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Abstract 
 

The scope of this project addresses the problem of tracking a dim moving point target from a sequence 

of hyperspectral cubes. The resulting tracking algorithm is useful for many staring technologies such 

as the ones used in space surveillance and missile tracking applications. In these applications, the 

images consist of targets moving at sub-pixel velocity and noisy background consisting of evolving 

clutter and noise. The demand for a low false alarm rate (FAR) on one hand and a high probability of 

detection (PD) on the other makes the tracking a challenging task. The use of hyperspectral images 

should be superior to current technologies using broadband IR images due to the ability of exploiting 

simultaneously two target specific properties: the spectral target characteristics and the time dependent 

target behavior. 

 

The proposed solution consists of three stages: the first stage transforms the hyperspectral cubes into a 

two dimensional sequence, using known point target detection acquisition methods; the second stage 

involves a temporal separation of the 2D sequence into sub-sequences and the usage of a variance 

filter (VF) to detect the presence of targets from the temporal profile of each pixel in each group, while 

suppressing clutter specific influences. This stage creates a new sequence containing a target with a 

seemingly faster velocity; the third stage applies the Dynamic Programming Algorithm (DPA) that 

proves to be a very effective algorithm for the tracking of moving targets with low SNR at around 

pixel velocity. 

 

The system is tested on both synthetic and real data. 
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1 Introduction 
The goal of the research in the scope of the project is to propose a unique system for the tracking of 

dim point targets moving at sub-pixel velocities in a sequence of hyperspectral cubes or, simply put, a 

hyperspectral movie. Our research incorporates algorithms from two different areas – target detection 

in hyperspectral imagery and target tracking in IR sequences. Numerous works have addressed each of 

these problems separately, but to the best of our knowledge no attempts were made, so far, to combine 

the two fields. 

 

We chose the most intuitive approach to tackle the problem, namely divide and conquer – separation 

of the problem into three sub-problems and solving each one separately using a combination of 

approaches. Thus, we first transform each hyperspectral cube into a two dimensional image using a 

hyperspectral target detection method. The next step involves a temporal separation of the movie 

(images sequence) into sub movies and the usage of a variance filter (VF). The filter detects the 

presence of targets from the temporal profile of each pixel in each group while suppressing clutter 

specific influences. Afterwards, an accumulation of the results from several consecutive images is 

done using a Track Before Detect (TBD) approach, implemented by the Dynamic Programming 

Algorithm (DPA), to perform detection in the time domain. Performance metrics are defined for each 

step, and are used in the analysis and optimization of each step.  

 

In order to evaluate the complete system, we need to obtain a hyperspectral movie. Since this kind of 

data is not available to us yet, an algorithm is developed for the creation of a hyperspectral movie, 

based on a real world IR sequence and real-world signatures, including an implanted synthetic moving 

target. 

 

This paper is organized as follows: Sections  2 and  3 provide a short overview of the basic methods for 

target detection in hyperspectral imagery and the time and spatial processing methods for target 

tracking in IR imagery on which we base our algorithm. Section  4 presents the suggested system. 

Section  5 presents the evaluation of the full system on real and synthetic data. Section  6 ends the 

report describing conclusions and ideas for future research. 
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2 Point target detection in hyperspectral imagery 

2.1 Hyperspectral imagery overview 

2.1.1 Hyperspectral imagery basics 

Hyperspectral imagery (HSI) exploits the fact that different materials reflect, absorb and emit 

electromagnetic radiation in ways characteristic of their molecular composition and structure  [1] . The 

radiation arriving at the hyperspectral sensor is measured at each wavelength over a sufficiently broad 

spectral band, and the resulting spectral signature, or simply spectrum, can be used to uniquely 

characterize and identify any given material. 

 

Hyperspectral sensors represent an advance on technology from the earlier multispectral sensors, 

which were able to collect information in only a few discrete and noncontiguous bands. Current 

hyperspectral sensors sample the reflective portion of the electromagnetic spectrum that extends from 

the visible region (0.4 - 0.7 μm) through the near infrared (about 2.4 μm) in hundreds of narrow 

contiguous bands about 10 nm wide. Other types of hyperspectral sensors exploit the emissive 

properties of materials by collecting data in the mid-wave and long-wave infrared regions of the 

spectrum. From a spatial point of view, current sensors are capable of spatial sampling (or ground 

pixel size) in the resolution of several meters to tens of meters, depending on the sensor aperture and 

platform altitude (mainly space borne vs. airborne sensor). For example, the sensor system called 

Hyperion, carried on the experimental NASA EO-1 spacecraft launched in November 2000, has 220 

spectral bands, 30 m pixels and 10 bit data system  [2] . 

 

The spatially and spectrally sampled information can be described as a data cube, whose face is a 

function of the spatial coordinates and depth is a function of spectral band, as shown in Figure 1. 

 
Figure 1: Illustration of the hyperspectral cube data. 
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There are many effects which influence the data collected at the sensor, besides of course the materials 

themselves. Some of these are: 

 

 The angle of the sun. 

 The viewing angle of the sensor. 

 The upwelling solar radiance from atmospheric scattering. 

 The secondary illumination of the material by light reflected from adjacent objects in the scene. 

 Shadowing. 

 The scattering and absorption of the reflected radiance by the atmosphere. 

 Spatial and spectral aberrations in the sensor. 

 

All these make the processing of the hyperspectral data a challenging task requiring sophisticated 

signal processing algorithms and models. 

 

2.1.2 The basic steps of hyperspectral signal processing 

The basic hyperspectral processing chain is given in Figure 2. There are two important preprocessing 

steps which should be performed before the actual processing of the data begins. These are shortly 

described in the following subsections. 

 
Figure 2: Illustration of hyperspectral imagery processing chain. 
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2.1.2.1 Atmospheric compensation 

The first preprocessing step is atmospheric compensation or atmospheric calibration. This step is 

needed in order to correct the data for the effects of atmospheric absorption and scattering. 

 

The atmosphere absorbs and scatters light in a wave-length-dependent fashion  [3] . Thus, the “raw” 

data from the sensor cannot be directly compared to either laboratory spectra or “raw” spectra 

collected at other times or places. In order to apply signal detection algorithm, the reflectance or 

emissive spectra of the objects of interest must be converted into radiance at the sensor, or the radiance 

data collected by the sensor must be converted into reflectance or emission. This process is known as 

atmospheric compensation. 

 

The simplest method to compensate for the environmental and atmospheric effects is to place a 

calibration panel, with known reflectance in the scene, in an open area, and use the observed radiance 

spectrum from the panel to develop gain and offset corrections for each waveband of interest. Other 

more sophisticated methods are the physics-based modeling methods. These include processes to 

quantify the effect of water vapor on the measurements, estimates of terrain height and aerosol optical 

depth (visibility). 
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2.1.2.2 Dimensionality reduction 

The next important step is dimensionality reduction. In most cases, hyperspectral sensors over sample 

the spectral signal to ensure that any narrow features are adequately represented. Dimensional 

reduction is often desirable because it leads to significant reductions in computational complexity and 

reduction of the number of pixels required to obtain statistical estimates (the number of pixels required 

to obtain statistical estimate with a given accuracy increases drastically with the dimensionality of the 

data). Since the dimensional reduction involves data loss, it is important to make sure that high-quality 

features needed for detection, discrimination and classification of the data are preserved. 

 

The most common algorithm for dimensionality reduction is principal component analysis (PCA) 

which is based on the Karhunen - Loeve linear transformation  [4] . Further development of that 

transformation can be done using a kernel, a method known as K-PCA, which is a non-linear 

transformation. 

2.1.3 Applications 

The number and variety of civilian and military applications for hyperspectral remote sensing is 

enormous. The majority of algorithms used in these applications might be roughly divided into four 

main classes: 

 

1. Target detection – defined as searching for the pixels of the hyperspectral data cube which 

exhibit similar spectral properties to the desired spectral signature (in case the desired signature 

is known) or pixels which differ significantly from their surrounding (anomaly detection)  [1] , 

 [5] . 

 

2. Change detection – defined as finding the predefined significant changes between two 

hyperspectral scenes of the same geographic region  [1] . 

 

3. Classification – assigning a label (class) to each pixel of the hyperspectral data cube  [1] . 

 

4. Spectral unmixing – estimating the fraction of each material in a given pixel  [6] . 

 

This research focuses on the subject of target detection and tracking, which will be further detailed in 

the next section. 
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2.2 Algorithms for target detection in hyperspectral imagery 

2.2.1 Problem Statement 

In target detection applications, the goal is to search the pixels of a hyperspectral data cube for the 

presence of a specific material (target). In surveillance applications, the size of the objects (targets) we 

are searching for constitutes a very small fraction of the total search area, the targets size is only 

several pixels. The term “background” is used to refer to all non target pixels of a scene. Usually, 

targets are man-made objects with spectra that differ from the spectra of natural background pixels. 

2.2.2 General framework for target detection algorithms 

Most hyperspectral data processing techniques assume that each observation can be modeled as 

random vector whose dimension is the number of spectral bands and which originates from specific 

probability distribution, p(x). Given an observed spectrum x, the likelihood ratio (LR) is given by the 

ratio of the conditional probability density functions: 

 

 (2.1)     ( ) ( )
( )

 
 

p x signal present
LR x

p x signal absent
≡  

 

If LR(x) is larger than the threshold η, the “signal present” hypothesis is accepted; otherwise the 

“signal absent” hypothesis is accepted: 

 

(2.2)      ( )
1

0

   
H

H

LR x η
>
<

 

 

2.2.3 Matched filter algorithms 

The expression for the Matched Filter detector is derived here from the likelihood ratio presented in 

section  2.2.2. In order to build a likelihood ratio detector there is a need to define the statistical model 

of the data, namely to define the probability distribution functions. Normal probability based models 

are simple and often lead to good performance.  
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The multivariate normal distribution of random vector x is denoted by x ~ N (μ,Φ); the mean vector μ 

and the covariance matrix Φ are given in the following: 

 

(2.3)      
[ ]
( )( )T

E x

E x x

μ

μ μ

≡

⎡ ⎤Φ ≡ − −⎣ ⎦
 

 

where E [•] denotes the expectation operator. 

 

The probability density function (PDF) of x is given by (normal distribution function): 

 

(2.4)    ( )
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( ) ( )1
1/ 2/ 2

1 1exp
22

T
Np x x xμ μ

π
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where |Φ| is the determinant of the covariance matrix Φ. 

 

For target and background spectra modeled as multivariate normal vectors, the detection problem can 

be specified by the following hypotheses: 

 

(2.5)      
( )
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where H0 is the null hypothesis assuming absence of target, H1 assumes presence of target; b and s 

denote the background and target parameters, respectively. 

 

The natural logarithm of the LR given in (2.1) becomes: 

 

(2.6)    ( ) ( ) ( ) ( ) ( )1 11 1
2 2

T T
b b b t t tR x x x x xμ μ μ μ− −= − Φ − − − Φ −  

 

This expression in fact compares the Mahalanobis distances of the observed spectrum from the centers 

of the two classes. 
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If the target and background classes have the same covariance matrix, that is, Φt = Φb ≡ Φ, the LR 

detector becomes: 

 

(2.7)      
( ) ( )
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T T
t b

t b
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−
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This detector is known as the Fisher’s linear discriminant and is very useful in pattern recognition 

applications. In the communications and signal processing areas, as well as hyperspectral imagery 

processing, the term Matched Filter (MF) is used as reference to any filter of the form: 

 

(2.8)      
( )

( )1

T
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MF t b

R x c x

c k μ μ−

=
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where k is a normalization constant. 

 

In practical applications, the mean vectors and the covariance matrix, required for the MF calculation, 

are unavailable and have to be estimated from the available data. Under the assumption of low 

probability targets, given N vectors x(n), n=1,2, …, N, the maximum likelihood estimates for the mean 

and covariance matrix of the background are given in the following: 
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As for the target, usually there is not enough training data to determine its mean and covariance. Thus 

the target spectral signature s is often taken from a spectral library, or it is chosen to be the mean of a 

small number of known target pixels observed under the same conditions. 

 

The resulting adaptive matched filter (AMF) is given by: 

 

(2.10)      ( )
1

1
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where the data cube mean is normally removed from the target and test pixel spectra. 
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2.2.4 Anomaly detection algorithms 

Anomaly detection is based on seeking out the pixels exhibiting strong spectral differences from the 

surrounding background  [7] . 

 

There are situations, besides the trivial case of unknown target signature, in which the anomaly 

detection is advantageous to matched detection methods. Detection algorithms that presume a target 

signature are subject to signal mismatch losses because of the complications of converting sensor data 

into material spectra – in order to apply the known-signal detection algorithm, the reflectance or 

emissive spectra of the objects of interest must be converted into radiance at the sensor, or the radiance 

data collected by the sensor must be converted into reflectance or emission, this process is known as 

atmospheric calibration and was described in section  2.1.2.1. In this process, errors in the estimate of 

reflective spectra may occur, which will lead to signal processing mismatch losses. Target matching 

approaches are further complicated by the large number of possible objects of interest and the 

uncertainty as to the reflectance or emission spectra of these objects. For example, the surface of the 

object in interest may consist of several materials, and the spectra may be effected by weathering or 

other unknown factors. 

 

Thus, the multiplicity of possible spectra associated with the objects of interest and complications of 

atmospheric compensation have lead to the development of anomaly detectors that seek to distinguish 

observations of unusual materials from typical background materials without reference to target 

signatures or target subspaces. 

 

Anomalies are defined with reference to a model of the background. Background models are 

developed adaptively using reference data from either a local neighborhood of the examined pixel or a 

larger section of the image. Local anomalies are defined as observations that deviate in some way from 

the estimated background. 

2.2.4.1 The RX Algorithm 

The RX algorithm is the most common representative of anomaly detectors. It is based on the 

Generalized Likelihood Ratio Test (GLRT) presented in section  2.2.2, assuming normal probability 

distribution of the data. 
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In order to calculate the GLRT, the PDF of the data needs to be estimated. Here the PDF is assumed to 

have a parametric form, thus the PDF’s parameter θ can be estimated from reference data. The 

assumption is that the reference data set consists of N independent identically distributed (IID) 

samples of dimension K (the model allows N=0) denoted by { }jv 1KC j N∈ ≤ ≤ , the PDF of the 

reference data set is denoted by ( )0 0,p y θ . The test data set is denoted by{ }jx 1KC j M∈ ≤ ≤ . The 

data set is to be classified as arising from either PDF ( )( )1 1 1,p y Hθ  or ( )( )0 0 0,p y Hθ . The GLRT is 

given by: 
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The data is modeled as following: 
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where N (μ,Φ) denotes normal distribution with mean μ and covariance Φ. s and Φ are unknown 

parameters. 

 

The GLRT for this model is given by: 
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where Φ̂  is the covariance matrix estimated from the reference data. 

 

As N → ∞, RX converges to: 

(2.14)      ( ) ( ) ( )
1
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H

RX x x xμ μ η− >
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RX is a single pixel form of the Reed-Xiaoli algorithm that is often approximated by equation (2.14).  
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This expression for the RX algorithm is closely related to the expression given in equation (2.10) for 

the Matched Filter detector. The denominator in (2.10) can be ignored, since it is a normalizing 

constant term. The RX now resembles the Matched Filter, but instead of matching to the target 

signature (which is unknown for the RX), the match is performed on the (x − μ) term. The intuitive 

explanation for this is that the best estimation of the actual pixel’s content is its value subtracted by the 

background. If a target is present then the residue will be stronger and the overall response of the filter 

will be higher. If the target is absent, the residue after the background subtraction should be close to 

zero (depending on the noise level) and the filter output will be low indicating less likeliness of target 

presence. 

 

It is important to note, that the distribution of the test statistic for H0 is independent of the unknown 

parameters, and thus the test statistic has the constant false alarm rate (CFAR) property. 

2.2.5 Evaluation of detection algorithms 

As stated in the previous subsection the detection is based on determining appropriate threshold 

against which the LR is compared  [5] . A practical question of great importance to a detection 

algorithm user is where to set the threshold to keep the number of detection errors (target misses and 

false alarms) small. There is always a compromise between choosing a low threshold to increase the 

probability of detection PD and a high threshold to keep the probability of false alarm PFA low. For any 

given detector, the trade-off between PD and PFA is described by the receiver operating characteristic 

(ROC) curves, which plot PD(η) versus PFA(η)as a function of threshold -∞<η<∞. The calculation of 

the ROC curves or the threshold requires specifying the distribution of the observed spectra x under 

each of the two hypotheses specified for the LR. In most practical situations, these conditional 

probability densities depend on some unknown target and background parameters (composite 

hypotheses). Therefore, the ROC curves of any detector depend on the unknown parameters. In this 

case, it is almost impossible to find a detector whose ROC curves remain an upper bound for the whole 

range of the unknown parameters (uniformly most powerful (UMP) detector). 

 

Practical target detection systems should function automatically, that is, without operator intervention. 

This requires an automatic strategy to set a “proper” detection threshold. In certain applications, for 

example military target detection, a high false alarm rate is very undesirable. Therefore it is critical to 

keep the false alarm rate constant at the maximal affordable level by using a constant false alarm rate 

(CFAR) processor. The task of a CFAR algorithm is to provide detection thresholds that are relatively 

immune to noise and background variation and allow target detection with a constant false alarm rate. 
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In addition, the performance evaluation of detection algorithms in practice is challenging due to the 

limitations imposed by the limited amount of target data. As a result the establishment of accurate 

ROC curves is quite difficult. A practical mean for comparing various detection algorithms is their 

ability to operate in CFAR mode and the enhancement of the separation between targets and 

background they provide. The CFAR property depends on the capability to accurately model the 

detection statistics of the background pixels for a given algorithm. 
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3 Point target detection and tracking in consecutive frame in IR 
imagery 

3.1 Overview 

3.1.1 Problem statement  

In order to develop advanced staring IR technologies in surveillance applications, there is a need for 

algorithms to detect weak point target moving at pixel/sub-pixel per frame velocities. These 

algorithms must handle scenes containing both clutter and noise dominated backgrounds. Clutter 

dominated background is a background in which the largest non-target detections (false alarms) are 

from the structured background. In the context of the temporal processing, evolving clouds are the 

most severe cause of such leakage. In noise dominated background random noise provides the largest 

non-target detections. Scenes with only blue sky, night scenes, or scenes with temporally stationary 

clutter are well modeled by the white Gaussian noise in the temporal dimension and hence are noise-

dominated backgrounds in the context of temporal processing. 

 

An efficient algorithm must thus address these dual and often conflicting aspects of the problem: the 

need for effective clutter suppression for minimizing false alarm rates in structured backgrounds, and 

the need for good signal-to-noise sensitivity for maximum range of weak target detection. A possible 

solution to the problem is to use a dynamic programming algorithm (DPA) which gives scores to 

pixels according to their likelihood of being a target and accumulates scores from frame to frame for 

all the pixels. Using that algorithm enables the tracking of low SNR targets. It is also advantageous to 

use a preprocessing stage, which whitens the background, lowers the clutter and emphasized the target 

to achieve a lower false alarm rate. 

3.1.2 Application 

Point target detection is particularly useful for staring IR technologies, e.g., IR search and track 

(IRST), such as the ones used in surveillance application or missile detection and tracking. These are 

applications in which the sensor, in this case the camera, is fixed on the ground and pointed towards 

the sky. The camera is not moving; the temporal variation of the signal originates from clutter (clouds) 

and target movement and, of course, noise. 
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3.2 Algorithms for moving point target detection in IR imagery 

3.2.1 The track before detect approach 

Track before detect (TBD) is a technique for target detection in which the detection is not declared at 

each frame; instead a number of frames of data are processed after which the estimated track is 

returned when the detection is declared. Since target trajectories are not known prior to detection, TBD 

schemes typically require that multiple frame (scan-to-scan) processing be performed against multiple, 

simultaneous target trajectory hypotheses. Detections are declared for those hypotheses for which the 

integrated energy exceeds appropriate threshold levels. 

 

3.2.2 Dynamic Programming Algorithm (DPA)  

The DPA is an implementation of the TBD approach that aids in the tracking of a dim point target 

maneuvering in a noisy background,  [17] , [18] ,  [19] . It is based on the assumption that a real target 

moves in a trajectory while noise appears and disappears in a random fashion. In every frame, each 

pixel is considered as a potential target and is checked for its origin in the previous frame. By doing 

so, all possible trajectories with high probability are built up, and it is assumed that with the 

progression in the image sequence and the addition of data, the probability of a single trajectory will 

grow above the others. This trajectory will be the target's path. 

 

The algorithm uses the following principles as guidelines: 

 

1. Overcoming low SNR using prior knowledge of the way the target moves; an apparent 

unlikely change of target speed and location will lower the probability of the target to be 

part of the trajectory we would like to find. 

2. Processing is done not on a single frame but rather on a given sequence so that the nth 

frame will contain accumulated information from the previous frames. 

3. Priority is given to the detection of the target's trajectory. 

 

The DPA algorithm uses a Markov Process Model in order to give scores to the image sequence;  

when the current frame is processed, all the vital information from the preceding frames lies in the 

accumulated score matrix (ASM) of the previous frame (state). At the end of the DPA stage, the target 

is acquired from the last frame, and its trajectory is found. 
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3.2.3 Temporal processing 

Temporal processing exploits the change in a pixel's intensity as moving point target traverses it. The 

temporal profile of target affected pixel raises and falls as the target enters and exits the pixel, while 

clutter affected temporal profiles show more monotonic intensity changes over an equivalent time 

period, (Figure 3). 

 
Figure 3: Example of clutter and target temporal profiles. 

 

References  [8] and  [9] introduce a zero-mean damped sinusoid filter. The Triple Temporal Filter 

(TTF) has been designed to have a strong response to relatively narrow peaks and a weak response to 

monotonic changes. The filter is based on applying three sinusoid filters serially - a sequence of two 

zero-mean damped sinusoids followed by an exponential averaging filter along with an edge 

suppression factor. The implementation of the TTF is recursive; the output result is updated with each 

new frame. Figure 4 shows the impulse response of a zero-mean damped sinusoid filter. 

 

 
Figure 4: Impulse response of zero-mean damped sinusoid temporal filter. 
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Each filter is recursively implemented using the following expression: 

 

(3.1)      1 1
i i

k k kZ Z e d eθ φα+ += ⋅ ⋅ + ⋅  

 

where α is the damping factor, θ and φ are the angle and initial phase of the sinusoid respectively and 

dk+1 is the current sample examined. 

 

The TTF is specified by six parameters: the periods and the damping constants of the first two 

sinusoids, the damping constant of the averaging filter and an edge parameter used in the edge 

suppression spatial adjunct. The parameters can be derived by applying the simplex algorithm to sets 

of real data, reference  [10] describes this procedure. 

 

The filter parameters define its clutter suppression ability on one hand, and SNR sensitivity on the 

other. Thus, a certain set of parameters results in a clutter suppressive filter (Cloud Filter - CF), while 

a different set of parameters results in a filter which performs better in noise-dominated scenes (Noise 

Filter - NF). 

 

Reference  [9] presents a fusion filter (FF) which incorporates the output of two double temporal 

filters, one designed for clutter suppression and the other for low SNR operation, thus providing a 

filter capable of dealing with both clutter and noise dominated scenes. 

The FF extends the range of velocities over which weak targets can be extracted from temporal noise 

as well as above the clutter leakage. The form of the FF is two double temporal filters running in 

parallel. One channel of the FF is derived from the CF (unmodified) and the second channel is a 

modified version of the NF. The modified NF enables the detection of slow weak targets in clear sky 

and still control clutter leakage. The final FF algorithm result is taken as a maximum of the two 

channels for each pixel followed by an eight frame average. The FF is illustrated schematically below.  

 

 

 
Figure 5: Fusion Filter configuration. 
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3.2.3.1 Variance filter 

Another type of temporal processing filter is the variance filter (VF) presented in  [11] . The noise filter 

based on damped sinusoids can detect targets roughly as weak as S/N = 3, but only over a narrow 

range of focal plane velocities: 0.05 to 0.1 [ppf]. Sensitivity falls off rapidly for velocities slower or 

faster than this. The variance filter ,VF, can detect targets this weak, or weaker in some cases, over the 

extended range: 0.02 to 0.25 [ppf]. The algorithm involves simple recursive steps easily implemented 

in hardware which provides a recursively updated estimate of the following quantity for each pixel: 

(temporal variance) - (long time baseline variance). The quantity is zeroed unless positive. The 

variance filter estimates the change in temporal variance by calculating the short-term variance and 

subtracting the estimated long-term variance. 

 

The baseline algorithm consists of four steps per pixel done in sequence and recursively updated with 

each new temporal frame of data. The four steps correspond to the four equations below; the steps 

involve exponentially weighted averages of 16 or 32 frames (nominally). 

 

 Step 1 updates the 32 frame average M32 of the input data for each pixel. 

 Step 2 updates the 16 frame average estimate of the variance defined as (input-M32)2. 

 Step 3 generates a change in variance (zeroed unless positive) by subtracting from Step 2, a 

baseline estimate of the pixel variance given by the 32 frame average of Step 2. 

 Step 4 updates the 16 frame average of Step 3 providing the displayed value of the variance 

filter (VF). 

 R1-R4 in the next equations represents the recursive output of these steps for each pixel with 

each new input frame. The brackets with subscripts refer to the recursive frame average 

computed as explained subsequently. 

 

(3.2)      
( )

1 32

2
2 1

16

3 2 2 32

4 3 16

1.    

2.    

3.      0,     0

4.    

R input

R input R

R R R if else

R R

=

= −

= − ≥

=

 

 

 

 



       Project Report ‐ ʺSpatial and temporal point tracking in real hyper spectral imagesʺ 

Benjamin Aminov, Ofir Nichtern, Stanley Rotman  

Page 29 of 102 

The exponentially weighted average for arbitrary vector of samples x is given in the following: 

 

(3.3)      [ ]
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ix x k j
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−

=
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⎝ ⎠

∑  

 

where k is the kth input sample (which is the most recent sample), i is the number of previous samples 

participating in the average calculation (including the most recent sample). 

 

The VF responds to moving targets of positive or negative contrast. Typical targets of interest are 

positive contrast. For such cases, a preprocessing technique based on morphological image processing 

but implemented by median filters is applied and further improves the SNR performance of the 

algorithm. 

3.2.3.2 Performance metrics 

There is a need for defining proprietary performance metrics for point target detection in consecutive 

frame IR imagery based on temporal processing. This task becomes more challenging when working 

with real world data. Standard metrics are based on some variations of the following equation for gains 

in dB  [12] : 

(3.4)      
( )
( )

/
20log

/
out

in

S C
Gain

S C
=  

 

where S and C are target and clutter measures respectively, in and out denote the data at the input and 

at the output of the relevant algorithm respectively. Usually the values of S are predetermined since the 

target is often embedded into the sequence. The values of C can be taken either as the standard 

deviations or the variances of a single frame. 

 

When working with real world data several issues arise: the signal strength for targets with no 

auxiliary ground truth is not known and must be extracted from the data; the clutter probability density 

function is rarely Gaussian, because of that the clutter is not accurately characterized by standard 

statistical measures; the measure of the initial clutter severity should relate to its temporal non-

stationarity since stationary clutter can be removed by well-designed temporal processing. 
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Reference  [12]  suggests the following desired features for performance metric of temporal algorithm: 

 

1. Have some link to previous practice (for example still employ equation (3.4)). 

2. Be relevant to false alarm threats. 

3. Capable of operating on real targets without auxiliary ground truth. 

4. Be adequate to temporal processing. 

5. Not be unduly influenced by simple processing steps like mean or local mean removal. 

6. Be symmetric in its treatment of the input and filtered output. 

 

The reference suggests two metrics based on equation (3.4). The first metric is called the Variance 

Metric (VM). The ratio (S/C)out is taken as the ratio between the largest target related pixel output to 

the largest non-target output from the filtered output frame/s. The symmetric use of the corresponding 

largest target and non-target input values from the unprocessed frames in the (S/C)in calculation would 

be inconsistent with the features 4 and 5 defined above and does not address the target in terms of its 

surroundings. The Cin is taken as the maximal value of the temporal standard deviation calculated for 

each of the non-target pixels. The approach for determining Sin is not as straightforward since it is 

difficult to determine the intensity of a real target when it moves slowly through sampled imagery. 

Thus the input target strength is characterized as the average of the maximal values of the target pixels 

after subtracting the local background mean estimated from non-target pixels. 

 

The second metric presented in source  [12]  is the Anti-median Metric (AM). An anti-median filter is 

applied on the input and output frame/frames. The filter takes an absolute difference between the 

center pixel and the median of 5x5 block about and including this pixel. The ratios (S/C)out and (S/C)in 

are taken from the largest target value and the largest non-target value from the output and input frame 

respectively. If there are more than one frame, averaging over the number of frames is performed for 

the largest values. 

 

None of the two metrics presented satisfies the desired demands listed above. The complicated 

dynamics of moving targets and evolving clutter recorded on a staring array is hardly captured by a 

single measure.  
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In order to evaluate the algorithm a new metric has been defined. Each frame in the sequence is 

divided into blocks, the size of HxN (30x30 were used).The algorithm is run over 9 blocks – Target 

block and eight adjacent blocks. The SNR of the target block (TB) and its eight adjacent non-target 

blocks (NTB) are calculated. Afterwards, an algorithm score is calculated based on the resulting SNR's. 

 

The block SNR is given as: 

(3.5) 
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where vi,j is the set of pixels belonging to the (i,j)th block, M is a set containing the five pixels with the 

highest gray level in that block, and σ is the standard deviation of the block pixels. The formula 

performs a subtraction between the expectation value of the highest pixels (target) and the expectation 

value of the rest of the pixels (background), divided by the standard deviation of block pixels. Since 

the probability matrices introduce the influence of target pixels on adjacent pixels, these influenced 

pixels might accumulate higher values than uneffected pixels (background), and can be regarded as 

target pixels. This might lower the expectation value of the target, but will lower the standard 

deviation of the background, since these high pixels are higher than the statistics of the background, to 

a more accurate one. 

 

The algorithm score is given as:  

(3.6) 
( )( ) ( ){ }( )

( ){ }( ),

, ,

_ ,

_ , _ ,

i j NTB

i j TB i j NTB

Block SNR i j

Block SNR i j E Block SNR i j
Score

σ
=

= =
⎡ ⎤− ⎢ ⎥⎣ ⎦=  

 

The score is calculated by subtracting between the target block SNR and the expectation value of the 

SNR of the non-target blocks, divided by the standard deviation of the non-target blocks SNR. The 

algorithm always identifies a target in each given block. Since that is the case, the false detection of 

targets should achieve less SNR in these NTB, resulting in higher score. It should be noted that the 

division to blocks is only for the purpose of algorithm evaluation (score), where in real scenarios, the 

frames will not be divided. In these cases the algorithm will produce several high pixels - true and 

false targets. Using the NTB's SNR in the algorithm score simulates the non-target scenarios. In the 

tests, we will vary the number of highest pixels, defined as Max_Numbers, which enter the target 

metric in this way.  We will check the influence of the number of high pixels regarded as ‘target 

pixels’ on the Block_SNR.  
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4 A system for point target tracking in consecutive frame 
hyperspectral imagery 

4.1 General Architecture 

The system performs target detection and tracking in three steps. The first step is to transform the three 

dimensional hypercube into a two dimensional image using one of the well known hyperspectral 

reduction algorithms. The second stage involves a temporal separation of the images sequence into 

sub- images sequence and the usage of a variance filter (temporal processing) to detect the presence of 

targets from the temporal profile of each pixel groups (implementation of  a variance filter on the sub-

temporal profiles promise a pixel velocity at new sequences), while suppressing clutter specific 

influences. The third step is target detection and tracking based on the TBD approach and implemented 

using DPA that proved to be an effective algorithm for the tracking of moving targets with low SNR. 

The general system architecture is given in Figure 6. 
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Figure 6: General system architecture. 
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4.2 Hyperspectral reduction algorithm 

Three different reduction tests were applied on each temporal hypercube individually. Each of these 

methods is characterized by a mathematical operator, which is calculated on each pixel. In every 

frame, a map of pixel scores is received (the result of the mathematical operator) and used to create the 

movie. 

4.2.1 Test 1 - Spectral Average 

Implementation of a simple spectral average of each pixel: 

 

(4.1)      1( ) n
n

E x x
N

= ∑   

where x denotes a pixel's spectrum, xn the spectral value of the nth band, and N is the number of 

spectral bands. 

4.2.2 Test 2 - Scalar Product  

Implies a simple scalar product of the pixel's spectrum (after mean background subtraction) with the 

known target spectral signature:  

 

 (4.2)      Scalar Product  ( )Tt x m= ⋅ −  

4.2.3 Test 3 - Matched Filter 

The model assumed is the linear mixture model (LMM) and a known target signature. The Matched 

Filter detector given in equation (2.10) is rewritten as follows: 

 

(4.3)      1( )TMF t x m−= Φ −  

where x is the pixel being examined, t is the known target signature, and m and Φ are the background 

and covariance matrix estimations, respectively. Compared to (2.10), the expression given in (4.3) 

ignores the constant denominator and explicitly states the background subtraction procedure prior to 

applying the filter. 

 

The background estimation is performed on the closest neighbors, which definitely do not contain 

target; for example, if the target is known to be at most two pixels wide, the background is estimated 

from the 16 surrounding neighbors as illustrated in Figure 7. 
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Figure 7: Pixels used for background estimation for 2x2 pixels target. 

 

Each of the tests mentioned above were run with a different target factor (intensity). This intensity can 

be controlled manually by the hyperspectral data creation algorithm, and it is an external parameter to 

those test run mentioned above. The higher the target factor value, the stronger the intensity of the 

implanted target, applying less difficulty to the detection and tracking algorithm. The implantation 

model of the target is directly proportional to the target factor (intensity of implantation).  

4.3 The temporal processing algorithm 

Overall, the input to the first stage is a hyperspectral cube; the output of the first stage is a two-

dimensional image obtained from the hypercube. A buffering of several such images is needed in 

order to obtain a sequence long enough to perform temporal processing. The input for the temporal 

processing algorithm is a temporal profile of a pixel. Figure 8 defines our terminology at this stage. 

j  
Figure 8: Definitions at sequences after hyperspectral reduction algorithm. 

The temporal processing algorithm start with a temporal separation of each temporal profile to sub-

temporal profiles to achieve target moving at a pixel velocity from images containing targets moving 
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at a sub-pixel velocity. For example, the profile at Figure 9 (above) is an input to the temporal 

separation as shown at Figure 9 (below). The number of sub profiles is defined by: 

 

(4.4)      0

0

-  
-

N Gj
G G

=  

 

where N is the number of frames at profile, G0 is the overlap between each of sub-profiles and G is the 

sub-profile length. 

 

 

5 0 5 5 6 0 6 5
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0 4 5 5 0 5 5
0

5

1 0

1 5

2 0

2 5

3 0

3 5

3 0 3 5 4 0 4 5
0

5

1 0

1 5

2 0

2 5

3 0

3 5

2 0 2 5 3 0 3 5
0

5

1 0

1 5

2 0

2 5

3 0

3 5

1 0 1 5 2 0 2 5
0

5

1 0

1 5

2 0

2 5

3 0

3 5

2 4 6 8 1 0 1 2 1 4
0

5

1 0

1 5

2 0

2 5

3 0

3 5

 
Figure 9: Profile with target before (above) and after (below) temporal separation1. 

 

Afterwards, the temporal processing algorithm is applied. The temporal processing algorithm is based 

on a comparison of an estimation of the overall DC estimation of the sub-profile (DC estimation 

calculated for the overall profile in order to achieve best or more accurate DC estimation, the DC 

estimation of the sub-profile chosen by the relation location at the overall profile) and the single 

highest fluctuation which occurs within the sub-profile. In order to estimate the overall temporal DC 

estimation (baseline background estimation) was performed using a long term window of samples. 

The background estimation is performed by calculating a linear fit by means of least squares 

                                                 
1 The specific profile was chosen with target – peak at frame 10; the profile length is 95 frames; the sub-profile length is 10 

frames and overlap is equal to 5 frames. 
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estimation (LSE)  [13] . The fluctuation or short-term variance estimation is performed on a shorter 

term window of samples, after removing the estimated baseline background. The algorithm is 

presented in the following two steps, although in practice the processing can be performed in real time 

using a finite size buffer: 

4.3.1.1 Background estimation using a linear fit model  

The background can be referred as the DC level of the temporal profile: the DC level is constant for 

noise dominated temporal profiles but time varying when a clutter is present. The DC is estimated in a 

piecewise fashion by using a long term sliding window and performing estimation on each set of 

samples separately. The number of samples of each long term window is denoted by M. The following 

linear model is used for estimating the DC; for the sake of simplicity the description of the estimation 

is relevant for a single window: 

(4.5)      [ ];  1  2    Ty ax b n x M= + + = …  

 

where n is the noise, a and b are the coefficients which must be estimated, y is the DC signal. The goal 

of this step is to estimate the long-term DC baseline using a least squares fit to the linear model 

represented by coefficients vector ˆˆ 
T

a b⎡ ⎤
⎣ ⎦ . 

(4.5) can be rewritten as follows: 

(4.6)      y X nβ= +  

where 
b
a

β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 

1 1
1 2

1

X

M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

# #
 

 

Using least squares estimation the following equation for β̂  is obtained: 

(4.7)      ( ) 1 b̂ˆ;   =
â

T TX X X yβ β
− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

The estimated DC of a single window becomes: 

(4.8)      ˆŷ X β=  
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The estimated DC of the complete signal is obtained after performing the above calculations for each 

window separately. Figure 10 shows two synthetic temporal profiles (one with the target implanted 

and a second with identical noise but without a target) and their estimated DC signals.  
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Figure 10: DC estimation on a signal with target and the same signal without a target. 

 

The estimated DC of the sub-profile is chosen by the relation location at the complete pixel, Figure 11 

are show the DC estimation on a signal with a target and same signal without the target at the sub-

profiles separations point of view. 

 

 

 
 

 
Figure 11: Sub profile DC estimation on a signal with target and the same signal without a target. 

4.3.1.2 Short term variance estimation 

Step 2 calculates the short-term variance after subtracting the estimated long term DC at each sub-

profile. The complete DC signal obtained in the previous step is denoted by DCj, where j denotes the 

index of sub-profile, the number of sub-profiles is defined at (4.4). The DCj is subtracted from the 

temporal sub-profile Pj: 

(4.9)      ˆ
j j jP P DC= −   
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The variance estimation is calculated by using a sliding short term window and performing estimation 

on each set of samples separately. L denotes the number of samples of each short term window. The 

short term variance of each window is estimated as follows: 

 

(4.10)      ( )2

1

1 ˆ
L

j
i

P i
L

σ
=

= ∑  

 

For window size of L samples, overlap of Lo samples and sub-temporal profile of G samples, the 

number of windows W is given by: 

(4.11)      0

0

1G LW
L L

⎡ ⎤−
= +⎢ ⎥−⎣ ⎦

 

 

Finally, the maximum variance value of a given temporal profile is given by: 

 

(4.12)      { }2 2
max 1 Wmax i iσ σ≤ ≤=  

 

where σi
2 is the estimated variance of the ith window. 

 

An example of the variance response to the presence of a target is shown in Figure 12. The assumption 

is that the presence of the target will lead to a short-term variance increase. The DC subtraction has a 

clutter suppression effect since the long-term DC tracks the clutter influence on the temporal profile. 

The graphs of Sub Profile 4 and 5 were scaled to the range of the pixel's values in the profile. The 

scaling was done in order to show the range of the variance estimation values.  

 

Finally, a likelihood ratio based metric is used to evaluate the final score of each sub-temporal profile. 

The likelihood ratio in this case is given by: 

 

(4.13)      
0

1
2
1
2
0

ˆ:      
ˆ:      
ˆ
ˆ
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where P̂ is the zero-mean temporal profile, n is noise and t is the target signal. 2
1σ̂  is the estimated 

variance when assuming a target is present; 2
0σ̂  is the variance estimated assuming the absence of 

target.  

 

 

 
Figure 12: Example of variance estimation on a synthetic signal. 
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In our model these variances are estimated as follows: 

(4.14)      

2 2
1 max

2 2
0

1

ˆ ˆ
1ˆ

K

i
iK

σ σ

σ σ
=

=

= ∑ �
 

 

where 2
iσ�  for 1 ≤ i ≤ K denotes the K minimal variance values of each temporal profile. The value of 

K is chosen to be smaller than W, so as not to include values which might be caused by the presence of 

the target.  

 

In this case, the final score of each sub-profile is given by: 

(4.15)   
2
max

2

1

ˆ
         = Defined by 5 highest or lowest values

1 ˆ
j K

i
i

Score K

K

σ

σ
=

=

∑
 

 

The algorithm performance depends on a wise choice of parameters: the short-term, long-term window 

size and sub-profile length. The long-term window size serves the baseline DC estimation. Since the 

pixel might be affected by clutter, the baseline DC is not constant but rather changing. It is assumed 

that the entrance of clutter will cause a monotonic rise or fall pattern in the values of the pixel’s 

temporal profile. Thus, the long-term window should be long enough to perform an accurate 

estimation, on one hand, and short enough to closely track clutter influence, on the other. In any case, 

the long-term window should be at least longer than the target base width to avoid suppressing it  [14] , 

long-term window is calculated to the overall profile to achieve best estimation of a DC level, the 

long-term window of the sub-profile chosen by the relation location at the overall profile). The short-

term window is used for variance estimation. It should be matched (or reduced) to the target width 

(which depends on the target velocity). If the short-term window is significantly longer than the target 

width, the variance change caused by the target will be diminished. Sub-profile length services to 

achieve a pixel target velocity. It should be matched (higher) to the target width. The importance of 

these three window sizes and the overall window set parameters will be further discussed. It is 

important to emphasis that the temporal algorithm presented here doesn’t assume a particular target 

shape and width. It does assume a maximum spatial size of the target (affecting the target temporal 

profile) and a positive adding of the target to the background. 
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4.4 Performance metric 

As stated in section  3.2.3.2, defining a performance metric for the temporal processing algorithm for 

both synthetic and real data is a challenging task. In this work, a spatial statistic metric is defined for 

evaluating performance on the real data sequences. The metric divides the output image into spatially 

equal blocks and grades each block with a statistically based score. This process will be described in 

the following sections. 
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4.5 Dynamic Programming Algorithm 

The algorithm is implemented using the following assumptions: 

 

1. The target is the size of a pixel or less. 

2. Only one target exists. 

3. The target moves in any possible direction. 

4. Target velocity is within 0-2 [pixel/frame]. 

5. Images are too noisy for using a detect threshold on a single frame. 

6. Jitter is up to 0.5 [pixel/frame] in horizontal and vertical directions only, uniformly 

distributed. 

 

Since the target velocity is within the range of 0-2 [ppf] and a possible jitter of 0.5 [ppf], the pixel can 

move up to 2.5 [ppf] in the horizontal and vertical directions, hence a valid area from which a pixel 

might origin from in the previous frame is a 7x7 matrix. Such a search area can be resized according to 

a different velocity range and jitter, in the fashion described above. This search area will define the 

probability matrices which contain the probabilities of pixels in the previous frames being the origin of 

the pixel in the current frame. To take into account the unreasonable change of direction, penalty 

matrices have been introduced which are used to build the probability matrices for the different 

possible directions of movement. These matrices give high probabilities to pixels in the estimated 

direction and decreasing probabilities (punishment) as the direction vary from the estimated direction. 

4.5.1 Accumulated Score Matrix 

The Accumulated Score Matrix (ASM) is not based on a single frame, but rather collects information 

for each pixel along the sequence. The ASM contains the following information: 

• The pixel’s accumulated score. 

• Direction (angle) from which the suspected pixel has arrived. 

• Summation of the multiplications between the accumulated score from the previous frame 

with the punishment matrix in the estimated direction (will be elaborate later on). 

• The maximum value of the multiplications between the accumulated score from the 

previous frame with the punishment matrix in the estimated direction (will be elaborated on 

later). 

• The index of the pixel in the previous frame from which the pixel originated, maintaining 

the tracks with the highest probabilities. 
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The ASM is of size [N,M,frames,5] , where NxM is the frame size, frames is the number of frames, and 

5 is the number of variables we save – score, direction, sum, max and index. The sum and max can be 

discarded and are saved only for purpose of later investigation of the algorithm performance. 

 

The accumulated score matrix consists of two parts – the current frame score and the accumulated 

score, and is defined as: 

(4.16) 
( ) ( )

( ) ( )

( ) ( ) ( )( )

,,
, ,

max ,, ,

3 3
g w Score i x j yi j n 1i 3 j 3Score x y a Oscol x y bn n

1 g w Score i x j yi j n 1 i 3 3 j 3 3

direction

direction

⋅ ⋅ + +∑ ∑ −= − = −= ⋅ + ⋅

+ − ⋅ ⋅ + +
− = − = −

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥

⎧ ⎫⎢ ⎥
⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦… …

 

 

where:  

Scoren (x,y) - the accumulated score for trajectory that ends at the current pixel,  

Anti-meann (x,y) - the score given by the preprocessing stage (anti-mean) to the current pixel at the 

current frame,  

a - the anti-mean co-efficient determining the amount of influence on the total score,  

wi,j - an element of the probability matrix, determining the probability of the (i,j) pixel to be the origin 

pixel from the previous frame, based on target speed, jitter and approximated direction of movement,  

b - the memory persistence co-efficient, determining the influence of the accumulated score, 

∑w·Scoren-1 - the summation value of the multiplications between the accumulated scores in the 7x7 

matrix and the probabilities,  

g - the sum co-efficient determining the amount of influence of the summation on the accumulated 

score,  

max(w·Scoren-1) - the maximum value of the multiplications between the accumulated scores in the 

7x7 matrix and the probabilities,  

(1 – g) - the sum co-efficient determining the amount of influence of the maximization on the 

accumulated score. 

 

The new accumulated score for each pixel is given as a combination of the score from the whitening 

stage of the current frame and a function of the accumulated score from the previous frame. To 

calculate the function of the accumulated score, a 7x7 temporary matrix is created by multiplying the 

probability matrix in the assumed direction, W(direction), with the elements of the ASM of the 

previous frame. The function is composed of two parts: the sum of all the 49 values of the calculated 

temporary matrix, and the maximum value of the calculated temporary matrix. Several parameters 
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have been introduced into the formula to allow for changes in the weight of each part on the calculated 

accumulated score, enabling flexibility in the tuning of the system to the optimal condition, if one 

exists. A summary of the parameters will be given later on in Section  4.5.4. 

 

4.5.2 The probability matrix W 

This matrix contains the probabilities of the pixel under investigation (suspected to be a target), to 

originate from a certain location in the previous frame. There are nine different probability matrices 

for each of the possible directions – 0° ÷ 315° at jumps of 45° (directions 1-8), and standing in place 

(direction 9). The probability matrix is given as: 

 

(4.17)   ( ) ( ) ( )
( )

punishment frame
basic

punishment frame

W direction W
W direction p W 1 p

W direction W
⋅

= ⋅ + − ⋅
⋅∑

 

 

where  

W (direction) - the probability matrix calculated for the specific direction,  

Wbasic - the basic probability matrix that includes the effects of speed and jitter,  

p - the Wbasic co-efficient determining the influence of Wbasic on W(direction),  

Wpunishment (direction) - the punishment matrix of a given direction,  

Wframe - the matrix used to fit Wpunishment to the set of velocities,  

(1-p) - the Wpunishment (direction) co-efficient determining the influence of Wpunishment (direction) on 

W(direction). 

 

Figure 13 below shows the 7x7 punishment matrix Wpunishment (→) (0°). The estimated region of arrival 

gets the highest values, 12+24 in this case. The values decrease until reaching the cells opposite to the 

estimated direction. As can be seen, the punishment on change of direction can be controlled by the 

parameter y that changes the ratio of punishment. Setting y=24 achieves the highest ratio, whereas y=0 

achieves a very low ratio. By using negative values for y the ratio can be further reduced. There is a 

tradeoff between the need for punishment on change of direction and the need for adaptation to 

maneuvering targets. 
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 (3+24)-y (4+24)-y (5+24)-y (6+24)-y (7+24)-y (8+24)-y (9+24)-y 

(2+24)-y (3+24)-y (4.5+24)-y (6+24)-y (7.5+24)-y (9+24)-y (10+24)-y 

(1+24)-y (1.5+24)-y (3+24)-y (6+24)-y (9+24)-y (10.5+24)-y (11+24)-y 

(0+24)-y (0+24)-y (0+24)-y (0+24)-y (12+24)-y (12+24)-y (12+24)-y 

(1+24)-y (1.5+24)-y (3+24)-y (6+24)-y (9+24)-y (10.5+24)-y (11+24)-y 

(2+24)-y (3+24)-y (4.5+24)-y (6+24)-y (7.5+24)-y (9+24)-y (10+24)-y 

(3+24)-y (4+24)-y (5+24)-y (6+24)-y (7+24)-y (8+24)-y (9+24)-y  
Figure 13: 7x7 punishment matrix in the estimated direction →. 

 

The W(direction) matrix is a superposition of the basic probability matrix, Wbasic, encompassing the 

target and the allowed jitter, and the punishment matrix, Wpunishment (direction), in the assumed 

direction with normalized elements. Figure 14 below shows the basic probability matrix, the eight 

punishment matrices for the different directions, and the resulting nine probability matrices. The basic 

probability matrix encompasses the target speed and the allowed jitter, and represents standing targets. 

The punishment matrices give high probability to the group of pixels in the assumed direction, and 

'punish' pixels as they differ from that direction. In the figure below, the target is assumed to be at a 

velocity range of [0..1], thus only a 5x5 matrix is needed (including the assumed jitter) and the border 

pixels are zeroes accordingly using Wframe. The p parameter was set to 0.5, giving equal weight to 

Wbasic and Wpunishment(direction), and the punishment parameter y was set to 24. 
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(a) (b) (c) 

  
Figure 14: (a) the 7x7 Wbasic matrix, after using the frame matrix (b) the eight 7x7 Wpunishment matrices for the 

different directions (c) the nine W(direction) matrices for p set to 0.5, and velocity at range [0..1]. 
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4.5.3 Direction Calculation 

To use W(direction), the direction from which a pixel originated has to be found. The calculation of 

the direction starts by creating a temporary 7x7 matrix in which the adjacent pixels scores (including 

the pixel under investigation) will be saved. Afterwards, the direction of each pixel from the previous 

frame is found (the direction is retrieved from the ASM). Each pixel is given a parameter Var that gets 

a value according to the pixel's direction in the previous frame and its direction relative to the pixel 

under investigation (central pixel). The parameter gives a maximal value for identical directions and 

minimal value for opposite directions. The final score of each pixel in the temporary matrix is defined 

as:  

 

(4.18)   ( ) ( ) ( )1 ,_ _ , ,n x ySource Pixel Score x y Score x y w direction Var−= ⋅ ⋅  

 

where Scoren-1(x+i,y+j) is the pixel's accumulated score from the previous frame, w(i,j) is the value of 

W(direction) in the (i,j) coordinate and in a direction relative to the pixel under investigation, and Var 

is the direction difference parameter that was introduced above. The pixel with the highest score is 

chosen as the 'source pixel'. Since each group of pixels in the matrix belongs to a specific direction, the 

direction is now known, and is saved in the ASM. 

 

To summarize, to calculate the pixel’s direction: 

 

1. Create a 7x7 temporary matrix. 

2. Find the direction of the pixels in the previous frame. 

3. Calculate Var according to the direction consistency. 

4. Calculate the temporary matrix score, Source_Pixel_Score(x+i,y+j). 

5. Find the pixel with the highest score, and deduce the direction. 

 

4.5.4 Parameter Summary 

In the previous sections, several parameters that control the algorithm functionality were introduced. 

These parameters are of high significance since they allow checking the influence of changes in the 

weights each part is given on the determination of the ASM, allowing the algorithm to work better, and 

eventually track and detect targets in an optimal fashion. A summary of the parameters used in the 

algorithm (a,b,p,g,y):  
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a - the whitening co-efficient determining the amount of influence on the total score,  

b - the memory persistence co-efficient, determining the influence of the accumulated score,  

p (and (1-p)) - the Wbasic (Wpunishment(direction)) co-efficient determining the influence of the 7x7 

Wbasic (Wpunishment(direction)) matrix on W(direction) probability matrix,  

g (1-g) - the sum co-efficient determining the amount of influence of the summation (maximum) on 

the accumulated score,  

y - the punishment parameter. 

 

Previous tests on the algorithm have shown that optimal results occur for the following parameter 

values: a=1, p=0.5, y=24. The next section deals with the issue of the memory coefficient and 

discusses the other two parameters, b and g. 



       Project Report ‐ ʺSpatial and temporal point tracking in real hyper spectral imagesʺ 

Benjamin Aminov, Ofir Nichtern, Stanley Rotman  

Page 48 of 102 

4.5.5 The effective memory coefficient (EMC)  

As can be seen from the accumulated score formula, b determines the memory persistency or the 

decaying influence of the scores from the previously processed frames. To prevent the algorithm from 

'exploding' an effective memory coefficient (EMC) has to be within the range of values [0..1]. The 

EMC is introduced due to the fact that b itself is not the memory coefficient, since it is multiplied by g 

or (1-g). The smaller b is the less effect the previous frames have on the current score and the overall 

score will be lower. A high value of b will cause high memory persistency and the system might suffer 

from low adapting capabilities, which is important in cases of altering direction targets. Correct value 

of EMC can make the detection process much more effective by getting rid of old data, which is no 

longer needed for the updated decision making, thus providing faster detection capabilities of well 

maneuvering targets.  

 

In previous research a preferred memory coefficient was obtained: β=0.8. The formula for the 

accumulated score in the DPA-1D was: Scoren = anti-meann + β · max{w · Scoren-1} where 

β=0.8/max{w} so that 0 ≤ β ≤ 1. In the current DPA-2D, the score formula is: Scoren = anti-meann + 

β·[g · sum{w · Scoren-1}+(1-g)·max{w · Scoren-1}].  

  

Similarly to DPA-1D we demand:  b = β = 0.8 / [g · sum{w} + (1-g) · max{w}]. By substitution of g = 

0, g = 1, we get:  βg=0 = 0.8 / max{w} , βg=1 = 0.8 / sum{w}. After rearrangement, we get the following 

formula for EMC: 

 

(4.19) { } ( ) { } ( )
1

11 1
1 0

1 max
1

0.8 g g

g sum w g w
b g gβ β β

−
−− −

= =

⎡ ⎤⋅ + − ⋅
⎡ ⎤= = = ⋅ + − ⋅⎢ ⎥ ⎣ ⎦

⎣ ⎦
  

 

Using the probability matrices achieved empirically an appropriate range for b can be found so that 0 ≤ 

EMC ≤ 1. From the calculation sum{w}  =  1 for all directions, max{w}  =  0.1054 for directions 1 to 8, 

and max{w} =  0.1719 for direction 9 (standing in place). Substituting that we get:  βg=0  =  7.5913, for 

direction 1 to 8, and βg=0  =  4.6545 for direction 9, and βg=1  =  0.8 for all directions. Putting that into 

β, we get : β = [1.1183 · g + 0.1317]-1 for direction 1 to 8, and β = [1.0352 · g + 0.2148]-1 for direction 

9. So now we have a formula that tells us what values to give b for a given value of g. Since 0 ≤ g ≤ 1, 

a graph of b vs. g can be plotted, as in the graph below, and a valid range of values for b can be found. 
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Figure 15: b vs. g for the direction 1-8 (solid line)  and direction 9 (dashed line)  

 

As can be seen from the graph, a valid range of values for b is about [0..8] for g=0 and [0..1] for g=1. 

Since βg=1 =  0.8 for all directions, memory values of around 0.8 should give the optimal performance 

for g=1, regardless of the scenery. Since the targets in the tested IR sequences move at sub-pixel 

velocities, mainly 0.2-0.3 [ppf], most of the time they are on direction 9 (standing in place), thus we 

expect the algorithm to be most effective for  βg=1 = 0.8 and βg=0 close to 4.65.   

 

Finding the optimal b’s for the different scenes will be done by optimizing an algorithm score, given 

by a metric that will be defined in the following section. 
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5 System evaluation 

5.1 Evaluation of the temporal algorithm on synthetic data 

5.1.1 Synthetic IR frames creation 

In order to evaluate the performance of the spatial and temporal tracking algorithm, synthetic temporal 

profiles, which simulate different types of clutter and background behavior, are created. Target signal 

is implanted into these background signals in order to simulate target traversing both clutter and noise 

dominated scenes.  [11] states that the temporal noise is closely matched to white gaussian noise 

(WGN), therefore WGN at various SNRs is used to test the algorithm. SNR is defined as:  

 

(5.1)      MaxTSNR
σ

=  

 

Where σ2 is the noise variance, MaxT is the target's maximum peak amplitude. 

 

Figure 16 below shows the different types of signals used to test the algorithm. 

 

   

  
Figure 16: Synthetic background signals. 
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The type 1 signal simulated relatively fast and small clutter formation passing through a pixel. The 

type 2 signal simulates slowly entering clutter; Type 3 is the symmetrical slowly existing clutter. Type 

4 simulates a noise dominated scene in which the base time line is constant; the type 5 signal serves as 

reference to the best-case scenario which comprises a constant zero-mean base line. 

 

Target temporal profiles are characterized by a rapid rise and fall pattern. This behavior might be 

modeled by a half sine or triangular shape as shown in Figure 17. 
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Figure 17: Synthetic target examples. 

 

The base width corresponds to target velocity. Simulations show that there are no significant 

performance differences between the sine and triangular shaped targets  [1] . 

 

Figure 18 on the next page shows the various background models with the sine shape implanted at an 

SNR of 4. 
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Figure 18: Example of synthetic signals with the implanted sine target, SNR=4. 
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5.1.2 Examination of the temporal algorithm on synthetic data 

This section demonstrates the algorithm's operation on the synthetic data described in the previous 

section. The following parameters affect the algorithm's performance: 

 

1. The background type. 

2. The SNR, which is based on noise variance and the target's width and amplitude. 

3. Parameters of the windowing procedure: the window sizes to estimate the background baseline 

DC, the grouping spatial window size to convert sub-pixel target velocity to the pixel target 

velocity at the frame (as an input to the DPA), size of short term variance at each sample and at 

each grouping and the step size of each (Overlapping). 

The following subsection describes the dependence of the performance of the algorithm on these 

factors. 

5.1.2.1 The background type 

The background type affects mostly the DC estimation capabilities of the algorithm. It is expected that 

signals having constant DC level (signals of Type 4 and 5) and signals having slowly changing DC 

(signal of Type 2 and 3) would be the easiest in terms of DC estimation, since the linear regression is 

capable of estimating the two parameters of the linear model. Signals of Type 1 are the most 

problematic since their DC is not overall fitting a linear model, but depends on piecewise DC 

matching windows sizes as will be explained later. 

 

Figure 18 until Figure 28 illustrate the algorithm's operation on the various signal types. The figure 

shows the results of signals with and without implemented target. The DC signal is plotted as well as 

the estimated variance values which were calculated after subtracting the estimated DC from the 

signal. The simulation was run for DC window of 20 samples, DC overlap of 50%, sub temporal 

profile of 15 samples, overlap between sub profiles of 5 samples and SNR of 4. The target width is 10 

samples. 
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Figure 19: Example of the temporal algrithm operation on the Type1 signal with target. 

As can been seen in Figure 19 the increase in the variance of sub-profiles 2, 8 and 9 occurs due to the 

imprecise DC estimation of the background. This case simulates a cloud entering and exiting. 
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Nevertheless, the variance score of the target (sub-profile 5, 6) is still much higher than sub-profiles 2, 

8 and 9. The variance of the other sub-profiles (1, 3, 4, 7) is close to zero. 

 
Figure 20: Example of the temporal algrithm operation on the Type2 signal with target. 

 

 
Figure 21: Example of the temporal algrithm operation on the Type3 signal with target. 

The DC estimation for signals Type 2 and 3 is precise since the signal has a linear model. The variance 

increases significantly when the target passes thru the pixel and is close to zero at other times. 
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Figure 22: Example of the temporal algrithm operation on the Type4 signal with target. 

 

Figure 22 and Figure 23 show a similar behavior of signal for different DC levels. As expected, the 

variance of each of signal (Type 4 and Type 5) is the same. 
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Figure 23: Example of the temporal algrithm operation on the Type5 signal with target. 

 

The next figures show the results of temporal processing (variance estimation) for the different signal 

types, in the case where no target is present. Not all of sub-profiles are shown, since the exhibited 

variance values are around zero. 
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Figure 24: Example of the temporal algrithm operation on the Type1 signal without target. 

 

By analogy to Figure 19, the variance increases at sub-profiles where the cloud enters and exits. Such 

cases (without target) may cause false alarms (FA). 
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Figure 25: Example of the temporal algrithm operation on the Type2 signal without target. 

 

 
Figure 26: Example of the temporal algrithm operation on the Type3 signal without target. 

 

 
Figure 27: Example of the temporal algrithm operation on the Type4 signal without target. 

 

Figure 25 to Figure 28 show that the temporal processing score is close to zero for signals without a 

target.  
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Figure 28: Example of the temporal algrithm operation on the Type5 signal without target. 

 

At this point a simple means of performance evaluation is the ratio of the score obtained from the 

synthetic signal which contains the target and the same signal, but without a target (Target/Noise or 

T/N ratio). Table 1 shows the T/N ratio of the different signal types obtained by averaging 500 

rehearses. 

 

It is important to state that the T/N ratio is not the metric used to evaluate the algorithm as will be 

shown later. 

Signal Type T/N Ratio T/N Ratio  [14]

1 1.8098 1.72 

2 10.9558 4.34 

3 10.9658 4.41 

4 10.9659 4.29 

5 10.9659 4.41 

Table 1: Target/Noise ratio for varios signal types. 

 

As expected, the performance for signal Type 1 is the worst among the different signals. Signals 2-5 

all have similar performance. If we compare between our sub-temporal processing algorithm and 

between a temporal processing algorithm as described at  [14] it can be clearly seen (Table 1, 2nd 

column) that the performance has increased by at least a factor of two for signals 2-5, and has an 

insignificant increase for signal of Type 1. 
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5.1.2.2 The SNR 

As in many other applications, the SNR is an important factor which affects the temporal algorithm's 

performance. The higher the SNR, the better the algorithm's performance is expected to be since both 

the DC and variance estimation will be more accurate. The results are shown in Figure 29. 

 

 
Figure 29: T/N ratio Vs. SNR for different signal types. 

 

The algorithm has similar response for signals of Type 2-5, in agreement with the expectations – the 

performance increases as the SNR increases. The performance for signal Type 1 behaves differently – 

it increases with the SNR but at a slower rate than signals 2-5 and decreases later on. Roughly, the 

curve of signal Type 1 is a scaled version of the curves of signals of Type 2-5; the scaling factor 

originates from the inaccurate DC estimation, as will be detailed later. Since the DC of this signal 

doesn't fit to a linear model, and the estimation is performed in piecewise fashion, the size and the 

position of the windows used to perform the estimation act as limiting factor on the performance. 

5.1.2.3 The window sizes 

The window size for the baseline DC estimation, as well as the window size for the short term 

variance at the sub-profile has a great impact on the algorithm performance.  

 

Larger window sizes for baseline DC estimation should improve the DC estimation in cases where the 

background changes monotonically (like signals of types 2-4). A too large a DC estimation window 

size might, in some cases, lead to inaccurate tracking of the clutter form and cause high false alarm 
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rates (e.g., like in Type 1 signals). Thus, for background profiles the optimal window size is 

determined by the background type – for noise dominated background or backgrounds containing 

monotonically changing clutter, larger window sizes are preferred; for background containing rapidly 

changing clutter shorter window is preferred. For target temporal profiles, the larger the DC window, 

the higher the profiles score since the presence of the target peak will less influence the DC estimation, 

obviously estimated DC which tracks the target form is highly undesirable since it leads to target 

suppression. Thus the optimal DC window regarding the overall algorithm performance is the one 

which closely tracks background changes on one hand, but is large enough not to track the target peak. 

 

The sub-temporal profile length should be matched to the target sub-pixel velocity which expressed as 

the base width of the peak of target profile and the sub-pixel velocity, although there is no acute need 

for an exact match. The short term variance window size at the sub-profile should be matched to the 

target rise time, although there is no acute need for an exact match as at the sub-temporal profile 

length. A sub-profile length which is larger than the target width will disable the ability to track/detect 

target with a sub-pixel velocity. Alternatively, a sub-profile length which is smaller than the target 

width will allow too few samples at the sub-profile.  

 

A short time variance window which is larger than the target rise time will result in lower score for the 

target profile, since the variance calculated on each window is normalized by the window's length. 

Thus for target profile the optimal variance window size is expected to be less than or equal to the sub-

profile length, but not larger. In fact, the shorter the window, the higher the score of target profile. On 

the other hand, a short variance window is more sensitive to random noise spikes in temporal profile 

dominated by noise. Therefore the optimal variance window size for noise dominated profiles will 

tend to be as large as possible in order to diminish the effect of noise spikes. The optimal variance 

window for the overall algorithm’s performance is the one which best compromises the need to 

enhance the target profile score (as short as possible) and the need to suppress the noise short-term 

fluctuations (as long as possible). 

 

Another impact is the overlap window between sub-profiles. The overlap window should allow for the 

compensation of low sub-pixel velocity that derives a small sub-profile length. Another aspect of the 

overlap window is the need to create more sub-profiles, as defined at equation (4.4), since more sub-

profiles aids to achieve a more accurate tracking estimation.  
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5.2 Evaluation of the DPA on real data 

As stated in section  3.2.3.2, the performance metric is defined as follows: 

 

The block SNR is given as: 

(5.2) 
,

, ,_ ( , )
i j

i j i j

v

E v M E v M
Block SNR i j

σ

⎡ ⎤ ⎡ ⎤∈ − ∉⎣ ⎦ ⎣ ⎦=  

 

where vi,j is the set of pixels belonging to the (i,j)th block, M is a set containing the five pixels with the 

highest gray level in that block, and σ is the standard deviation of the block pixels. The formula 

performs a subtraction between the expectation value of the highest pixels (target) and the expectation 

value of the rest of the pixels (background), divided by the standard deviation of block pixels. Since 

the probability matrices introduce the influence of target pixels on adjacent pixels, these influenced 

pixels might accumulate higher values than unaffected pixels (background), and can be regarded as 

target pixels. This might lower the expectation value of the target, but will lower the standard 

deviation of the background, since these high pixels are higher than the statistics of the background, to 

a more accurate one. 

 

The algorithm score is given as:  

(5.3) 
( )( ) ( ){ }( )

( ){ }( ),

, ,

_ ,

_ , _ ,

i j NTB

i j TB i j NTB

Block SNR i j

Block SNR i j E Block SNR i j
Score

σ
=

= =
⎡ ⎤− ⎢ ⎥⎣ ⎦=  

 

Using this metric for the algorithm score, the EMC value for optimized algorithm work can be found, 

in both cases of g=0 (the max part) and g=1 (the sum part) in the accumulated score equation.  

 

The DPA algorithm has been applied to several IR sequences containing different scenes and clutter 

degree. Each sequence contains 95 to 100 frames, and the algorithm ran up to 25 frames. The results 

are shown for two IR sequences – na23a and npa. A single frame from the IR sequences showing the 

targets locations are shown in the figure below (in white rectangles). The na23a sequence has a single 

target moving in clear sky from right to left at  v ≈ 0.3 [ppf]. The npa sequence has two targets moving 

at v ≈ 0.2 [ppf], the left target is engulfed in clouds moving from bottom to top and the right target is 
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moving in scarce clouds. The algorithm will be applied on the surrounding of the left target, since it is 

of more interest due to its severe clutter condition. 

  
(a) (b)   

Figure 30: A single frame from (a) na23a (b) npa sequence showing the target’s locations (white rectangles). 

 

The DPA is applied for two different cases: g = 0 and g = 1, for different values of b, to check the 

effect of each part of the accumulated score formula on the algorithm results. The metric applied 

afterwards is used to find optimal values of b's. Afterwards, the effect of  Max_Numbers (the number 

of pixels with the highest scores considered to be 'target' in the SNR formula) on the algorithm score is 

checked, to make sure the metric gives reliable score performance for the different EMC's (b) . 
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5.2.1 The Preprocessing Stage (anti-mean) 

The algorithm starts by whitening the input IR sequence. According to the introduced score metric, the 

sequence is divided into blocks. The target block and the eight surrounding blocks are then whitened 

(anti-mean) to reduce the clutter and emphasize the target, as can be seen in the figure below from the 

1st frame of the na23a sequence. 

 

 

 

           

           

           

           

           

           

           

           

           

   
 (a) (b) (c)  

Figure 31: (a) 1st frame of the original na23a sequence divided into blocks, (b) 1st frame of target block (target at 

center of frame), (c) 1st frame of target block after the preprocessing (ANTI-MEAN) Stage. 

 

The process shown in the Figure 31 is repeated for the entire sequence before proceeding to the next 

stage of DPA (The frames can also be processed individually for a real-time implementation). 

 

5.2.2 na23a sequence 

5.2.2.1 Preliminary results (sampling = 1) 

We start by showing the result for the na23a sequence, g = 0.  Figure 32 shows the algorithm score for 

the range of b = [0...8] at jumps of 0.2. The graph shows the scores for the last six frames, 20-25 in 

this case, for two reasons: 1. some frames might be noisier than the others; 2. we wish to show the 

accumulated score effect. The first reason might cause the target to be dimmer compared to the clutter 

or disappear. In that case, the memory persistence and the accumulation of the score from frame to 

frame helps, leading to the second reason,  the accumulated score helps overcome noisy frames, and 

'accumulates' SNR for the dim target. Looking at the last frames helps to see whether the effect of 

accumulation is enough for the number of frames processed, or whether more frames need to be 

processed. In previous research,  [20]  [21] ), the algorithm was run over 10 to 20 frames, and 20 was 

found to be better, hence 25 frames were taken in this case, to be on the safe side. The graph shows a 

peak at around b = 4.8 for all frames. The rise at about b = 6 is irrelevant since the algorithm was 

unable to track at EMC of about 6 or above. It can be seen that above that EMC, all the frames scores 
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converge, meaning that the EMC is too high and the weight of the current frame is insignificant to the 

accumulated score. It seems that the relevant range for EMC can be narrowed to b = [0…6], for the g = 

0 case. 
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(a) (b)  
Figure 32: (a) The algorithm score for the na23a sequence, g = 0, Max_Numbers  =  5, b = [0…8], and six last frames  

(b) Images of the six last frames after the DPA algorithm. 

 

A rise in the algorithm score is expected as the frames advance. It can be seen the graph Figure 32 (a), 

that the score of the 20, 23 frames is lowest for b < 3.5. That is due to the fact that these frames are 

noisy, as can be seen in Figure 32 (b). Increasing the EMC improves the score in them – more memory 

persistence and less weight to current noisy frame. Since the target moves at v ≈ 0.3 [ppf] (stays in the 

same pixel between pixels most of the time) the expected peak was at around b = 4.65 in agreement 

with the results. 

 

Figure 33 shows the graphs of the standard deviation of the NTB, the expectation value of the NTB 

SNR, the TB's SNR (all vs. b), and the last frame (25) for various values of b. For b = 5.4 the last frame 

shows high values for the trajectory of the target, meaning that the EMC is very high and every pixel 

traversed by the target retained it's high value (Figure 33 (d)). Thus, EMC's higher than that will 

prevent the algorithm from tracking the target, since the trail pixels and the pixel of origin will gain 

higher accumulated score, as will be seen later on (Figure 51). 

 

We continue by showing the results for the g = 1 case in Figure 34. As can be seen from the algorithm 

score, the relevant range of b is [0…1], after which the scores of the various frames converge 

regardless of the EMC. The TB's SNR can be seen to fall at around b = 1. The algorithm score starts at 
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its maximum (mean value) for no memory and drops as the EMC rises, until b = 1. This means that in 

this case, the algorithm is not needed for the detection. 
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(c) (d)  
Figure 33: (a) Standard deviation of NTB's SNR, (b) Expectation value of NTB's SNR, (c) TB's SNR, (d) Last 

processed frame (25th) for various b's. 

 

Figure 35 shows the influence of the EMC on the pixels of the last frame. In the g = 1 case, when 

starting to raise the EMC to too high values (above b = 1), no trail appears as in the g = 0, but a 'snow 

ball' effect starts to build. The 'snow ball' grows until the target is engulfed in it, and no tracking is 

possible. Due to the probability matrix and the summation, pixels close to where the target passes 

grow in their value. If the EMC is high, these adjacent pixels will also receive high accumulated 

scores, and so the ball grows from frame to frame. The ANTI-MEAN component weakens, and its 

weight decreases. Since the current frame influence is negligible, the main influence comes from the 

previous frames. This causes the graph to have constant spaces between the frames. Since the 

expectation values of the blocks grow as the frames progress, the SNR decreases (The target 

expectation value grows, but the 'background' expectation value also grows, so that the numerator 

decrease in the SNR formula). There is a convergence to an asymptotic value, where frame 20 gets the 

highest score, whilst frame 25 gets the lowest score (due to the lower SNR as frames progress).  
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Figure 34: (a) Algorithm score for g = 1, (b) Standard deviation of NTB's SNR, (c) Expectation value of NTB's SNR, 

(d) TB's SNR. 

 

To conclude, a valid range of EMC, b = [0…0.8], has been found in which the algorithm is able to 

track and detect the target correctly; this concurs with the theoretical range.  
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Figure 35: Last processed frame (25th) for b = [0...1]. 

5.2.2.2 The sampling variable 

Since the core of the algorithm is the usage of the punishment matrices, the target has to move at a 

velocity of at least around 1 [ppf]. If the target in the sequence moves at lower velocities, v ≈ 0.3 

[ppf] in our case, the punishment matrices are used only every three frames roughly. Since that is the 

case, sampling of the sequence has been suggested, so that the target moves at higher speed. The first 

simulation was done for sampling = 4 giving the target a velocity of v ≈ 1.2 [ppf]. To keep the target in 
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the 'target block', a larger block size of 30x80 was used instead of 30x30. The algorithm score and the 

last six frames are shown in Figure 36, for the g = 0 case. 

 

The score achieved is lower in this case due to the noisy frames compared to the last six frames in the 

sampling = 1 case. It should be noted that by sampling the sequence the algorithm, different frames 

were processed that might differ in their noise degree.  Nevertheless, the score shows the effect of 

accumulation as the frames progress - the peak is distinguishable (above frame 20), and is around  

b = 5.0 for the last three frames. An increase in the EMC is expected since the target now moves faster. 

It seems that the algorithm needs around 20 frames for the dim point target to accumulate enough SNR 

to be distinguishable from the clutter. 
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Figure 36: (a) sampling = 4: The algorithm score for g = 0, Max_Numbers = 5, b = [0…8], and six last frames,  

(b) Images of the six last frames after the DPA algorithm. 

 

Figure 37 shows the graphs of the standard deviation of the NTB, the expectation value of the NTB 

SNR, the TB's SNR (all vs. b), and the last found target track for sampling = 4 (the pink portion of the 

track is the target track for sampling = 1). 
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Figure 37 : sampling = 4 : (a) Standard deviation of NTB's SNR,  (b) Expectation value of NTB's SNR, (c) TB's SNR, 

(d) the target's track (the pink track is the target track for sampling = 1) 

 

Comparing Figure 33 to Figure 37 shows that the TB & NTB SNR's behave likely for sampling = 1 and 

only TB SNR has a peak for sampling = 4. This shows that the penalty matrices help distinguish 

between target and clutter, and that the algorithm needs targets at around v = 1 [ppf] to work 

effectively. In the case of g = 1, the algorithm score is lower compared to the one achieved for 

sampling = 1, due the noisy last frames, as in the g = 0 case. 

 

The next sub-sections deals with the issue of using values of the Max_Numbers parameter that will 

correctly take only target pixels as the highest pixels. 

5.2.2.3 Finding Max_Numbers 

As specified before, the parameter Max_Numbers controls the number of pixels considered as 'target' 

pixels, and thus affects the result of the SNR of the blocks and consequently the algorithm score. So far 

Max_Numbers = 5 has been used. Instead of using an arbitrary number of highest pixels, a value for 

Max_Numbers can be found via optimization of the algorithm score, for the two cases of  

g = 0 and g = 1. A value of b = 4.8 and sampling = 4 was taken. The optimization was first run for the 

g = 0 case. Figure 38 shows a peak of mean algorithm score for Max_Numbers = 3 (there is a peak for 

all frames but the 19th frame where there is not enough accumulation as discussed before). A decrease 

in the TB's SNR can also be seen from the figure for Max_Numbers > 3. 
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Figure 38: (a) The algorithm score vs. Max_Numbers, (b) The TB's SNR vs. Max_Numbers 

 

Figure 50 shows the TB's SNR vs. b. The graph is separated to three sections according to the resulting 

highest pixels in the last frame – (1) Target pixels, (2) Trail & Target pixels, (3) Pixel of origin and 

Trail pixels. The figure in the next page elaborates on the section separation. Note that the resulting 

separation concurs with the relevant range of b = [0…6]. The graph helps to distinguish a good range 

in which the highest pixels taken as 'target pixels' indeed belong to the target. 
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Figure 39: The TB's SNR vs. b 
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In the case of the 5 highest pixels, the score takes only the target pixels up to b = 5.6. Above that value 

the trail pixels start to accumulate higher scores than the target pixels, until the pixel of origin also 

accumulates a higher score (b = 6.0). In the case of 3 highest pixels, the score takes only the target 

pixels up to b = 5.8. Higher EMC's causes non-target pixels to be higher than the target pixels as 

before. In this case of g = 0 and sampling = 4, the algorithm was able to track and locate the target up 

to b = 6.0. Using that and the figure below leads to the conclusion that a good range of EMC's would 

be b = [4.4 … 6]. This range contains the theoretical EMC for non-moving targets. 
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Figure 40: The last frame of the algorithm, highest 3 pixels emphasized 

 

The discussion continues now to the g = 1 case. The last frames of the algorithm and the target's track 

vs. b are shown in Figure 52. It can be clearly seen that for b = [0…0.8] there is only one high pixel 

belonging to the target (surrounded by white circle). The algorithm tracks the target in the range of  

b = [0.2…0.8]. These results suggest that Max_Numbers = 1 and b = [0.2 … 0.8] should be used in the 

case of g = 1. 
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Figure 41: The last frame of the algorithm, highest 5 pixels emphasized  

(target pixel surrounded by a white circle) vs. b 

 

The algorithm score using Max_Numbers = 1 is shown in Figure 53 Below. A peak in the mean 

algorithm score can be clearly seen for b = 0.6 and the best tracking is achieved for b = 0.8 (not 

shown) in accordance with the theoretical value. The algorithm score is higher in this case than the  

g = 0 case for sampling = 4, and higher than both cases for sampling = 1. This result suggests that the 
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algorithm performs better for faster targets, given correct value of Max_Numbers according to the case 

under investigation. 
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Figure 42: Algorithm score for g = 1 case, Max_Numbers = 1, sampling = 4 

5.2.2.4 Summary 

Results of the na23a sequence have been shown, followed by discussion and further results of the 

Max_Numbers and the sampling parameters. Preferable values for Max_Numbers were found, 3 for the 

g = 0 case, and 1 for g = 1 case. Relevant ranges of b's were also found for each case, b = [4.4…6] for 

the g = 0 case, b = [0.2...0.8] for the g = 1 case. The core of the algorithm is the punishment matrices. 

If the target is moving at a sub-pixel velocity these matrices are not used often and the algorithm will 

not perform at its peak. In order to find the velocity for which the algorithm works best, the algorithm 

has been run over the sequence for sampling = [1…4] for both cases. For each sampling the highest 

score in the relevant ranges of b's was chosen. It should be noted that for the algorithm to accumulate 

effectively, at least 20 frames have to be processed, thus limiting the amount of sampling that can be 

done, depending on the number of available sequence frames. Also, different frames are processed for 

the different samplings, so a comparison might not be precise. The results are shown in Figure 43. 
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Figure 43 : Algorithm score vs. sampling (a) g = 0 case, Max_Numbers = 3 (b) g = 1 case, Max_Numbers = 1 

 

The algorithm has a preferable target velocity at around v=0.6 [ppf]. 
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5.2.3 npa sequence 

The sequence contains a target moving at v ≈ 0.2 [ppf] in the proximity of clouds. In this case, the 

cloud's edges in the target block pose a challenge since they behave like targets, and receive a high 

score from the whitening preprocessing stage. In this sequence, tracking and detection was achieved 

for sampling ≥ 3. Hence, detailed results for lower sampling values will be skipped and only detailed 

results for sampling = 3 will be shown. The summary sub-section will show scores for the various 

sampling. 

5.2.3.1 Results (sampling = 3) 

Figure 44 shows the following graphs for the g = 0 case : the algorithm score, the standard deviation of 

the NTB, the expectation value of the NTB SNR, the TB's SNR (all vs. b), and the last frame (25) for 

various values of b.  

 
 

(a) (b) 

 
 

(c) (d) 

2 2.5 3 3.5 4 4.5 5 5.5 6
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

b

V
al

ue

g

 

 
Frame 25
Frame 24
Frame 23
Frame 22
Frame 21
Frame 20
mean
median

2 2.5 3 3.5 4 4.5 5 5.5 6
9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

b

V
al

ue

 

Frame 25
Frame 24
Frame 23
Frame 22
Frame 21
Frame 20
mean
median

2 2.5 3 3.5 4 4.5 5 5.5 6
2.5

3

3.5

4

b

V
al

ue

 

 

Frame 25
Frame 24
Frame 23
Frame 22
Frame 21
Frame 20
mean
median

2 2.5 3 3.5 4 4.5 5 5.5 6
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

b

V
al

ue

 

 
Frame 25
Frame 24
Frame 23
Frame 22
Frame 21
Frame 20
mean
median

 
Figure 44 : sampling = 3 : (a) Algorithm score for the npa sequence, g = 0, Max_Numbers = 3 (b) Standard deviation 

of NTB's SNR  (c) Expectation value of NTB's SNR (d) TB's SNR 

 

The resulting scores are negative for all the b's in the range. This is due to the cloud edges at the 

bottom of the target block that get high accumulated scores (Figure 45 (a)). This causes the TB's SNR 

to be low. Cloud edges in the NTB give rise to their SNR, leading to a negative algorithm score. 

Nevertheless the algorithm is able to track and detect the target for b = [2…4.8]. Higher EMC's lead to 

cloud's edge having higher score than the target itself in the TB, and no tracking. 
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Figure 45 : (a) The last frame of the algorithm, highest 5 pixels emphasized vs. b  

(target pixel surrounded by a white circle), (b) The target track vs. b 

 

The results for the g = 1 have also been negative as the g = 0 case. Nevertheless, the algorithm has 

been able to track and detect the target for b = [0…0.8]. 

5.2.3.2 Summary 

Results of the npa sequence have been shown. Preferable values for Max_Numbers were found, 3 for 

the g = 0 case, and 1 for g = 1 case. Relevant ranges of b's were also found for each case, b = [2…4.8] 

for the g = 0 case, b = [0...0.8] for the g = 1 case. The algorithm performed best for sampling = 3, 

where the effective target velocity was at around v=0.6 [ppf] as in the na23a sequence. 

5.2.4 DPA Results Summary 

Relevant ranges of b's for which the algorithm was able to track and detect the target, and the optimal 

Max_Numbers values, are shown in Table 2. 

Relevant range of b's where tracking occurred Accumulated Score 

Part npa sequence2 na23a sequence 
Max_Numbers 

sum part (g = 0) [2..4.8] [4.4..6] 3 

max part (g = 1) [0..0.8] [0.2..0.8] 1 

Table 2: EMC's for which tracking occurred in the IR sequences. 

                                                 
2 Tracking occurred for sampling ≥ 3 
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5.3 Evaluating of the temporal processing algorithm on real data 

5.3.1 Real IR sequences 

The real world IR image sequences from Reference  [16] are used as a means for evaluating the 

temporal algorithm. The movies are comprised of 95 or 100 12 bit infrared frames. The sequences 

contain raw data of unresolved targets flying around Hanscom AFB. There are five scenes in the 

available dataset containing various types of clutters and sky as well as targets moving at different 

velocities. 

 

Figure 46 shows a single frame (frame 50) of each of the IR sequences examined in this work. 
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Figure 46: Frame 50 of each real data IR sequence. 

 



       Project Report ‐ ʺSpatial and temporal point tracking in real hyper spectral imagesʺ 

Benjamin Aminov, Ofir Nichtern, Stanley Rotman  

Page 77 of 102 

Table 2 summarizes the number and nature of targets for each IR sequence, as well as the background 

type of scene. 

 

IR sequence name Scene description 

NPA two targets in wispy clouds    

J13C one slow target in clear of cloudy scene 

NA23 one fast target in bright clouds 

J2A two targets in fluffy clouds 

M21F one weak target in hot hazy night sky 

Table 3: Description of the IR sequences. 

5.3.2 Evaluation metrics 

In order to evaluate the algorithm a new metric has been defined, as describe at section  3.2.3.2. Each 

frame in the sequence is divided into blocks, the size of HxN (30x30 were used).The algorithm is run 

over 9 blocks – Target block and eight adjacent blocks. The SNR of the target block (TB) and its eight 

adjacent non-target blocks (NTB) are calculated. Afterwards, an algorithm score is calculated based on 

the resulting SNR's. 

 

The block SNR is given as: 

(5.4) 
,

, ,_ ( , )
i j

i j i j

v

E v M E v M
Block SNR i j

σ

⎡ ⎤ ⎡ ⎤∈ − ∉⎣ ⎦ ⎣ ⎦=  

where vi,j is the set of pixels belonging to the (i,j)th block, M is a set containing the five pixels with the 

highest gray level in that block, and σ is the standard deviation of the block pixels. The formula 

performs a subtraction between the expectation value of the highest pixels (target) and the expectation 

value of the rest of the pixels (background), divided by the standard deviation of block pixels. Since 

the probability matrices introduce the influence of target pixels on adjacent pixels, these influenced 

pixels might accumulate higher values than unaffected pixels (background), and can be regarded as 

target pixels. This might lower the expectation value of the target, but will lower the standard 

deviation of the background, since these high pixels are higher than the statistics of the background, to 

a more accurate one. 
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The algorithm score is given as:  

 

(5.5) 
( )( ) ( ){ }( )

( ){ }( ),

, ,

_ ,

_ , _ ,

i j NTB

i j TB i j NTB

Block SNR i j

Block SNR i j E Block SNR i j
Score

σ
=

= =
⎡ ⎤− ⎢ ⎥⎣ ⎦=  

 

The score is calculated by subtracting between the target block SNR and the expectation value of the 

SNR of the non-target blocks, divided by the standard deviation of the non-target blocks SNR.  

 

The final grade of the algorithm serves as a tool for comparison between the suggested temporal 

processing algorithm and other temporal processing algorithms which deal with the same problems. 

The grade evaluates the difference between the score of the block containing the target and the 

expected values of the rest of the blocks in the image, normalized by their standard deviation. 

5.3.3 Real data results 

The real-world IR image sequences described in the previous section were used to evaluate the 

temporal tracking algorithm. The algorithm output images are given in Figure 47 together with a 

representative frame from each sequence. The sequences were chosen to comprise both clutter and 

noise dominated scenes. The parameters of each simulation were chosen to be the optimal set, as will 

be explained in the following subsection. The target tracks are seen as brighter short stripes; in some 

cases, clutter leakage is also evident. 
Frame 70 from IR sequence NPA

 

Result Image of IR sequence NPA

 

 

 

Frame 70 from IR sequence J13C Result Image of IR sequence J13C
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Frame 70 from IR sequence M21F Result Image of IR sequence M21F

 

 

 

Frame 70 from IR sequence J2A Result Image of IR sequence J2A

 

 

 

Frame 70 from IR sequence NA23 Result Image of IR sequence NA23
 

 
Figure 47 : Output images of the temporal tracking algorithm. 

 

Figure 48 provides a closer view of the block containing the target of each output image together with 

a representative target temporal profile. 

 
Target block from IR sequence NPA - Block 16
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Target block from IR sequence NPA - Block 55
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a. Target blocks and profiles from the IR sequence NPA 

Target block from IR sequence M21F - Block 33
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b. Target block and profile from the IR sequence M21F 

Target block from IR sequence J13C - Block 47
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c. Target block and profile from the IR sequence J13C 

Target block from IR sequence J2A - Block 42
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Target block from IR sequence J2A - Block 63
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d. Target blocks and profiles from the IR sequence J2A 

Target block from IR sequence NA23 - Block 26
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e. Target block and profile from the IR sequence NA23 

Figure 48: Real data results. 

 

Visual evaluation of the results images presented in Figure 48 suggests that in terms of target pixels 

enhancement, the best results were obtained for the sequences J2A and NPA since the target trace 

there is stronger relative to the background. The M21F sequence for example has more noise in the 

background, although the target pixels are clearly visible. The metric defined for assessing the overall 

performance of the algorithm, which was given in equation (5.4) takes into consideration not only the 

target enhancement but the suppression of the background abilities of the algorithm as well. This is 

achieved by grading each block by a score which evaluates the difference between the maximal 5 

values of the block and the block average values, normalized by the standard deviation. The goal of 

coarse is to have a target blocks with high scores and background blocks with low scores.  

 

The purpose of the final grade of the algorithm, defined in equation (5.5) is to evaluate the separability 

between the target block/s and the background blocks. It evaluates the difference between the target 

block score (if there are more than one target, the mean of the target blocks) and the mean of the 

background blocks, normalized by the standard deviation of the background. The final grade obtained 

for each sequence is given in Table 4. The table also shows the grade of the two temporal processing 
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algorithms presented in section  3.2.3 – the variance filter (VF) and the noise filter (NF) and previous 

temporal processing algorithm from reference  [14] . 

 

Image sequence name Grade Ref.  [14] Grade VF Grade NF Grade 

NPA 78.417 52.68 2.70 2.85 

M21F 8.65 10.82 1.20 13.89 

NA23 13.056 35.70 0.54 0.47 

Table 4: Algorithm performance grade for each sequence. 

 

The variety of the target scores for the different sequences can be understood by examining the 

amplitude of the maximal target peak, relative to the profiles average values. 

 

Sequence name Target Peak

NPA ~ 30 

J2A ~ 140 

M21F ~ 18 

NA23 ~ 60 

J13C ~ 150 

Table 5: Target maximal peak for the different IR sequences. 

 

The sequences NPA and NA23 are inconsistent with each other – although the target in NPA seems 

weaker, its block score is higher than the one of NA23. This follows from the fact that in the NA23 

scene strong clutter is present. As stated in the following subsection the optimal window size 

parameters are not optimal for the target block, but are fitted to the background as well. Choosing 

inappropriate window set lowers the target block score. 

 

Therefore, although the target in NA23 is stronger than the one in NPA, the target block score received 

after the temporal processing is lower.  

 

Finally the lowest target score is that of the sequence M21F. The target here is quite weak and the 

scene is noise dominated. Hence the low target amplitude and low target block score. The final 

algorithm is the lowest one as well. 
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5.3.4 The optimal window size 

Choosing an appropriate set of parameters for the temporal algorithm is crucial for the detection 

capabilities of the system. In this section the dependence of the algorithm on the window sizes is 

evaluated on real data. The optimal set of parameters is obtained for each IR sequence. 

 

The expected optimal window sizes depend on both the target temporal profile shape, mainly on the 

target’s peak width (inverse proportional to the target’s velocity) and on the background scene – the 

presence of clouds, their size and velocity, as stated in section  5.1.2.3.  

 

In order to determine the optimal set of window sizes on a real data sequence, the algorithm was run 

on the sequence with various sets of parameters, the set which yielded the highest algorithm grade, 

defined in equation (5.3), was chosen. 

 

Figure 49 shows the results of the simulation on the IR sequence NPA. 

 
Figure 49: Algorithm score vs. window size sets for the IR sequence NPA. 

 

The results show that the highest algorithm score was obtained for group width if size 14 samples, 

overlap of size 7 samples and variance window of size 6 samples at DC window of size 50 samples. 
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The final algorithm grade evaluates the difference between the target block score (if there are more 

than one targets, the relevant scores are averaged) and the mean background score, normalized by the 

standard deviation of the background blocks. Thus, the optimal window set will tend to maximize the 

target while minimizing the background and standard deviation scores. 

 

Table 6 summarizes the optimal window sets for each IR sequence. The results of the algorithm 

performance for different window sizes for each IR sequence are given in the appendix of this work. 

 

Sequence name Group Width Overlap Var. window 

NPA 14 7 6 

M21F 19 18 8 

NA23 16 5 4 

Table 6: Optimal window sets for each IR sequence. 
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5.4 Synthetic hypercube creation 

In order to properly evaluate the system, a real hyperspectral movie was needed. Since such data were 

not available, a simple procedure for creating a hyperspectral movie was developed. In order to make 

the movie as realistic as possible, each hypercube from the sequence is created from a real IR frame. 

This efficiently simulates the temporal characteristics of the evolving background. 

 

The hypercube creation is performed in two steps. The first step is to create a "background" hypercube 

which contains cloud and sky mixed pixels. The second step is to implant into the "background" cube 

a synthetic target. 

5.4.1 The background hypercube 

The hypercube is created using the consecutive frame IR sequence presented in the previous section as 

a reference for obtaining the percent of sky and cloud signature of each pixel. The IR frame sequence 

containing F frames is denoted by IR={IR(f)}f=1,2,…,F. 

 

First arbitrary signatures representing the target, cloud and sky spectra are chosen; these signatures are 

denoted by t, c and b respectively. For S available spectral bands, the signatures are vectors of size 

Sx1. Examples of the signatures used in this work are given in Figure 50.  
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Figure 50: Spectral signatures used to represent the sky, cloud and target signatures. 
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The hypercube at each time index f is constructed by using the real infrared frame at time f, IR(f), as 

the reference for the percentage of sky and cloud component for each pixel. The hypercube created at 

time index f is denoted by D(f). Dij(f) is a vector of size Sx1 representing the spectral signature of the 

pixel coordinated at (i,j). 

(5.6)    bc ⋅⎟⎟
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where IRij(f) refers to the pixel value of the real infrared image at time f, Vmin is the minimum pixel 

value of IR(f)(Vmin =minij[IR(f)]), Vmax is the maximum pixel value of IR(f) (Vmax =maxij[IR(f)]). For 

example, the pixel having the maximum value of IR(f) will contain 100% cloud signature; the pixel 

with the minimum value of IR(f) will contain 100% sky signature. Pixels with intermediate values will 

contain mixtures of sky and cloud signatures in proportion matching the pixel's value and normalized 

to a fractional value between 0-1.  

 

The hypercube movie is comprised of F hypercubes; it is denoted by M={D(f)}f=1,2,…,F. 

5.4.2 Target implantation 

The synthetic target is characterized by the following parameters: 

1. Spatial shape, denoted by s(x,y), is dependent on the camera’s point spread function and the actual 

target shape. A possible choice might be a two-dimensional gauss function. Figure 51 shows an 

example of a two dimensional target having a half-period sine shape in both x and y directions. 

 

2. Temporal behavior, where the velocity is measured in pixels/frame, denoted by vx and vy. 
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Figure 51: A two dimensional sine shaped target. 
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The fraction of the target in a pixel affected by it is given by: 

(5.7)      ∫∫
Δ+Δ+

=
0

0

0

0

),()(
y

y

x

x

dxdyyxsfp  

where ({x0,x0+∆},{ y0,y0+∆}) denotes the pixel's spatial boundaries.  

There are two methods for target implantation  [15] . 

 

(5.8)      xpty +=  

(5.9)      ( )xppty −+= 1  

After creating the sequence {D(f)}f=1,2,…,F the target is implanted into the relevant pixels; equations 

(5.8) and (5.9) are modified to: 

 

(5.10)      )())(1()()( 1 fDfpGtfpfD ijij −+=  

(5.11)      )()()( 1 fDGtfpfD ijij +=  

where )(1 fD ij  represents the appropriate mixed pixel from the background cube created at the first 

step and  G is a normalizing constant factor which acts as the target’s base gain. 

 

The indices of the pixels affected by the moving target change according to the target's spatial shape, 

velocity and direction. Assuming the target's start position is at coordinates (x0,y0), at frame f the 

target's position will be (x0 + f·vx, y0 + f·vy). Figure 52 illustrates the movement of the target having a 

half-period sine spatial shape, a width of 2x2 pixels, a horizontal velocity of 0.5 pixel/frame, and a 

vertical velocity of 0.25 pixel/frame. 

 

    
Figure 52: Illustration of 2x2 pixels target moving at vx=0.5 pixel/frame, vy=0.25 pixel/frame. 

5.4.3 Noise addition 

The noise added to each synthetic hypercube is White Gaussian Noise. In order to keep the noise 

proportional to the relevant spectral signature magnitude, the noise variance is dynamically determined 

using the following general description: 
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(5.12)     22 )max(* signaturerNoiseFacto=σ  

 

where NoiseFactor is a constant with value between 0-1. This is consistent with IR imagery where the 

noise power is proportional to the signal power (brightness of the object). 

 

In addition, noise is added to the synthetic target temporal movement – at each new frame, the 

effective step size of the synthetic target is calculated using the following: 

(5.13)     
))*(,0(~

)1,max(
2lStepSizeTheoreticarNoiseFactoNn

nlStepSizeTheoreticaStepSize +=
 

 

where NoiseFactor is a constant between 0-1, TheoreticalStepSize is a constant, calculated from the 

target velocity, and n is the noise added (or subtracted) which has zero mean Gaussian Distribution 

with standard deviation proportional to the theoretical step size. In order to keep the motion model 

physically consistent, the step size must be a positive number.  

 

5.4.4 Examples of hyperspectral movie 

Figure 54 shows examples of several bands of the hypercube with a synthetic target implanted at the 

upper left region of the cube. This hypercube was created without the addition of noise to the spectral 

signatures. The IR image used for this hypercube is shown in Figure 53. 
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Figure 53:  Example of IR block used for creation of hypercube. 
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Figure 54: Bands 2, 10, 20 and 40 of synthetic hypercube. 

 

Figure 55 shows the same hypercube’s bands, but with the addition of white Gaussian noise to each 

spectral signature. The noise variance is set to be [0.1· max(signature)]2 (noise factor of 0.1). 
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Figure 55: Bands 2, 10, 20 and 40 of synthetic hypercube with addition of spectral noise. 

 

Figure 54 and Figure 55 show several spectral bands of a hypercube at a single time instance. A 

spectrogram of single spatial location (a pixel) of the hypercube can be plotted in which the spectral 

variations as a function of time can be observed for the given pixel. Figure 56 shows a spectrogram 

from a pixel taken from the hypercube based on the IR image given in Figure 53. The IR image 

obviously contains drifting clutter. The clutter impact on the temporal spectral changes of the pixel is 

evident from the spectrogram. The signatures used for this hypercube were given in Figure 50. The 

first spectrogram doesn’t contain target. The spectrogram shows higher amplitude values for spectral 

bands 35-80 with low values at bands 0-10 at time indices 0-40. This is consistent with the spectral 

signature representing the cloud, which has peaks at spectral bands 40-80 besides local minima around 

band 60. Thus, the pixel presented was traversed by a clutter approximately at times 0-60. The sky 

spectral signature appears to be constant with the time at time indices 65-95. Its features fro bands 1-

35 are similar to the sky signature, the major difference is evident for bands 35-95 where the sky 

signature has lower and more unified levels of amplitude. 
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The lower spectrogram shows the same pixel but with target implanted into it. The target influence can 

be seen at time indices 5-15, causing amplitude increase around bands 20, 35 and 45. Compared to the 

sky signature, the target signature has higher amplitude at the lower spectral bands. Since the method 

of target implantation is additive (and not by replacing the relevant portion of the signature), the 

spectrum of the pixel affected by both clutter and target is actually the sum of the two signatures. 
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Figure 56: Spectrogram of pixel affected by clutter with and without target implanted in it. 

 

Figure 57 shows the same spectrogram of the pixel with target implanted into it with addition of white 

Gaussian noise to each spectral signature. The noise variance is set to be [0.1*max(signature)]2 (noise 

factor of 0.1). 
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Figure 57: Spectrogram of pixel affected by clutter and target with addition of spectral noise. 
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5.5 Evaluation of the complete system on real data 

The hyperspectral movie is created as described in the previous section. The movie consists of a 

sequence of 30x30x96 cubes (width x height x bands). A synthetic target is implanted into the 

sequence. The target is sine shaped 2x2 pixels wide and has a horizontal and vertical velocity of 

0.1[ppf]. White Gaussian noise is added to each spectral signature; the noise variance is set to be 

[0.1*Max(signature)]2. 

 

The movie is then input into our system. The third reduction test given in section  4.2 (using the match 

filter with the estimated covariance matrix) is applied and used for the first stage processing of each 

hypercube, and the temporal processing algorithm described in section  4.3 for the target detection at 

the second stage. The output of that stage is input into the DPA. At the end the last processed frame is 

taken and the highest pixel is declared as 'target' and its track is found. In this section, we will compare 

Test 3, and two new tests, Test 4 and Test 5, defined in the next sub-section, will be used. 

5.5.1 Metrics definitions 

The metric at  3.2.3.2 defines the score of any two-dimensional image: 

 

The block SNR is given as: 

(5.14) 
,

, ,_ ( , )
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i j i j
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where vi,j is the set of pixels belonging to the (i,j)th block, M is a set containing the five pixels with the 

highest gray level in that block, and σ is the standard deviation of the block pixels. The formula 

performs a subtraction between the expectation value of the highest pixels (target) and the expectation 

value of the rest of the pixels (background), divided by the standard deviation of block pixels. Since 

the probability matrices introduce the influence of target pixels on adjacent pixels, these influenced 

pixels might accumulate higher values than unaffected pixels (background); we will regard them as 

target pixels. This might lower the expectation value of the target, but will lower the standard 

deviation of the background, since these high pixels are higher than the statistics of the background, to 

a more accurate one. 
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The algorithm score is given as:  

(5.15) 
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Three tests based on this metric are further defined. Test 3 uses a MF for the cube collapsing. Test 4 

uses a MF detector as the input of the temporal processing. Test 5 adds to Test 4 the Dynamic 

Programming algorithm. These tests were created to evaluate the effect of the IR tracking algorithms 

on the overall score of Hyperspectral tracking system.  

 

The MF and the temporal processing create images with pixel scores according to their likelihood of 

being a target, whereas the DPA accumulates the scores of pixels according to the probability of the 

path going thru them to be the target's path.  

 

 
Figure 58:  Metric definition. 

5.6 Discussion of results obtain on real data 

This section presents the results of applying the complete system algorithm on hyperspectral movie 

based on blocks from the real IR sequence NA23. The algorithm was run on target block and the eight 

surrounding background blocks. The blocks were chosen to represent different scenes, which might be 

roughly categorized as ‘clear sky’ scene – contains only sky, ‘weak clutter’ – contains partial weak 

clutter (with low to medium IR amplitude) and ‘strong clutter’ – contains partial clutter with high IR 

amplitudes. The parameters of the simulation are summarized in Table 7. 

 

Table 8 - Table 13 presents the results for three different background hyper-cubes, based on blocks 

from the real IR sequence NA23, Figure 59 shows a single frame from the sequence, divided into 

labeled blocks. 
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Parameter Value 
Hyperspectral movie parameters 

Movie length 95 frames 
Spectral signatures Identical to the ones presented in Figure 50 

Block size 30x30 pixels 
Number of spectral bands 100 bands 

IR source sequence NA23 
Noise added WGN, noise factor of 0.05 (std = noise factor * 0.05) 

Synthetic target properties 
Spatial shape half sine, 2x2 pixels, integral of the spatial distribution 

normalized to 0.5 
Horizontal velocity 1/8 pixels/frame 

Vertical velocity 1/8 pixels/frame 
Velocity error as described in section  5.4.3, noise factor of  0.25 

Hyperspectral cube reduction 
Reduction Filter Test 1, Test 2, Test 3  

Target Block 37 (scarce clutter), 38 (sky only), 39 (strong clutter) 
Target factor 10, 20, 40, 60, 80, 100, 500, 1000 

Temporal processing parameters 
Sub profile length 15 samples 

Overlap 10 samples 
DC window 50 samples 
DC step size 15 samples 

Variance window 4   samples 
DPA 

EMC (b) [0…6] for g = 0, [0…1] for g = 1 
a 1 
p 0.5 
y 24 

Table 7: Complete system simulation parameters. 

The IR image sequence NA23, Frame 1
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Figure 59 : Single frame of IR sequence NA23 with labeled blocks division. 
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Scene Description Test 1 – Spectral Average 
Block Target factor 20 40 60 80 

37 Partial weak clutter 1.7622 1.7542 1.7414 1.7204 

38 Mainly sky -1.3432 -1.0566 -0.5864 -0.0326 

39 Mainly strong clutter -0.0362 -0.0371 -0.0354 -0.0392 

mean 0.1276 0.2201 0.3732 0.5495 

Table 8: Test 1 system evaluation results. 

 

Scene Description Test 2 – Scalar Product 
Block Target factor 20 40 60 80 

37 Partial weak clutter 1.3957 1.3572 1.3213 1.3103 

38 Mainly sky -1.2325 -0.8918 -0.3695 0.2114 

39 Mainly strong clutter -1.2276 -1.2379 -1.1656 -1.0806 

mean -0.3548 -0.2575 -0.0712 0.1470 

Table 9: Test 2 system evaluation results. 

 

Scene Description Test 3 - MF 
Block Target factor 20 40 60 80 

37 Partial weak clutter 2.3023 2.2752 2.2497 2.2419 

38 Mainly sky -0.2196 0.2049 0.7912 1.3592 

39 Mainly strong clutter -0.2132 -0.2266 -0.1337 -0.0263 

mean 0.62317 0.7512 0.9690 1.1916 

Table 10: Test 3 system evaluation results. 

 

Scene Description Test 4 - MF&TP 
Block Target factor 20 40 60 80 

37 Partial weak clutter 2.9422 3.6824 3.7198 3.7072 

38 Mainly sky 3.2252 3.6421 3.7222 3.7188 

39 Mainly strong clutter 0.5539 1.6206 3.1649 3.4353 

mean 2.2404 2.9817 3.5356 3.6204 

Table 11: Test 4 system evaluation results. 
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Scene Description Test 5 - MF, TP & DPA 
Block Target factor 20 40 60 80 

37 Partial weak clutter 3.6473 (1) 3.8205 (2) 3.8248 (3) 3.8448 (4) 

38 Mainly sky 3.7568 (5) 3.8255 (2) 3.8318 (2) 3.8365 (2) 

39 Mainly strong clutter 2.0955 (6) 2.3476 (6) 3.7458 (7) 3.7171 (8) 

mean 3.1665 3.3312 3.8008 3.7994 

Table 12: Test 5 system evaluaetion results for g=0, Max_Numbers=3. 

 

Scene Description Test 5 - MF, TP & DPA 
Block Target factor 20 40 60 80 

37 Partial weak clutter 3.4213 (9) 3.7624 (2)  3.8384 (2) 3.8063 (2) 

38 Mainly sky 3.6276 (10) 3.8049 (11) 3.8492 (2) 3.8350 (2) 

39 Mainly strong clutter 0.8168 (6) 0.2714 (6) 3.4032 (12) 3.2192 (2) 

mean 2.6219 2.6128 3.6969 3.6201 

Table 13: Test 5 system evaluaetion results for g=1, Max_Numbers=1. 
 

(1) - best tracking occurs for b≥7     (2) - tracking occurs for all b's 

(3) - best tracking occurs for b≥3.4     (4) - best tracks occur for 4≤b≤5.4 

(5) - target is tracked for b≥1.4.     (6) - no tracking occurs. 

(7) - target is tracked for 0≤b≤1     (8) - tracking occurs for: (1) 0≤b≤4.2, (2) 5.4≤b≤5.6, (3) 6≤b 

(9) - Tracking occurs for 0≤b≤0.3, b=0.6    (10) - Tracking occurs for 0.6≤b≤1 

(11) - Tracking occurs for 0≤b≤0.9    (12) - Tracking occurs for 0≤b≤0.5 

 

Previous research,  [14] , has shown that Test 1 allows a rough assessment of the target pixels relative 

amplitude compared to their background. The low values of the results indicated that the implantation 

of the target and taking the maximal score without any processing is not sufficient for detection; in 

other words, the implantation method does not allow “easy” detection. The highest values of Test 1 

were in the weak clutter scenes which is reasonable since the implantation method is additive, and, in 

weak clutter surroundings, the amplitude levels are obviously higher than clear sky scenes. 

Comparison between Test 1 and Test 2 allowed us to estimate the improvement of using a primitive 

hyperspectral processing – simply taking the average of all the bands. Although this brought 

improvement in sky or weak clutter scenes, it had negative impact on strong clutter scenes which 

proved that simply averaging the bands is disastrous for certain sets of spectral signatures and cannot 

be used as a detection method by itself. Thus the focus of the discussion should be the use of “smart” 

hyperspectral processing only (Test 3), the use of hyperspectral processing and temporal processing 

(Test 4) the use of hyperspectral processing, temporal processing and DPA (Test 5).The results in  [14]  
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have shown that in all of the cases, there is an obvious advantage to using both hyperspectral detection 

(Matched Filter) and temporal processing (Test 4 vs. Tests 1-3). 

 

When the target is implanted in clear sky scenes, the use of temporal processing significantly improves 

the performance compared to use of hyperspectral detection only. In most cases the use of the Matched 

Filter compared to simple averaging was clearly advantageous; the exception being block 31 for which 

the performance was similar for both of the techniques. This can be attributed to the relative “easiness” 

of detection in this kind of scene and the fact that the high level of noise might cause a disadvantage to 

the Matched Filter and an advantage to the averaging filter. When weak clutter was present, the 

temporal processing combined with Matched Filter detector was always better than temporal 

processing only which in turn is better to hyperspectral detection only. 

 

Preliminary runs have been done for target factor 1000, 500, 100 and 10. A valid range of target factor 

was needed to be found in order to define the boundaries of the full system. The results have shown 

that target factor of 100 or above are 'too easy' to use a detection algorithm, whereas target factor of 10 

is 'too hard' for the full system to detect and track a target. Since that is the case, tryouts of the 

following values of target factor have been applied: 20 – 80 at steps of 20. 
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Figure 60: Block 38, Target Factor 100: (a) Single Frame after MF (Test 3), (b) Single frame after MF and TP (Test 

4). 
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Figure 61: Block 38, Target Factor 20: (a) Single Frame after MF (Test 3 - Frame 643), (b) Single frame after MF 

and TP (Test 4 - Frame 12), (c) Single frame after MF, TP and DPA (Test 5 - Frame 12). 

 

 

                                                 
3 As described at the Table 7, "sub profile length is equal to 15, overlap is equal to 10" have been chosen: taking frame 12 

after the TF is equivalent to taking a frame between 55-70 in the sequence after MF. 
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6 Summary and Conclusions 
This report consists of the culmination of three years of work.  It is interesting to consider the steps 

which have been taken to produce these results.  If we look at the System Diagram in Figure 6, we find 

that the following work has been performed: 

 

1. The construction of a database of hyperspectral movies.  The fundamental broadband moview 

were provided by the Air Force Research Laboratory; we designed a way to convert them to 

hyperspectral movies. 

 

2. The matched filter stage was taken from the standard literature.  Future work will involve using 

somewhat more sophisticated algorithms to be used to process the spectral domain. 

 

3. The temporal stage was designed and tested on the AFRL movies. This work has been 

documented extensively in Ref.  [14] . 

 

4. The Dynamic Programming Algorithm has been built and tested. 

 

5. An alternative approach for the temporal and DPA stages has been considered; this involved 

the Kalman Filter and will be documented in a separate report (see appendix). 

 

6. Metrics were developed to test the effect of each stage on our target acquisition capability. 

 

We overall conclude that each stage enhanced our target acquisition capability. 

 

One important note concerning this work is that it is modular.  The modules for spectral processing, 

temporal processing, DPA processing and even our method of evaluating algorithms can be 

individually replaced and tested. Our work can thus easily be extended to new developments. 

 

It has been a pleasure to work on this project for the last three years; we thank AFOSR for the 

opportunity. 
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1 Introduction

Tracking a dim target in clutter is a well known problem in the scientific
literature. There are two main approaches. The first is to initially threshold
every image and then make a decision as to which sequence of measurements
is the most likely track. Among the various methods in this category are the
IMM (Interacting Multiple Models), GPBF (Generalized Pseudo Bayesian
Filter ) and MHT (Multiple Hypothesis Testing). The second approach
is to delay the thresholding until the end of the tracking process. This is
usually is carried out by using the DPA (Dynamic Programming Algorithm).
Both approaches have advantages and disadvantages. The first approach
(IMM,MHT) is better suited to real time applications whereas the second
approach (DPA) is considered better at tracking targets with a low SNR. In
this paper the former approach is taken; specifically we implement the IMM
algorithm.

When using the IMM algorithm there always is a chance of false alarms.
This makes the problem a lot more complex. Not only is there a challenge of
estimating the real position and speed but in addition one has to decide: out
of a number of possible targets, which is the real target or whether a target
has even been detected at all. There are two different types of clutter. The
first is residual clutter. The second is termed persistent clutter. The two
basic assumptions about residual clutter are that the clutter or false mea-
surements are independent across time and uniformly spatially distributed.
With these assumptions there are ways to model the residual clutter. The
persistent clutter can either be canceled by pre-processing or by modeling
it and tracking it. For example false tracks generated by edges between
different regions in an image. If the speed of the background is known, then
these false tracks will have the same speed and direction, therefore can be
filtered out. The approach adopted here for dealing with the residual clutter
is that of Y. Bar Shalom in [7] and [5] namely the PDAF (Probabilistic Data
Association Filter) algorithm. When combined with the IMM the resulting
algorithm is termed IMM-PDAF. This problem and the problem of initiat-
ing the track sequence will be dealt with after treating the simpler problem
of a single target in residual clutter.

2 Tracking Overview

Both tracking methods (DPA/IMM-PDAF) have the some main steps in
common. However the steps are carried out in a different order. For the first
approach the IMM-PDAF algorithm was chosen for its relative simplicity yet
good results in comparison to the GPBF and the MHT. The principle steps
are:

• Pre-processing: Usually done by linear filtering, ordered statistics fil-
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ters.

• Thresholding the image.

• IMM-PDAF: The algorithm will be explained later in detail.

• Thresholding the surviving tracks.

For the DPA the basic steps are:

• Pre-processing: Usually done by linear filtering or ordered statistics
filters.

• DPA: The Viterbi algorithm.

• Thresholding the results.

2.1 Pre-processing

In this research two methods for pre-processing are considered; linear and
ordered statistics filters. The assumption behind both approaches is that
the target is added in the following manner to the original picture:

u(m,n)′ = u(m,n) + t (1)

where u(m,n) is the original pixel at coordinates (m,n). The modified pixel
is u(m,n)′, which is due to the added target t. The purpose of the pre-
processing stage is to extract pixels with the added target t. Ideally if the
intensity of the original pixel is known then there is no problem. Simply
subtract u(m,n) from u(m,n)′: then one gets t if there is a target and 0 if
there is no target. In real problems there is only an estimate of the original
pixel û(m,n) which can be modeled as the original pixel with some noise

û(m,n) = u(m,n) + η(m,n) (2)

One usually assumes that the added noise is spatially uncorrelated. When
a target is present one gets a whitened image with the target in the relevant
pixels

u(m,n)′ − û(m,n) = t + η(m,n) (3)

The name of the game is to find an estimate of the background û(m,n)
such that the variance of the estimation noise η(m,n) is minimized.

2.1.1 Linear filtering

Estimating the background pixel with linear filtering is the classic approach
and is the most efficient. The estimate is the result of the average of the 8
surrounding pixels from a 3 × 3 frame or the 16 outer pixels from a 5 × 5
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frame. The resulting estimation noise η(m,n) is gaussian distributed and
usually has a zero mean. The disadvantage to this method is that there are
long tails that result from areas in the picture with a high local variance.
The tails are the main cause of false alarms.

2.1.2 Ordered Statistics Filtering

One of the best ways of eliminating the false alarms on the edges is to es-
timate the background by taking the maximum value out of the 8 or 16
surrounding pixels. A second option is to use the median; however, the
maximum is better at reducing the false alarms. The results are shown
for a section of the first frame of the ’npa’ picture. The distribution for
median filtering is normal while the distribution for the Maximum filter is
Extreme Value distributed. The Extreme Value Distribution typically oc-
curs when choosing the maximum value out of a set of Gaussian distributed
random variables. The probability density function for the Extreme Value
distribution is:

f (x|µ, σ) =
1
σ

exp
{

x− µ

σ

}
exp

{
− exp

(
x− µ

σ

)}
(4)

2.2 Normalizing the Noise

After choosing between a variety of basic methods for whitening the noise
η(m,n),we must deal with the fact that the remaining noise isn’t really
white. The main problem being the image is non-stationary and is com-
prised of different types of background. The typical example in our data
sets is a target with both clouds and sky in the background. The sky and
cloud backgrounds have different variances. Since, the cloud has the highest
variance the false alarms and tracks usually are in the cloud. This can be
addressed by normalizing the pixel by their local standard deviation. The
problem with this approach is that the estimate of the local deviation can
be zero. Division by zero or a small number will invariably be the cause of
undesirable false alarms. A solution to this problem has been suggested by
Raviv and Rotman in [1]. The idea is to divide the pixel by the standard
deviation and at the same time avoid division by zero. This can happen
when the local standard deviation is zero. One simply divides the pixel by
the standard deviation with an added constant in the following manner

I(m,n) =
u(m, n)′ − û(m, n)

sdv(m,n) + c
(5)

where sdv(m,n) is the local standard deviation at pixel u(m,n) calculated
from the 16 or 8 closest pixels. The easiest way to choose the constant c is
to take the pixel with the maximum probability.

c = max{Psdv(x)} (6)
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(a) (b)

(c) (d)

Figure 1: Pre-Processed images before thresholding: (a) The original image,
(b) The image whitened with a Linear filter, (c) The image whitened with a
Median filter, (d) The image whitened with a Maximum filter. The encircled
pixel is the target.
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(a) (b)

(c)

Figure 2: The resulting distributions of the whitened images: (a) The image
whitened with a Linear filter, (b) The image whitened with a Median filter,
(c) The image whitened with a Maximum filter.
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where Psdv(x) is the PDF of the standard deviations. The constant c is
calculated individually for each frame.

The local standard deviation of the first frame of a movie can be seen in
fig. 3(a). One can see from fig. 3(b) that it is a simple matter to choose the
constant c. From figures 3(c) and 3(d) we can see that the normalization
reduces the variance in the area of the clouds, while at the same time it
emphasizes the target (the white pixel close to the center of the picture).
The alternative to normalization with the standard deviation is to use a
spatially adaptive threshold as explained in the following section.

(a) (b)

(c) (d)

Figure 3: The image of the local standard deviations: (b) The original image,
(b) The histogram of image (a),(c) The first frame after having the mean
removed, (d) The first frame after having the mean removed and normalized
by the local standard deviation.
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2.3 Thresholding the Image

The most basic way of trying to separate between the real targets and the
false alarms is to set a global threshold. Ordinarily one chooses a threshold
such that it results in an acceptable level of false alarms. Thus the desired
threshold th is extracted from the following equation

PFA =
∫ ∞

th
p0 (a) da (7)

where PFA is the level of false alarms and p0 (a) is the PDF (Probability
Density Function) for η(m,n) when there is no target present.

There are ways of improving on this.

• A Spatially Dynamic Threshold

• A time Dynamic Threshold

2.3.1 A Spatially dynamic threshold

In a non-stationary image, a global threshold is not a very good idea. It
would be better to segment the image and set a different threshold for each
segment. Another possibility would be to use a threshold that is a function
of the local variance calculated from the surrounding 8 or 16 neighboring
pixels. Thus

th = α + β · σ(m,n) + δ · σ2(m,n) (8)

The challenge in this case is to find out whether one can make a significant
reduction in the ratio of false alarms to detections with this approach. An-
other even greater challenge is to globally estimate the set of parameters
(α, β, δ). A successful way to estimate these parameters online has yet to
found and should be a topic for further research.

2.3.2 A Time Dynamic Threshold

Setting the threshold in a correct manner is vital for the success of the
tracking algorithm. This goes both for the initial stage and during the
tracking process. The first issue is how to determine the right threshold in
the beginning. Currently the threshold is set by setting PFA the acceptable
false alarm rate, and determining a threshold that will satisfies equation
(7). If the resulting signal lands below the average signal amplitude then
the threshold is set slightly below the signal average. This comes at the cost
of more false alarms but it is necessary because otherwise the targets will all
be below the threshold. Some ad hoc methods for changing the threshold
during the tracking process are discussed in section 4.5.4.
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2.4 The Tracking Stage

After thresholding comes the tracking stage. We chose the IMM-PDAF
method for it’s numerical efficiency on one hand and good performance on
the other hand. The PDAF (Probability Data Association Filter) is designed
to take care of random clutter. The idea is to associate a set of measurements
to a given track with prior knowledge of the targets behavior. When one
doesn’t have exact prior knowledge of the targets behavior the situation
calls for the multiple model approach. If the target switches between a
few different models, then the IMM (Interactive Multiple Model) algorithm
has been widely shown to provide good results by Blackman. S in [2] and
Bar-Shalom [7].

In a problem with a high SNR or a high ratio of clutter to the real
target the single target approach might not be good enough. It is necessary
to maintain a Track Before Detect Algorithm and keep tracking a number
of high probability tracks throughout the tracking process. This means
that ones simultaneously tracks a number of possible targets at the same
time. When tracking multiple targets an additional complication arises, i.e.
tracks cross and the validation regions overlap. Then, it is possible to have
observations that could belong to either track. When that happens, one has
to make an optimal decision regarding the assignment of the observations
to the tracks. I use a simplified method in which the track with the highest
probability takes the measurements in its validation region. The methods
to assign a probability to the track and set up the validation region are
discussed in the following sections. Better but more complex approaches
are the JPDAF (Joint PDAF) and MHT (Multiple Hypothesis Tracking) as
described in [2] and [7].

I will give a brief outline of the tracking algorithm which is explained in
detail in the following sections. There are 3 different stages:

Track Initiation At first pairs are created from the first two scans. Then
one sets a gate around the next predicted detection. Either there are
detections in the following gate and the track survives or it’s prob-
ability drops due to no detections and it is killed. The IMM-PDAF
algorithm is run for each and every pair. Measurements that are not
associated with any tracks are used to set up new tracks at every scan.

Track maintenance In the case of high SNR and a single target, the best
track is chosen from the track initiation stage and the rest of the other
tracks are dropped. If the target’s SNR is low then it will be difficult
to differentiate between the clutter and the target. Hence it will be
necessary to track many possible tracks before making a decision to
keep or drop them. In the low SNR case, it may be necessary to use
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the multi-target approach to help cope with this problem even in the
case of a single target.

Track Termination and Re-Initialization When tracking either a sin-
gle target or even multi-targets, sometimes the target can be lost and
the track probability drops below a pre-determined acceptable value.
Then the low probability track is dropped. In the single target case it
will be necessary to re-initialize the whole process. In the multi-target
case this won’t be necessary as associated measurements can be used
to start new tracks. In the multi-target case, some times, all existing
tracks are killed, and, in this case, it is necessary to drop the threshold
and create new tracks.

The IMM-PDAF algorithm can be broken down into the following steps
which are carried out in an iterative manner.

• The mixing stage of the IMM

• The filtering stage of the IMM- application of the PDAFAI:

– Use the prediction equations of the kalman filter for each mode.
Calculate the gate size

– Scan Image

– Pre-process the image

– Threshold the image

– Validate the measurement

– Calculate association probabilities βi,j
k for measurement i and for

mode j at time k.

– Update the measurement

• The Combination stage of the IMM

2.5 The Post Tracking Stage

A probability value is assigned to each track. The track with the highest
score is the real track. Another important criterion is the length of the track
life. If the algorithm locks to the target for less than 50% of the time then,
we suggest that the track should be ignored. True tracks tend to have longer
lifetimes than tracks that are generated by clutter.
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3 Tracking a Single Target with Background Clut-
ter

3.1 Validation of Measurements

In practice we do not consider every possible target in the image or from the
sensor. In order to reduce the complexity of the problem we focus only on
areas where it is highly probable to find the target. The validation procedure
suggested by [5] is to only consider observations that fall in the vicinity of the
prior estimate of the next measurement ẑk|k−1 = E[zk|Z]. The cumulative
set of the real measurements up to time k is

Zk = {z1, z2, . . . , zk} (9)

The next observation zk+1 conditioned on Zk is assumed to be gaussian
distributed

zk+1|k ∼ N
(
ẑk+1|k, Sk+1

)
(10)

where the associated covariance matrix Sk+1 is defined as

Sk+1 = E
{[

zk+1 − ẑk+1|k
] [

zk+1 − ẑk+1|k
]T ∣∣Zk

}
= Hk+1Σk+1|kH

T
k+1 + Rk+1 (11)

and the elliptical validation region at time k + 1 is defined as

Ṽk+1(γ) =
{

z :
[
zk+1 − ẑk+1|k

]T
S −1

k+1

[
zk+1 − ẑk+1|k

]
< γ

}
(12)

The quadratic expression from (12) is chi-square distributed with nz degrees
of freedom. Alternatively expression (12) can be written as

Ṽk+1(γ) =
{

z : νT
k+1 (γSk+1)

−1 νk+1 < 1
}

(13)

where the innovation νk is defined as

νk = zk − ẑk|k−1

This defines a hyper-ellipsoid region of the dimension nz. As an illustra-
tion, let’s take a look at the 2-Dimensional case. The area of a unit circle
is π, a and b are the lengths of the axes. This leads to the next important
fact: the volume of the hyper-ellipsoid region. This is defined by the size of
unit-hypersphere multiplied by the product of the lengths of the semi-axis
of the hyper-ellipsoid. In the example of the 2-Dimensional ellipsoid the
lengths of the semi-axis are a and b. The “volume” of a 2-Dim sphere is
πa2. The area of an ellipsoid is πab.
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The volume of a hyper-sphere of dimension n with a radius r is

cn =
π

n
2 rn

Γ
(

n
2 + 1

)
where Γ(n) is the gamma function defined as

Γ(n) =
∫ ∞

0
tn−1e−tdt ; n > 0

The product of the lengths of the semi-axis is obtained by the product of
the square root of the eigenvalues of the matrix. The matrix in this case is
γSk+1 and the squared root of the determinant is equivalent to the product
of the lengths of the semi-axis. This is because the determinant is equal to
the product of the eigenvalues.

To summarize, the volume of the Validation Region is

Vk+1 = cnz |γ · Sk+1|1/2

= cnz |γInz · Sk+1|1/2

= cnz |γInz |
1/2 · |Sk+1|1/2

= cnzγ
nz/2 · |Sk+1|1/2

= cnzg
nz · |Sk+1|1/2 (14)

where gM
=γ1/2. The probability of the real target falling in the gate or the

validation region is defined as

PG = P
{

zk+1 ∈ Ṽk+1

}
(15)

Calculating this value as a function of γ is difficult enough but a simple
manipulation can make things easier. First we define a linear transform of
zk

z̃k = Λ−1/2
k UT

k

(
zk − ẑk|k−1

)
(16)

where Λk is the eigenvalue matrix of Sk and Uk is the right eigenvector of
Sk. Then we get z̃k which is gaussian distributed as

z̃k ∼ N (0, Inz) (17)

This enables us to redefine (12) as

Ṽk+1(γ) =
{
z̃ : z̃ T

k+1z̃k+1 < γ
}

=
{

z̃ : ‖z̃k+1‖2
2 < γ

}
(18)
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γ = g2 1 4 9 16 25 6.6 9.2 11.4
g: 1 2 3 4 5 2.57 3.03 3.38

nz = 1 .683 .954 .997 .99994 1.0 .99
nz = 2 .393 .865 .989 .9997 1.0 .99
nz = 3 .199 .739 .971 .9989 .99998 .99

Table 1: Gating thresholds and values of probability mass in gate

Instead of having to calculate

PG(γ) =
∫
{zk+1∈Ṽk+1}

fzk+1|Zk
(αk+1)dαk+1

one calculates

PG(γ) =
∫
{z̃k+1∈Ṽk+1}

f̃z̃k+1|Zk
(αk+1)dαk+1

where fzk+1|Zk
(αk+1) is the PDF from (10) and f̃z̃k+1|Zk

(αk+1) the PDF
from (17).

We show how to explicitly calculate these values in Appendix A. The
above Table 1 of gating thresholds can be found in references [7] and [5].

The set of validated measurements at time k is defined as

Z(k) =
{
z i
k

}mk

i=1
(19)

where mk is the number of valid measurements at time k. The cumulative
set of measurements is up to time k is Zk. The size of the gate or validation
region is determined by the parameter γ. This should vary in time according
to the amount of clutter and various other criteria.

3.2 The Nearest-Neighbor Standard Filter

In the nearest-neighbor standard filter the closest measurement to the prior
estimated measurement ẑk|k−1 is chosen. The distance that we use in order
to decide which measurement is closest in probability to the prior estimated
measurement is

d2
i (k) =

[
z i
k − ẑk|k−1

]T
S−1

k

[
z i
k − ẑk|k−1

]
(20)

This is also referred to as the normalized innovation squared (NIS). The
measurement that we choose is the one that brings expression (20) to a
minimum. The disadvantage to this method is that we don’t take into
account previous possible measurements. Another disadvantage is that it
doesn’t take into account the possibility that none of the measurements in
the given set of measurements is a target.
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3.3 Clutter Model

3.3.1 The Parametric model

In the case of tracking a target in an image, let’s say that there are N pixels.
In addition we shall assume that

• The detection events are independent of each other.

• The probability of such a detection being a false alarm is PFA in each
cell.

Then the probability of the number of false alarms is Bernoulli distributed
and given by

P {nFA = n} =
(

N
m

)
pm (1− p)N−m (21)

Assign the volume of the N cells under inspection the value V and call the
spatial density of the false alarms

λ =
E[nFA]

V
=

Np

V
(22)

If p ≤ 1 and N is large enough then the Bernoulli distribution can be
approximated by a Poisson distribution and thereby we obtain

µF (m) = e−Np (Np)m

m!
(23)

By using the spatial density ratio from (22), (23) now becomes

µF (m) = e−λV (λV )m

m!
(24)

This method requires knowledge of the parameter λ. In the next subsection
a non-parametric model will be discussed that doesn’t require knowledge of
the parameter.

3.3.2 The non-parametric Model

In the non-parametric model we assume that the PMF is uniformly distrib-
uted.

µF (m) =
1
M

, mk = 0, 1, . . . , N − 1 (25)

where M is the number of false alarms. We will see in section 3.4.2 that the
value of M is not important.
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3.4 The Probabilistic Data Association Filter

3.4.1 The Assumptions of the PDAF

With this approach, we take into account the possibility that none of the
valid measurements are due to the target. We note that the previous valid
measurement are not taken into account. (An approach that takes these
measurements into account is referred to as the The Optimal Bayesian Ap-
proach). This approach will be discussed in a future section. The disadvan-
tage with this approach is that the computational burden grows with time
and can saturate even the most powerful computer systems. This method
however might be useful for the initialization sequence.

The Probabilistic Data Association Filter (PDAF) is based on three as-
sumptions:

• The track has been initialized

• There is only one target

• The prior state estimate is Gaussian distributed

xk|k−1 ∼ N
(
x̂k|k−1,Σk|k−1

)
(26)

• At each stage before the new set of measurements arrives, a validation
region is set up, as in (12)

• Out of the valid measurements there is either one valid measurement
or none at all

• The false measurements are uniformly distributed

Under these assumptions the events

θ i
k =

{ {
z i
k is the target originated measurement

}
, i = 1, . . . ,mk

{none of the measurements is target originated}, i = 0
(27)

are mutually exclusive and exhaustive. Using the theorem of total probabil-
ity the conditional mean of the state can be written as

x̂k|k = E[xk|Zk]

=
mk∑
i=0

E[xk|θ i
k , Zk]p{θ i

k |Zk}

=
mk∑
i=0

x̂ i
k|kβ

i
k (28)
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where x̂ i
k|k is the updated state conditioned on the event that the ith vali-

dated measurement is correct and

β i
k

M
=p{θ i

k |Zk} (29)

is the probability that the ith measurement is the target for i = 1, . . . ,mk.
For i = 0 Equation (29) represents the probability that there is no valid
target in the validation region. Equation (29) is referred to as the association
probability.

3.4.2 Probabilistic Data Association

The most difficult part of this method is deriving the association probabil-
ities. For this reason we will deal with them first. Equation (29) can be
written alternatively as

β i
k = p{θ i

k |Zk} = p{θ i
k |Z(k),mk, Zk−1} (30)

Using Bayes’ rule, this can be rewritten as

β i
k =

1
c
p

[
Z(k)|θ i

k ,mk, Zk−1

]
p{θ i

k |mk, Zk−1}, i = 0, 1, . . . ,mk (31)

Now we will derive the first PDF from (31). The PDF of a false measurement
is

p
[
z i
k |θ

j
k ,mk, Zk−1

]
=

1
Vk

(32)

where i 6= j1. The PDF of the correct measurement is

p
[
z i
k |θ i

k ,mk, Zk−1

]
= P−1

G N
(
z i
k ; ẑk|k−1, Sk

)
= P−1

G N
(
ν i

k ; 0, Sk

)
= P−1

G

1

|2πSk|
1
2

exp
{
−0.5νi T

k S−1
k ν i

k

}
(33)

where N
(
ν i

k ; 0, Sk

)
is the normal PDF with the argument ν i

k , a mean of
zero and a covariance matrix of Sk. The gate probability PG is given in (15)
and Vk is given in (14). After putting the last two expressions together2 we
get

p
[
Z(k)|θ i

k ,mk, Zk−1

]
=

{
V −mk+1

k P−1
G N

(
ν i

k ; 0, Sk

)
, i = 1, . . . ,mk

V −mk
k , i = 0

(34)
1This is based on the assumption that the clutter is uniformly distributed
2and by assuming that the entire set of measurements is conditionally independent
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The second PDF from (31) little more complex. The second PDF can be
shown to be

γi(mk) , P
{
θ i
k |mk, Zk−1

}
= P

{
θ i
k |mk

}
=


1

mk
PDPG

[
PDPG + (1− PDPG) µF (mk)

µF (mk−1)

]−1
, i = 1, . . . ,mk

(1− PDPG) µF (mk)
µF (mk−1)

[
PDPG + (1− PDPG) µF (mk)

µF (mk−1)

]−1
, i=0

(35)

where PD is the probability of detecting the target and µF (mk) is the PMF
of the number of false measurements described in section 3.3. The derivation
of (35) is a little bit technical. Based on the assumption that there can be
at most one valid measurement, let’s denote the number of measurements
as mk and it’s random variable as mT . If the random number of false
measurements is denoted as mF , then its value is mk− 1. Now we can show
how to calculate (35).

γi(mk) = P
{
θ i
k |mT = mk

}
= P

{
θ i
k |mF = mk − 1,mT = mk

}
P

{
mF = mk − 1|mT = mk

}
+P

{
θ i
k |mF = mk,m

T = mk

}
P

{
mF = mk|mT = mk

}
=

{ 1
mk

P
{
mF = mk − 1|mT = mk

}
+ 0 · P

{
mF = mk|mT = mk

}
, i = 1, . . . ,mk

0 · P
{
mF = mk − 1|mT = mk

}
+ 1 · P

{
mF = mk|mT = mk

}
, i = 0

(36)

In the case where there is only one valid measurement by using Bayes’
formula we get

P
{
mF = mk − 1|mT = mk

}
=

P
{
mT = mk|mF = mk − 1

}
P

{
mF = mk − 1

}
P {mT = mk}

=
PDPGµF (mk − 1)

P {mT = mk}
(37)

PGPD represents the possibility that the target has been detected and falls
within the gate.

In the complementary case where all of the measurements are false mea-
surements we get

P
{
mF = mk|mT = mk

}
=

P
{
mT = mk|mF = mk

}
P

{
mF = mk

}
P {mT = mk}

=
(1− PDPG) µF (mk)

P {mT = mk}
(38)
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where the denominator for both (37) and (38) is given by

P
{
mT = mk

}
= P

{
mT = mk|mF = mk − 1

}
P

{
mF = mk − 1

}
+P

{
mT = mk|mF = mk

}
P

{
mF = mk

}
= PDPGµF (mk − 1) + (1− PDPG) µF (mk) (39)

By combining equations (37)-(39) and inserting them into (36) we get (35).
The next stage is to insert the expressions for µF into the PMF. In

section 3.3 we had two different models. The first one was the parametric
model and the second the non-parametric model. The non-parametric is
simpler and more robust and has better results in practice according to [7].
So by inserting (25) into (35) we get the following result

γi(mk) =
{ 1

mk
PDPG, i = 1, . . . ,mk

1− PDPG, i = 0
(40)

We went through all of the mathematics above in order to calculate β i
k .

By inserting (40) and (34) into (31), we get β up to a normalizing constant

β i
k ∝

{
V −mk+1

k P−1
G

1

|2πSk|
1
2
ei · 1

mk
PDPG, i = 1, . . . ,mk

V −mk
k · (1− PDPG) , i = 0

∝

{
V −mk+1

k
PD
mk
N

(
νi

k; 0, Sk

)
, i = 1, . . . ,mk

V −mk
k · (1− PDPG) , i = 0

(41)

where

ei , exp
{
−0.5νi T

k S−1
k ν i

k

}
Since equation (41) is correct up to a normalizing constant it can be written
as

β i
k ∝

{
ei, i = 1, . . . ,mk

V −1
k |2πSk|

1
2 ·mk

1−PDPG
PD

, i = 0

∝

{
ei, i = 1, . . . ,mk(

2π
γ

)nz/2
c−1
nz

mk
1−PDPG

PD
, i = 0

(42)

To summarize, βk is calculated by the following expression

β i
k =


ei

b+
Pmk

j=1 ej
, i = 1, . . . ,mk

b
b+
Pmk

j=1 ej
, i = 0

(43)

where

b ,

(
2π

γ

)nz/2

c−1
nz

mk
1− PDPG

PD
(44)
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3.4.3 The state estimation

Returning to equation (28)

x̂k|k =
mk∑
i=0

x̂ i
k|kβ

i
k (45)

we now know how to calculate βi
k and now it’s time to see how to calculate

the updated state x̂ i
k|k. The current state conditioned on the past measure-

ments and on the ith measurement being correct is

x̂ i
k|k = x̂k|k−1 + Mkν

i
k (46)

where the innovation is defined as

ν i
k = z i

k − ẑk|k−1 (47)

The gain Mk is the same as in the standard filter

Mk = Σk|k−1H
T
k S−1

k (48)

for i = 0 or when mk = 0 we have

x 0
k|k = x̂k|k−1 (49)

By inserting
x̂ i

k|k = x̂ i
k|k−1 + Mkν

i
k (50)

where the combined innovation is

νk =
mk∑
i=1

β i
k ν i

k (51)

The updated covariance matrix is

Σk|k = Σk|k−1 −
[
1− β 0

k

]
MkSkM

T
k + Σ̃k (52)

where the extra term in

Σ̃k , Mk

[
mk∑
i=1

β i
k ν i

k ν i T
k − νkν

T
k

]
MT

k (53)

accounts for the extra uncertainty added by not knowing which measurement
is the correct measurement. The proof for this can be found in [7]. The
prediction equations are the same as in the standard Kalman filter.

x̂k+1|k = Fkx̂k|k (54)
ẑk+1|k = Hk+1x̂k+1|k (55)

Σk+1|k = FkΣk|kF
T
k + Qk (56)

Sk+1 = Hk+1Σk+1|kH
T
k+1 + Rk+1 (57)
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The likelihood of the current set of measurements filter given the previous
measurements is defined as

Λ(k) , P {Z(k)|mk, Zk−1}
= P {z1(k), . . . , zmk

(k)|mk, Zk−1}
= P {ν1(k), . . . , νmk

(k)|mk, Zk−1}

= V −mk
k γ0(mk) + V −mk+1

k

mk∑
j=1

P−1
G N

(
ν j

k ; 0, Sk

)
γj(mk) (58)

For the convenience of the reader a summary of the PDAF algorithm is
provided in Table 2.

Comments:

• This method can be further improved by generalizing the method to
incorporate the feature or intensity of the target in the calculation of
the probabilities.

• The method relies on the assumption that the track has been initial-
ized. In the next section, a method for track formation with clutter
will be discussed.



The PDAF Algorithm

Prediction Equations

x̂k|k−1 = Fk−1x̂k−1|k−1

ẑk|k−1 = Hkx̂k|k−1

Σk|k−1 = Fk−1Σk−1|k−1F
T
k−1 + Gk−1Qk−1G

T
k−1

Sk = HkΣk|k−1H
T
k + Rk

Validation of measurements

Z(k) =
{
z i
k

}mk

i=1

is the set of measurements that fall in the region defined by

Ṽk(γ) =
{

z : νT
k (Sk) −1

νk < γ
}

where
ν i

k = z i
k − ẑk|k−1 i = 1, . . . ,mk

and mk is the number of validated measurements.

Calculate β i
k i = 1, . . . ,mk

b ,

(
2π

γ

)nz/2

c−1
nz

mk
1− PDPG

PD

ei , exp
{
−0.5νi T

k S−1
k ν i

k

}
i = 1, . . . ,mk

β i
k =

{ ei

b+
Pmk

j=1 ej
, i = 1, . . . ,mk

b
b+
Pmk

j=1 ej
, i = 0

Measurement update

If mk = 0 then:
State update:

x̂k|k = x̂k|k−1

Covariance update:
Σk|k = Σk|k−1

Else:
Combined Innovation:

νk =
mk∑
i=1

β i
k ν i

k

Kalman Gain:
Mk = Σk|k−1H

T
k S−1

k

State update:
x̂k|k = x̂k|k−1 + Mkνk

Covariance update:

Σ̃k , Mk

[
mk∑
i=1

β i
k ν i

k ν i T
k − νkνT

k

]
MT

k

Σk|k = Σk|k−1 −
[
1− β 0

k

]
MkSkMT

k + Σ̃k

Table 2: Summary Of The PDAF Algorithm (One Cycle)
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4 Tracking a low SNR target with background
clutter

4.1 Introduction

Algorithms for track initiation can be divided into two different categories:

• Non-Bayesian/Logic based methods

• Bayesian methods

The first approach is described in [7] in sections 2.6 and 7.4. The second
approach can be done either by using the Optimal Bayesian approach as
described in [7] section 3.5 or by using IMM-PDAF (Interactive Multiple
Model) filter from section 4.4. We describe in the second approach using the
IMM-PDAF filter for the track formation. Before that we give a brief outline
of the different models that are used to describe the behavior of manoeuvring
targets. After that, we give a brief outline of the IMM algorithm and then
describe how to form a track with this method.

4.2 Modeling the behavior of a manoeuvring target

I will give a brief outline on some of the more popular models used for
tracking manoeuvring targets. This is in no way exhaustive and in some
cases more exotic models are required.

The most basic and simple model is that of a stationary target. For the
sake of simplicity, we analyze the problem in two dimensions. This does
not limit the generality of the model as one can easily extend the model to
higher dimensions.

Our proposal for the stationary model is the following:

xk+1 = Fxk + Gwk (59)
zk = Hzk + vk (60)

where
wk ∼ N (0, qkInx) (61)

where nx is the dimension of the state and

ṙk ∼ N (0, rkInz) (62)

where nz is the dimension of the measurement. The SS (State Space) ma-
trices are given by

F = I2 (63)
H = I2 (64)
G = 1 (65)
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and the state includes only the position of the target

xk =
[

rx(k)
ry(k)

]
(66)

where rx corresponds to the position on the x-axis and ry corresponds to
the position on the y-axis. Usually, one will assume that qk is very low and
constant in time. This describes a target that wobbles around itself and
mostly stays in the same place3.

The next model is called the Uniform Motion Model or White Noise
Acceleration Model and has been described before:

ṙx(k + 1) = ṙx(k) + Tw
(x)
k (67)

where ṙx denotes the speed on the x-axis. The equations for the position
and speed on the x-axis are

rx(k + 1) = rx(k) + T ·Av. Speed (68)

= rx(k) +
T

2
· (ṙx(k + 1) + ṙx(k)) (69)

= rx(k) +
T

2
·
(
2ṙx(k) + Tw(k)(x)

)
(70)

= rx(k) + T · ṙx(k) +
T 2

2
w(k)(x) (71)

The equations for position and speed on the y-axis are similar. To summarize
the matrices for the SS equations (59) and (60) are given by

F =


1 0 0 0
T 1 0 0
0 0 1 0
0 0 T 1

 (72)

G =


T 0

T 2/2 0
0 T
0 T 2/2

 (73)

H =
[

0 1 0 0
0 0 0 1

]
(74)

where the state vector is

xk =


ṙx(k)
rx(k)
ṙy(k)
ry(k)

 (75)

3Note that one is assuming that the white noise input is piece-wise constant if this
is not the case, one has use the method described in [5] section 2.3 and section 2.7 for
approximating a continuous SS (state space) model by a discrete SS model
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For an accelerating target, the most common model used is referred to
as the Wiener Process Acceleration Model. By augmenting the state vector
with a variable for the acceleration, we get here a third order model with
the following matrices:

F =



1 0 0 0 0 0
T 1 0 0 0 0

T 2/2 T 1 0 0 0
0 0 0 1 0 0
0 0 0 T 1 0
0 0 0 T 2/2 T 1

 (76)

G =



1 0
T 0

T 2/2 0
0 1
0 T
0 T 2/2

 (77)

H =
[

0 0 1 0 0 0
0 0 0 0 0 1

]
(78)

where the state vector is

xk =



ax(k)
ṙx(k)
rx(k)
ay(k)
ṙy(k)
ry(k)

 (79)

A description of these models can be found [5] section 2.7. More sophis-
ticated models such as the Singer Model for maneuvering targets with a
colored noise input [8] or James Helferty’s Turn-Rate Distribution Model [9]
can be used if necessary, but, for this particular problem dealt with in this
project, the first 3 models should suffice.

Another model worthy of mentioning is the Coordinated Turn Model.
This model is especially useful for Air Traffic Control where civilian aircraft
perform turns of a constant radius before landing. A description of it’s
application is given by Bar-Shalom and Li in [10]. A brief survey of some of
the models mentioned here4 is given by Lerro and Bar-Shalom in [13].

4.3 The Interacting Multiple Model

When there is uncertainty regarding the type of model and the parameters
of the model, it is necessary to use multiple models. For example, take a

4Except for the Singer Model and Helferty Model
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target that is driving along a road and then leaves the road and starts driving
across rough terrain. One would require two models in this case. The IMM
(Interacting Multiple Model) is a hybrid approach that has an effect of soft
switching between different models. Its performance is comparable to other
algorithms such as the GPB (Generalized-Pseudo-Bayesian) approach and
it is shown by Bar-Shalom to be more efficient [7].

The hybrid system is not surprisingly formulated by a set of linear SS
equations corresponding to each individual mode or model.

x(k + 1) = F (k,Mk) x(k) + G (k,Mk) w (k,Mk) (80)
z(k) = H (k,Mk) + v (k,Mk) (81)

where Mk is the true mode at time k. The state noise w (k,Mk) and the
measurement noise are uncorrelated with the Gaussian initial state x(0);
they, are mutually uncorrelated white Gaussian noise vectors with the co-
variance Q (k,Mj) and R (k,Mj) respectively.

The idea behind the algorithm is to use homogeneous Markovian tran-
sition system where the probability of moving from one mode to another
is

P {M(k + 1) = Mj |M(k) = Mi} = πij ∀i, j ∈ M (82)

where M denotes the set of all modes assumed to be in the MM (Multiple
Model) scheme and M(k) represents the mode at time k.

Now I will describe the conventions used in this model

x̂j(k|k), Pj(k|k) state estimate of the mode-matched filter j at k and its covariance
x̂oj(k|k), Poj(k|k) mixed condition for the mode matched filter j at k
x̂(k|k), P (k|k) combined state estimate and its covariance
µj(k) mode probabilities for filter j at time k
µi|j(k) the probability of going from mode i to j at time k,
Λj(k) the likelihood function of mode matched filter j

The idea behind the IMM algorithm is simple. Say we have two different
models. At every different stage, the number of possible options is 2. Either
the target is in model 1 or model 2. Then for the next stage the target
can be in either model 1 or model 2. As the process continues the number
of possibilities grows exponentially. In this specific case of two models, the
number of possibilities grows at a rate of 2k like a binary tree. In order to
avoid this, one has to make use of sub-optimal algorithms. The IMM does
this by a mixing stage before individually applying the Kalman filter to each
stage. This is demonstrated in Figure 4.
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Figure 4: IMM diagram

More details and background on this algorithm are discussed by Blom in
[11] and by Bar-Shalom and Li in [12] and section 1.5.4 of [7]. The algorithm
is described in Table 3.

When plugging the PDAF algorithm into the IMM, one has to replace
Equation (92) with the expression for the combined innovation for the PDAF
from (51). The likelihood function from (95) is replaced with the expression
from (58). The association event probabilities β are calculated by using
equation (41) instead of (42). This is necessary in the event of PD = 0.
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Interaction (∀j ∈ M):
• predicted mode probability:

µj , P {Mj(k)|Zk−1} =
X

i

πijµi(k − 1) (83)

• mixing probability:

µi|j , P {Mi(k − 1)|Mj(k), Zk−1} = πijµi(k − 1)/µ̄j (84)

• x̂oj(k − 1|k − 1) , E [x(k − 1)|Mj(k), Zk−1] =
X

i

x̂i(k − 1|k − 1)µi|j (85)

• Poj(k − 1|k − 1) =
X

i

Pi(k − 1|k − 1)µi|j + Xj (86)

• where the ”spread-of-the-means” term in the mixing is

Xj ,
X

i

[x̂i(k − 1|k − 1)− x̂oj(k − 1|k − 1)] [x̂i(k − 1|k − 1)− x̂oj(k − 1|k − 1)]T µi|j

(87)

Filtering (∀j ∈ M):
• state prediction:

x̂j(k|k − 1) = Fj(k − 1)x̂oj(k − 1|k − 1) (88)

• covariance prediction:

Pj(k|k− 1) = Fj(k− 1)Poj(k− 1|k− 1)Fj(k− 1)T + Gj(k− 1)Qj(k− 1)Gj(k− 1)T (89)

• residual covariance:

Sj = HjPj(k|k − 1)HT
j + Rj (90)

• filter gain:
Wj = Pj(k|k − 1)HT

j S−1
j (91)

• residual:
νj , z(k)−Hj x̂j(k|k − 1) (92)

• state correction:
x̂j(k|k) = x̂j(k|k − 1) + Wjνj (93)

• covariance correction

Pj(k|k) = Pj(k|k − 1)−WjSjW T
j (94)

• likelihood function:

Λj = N (νj ; 0, Sj) = |2πSj |−1/2 exp

�
−

1

2
νT

j S−1
j νj

�
(95)

• mode probability:

µj =
µ̄jΛjP
i µ̄iΛi

(96)

Combination:
• x̂ , E [x(k)|Zk] =

X
i

x̂j(k|k)µj (97)

• P (k|k) , E
h
[x(k)− x̂(k|k)] [x(k)− x̂(k|k)]T |Zk

i
=
X

i

Pj(k|k)µj + X (98)

• where the “spread-of-the-means” term in combination is

X ,
X

i

[x̂i(k|k)− x̂(k|k)] [x̂i(k|k)− x̂(k|k)]T µi (99)

Table 3: Summary Of The IMM Algorithm (One Cycle)
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4.4 Combining The IMM with the PDAF

In order to apply the IMM-PDAF algorithm to the problem of track initi-
ation, two models are used: “observable target” (true target),M1, an “un-
observable target” (no target) model, M0. Both filters are Uniform Motion
Models. The difference between them is that in the “unobservable target”
model PD = 0. The TTP (True Target Probability) is used to discriminate
between false tracks and the real track. The TTP is defined as

TTP (k) , µ1(k) (100)

where µ1(k) is the mode probability for the “observable target” model.
There are two different ways to implement this. The first is the fixed window
implementation. The second is the sliding window implementation, when
unvalidated measurements are used to initiate new tracks. This is better,
since when the algorithm locks on to the wrong track there is a chance of
switching back to the right track. Another way to improve the results is to
include the Amplitude Information. This will be discussed in later sections.

The process of track formation in fixed window implementation consists
of

1. Track Pair Initiation: Initial pairs of measurement are created by
using the first two scans or images. The pairs are further pruned by
using the following criterion

∣∣∣zi
1(1)− zj

1(1)
∣∣∣ < v1maxT + 2

√
R11

and
∣∣∣zi

1(2)− zj
1(2)

∣∣∣ < v2maxT + 2
√

R22 ∀i 6= j
(101)

where zi
k(1) is the ith measurement for the x-axis (1) at time k and

zi
k(2) is the ith measurement for the y-axis (1) at time k.

2. Tracking Maintenance: For k = 3, . . . , NW the IMM-PDAF algo-
rithm is implemented with two models as previously explained. In this
method the Track before Declare or Track before Detect procedure is
used. The markov transition matrix used to describe the transition
between models is

π =
[

0.98 0.02
0.02 0.98

]
(102)

The track with the highest TTP is given preference when assigning
measurements in order to avoid giving the same measurement to dif-
ferent tracks. The gating region has to be the same for both models.
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Otherwise one cannot perform the calculation in (96). Both models
also have to have the same number of measurements (by union of all
the gates for each individual model). In practice the volume of the
gating region is taken from the model with the largest volume. When
the track stops getting measurements in its gate region the covariance
matrix grows and with it the gating region. This is because the gating
region grows so large it eventually gets flooded with measurements.
To prevent this from happening, tracks with too many measurements
are dropped.
Tracks with a TTP below a certain threshold specified by the user are
dropped. In the sliding window implementation, unassociated mea-
surements are used to initiate new tracks. This is especially important
in a problem with a low PD.

The IMM-PDAF algorithm can also be useful for tracking a manoeuver-
ing target once the real track has been confirmed. By adding on additional
models, one can dramatically increase the robustness of the algorithm and
maintain the track. Another advantage is that by monitoring the TTP, one
has a fairly reliable criterion for terminating a track.

4.5 Using Amplitude Information in the IMM-PDAF

It is possible to improve the reliability of the tracking by adding the in-
formation about the amplitude onto the measurement vector. The set of
measurements is obtained by thresholding an image; thereby one obtains a
set of measurements with varying amplitudes. If one takes into account only
the position and not the amplitude one loses valuable information. By using
both one should expect a drastic improvement in the performance. First a
description of the PDAFAI (PDAF Amplitude Information) will be given as
described in [7] and [13]. Secondly I will explain in detail how to combine
this algorithm with the IMM algorithm.

4.5.1 PDAFAI

The statistical information about the amplitude can be incorporated into the
PDAF algorithm in the following manner. One assumes that the following
information is available:

• p0(a) = PDF of the amplitude it is due to noise only

• p1(a) = PDF of the amplitude if it originated from the target

The simplest model for the signal amplitude is

H0 : ak = nk

H1 : ak = s + nk
(103)
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where H0 is the hypothesis for no target, H1 is the hypothesis for a target, s
is the real amplitude and nk is assumed to be i.i.d. additive white gaussian
noise with a variance of σ2

n. Then, we use the maximum likelihood to es-
timate the variance of the pixels in the first frame. As each frame in the
movie is pre-processed and normalized the background noise does not vary
much over time. If the signal strength is not known (and this usually is the
case) then one can estimate it by taking the maximum pixel in each frame
defined as

sk = max
m,n

{uk(m, n)} (104)

where uk(m,n) is a pixel at index (m,n) at time k. Then the estimated
signal strength is

s̄ =
1
K

K∑
l=1

sl (105)

This is a weak assumption but it works very well for real data. When there
is no target then one gets a signal at the height of the noise. If the noise is
white then the tracks that are initiated eventually get killed off during the
tracking process. Then the probability functions are assumed to be

• p0(a) = N
(
a; 0, σ2

n

)
• p1(a) = N

(
a; s̄, σ2

n

)
It is assumed that the strength of the signal/amplitude s is known or more
or less constant; therefore, the estimate is fairly good. In the detection
problem where one is tracking a point target with a fluctuating amplitude
strength, a slight modification is required. In Fig. 5 there is an example
of the signal strength in an Irena movie. The method for producing these
movies is explained in [14]. It is in fact the maximum pixel in each frame.
One can see that signal is a combination of a periodic signal that has a period
of 8 frames and a gradually increasing average that changes over time. The
periodic signal can be explained by the nature of the signal. It is spread
over 3 or 4 neighboring pixels. When the center of target moves from one
pixel to the next, its intensity is spread evenly between a few pixels and it is
at its lowest intensity. When the center of the target is in the center of the
pixel, its intensity is the highest. In the synthetic data here, the target is
traveling at a speed of 1/8; the results fit our theory. The changing average
can be explained by clouds entering and leaving the picture. A better model
for this case would be

H0 : ak = nk

H1 : ak = s + ξk + nk
(106)

where ξk is a i.i.d. white gaussian noise and is uncorrelated with nk. The
variance of ξk is estimated by taking the sample variance over {sk}K

l=1. The
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Figure 5: The signal amplitude taken from an Irena movie

variance is calculated by

σ̂2
ξ =

1
K − 1

K∑
l=1

(
sl − s̄

)2 (107)

Finally the PDF’s for both the target present hypothesis H1 and no target
hypothesis H0 is assumed to be

• p0(a) = N
(
a; 0, σ2

n

)
• p1(a) = N

(
a; s̄, σ2

n + σ2
ξ

)
In practice the best results are obtained by using the moving average of

the estimated signal amplitude. Take for example the following estimated
signal amplitude and its moving average for 10 samples in Fig. 6

Another reason why this is better is because one can implement this
method online while scanning. The previous model with the added noise ξ
has to be carried out offline. The estimation of the signal variance σ2

ξ can
only be carried out after scanning the whole video. In this case the PDF’s
for both the target present hypothesis H1 and no target hypothesis H0 is
assumed to be
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Figure 6: The solid blue line is the estimated signal amplitude and the
dashed green line is it’s moving average

• p0(a) = N
(
a; 0, σ2

n

)
• p1(a) = N

(
a; sMA(k), σ2

n

)
where the moving average is calculated by

sMA(k) =
1
10

0∑
l=−10

s(l) (108)

After finding an appropriate model for the problem, the probability of
detection PD and the probability of a false alarm PFA are calculated with
the following equation:

PD =
∫ ∞

τ
p1(a)da, a > τ (109)

PFA =
∫ ∞

τ
p0(a)da, a > τ (110)

After applying the threshold, the resulting distributions for “target” and
“no-target” measurements are
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pτ
1(a) =

1
PD

p1(a) (111)

pτ
0(a) =

1
PFA

p0(a) (112)

The additional information about the amplitude will be included in the
algorithm by rewriting equations (32) and (33).

p
[
z i
k |θ

j
k ,mk, Zk−1

]
=

1
Vk

pτ
0(a

i
k ) (113)

where i 6= j. In order to simplify the calculations define the ratio

λi ,
pτ
1(a

i
k )

pτ
0(a

i
k )

i = 1, . . . ,mk (114)

The PDF of the correct measurement is

p
[
z i
k |θ i

k ,mk, Zk−1

]
= P−1

G N
(
z i
k ; ẑk|k−1, Sk

)
pτ
1(a

i
k )

= P−1
G N

(
ν i

k ; 0, Sk

)
pτ
1(a

i
k )

= P−1
G

1

|2πSk|
1
2

exp
{
−0.5νi T

k S−1
k ν i

k

}
pτ
1(a

i
k )

(115)

and by inserting equations (113) and (115) into (34) we get the following

p
[
Z(k)|θ i

k ,mk, Zk−1

]
=

 V −mk+1
k PD

1
mk
N

(
ν i

k ; 0, Sk

)
pτ
1(a

i
k )

∏mk
j=1
i6=j

pτ
0(a

j
k ), i = 1, . . . ,mk

V −mk
k

∏mk
j=1 pτ

0(a
j

k ), i = 0

=

{
V −mk+1

k PD
1

mk
N

(
ν i

k ; 0, Sk

)
λi

∏mk
j=1 pτ

0(a
j

k ), i = 1, . . . ,mk

V −mk
k

∏mk
j=1 pτ

0(a
j

k ), i = 0
(116)

After inserting this into equation (31) and after a bit of normalizing one gets

β i
k =


eiλi

b+
Pmk

j=1 ejλj
, i = 1, . . . ,mk

b
b+
Pmk

j=1 ejλj
, i = 0

(117)

where

ei , P−1
G N

(
νi

k; 0, Sk

)
(118)

and
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b , mk
1− PDPG

PDPGVk
(119)

The likelihood of the filter is given by

Λ(k) , P {Z(k)|mk, Zk−1}
= P {z1(k), . . . , zmk

(k)|mk, Zk−1}
= P {ν1(k), . . . , νmk

(k)|mk, Zk−1}

= V −mk
k γ0(mk)

mk∏
j=1

p0(a
j

k )

+V −mk+1
k

mk∏
j=1

p0(a
j

k )
mk∑
j=1

P−1
G N

(
ν j

k ; 0, Sk

)
λjγ

j(mk)

= V −mk
k γ0(mk)

mk∏
j=1

p0(a
j

k )

+V −mk+1
k

k∏
j=1

p0(a
j

k )
mk∑
j=1

P−1
G ejλjγ

j(mk) (120)

where γj(mk) is given by the nonparametric clutter model from (40) and
hereby the final result is

Λ(k) =

b +
mk∑
j=1

λjej

 PDPGV −mk+1

mk

mk∏
j=1

p0(a
j

k ) (121)

4.5.2 The IMM-PDAFAI Algorithm

In the implementation of the IMM-PDAFAI, a few modifications are neces-
sary. The first is that the same number of measurements is required for all
models. This is done by using a common gating region or a union of all the
gates. In practice this is done by taking the gate with the largest region.
Ideally, one would apply the PDAFAI separately to each model; however
the likelihood functions for each model have to have the same number of
measurements in order to apply the equations. The likelihood function is
calculated for Mj(k), model j, at time k
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Λj(k) , P {Z(k)|Mj(k),mk, Zk−1}

= V −mk
k γ0(mk)

mk∏
l=1

p0(a l
k )

+V −mk+1
k

mk∏
l=1

p0(a l
k )

mk∑
l=1

P−1
G N

(
ν j,l

k ; 0, S j
k

)
λlγ

l(mk)

(122)

where

ν j,l
k = zl

k − ẑj
k|k−1 (123)

where zl
k is the lth measurement at time k and the measurements are the

same for all of the models. The prior estimated measurement for the jth

model is ẑ j
k|k−1. The measurement covariance matrix for the jth model is

given by S j
k .

To put it in a slightly different and more comprehensible manner

Λj(k) =


(
bj +

∑mk
l=1 λlej,l

)
PDPGV −mk+1

mk

∏mk
j=1 p0(a

j
k ), “target model”

V −mk
k

∏mk
j=1 p0(a

j
k ), “no-target model”

(124)
where

ej,i , P−1
G N

(
νj,i

k ; 0, S j
k

)
i = 1, . . . ,mk (125)

and

bj , mk
1− PDPG

PGPDVk
(126)

A summary of the IMM-PDAFAI for the filtering stage is given in Table
4. The rest of the algorithm’s stages are the same as in Table 3.

4.5.3 Track Formation with the IMM-PDAFAI Algorithm

Lets assume that one is using the sliding-window version of the algorithm.
This means that at time k and k + 1 unclaimed measurements are used to
initiate new tracks. The IMM-PDAFAI is employed on the resulting pairs
from k + 2. At stages k and k + 1 where there is no original uncertainty
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Filtering (∀j ∈ M):

Prediction Equations
• state prediction: x̂j(k|k − 1) = Fj(k − 1)x̂oj(k − 1|k − 1)
• covariance prediction:

Pj(k|k− 1) = Fj(k− 1)Poj(k− 1|k− 1)Fj(k− 1)T + Gj(k− 1)Qj(k− 1)Gj(k− 1)T

• residual covariance: Sj = HjPj(k|k − 1)HT
j + Rj

• filter gain: Wj = Pj(k|k − 1)HT
j S−1

j

• Gate size V j
k = cnz γnz/2 ·

��S j
k

��1/2

The largest gate region is defined as Vk = maxj

�
V j

k

	
Validation of Measurements (only for “no-target” models)

Z(k) =
n

z i
k

omk

i=1

is the set of measurements that fall in union the regions defined by

Ṽ j
k =

�
z : νj,i T

k

h
S j

k

i−1

ν j,i
k < γ

�

where
ν j,i

k = z i
k − ẑ j

k|k−1 i = 1, . . . , mk

and mk is the number of validated measurements.

Calculate βj,i
k i = 1, . . . , mk

λi ,
pτ
1(a i

k )

pτ
0(a i

k )
i = 1, . . . , mk

bj , mk
1− PDPG

VkPGPD

ej,i , P−1
G N

�
νj,i

k ; 0, S j
k

�
i = 1, . . . , mk

βj,i
k =

8<
:

ej,iλi

bj+
Pmk

l=1 ej,lλl
, i = 1, . . . , mk

bj

bj+
Pmk

l=1 ej,lλl
, i = 0

Measurement update

If mk = 0 then:
State update: x̂j(k|k) = x̂j(k|k − 1)
Covariance update: Pj(k|k) = Pj(k|k − 1)
Likelihood function: ∀j Λj(k) = 1
If M0=“no target” and M1=’target’ then
Λ0(k) = 1− PFA and Λ1(k) = 1− PD

Else:
Combined Innovation: νj(k) =

Pmk
i=1 βj,i

k νj,i
k

Kalman Gain: Wj(k) = Pj(k|k − 1)HT
k [Sj

k]−1

State update: x̂j(k|k) = x̂j(k|k − 1) + Wj(k)νj(k)

Covariance update: eP (k) , Wj(k)
hPmk

i=1 β j,i
k ν j,i

k νj,i T
k − νj(k)νj(k)T

i
Wj(k)T

Pj(k|k) = Pj(k|k − 1)−
�
1− βj,0

k

�
Wj(k)S j

k Wj(k)T + eP (k)
Likelihood function: Equation (124)

• mode probability: µj =
µ̄jΛjP
i µ̄iΛi

Table 4: Summary Of The Filtering Stage for the IMM-PDAFAI Algorithm
(One Cycle)
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for an initiating pair, the likelihood function relies only on the amplitude
information:

Λ1(k) = pτ
1(ak) for the “target model” (127)

Λ0(k) = pτ
0(ak) for the “no-target model” (128)

The initial mode probabilities, for an initial pair at time k, are assumed to
be

µ1(k) = 0.5 (129)
µ0(k) = 0.5 (130)

where the mode probabilities are updated according to equations (83) and
(96). This algorithm is not in fact a Multi-Target tracking algorithm, but
some ad hoc changes can be made in order to track more than one target
when it is known that there is only one target

4.5.4 Common Problems with the Algorithm and their Solutions

No initial pairs The threshold is lowered until there exist legitimate pairs
to start the process.

Too many initial pairs The threshold is raised until the number of initial
tracks drops below a predetermined threshold. Too many tracks are
a problem as this algorithm isn’t strictly a multiple model tracking
algorithm. This algorithm can theoretically track more than one target
as long as the tracks don’t cross over each other.

All of the tracks get killed off during the tracking process The thresh-
old is dropped until there exist initial pairs to carry on the tracking
process.

Tracking gate gets flooded with measurements for a single track When
the output covariance matrix Sk as defined in Equation. (11) grows,
so does the gate size. Then, the gate becomes so large, it takes up
all of the measurements including measurements that belong to other
tracks. This happens because the more measurements that enter the
gate the more spread, there is between the innovations, consider Equa-
tion. 53. Unfortunately, this ends up like a rolling snowball. Things
can only get worse. The simplest solution is to not allow tracks with
large output covariance matrices access to any measurements.

The number of total tracks crosses a reasonable number When there
are too many tracks in a small area, they start stealing measurements
from each other. That means that even legitimate tracks are some-
times denied access to their measurements and are killed off because of
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this. Also, a large number of tracks is an unnecessary computational
burden. A large number of tracks typically occurs when there is no
target at all or when the target gets lost in the clutter. Our strategy
is to stop the tracking process when this happens. In order to take
into account the size of the image, the criteria for exiting the tracking
algorithm is the following:
If pf > 0.03 or ImageSize ∗ pf > 100, then exit.
This exit strategy is used most often when there is no target and the
algorithm is tracking only clutter.

5 Hyperspectral Movies

The main focus of the thesis is to examine the effect of different detection
algorithms and assumed target signatures on the tracking process when ap-
plied to Hyperspectral movies. Lets assume that the target was implanted in
a manner described by L. Varsano, I. Yatskaer and S.R. Rotman, ”Tracking
Point Targets in Hyperspectral Data”, accepted by Opt. Eng.

u(m,n)′ = u(m,n) + θt (131)

where t is the target signal vector θ is the relative intensity. There are
different types of detection. The first is when the signal is known; in that
case, the matched filter is used. The equation for the matched filter is:

MF (m,n) = tTΣ−1
(
u(m,n)− û(m,n)

)
(132)

The second is when the signal is unknown; then, we use the RX filter:

RX(m,n) =
(
u(m,n)− û(m, n)

)TΣ−1
(
u(m,n)− û(m,n)

)
(133)

6 System Design and Analysis

Designing a system is a bit like tailoring. Anyone with a bit of cloth and
a needle and thread can make a suit, but it won’t necessarily be worth
anything if it is not suited to the client. There are a bewildering number of
possibilities to choose from. The only way to make heads and tails out of
the designing problem is to have a trustworthy method for comparing and
analyzing the systems performance.

I suggest two different score methods. The first is simple. If the real
targets track is known, then the test is simple. Usually there are a few
possible tracks at the end of the process. Only tracks that have a lifetime
of more than 50% are taken into consideration. Then the track with the
highest TTP 100 is the winning track. The next step is to compare the
track with the real track. This is done by calculating the MSE between the
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estimated track and the real track position. We do this from the creation of
the track denoted as tbirth until the end of the tracking process.

MSE =
1
N

N∑
n=tbirth

√
(rx(n)− r̂x(n))2 + (ry(n)− r̂y(n))2 (134)

where rx(n) is the real position on the x-axis and r̂x(n) is the estimated
position on the x-axis. The same applies for ry(n) and r̂y(n). If MSE < 1,
then the track is valid.

The second method is based on the TTP. First, using the real track, we
find the real track if it exists. The TTP of the real track is termed TTPtrue.
If TTPtrue doesn’t exist, then it is set to zero. Then the maximum of the
remaining false tracks is termed max{TTPfalse}. If there are no false tracks,
then max{TTPfalse} is set to zero. Then the criterion is the ratio between
the two. However, in order to get a score between 0−1 the following equation
is used

2
π

arctan
(

TTPtrue

max{TTPfalse}

)
(135)

If the score is equal or larger than 0.5, then the tracking is successful; a
failure occurs for scores less than 0.5.

Because the results are dependent on the scenario, we take ten different
frames and repeat the process, then we average the scores from both tests.
We refer to the first method as the success rate and to the second test as
the score rate.

These are tests for when the target is known to be in the picture. When
the tracking algorithm is applied to the same picture with no target im-
planted, then ideally no false tracks show up. For a no-target picture we
expect a score or success rate of zero. This would mean that no high value
TTP tracks have survived for over 50% of the simulation.

6.1 Tracking Curves

The main point of the this tracking algorithm is to track targets at a low SNR
level. It is important to have a yardstick to compare different algorithms
performance or even the same algorithmic performance but with different
parameters, for different levels of SNR. This is easy with simulated data.
The target is inserted at different levels of intensity. For a higher intensity
one expects a higher average score or success rate. The difference between
algorithms is, first, the minimum level of target intensity that results in a
score or success rate above zero; second, the rate that the score or success
rate rises. In fig. 7 two different methods of collapsing the hyperspectral
cube are compared. The first is the dot product between the pixel vector
and the target vector

tT (u(m, n)− û(m,n)) (136)
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and the second is the matched filter from Equation. (132).

(a) (b)

Figure 7: The TOC curves: (a) The average score rate versus target inten-
sity, (b) The average success rate versus target intensity

It is clear that the matched filter is better then merely projecting the
target onto the target signal.
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7 Tracking results for Synthetic Data Produced
by Irena and Louisa

The synthetic data here is taken from na23a. It was converted into a Hy-
perspectral movie by using a cloud signature and sky signature. Research
on converting IR movies into hyperspectral movies has been done by Louisa
Varsano, continued by Irena and is explained in [14]. A target signal was
implanted diagonally in time in the movie. The target signal is spread over
a few pixels. Three ways of collapsing the hyperspectral movie are:

Test 2
1T

(
u(m,n)− û(m,n)

)
(137)

Test 2 half
tT

(
u(m,n)− û(m,n)

)
(138)

Test 3
tTΣ−1

(
u(m, n)− û(m,n)

)
(139)

The results for the Irena movies are shown in Table 5:

Test 2 Test 2 half Test 3
Irena Movie Success Rate 1 1 1

Score Rate 1 1 1
Stanley Movie Maximum TTP 0.665 0.6653 0.1111

Table 5: The Table of results for the Irena Movie

Here is an example of a target path and tracking result from an Irena
movie with Test 3. in Fig. 8.

Note that I compare the results to the Stanley movies. The Stanley
movies are movies without targets implanted. The score for evaluating the
Stanley Movies is the maximum TTP amongst the tracks that survive for
over 50% of the tracking process. The Maximum TTP for the Stanley movies
have to be very low, i.e. , at the very least, lower than 0.9. For example in
Table 5 we get 0.665 for Test 2 on a Stanley movie. This means that 6 of
the 9 movies have a maximum TTP of almost 1. In other words we have a
false track rate of 6 out 9 when there is no target. For a real system this
is not acceptable Otherwise this means that the algorithm will track clutter
when there are no targets which isn’t very useful.

The Louisa movies are divided into 4 different types according to the
intensity of the target. The intensity goes from 1 to 4 with 1 being the most
intense.The results are shown in the following tables:
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Figure 8: The target starts in left upper corner and proceeds to move diag-
onally over the frame. The zigzag motion is due to the pixel entering and
leaving a pixel.The green line is the path of center the target and the blue
line is the result of the tracking algorithm.

Test 2 Test 2 half Test 3
Louisa Movie Success Rate 0.7778 1 1

Score Rate 0.6881 0.9142 0.9142
Stanley Movie Maximum TTP 0.665 0.6653 0.1111

Table 6: The Table of results for the Louisa Movies ,Intensity 1

Test 2 Test 2 half Test 3
Louisa Movie Success Rate 0.5556 0.6667 0.6667

Score Rate 0.4937 0.6115 0.6115
Stanley Movie Maximum TTP 0.665 0.6653 0.1111

Table 7: The Table of results for the Louisa Movies ,Intensity 2

Test 2 Test 2 half Test 3
Louisa Movie Success Rate 0 0.4444 0.4444

Score Rate 0 0.3889 0.3889
Stanley Movie Maximum TTP 0.665 0.6653 0.1111

Table 8: The Table of results for the Louisa Movies ,Intensity 3

The only test that provides acceptable results for both movies is Test 3.
The reason is that the clutter isn’t white for Test 2 and Test 21

2 therefore the
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Test 2 Test 2 half Test 3
Louisa Movie Success Rate 0 0 0

Score Rate 0 0 0
Stanley Movie Maximum TTP 0.665 0.6653 0.1111

Table 9: The Table of results for the Louisa Movies ,Intensity 4

algorithm locks on to clutter usually edges of clouds. The tracking results
for Test 21

2 were good and usually equal to those of Test 3. However the
results when no target was implanted are not good for Test 21

2 . It might
be possible to eliminate the problem by better pre-processing methods, then
Test 21

2 might provide better results also when there is no target. In order to
be worth the effort a pre-processing method would have to be more efficient
than estimating the covariance matrix.

It can be seen from the Louisa movies that a higher intensity target has
a higher chance of being tracked.
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8 Conclusions

There are five principal issues which have been addressed in order to get the
IMM approach to work in a high clutter environment.

• The pre-processing level is vital to successful tracking among the more
common approaches we have applied linear filtering and ordered sta-
tistics filter. In the future, beside searching for the best method of
feature extraction, we should consider combining different methods of
feature extraction/pre-processing methods.

• Normalization of background noise and time dynamic thresholding;

– Normalization of background noise-The normalization of the back-
ground noise is important for the tracking process. This was done
by dividing each pixel by a constant and the local standard devi-
ation around each pixel. A method for calculating the constant
was described.

– Time dynamic thresholding- Raising or lowering the threshold in
the case of too many tracks or no tracks at all.

• When tracking in an environment with a low SNR it is necessary to
continually track a number of high probability tracks simultaneously.
That is a good way to keep tracking the target if its probability drops.
This makes it possible to regain acquisition of the target, if it disap-
pears and then reappears. In fact this is the same approach taken
for the track initiation stage. In future work, the current algorithm,
which is better suited to a single target, can be improved significantly
by using the multiple target approach. The various ways to do this
are the JPDAF or MHT.

• The conclusions for the Collapsed Hyperspectral movies are as ex-
pected. The higher the intensity of the implanted target, the better
chance there is of tracking it. In order to reduce the probability of
tracking clutter, the clutter must be whitened. The results show that
the Matched Filter does a good job at this.

• The model used for the amplitude of the target is in fact crucial for
successfully tracking the target. This point target is in general, difficult
to model; however, a satisfactory solution was found for this problem.
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Appendixes

A Calculating PG explicitly

I will show how to explicitly calculate the gate probability PG for nz = 1, 2, 3.
The first dimension is easy

PG =
1√
2π

∫ g

−g
exp

{
−1

2
z2

}
dz

=
1√
2

2√
π

∫ g

0
exp

{
−1

2
z2

}
dz

=
2√
π

∫ g

0
exp

{
−1

2
z2

}
dz√

2

=
2√
π

∫ g/
√

2

0
exp

{
−t2

}
dt

= erf
(√

γ

2

)
(140)

For the second dimension nz = 2

PG(γ) =
1

(2π)2/2

∫∫
{z̃∈Ṽk+1}

exp
{
−0.5(z2

1 + z2
2)

}
dz1dz2

=
1

(2π)

∫∫
{z2

1+z2
2≤γ}

exp
{
−0.5(z2

1 + z2
2)

}
dz1dz2

=
1

(2π)

∫∫
{r≤√γ}

exp
{
−0.5r2

}
drdφ

=
1

(2π)

∫ √
γ

0
r exp

{
−0.5r2

}
dr

∫ 2π

0
dφ

=
∫ √

γ

0
exp

{
−0.5r2

}
d

(
r2

2

)
= 1− exp

{
−γ

2

}
(141)

This is done by using the following transform from cartesian coordinates to
polar coordinates.

z1 = r cos φ (142)
z2 = r sinφ (143)

For the third dimension
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PG(γ) =
1

(2π)3/2

∫∫∫
{z̃∈Ṽk+1}

exp
{
−0.5(z2

1 + z2
2 + z2

3)
}

dz1dz2dz3

=
1

(2π)3/2

∫∫∫
{z2

1+z2
2+z2

3≤γ}
exp

{
−0.5(z2

1 + z2
2 + z2

3)
}

dz1dz2dz3

=
1

(2π)3/2

∫∫∫
{r≤√γ}

exp
{
−0.5r2

}
r2dr sin θdθdφ

=
1

(2π)3/2

∫ √
γ

0
r2 exp

{
−0.5r2

}
dr

∫ π

0
sin θdθ

∫ 2π

0
dφ

=
2

(2π)1/2

∫ √
γ

0
r2 exp

{
−0.5r2

}
dr (144)

Note that once again I transformed the cartesian coordinates to spherical
coordinates with the following transformation

z1 = r cos φ sin θ (145)
z2 = r sinφ sin θ (146)
z3 = r cos θ (147)

Expression (144) can be turned into an incomplete gamma function by
a change of variables. The incomplete gamma function is defined as

P (x, a) =
1

Γ(a)

∫ x

0
ta−1e−tdt (148)

A change of variables is carried out by defining t = 1
2r2 and then we get

PG(γ) =
2

(2π)1/2

∫ √
γ

0
r exp

{
−0.5r2

}
d

(
1
2
r2

)
=

2

(2π)1/2

∫ γ/2

0

√
2t exp {−t} dt

=
2√
π

∫ γ/2

0
t1/2 exp {−t} dt

=
2√
π

Γ
(

3
2

)
P

(
γ

2
,
3
2

)
= P

(
γ

2
,
3
2

)
(149)

where Γ
(

3
2

)
=

√
π

2
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Inductively it can be shown that PG as a function of γ and nz is

PG(γ, nz) = P
(γ

2
,
nz

2

)
(150)
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