can characterize
the local geometry of these patches by linear coefficients that reconstruct each
data point from its neighbors. In the simplest formulation of LLE, one identifies
k nearest neighbors for each data point. Reconstruction error is then measured



2
by the cost function: E(W) = (@ -2 wj@j) . We seek to minimize the re-
construction error E(W), subject to the constraint that the weights w; that lie

outside the neighborhood are zero and ;w; = 1. With these constraints, the
weights for points in the neighborhood of @ can obtained as [13]:

k
Em:l ij
k k
Zp:l Eq:l qu

In this work, we assume that a closed curve C} is represented as the zero level
set of a signed distance function @;. Stacking all the columns of ¢; one below the
other, one can obtain a vector of dimension D?, if ®; is of dimension D x D. (In
the rest of the paper, we use @ interchangeably to represent a vector of dimension
D? or a matrix of dimension D x D. The appropriate dimension can be inferred
from the context.) Figure 2 shows a particular shape being represented by 2 of
its nearest neighbors.

,where Qjm = (2~ 8;)T (¢~ Pn), R=Q' (1)

wj:

2.2 Finding the Nearest Neighbors

The previous section showed how to represent a shape @; by a linear combination
of its k neighbors. Here we consider the key issue of how to find the nearest
neighbors. One might be tempted to use the Euclidean 2-norm to find distance
between shapes, i.e., if d*(®;,®;) is the (squared) distance between ®; and ®;,
then d?(®;,P;) =|| ¢; — @, ||>. However, this norm does not represent distance
between shapes, but only distance between two vectors. Since we are looking for
the nearest neighbors of C; in the shape space, a similarity measure between
shapes is a more appropriate choice. Many measures of similarity have been
reported; see [19,3,20]. In this paper, we have chosen the following distance
measure [21]:

& (®;, ) :/

EDTg,(p)dp + / EDTg,(p)dp (2)
pEZ(P;)

PEZ(P;)

where, EDTg, is the Euclidean distance function of the zero level set of @; (one
can think of it as the absolute value of @;), and Z(®;) is the zero level set of
®;. We chose this particular distance measure because it allows for partial shape
matching which is quite useful for occlusion handling. More details about this
measure may be found in [21]. We should note that the development of the
remaining algorithm does not depend on the choice of the distance measure.
Thus, once the distance measure between each @; and the rest of the elements
in the training set is known, one can find the nearest neighbors of @;.

2.3 Curve Evolution

There is a large literature concerning the problem of separating an object from
its background [3,9]. Level sets have been used quite successfully for this task.



In [22], the authors have proposed a variational framework for segmenting an
object using the first two moments (mean and variance) of image intensities. In
the present work, we have used the energy functional given in [22]

Eimage = /Q <logaz + W) H(®)dx o
“ 3
+ /Q <1ogag + W) (1— H(®)) de + V/n | VH(®) ||z,

v

which upon minimization gives the following PDE:

oP . Vo 2 I(z) —u)? I(z) —v)?
8tz&(¢)<vd1v”v@”+log3—((273 ) (()03 )> (4)

Here I(x) is the image, u,v are the mean intensities inside and outside the
curve C (corresponding to @) respectively, 02,02 are the respective variances
and 0.(P) = % is the Dirac delta function and H is the Heaviside function as
defined in [22]. Note that, one could use any type of curve evolution equation in
the algorithm being proposed. We have made this particular choice because it is

simple yet powerful in segmenting cluttered images.

3 The State Space Model

This section describes the state space model, the prediction model, and the
importance sampling concept used within the particle filtering framework for
tracking deformable objects. We will employ the basic theory of particle filtering
here as described in [4].

Let S; denote the state vector at time t. The state consists of parameters
T that models the rigid (or affine) motion of the object (e.g., T = [z y 0] for
Euclidean motion) and the curve C' (embedded as the zero level set of &) which
models the shape of the object, i.e., Sy = [T} $;]. The observation is the image
at time ¢, i.e., Y; = Image(t). Our goal is to recursively estimate the posterior
distribution p(St|Y1.+) given the prior p(S;—1|Y7.4—1). This involves a time update
step and a measurement update step as described in the next section.

In general, it is quite difficult to obtain a model for predicting the position
and shape of the deforming object. More specifically, in the current case, it is
very difficult to obtain samples from the infinite dimensional space of closed
curves (shapes). This problem can be solved using Bayesian importance sam-
pling [23], described briefly below: Suppose p(z) is a probability density from
which it is difficult to draw samples (but for which p(z) can be evaluated) and
q(x) is a density which is easy to sample from and has a heavier tail than
p(z) (i.e. there exists a bounded region R such that for all points outside R,
q(x) > p(x)). q(x) is known as the proposal density or the importance density.
Let ' ~ q(x), i = 1,..., N be samples generated from ¢(-). Then, an approx-

imation to p(-) is given by p(z) ~ YN, wid(z — &), where w' Z’Efg is the
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normalized weight of the i-th particle. So, if the samples, St(i), were drawn from

p(S{” [ Yi.e)
a(8,71870 1 Y1)
then vazl wt(l)é(St(l) — S;) approximates p(S;|Y1.¢). The choice of the importance
density is a critical design issue for implementing a successful particle filter. As
described in [24], the proposal distribution ¢(-) should be such that particles
generated by it, lie in the regions of high observation likelihood. Another im-
portant requirement is that the variance of the weights w? should not increase
over time. Various algorithms have been proposed [24] to achieve this objective.
One way of doing this is to use an importance density which depends on the
current observation. This idea has been used in many past works such as the
unscented particle filter [25] where the proposal density is a Gaussian density
with a mean that depends on the current observation. In this work, we propose
a possible importance density function ¢(S¢|S;—1,Y:) and show how to obtain
samples from it. Note that, the space of closed curves from which we want to
obtain samples is infinite dimensional.

an importance density, ¢(S¢|S1.t—1, Y1.¢), and weighted by wt(i) o

3.1 Time Update

The prediction S, at time ¢ is given by: S, = ft(St—1,1,n¢) where n; is random
noise vector, i; is any user defined input data (in our case, it is the set of training
data) and f; is possibly a nonlinear function. The problem of tracking deforming
objects can be separated into two parts [8]:

1. Tracking the global rigid motion of the object;
2. Tracking local deformations in the shape of the object, which can be defined
as any departure from rigidity.

Accordingly, we assume that the parameters that represent rigid motion 7; and
the parameters that represent the shape @; are independent. Thus, it is assumed
that the shape of an object does not depend on its location in the image, but only
on its previous shape and the location of an object in space does not depend on
the previous shape. Hence, the prediction step consists of predicting the spatial
position of the object using T, =T, + n,ET) where n'”) is random Gaussian
noise vector with variance U%. The prediction for shape @; is obtained as follows:

b, = PoPi—1 +p1¢§fi) + pzégi) + .+ pkég’{) (5)

where po, p1, ...py are user defined weights such that ). p; = 1 and @Eivi),i =1..k
are the k nearest neighbors of &;_;. The nearest neighbors are obtained as
described in Section 2.2. A more generalized formulation of the prediction step
above can be obtained by sampling the weights p; from a known distribution
(for example, an exponential distribution) to obtain a set of possible shapes and
then choosing the predicted shape from this set, based on certain criteria.

We should note that, one of the main contributions of this paper is the for-
mulation of a scheme that allows to dynamically predict the shape of the object



without learning the sequence in which they occur (unlike the methods in [15,
16]). Thus, the only knowledge required in this prediction step is a training set of
shapes. In particular, one does not need to sample from an infinite-dimensional
space of shapes (curves) but only from a set containing the linear combination
of k nearest neighbors of @;_;. This not only reduces the search space dramat-
ically, but also allows to sample from a finite set of possible shapes. Once the
latest observation Y; is obtained, one can update the prediction based on this
information as explained in the following section.

3.2 Measurement Update

At time t, for each particle ¢, generate samples as described in the prediction
step in (5). Using the image at time t (Y;), a rigid transformation is applied
to each qﬁf) (in particular C’t(i)) by doing L, iterations of gradient descent on
the image energy Fjmqge With respect to the rigid transformation parameters 7'
The curve is then deformed by doing a few (Lg4) iterations of gradient descent
(“curve evolution”) on the energy, F, i.e., we generate

o) =1y @), 2 = fEp(@)). ) (6)
where fﬁr(@, Y) is given by (for j =1,2,...,L,)
O =r = — IV, Eiage(r L @,Y), T =rbr, fé*(@, Y)=T® (7)
and f54(u,Y) is given by (for j = 1,2, ..., Lg)

PO =p, = p 7t = IVLEWTNY), (YY) = pte (8)

where E = Ejmage + BEshape. The energy Eipnage is as defined in equation (3)
and Egpqpe is defined by [3]: Espape(P) = fQ &(x)dx, where () is the contour
obtained from a linear combination of the nearest neighbors of @, with weights
obtained using LLE from equation (1). The corresponding curve evolution equa-
tion is given by

0P

5 = 2@ [Ive]. 9)

This PDE tries to drive the current contour shape @ towards the space of possible
shapes and equation (8) tries to drive the current contour towards the minimizer
of energy F which depends on the image and shape information. The parameter
0 is user defined and weights the shape information with the image information.
The use of LLE to provide shape information for contour evolution is another
main contribution of this paper.

Details about equation (7) can be obtained from [17]; and equation (8)
may be implemented by summing the PDE’s (4) and (9). We perform only
L (L4 or L,) iterations of gradient descent since we do not want to evolve the
curve until it reaches a minimizer of the energy, Ejpqqge (0r E). Evolving to the
local minimizer is not desirable since the minimizer would be independent of



all starting contours in its domain of attraction and would only depend on the
observation, Y;. Thus the state at time ¢t would loose its dependence on the state
at time ¢ — 1 and this may cause loss of track in cases where the observation
is bad. In effect, choosing L to be too large can move all the samples too close
to the current observation, while a small L may not move the particles towards
the desired region. The choice of L depends on how much one trusts the system
model versus the obtained measurements. Note that, L will of course also depend
on the step-size of the gradient descent algorithm as well as the type of PDE
used in the curve evolution equation.

For each i, the sample St(l) thus obtained is drawn from the importance
density q(St(i)\St(i)l,K) = N(St(i),Z), where we assume a Gaussian fit for the
density ¢(.) centered at each St(l). We further assume that the variance X is

very small and constant for all particles, i.e., q(St(i)|St(i)1,Y}) = constant. We
should note that, this methodology, even though sub-optimal (to the best of
our knowledge, an optimal method to sample from an infinite dimensional space
of curves does not exist) allows to obtain samples that lie in region of high
likelihood. The above mentioned step of doing gradient descent can also be
interpreted as an MCMC move step, where particles are “moved” to region of
high likelihood by any available means, as given in [24].

3.3 Setting the Importance Weights

In this paper, the state process is assumed to be Markov, and the observations are
conditionally independent given the current state i.e., p(Y¢|So.+) = p(Yz|St). This

) ) ) . . . S(i) S(i) S(’i)
gives the following recursion for the weights [23]: w,gl) x wt(i)l p(%s| t<i))p(m" Y
a(S:715: 21, Y4)

—B(84.¥)
The probability p(Y;|S;) is defined as p(Y;|S;) c e "%t . We define p(S;|S;_1) =
p(Tt|Tt71) p(¢t|¢t71) with

— T =Ty 1| —d? (B¢, Py_1) —d?(Py,By_1)

p(TTioq) e 70, p(P]dy_q) xe i +ae 7d (10)

where d? is the (squared) distance measure defined above in (2), and &,_; is the
MAP (maximum a-posteriori) estimate of the shape at time t—1. We should note
that, using the MAP shape information available from time ¢—1 is quite essential,
since it adds weights to particles which are closer to the previous best estimate
than particles that are far away. This is quite useful in case of occlusion wherein
particles which look like the previous best shape are given higher probability,
despite the occlusion. The parameter a is user defined.

Based on the discussion above, the particle filtering algorithm can be written
as follows:

e Use equation (5) to obtain T}, &;.

e Perform L, steps of gradient descent on rigid parameters using (7) and Lq4
iterations of curve evolution using (8).



e Calculate the importance weights, normalize and resample [4], i.e.,

~ (1)
~ (i i i i i i i w
wi ) ocp(Yt|St( ))p(Tt( )|Tt(_)1)p(¢§ )@§_)1)a ‘UE )= W . (11)
j=1%¢

4 Experiments

The proposed algorithm was tested on 3 different sequences and the results are
presented in this section. We certainly do not claim that the method proposed in
this paper is the best one for every image sequence on which it was tested, but
it did give very good results with a small number of particles on all of the image
sequences. We should add that to the best of our knowledge this is the first time
dynamic shape prior in a level set framework has been used in conjunction with
the particle filter [4] for tracking such deforming objects.

In all of the test sequences, we have used the following parameters which
gave good results:

1. Choosing k, the number of nearest neighbors (for obtaining () in eqn (9)):
k will depend on the number of similar shapes available in the training set
[18]. In our experiments, k = 2 gave acceptable results.

2. Choosing 02: A classical choice [20] is 03 = ¢ Zi\il min;;d*(®P;, P;). For
all the test sequences, ¢ = 1/20 was used.

3. 02 models the motion dynamics of the object being tracked. In all the test
sequences, since the spatial motion of the object was not large, we used
02 = 1000. Also, only translational motion was assumed, i.e., T = [z y].

4.1 Shark Sequence

This sequence has very low contrast (object boundaries in some images are
barely visible even to human observers) with a shark moving amid a lot of other
fish which partially occlude it simultaneously in many places. This results in a
dramatic change in the image statistics of the shark if a fish from the background
occludes the shark. The training set was obtained by hand segmenting 10% of
the images from the image sequence. Tracking results without shape information
using the algorithm in [12] is shown in Figure 3. As can be seen, even though
the algorithm tracks the shark, it is unable to maintain the shape. Results using
the proposed algorithm are shown in Figure 3. This sequence demonstrates the
robustness of the proposed algorithm in the presence of noise and clutter. The
following parameters were used in tracking this sequence: L, = 1, Ly = 10,
particles = 40.

4.2 Octopus Sequence:

As seen in Figure 4, the shape of the octopus undergoes large changes as it
moves in a cluttered environment. It gets occluded for several frames by a fish
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having the same mean intensity. Tracking this sequence using equation (4) or
any other method without shape information may result in the curve leaking to
encompass the fish. Figure 4 shows tracking results using the proposed method.
The following set of parameters were used in tracking this sequence: L, = 3,
Ly = 10, particles = 50, training set included 9% of possible shapes.

4.3 Soccer Sequence:

This sequence tracks a man playing soccer. There is large deformation in the
shape due to movement of the limbs (hands and legs) as the person tosses the
ball around. The deformation is also great from one frame to next when the
legs occlude each other and separate out. There is clutter in the background
which would cause leaks if geometric active contours or the particle filtering
algorithm given in [12] were used to track this sequence (see Figure 5). Results
of tracking using the proposed method are shown in Figure 5. The following set
of parameters were used to track this sequence: L,, = 5, Ly = 18, particles = 50,
and 20% of the possible shapes were included in the training set (see Figure 1).

5 Conclusions and Limitations

In this paper, we have presented a novel method which incorporates dynamic
shape prior information into a particle filtering algorithm for tracking highly
deformable objects in presence of noise and clutter. The shape prior information
is obtained using Locally Linear Embedding (LLE) for shapes. No motion or
shape dynamics are required to be known for tracking complex sequences, i.e.,
no learning is required. The only information needed is a set of shapes that can
appropriately represent the various deformations of the object being tracked.

Nevertheless, the current algorithm has certain limitations. First, it is compu-
tationally very expensive, as each particle has to be evolved for many iterations.
Second, the training set should contain sufficient number of possible shapes of
the object being tracked so that LLE can be used.
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Fig. 3. First row shows tracking results with no shape information. Next two rows
show results using the proposed algorithm.

I

Fig. 4. Octopus Sequence: Results using the proposed algorithm. Notice that a fish
with the same mean intensity occludes the octopus.

Fig. 5. Results of tracking using the proposed method. Last image at the bottom right
is the segmentation using equation (4) without any shape information.



