AC COUPLED INTERCONNECT FOR LOW POWER SPACEBORNE ELECTRONICS

Paul D. Franzon

NC State University
Box 7911
Raleigh, NC 27695

30 September 2006

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
3550 Aberdeen Ave SE
AIR FORCE MATIERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776
NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory VS Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-VS-PS-TR-2006-1191 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//signed//

JAMIE BASTIDAS, Capt, USAF
Program Manager

JOHN P. BEAUCHEMIN, Lt Col, USAF
Deputy Chief, Spacecraft Technology Division
Space Vehicles Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.
The primary objective of this effort was to establish that AC Coupled Interconnect could be used to create multiple solutions to contactless chip-to-chip communications. Towards this goal, we took an experimental approach, developing and conducting a set of experiments showing this can be successfully achieved. In this final report, we summarize the outcomes of those experiments and list the papers, graduated students and technology transfer outcomes of this activity.

15. SUBJECT TERMS
Interconnects, Capacitors, Connectors, High Bandwidth I/O

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>
AC Coupled Interconnect for
Low Power SpaceBorne Electronics
F29601-03-2-0135

POC: Paul D. Franzon, 919.515.7351, paulf@ncsu.edu,

Final Report: September 2007

Introduction
The primary objective of this effort was to establish that AC Coupled Interconnect could be used to create multiple solutions to contactless chip-to-chip communications. Towards this goal, we took an experimental approach, developing and conducting a set of experiments showing this can be successfully achieved. In this final report, we summarize the outcomes of those experiments, and list the papers, graduated students and technology transfer outcomes of this activity. Technical details of everything summarized here can be found in our previous quarterly and annual reports, and the papers listed below.

Summary of Major Achievements
In this effort, we achieved the following major technology elements in ACCI:

Capacitive Coupling: Test Results of 0.18um bulk CMOS chip – wire bonded experiments. Assembly and testing of a 0.18 um bulk CMOS chip containing multiple circuit experiments. Appendix A provides details of what is on this chip. Below in Figure 1 are the chip floorplan, chip layout for the wire bonded experiments and a microscope photograph of the die. The experiments tested in this phase of measurements were in the located around the periphery of the die in the band designated in the die photo of Figure 1. A 6-bit wide ACCI Bus was demonstrated, which operates at 36Gbps or 6Gbps/channel, over 30cm transmission lines on FR4, with transceiver power dissipation less than 2mW/Gbps, while subject to crosstalk and switching noise from the simultaneous operation of 6 channels. Additional signal integrity analysis was performed to ensure it was robust to crosstalk noise and simultaneous switching noise. A summary of results achieved by this test bed are given in Table 1. A high level view of the circuit structure that was built in this demonstration is shown in Figure 2.

Circuit and System Design for Inductively Coupled Interconnect. We designed two different inductively coupled systems, one for single coupled systems, and another for dual coupled systems. The circuit diagrams for these two alternatives are illustrated in Figure 3. Several versions of the circuits for this structure are currently in IC, MCM and laminate fabrication.
Table I: Performance matrix

<table>
<thead>
<tr>
<th>Technology</th>
<th>TSMC 0.18um CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>3.5mm by 3.5mm</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>5mw</td>
</tr>
<tr>
<td>RX</td>
<td>6.8mw</td>
</tr>
<tr>
<td>12 TRX for 72Gbps</td>
<td>141.6mw</td>
</tr>
<tr>
<td>TRX Per Gbps</td>
<td>1.97mw/Gbps</td>
</tr>
<tr>
<td>AC signal I/Os (with TRX)</td>
<td></td>
</tr>
<tr>
<td>Wirebond test</td>
<td>12</td>
</tr>
<tr>
<td>MCNC Flip chip test</td>
<td>7</td>
</tr>
<tr>
<td>Endicott Flip chip test</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
</tr>
<tr>
<td>Max Bandwidth</td>
<td></td>
</tr>
<tr>
<td>Wirebond test</td>
<td>72Gbps (partially measured: 36Gbps)</td>
</tr>
<tr>
<td>Flip-chip</td>
<td>84Gbps</td>
</tr>
<tr>
<td>Total</td>
<td>156Gbps</td>
</tr>
<tr>
<td>Max data Rate per channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6Gbps</td>
</tr>
<tr>
<td>Min data Rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC (50MHZ measured, limited by source)</td>
</tr>
</tbody>
</table>
Figure 2 (a) ACCI circuit view and (b) Simulated waveforms

Figure 3. Left: Dual-inductively coupled structures. Right: Single inductively coupled circuit structures. The coupled inductors would be built on mated surfaces of sockets or connectors. The dual inductive structure requires a more complex circuit design than the single coupled structure, due to its complex frequency response.

Integrated Process Development for Laminate Capacitively Coupled Structures. NCSU, together with EIT and RTI developed an integrated process structure that can be used to build capacitively coupled laminate packages. The key enabling technology for this structure is a patternable high-K material that can be cured at the same process temperature as solder bumps. Different versions of the material can be cured to match
the reflow profile for both leaded and lead-free solder. EIT has identified a modification to their HyperBGA product that can be used for this experiment. A high level view of the modified package structure is given in Figure 4 and a detailed view in Figure 5.

Figure 4: Common trench for buried bumps in an ACCI enabled laminate package (a) top view, (b) cross sectional view

Figure 5: Endicott Laminate Package with ACCI: (a) proposed solution, (b) current solution
Design of FPGA Interface/Controller for Space-borne experiment. We completed the design, and place and route of an FPGA controller for testing an ACCI circuit on an AFRL space mission.

Integrated Package-Chip Demonstration. Demonstration of capacitive coupling with the capacitor formed between the chip and a package. We built chips in a 0.35 μm process and flipped them to an MCM substrate. We demonstrated that the chips can communicate with each other at a 2.5 Gbps over a 5 cm transmission line. Pad sizes down to 70 μm pitch were demonstrated. Figure 6 shows this package, a cross-section of it and a sample eye diagram.

![Figure 6. TL: MCM with 2 Capacitively-coupled flipped Chips. TR: Cross-section showing buried bumps and capacitors. BL: 2.5 Gbps eye diagram.](image)

Contactless 3D Chip Stack Demonstration. Demonstration of inductively coupled circuits communicating vertically through a 3-D chip-stack. This chip was built in a 0.35 μm process and operated at 2 GHz. Communication was possible with a chip thickness of up to 120 mm. Figure 7 shows a two-chip stack and a sample eye diagram.
Inductively Coupled Connector Prototype. Demonstration of an inductively coupled connector, prototyped in a cheap PCB technology and operating at 250 MHz. Figure 8 shows a prototype and an eye diagram.

Publications

The following publications have arisen because of this work:

Ph.D. and MS Students Supported

- John Wilson Ph.D., now with Rambus
- Stephen Mick, Ph.D., now with Protochips
- Lei Luo Ph.D., now with Rambus
- Karthik Chandrashekar Ph.D., now with nVidea
- Evan Erickson, still at NCSU
• Jian Xu, still at NCSU. Graduating (Ph.D.) this semester. To join ARM.
• Bruce Su, still at NCSU
• Srivatsan Parthasarathy MS, still at NCSU. Graduating this semester. To join Analog Devices.
• Manav Shah MS, now at Qualcomm.
• Leon Zhang Ph.D., now at IDT.
• Shep Pitts, still at NCSU
• Stephen Lipa Ph.D., graduated Dec 2005, still at NCSU as a PostDoc

Technology Transfer

Two patents have been granted (note these were both filed before receiving USAF funding):

In addition, we have developed considerable design know-how. We are currently in the following discussions regarding transferring this technology. Please keep the details conveyed below confidential.
• Rambus is interested because ACCI reduces the power consumed in high speed memory buses. We are currently in discussions with them on how to beset adapt this technology to their application.
• Endicott Interconnect Technologies is interested in ACCI because it enables large, high pin-count chips. We are working up a demonstration with them to show this potential.
• IBM is interested because of their activities in Fiber Channel. This discussion is on hold pending some internal decisions from IBM.
• Sanmina-SCT is interested because it might enable sales of some of their embedded capacitor products. We are currently in discussion with them.
DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/VSIL
Kirtland AFB, NM 87117-5776 2 cys

AFRL/VSIH
Kirtland AFB, NM 87117-5776 1 cy

Official Record Copy
AFRL/VSSE, Capt Jamie Bastidas 1 cy