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Abstract
Motivated by applications in engineering design, a mathematical model of the multi-scenario 

multi-criteria optimization problem is introduced. Theoretical results for the single-scenario case 
are presented to support a solution methodology developed for the bi-scenario bi-criteria case. 
Multi-scenario design problems are traditionally solved by aggregation of all objectives of all 
scenarios into a large multi-criteria problem. The difficulties that arise from this approach are 
highlighted. The proposed methodology is a scenario-based approach where a design problem is 
solved for each scenario resulting into multiple sets of solutions. The methodology is developed 
as an exploration tool of these solution sets in both the design and objective spaces. The 
methodology is applicable to problems with large numbers of scenarios and/or criteria.
Mathematical and structural examples are included to illustrate the implementation of the 
methodology, its strengths and weaknesses.

Keywords: multiple scenarios, multi-criteria optimization, Pareto outcomes, efficient designs

1. Introduction
With the advancement of technology, the design process is becoming increasingly complex. 

The industrial competitiveness coupled with the globalization of the economy has forced the 
engineering and science communities to look for designs that are good not only for a single 
application but several applications grouped together. Consider a process of designing a car with 
special attention to two criteria, cost and reliability. A typical customer would like to have a car 
with minimum cost and maximum reliability but a higher level of reliability usually results in a 
higher cost. This design problem can be then modeled as an optimization problem with two non-
commensurate and conflicting criteria. Additionally, the car can be designed for various driving 
conditions (e.g., interstate highway, unpaved road), or for different markets (e.g., American, 
European, Asian), or for different types of use (e.g., family car, transportation of goods, taxi), or 
for some other types of scenarios. It is then of interest to design a reliable and inexpensive car 
performing well in some of those scenarios. In every scenario the criteria may have different 
mathematical representations, although their physical interpretation remains the same, that of 
minimizing cost and maximizing reliability. In some other applications, not only the 
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mathematical representation but also the physical meaning of the criteria as well as the design 
space may vary from scenario to scenario. As a result, a design process under different scenarios 
for the same physical problem leads to the problem of multi-scenario multi-criteria optimization. 

To our knowledge, the concept of multi-scenario optimization has not been introduced in the 
literature although some scientists and engineers studied optimization problems in this context. 
Below we discuss a monograph and several articles in which scenario oriented optimization 
problems have been formulated with a scenario being related to data instance, a product 
platform, or a maneuver.

Kouvelis and Yu [11] studied multi-scenario single-criterion optimization problems. They 
proposed the concept of robust solution that would be ‘robust’ for the same mathematical model 
associated with multiple data scenarios. A multi-scenario single criterion optimization problem 
was converted into a robust (single-scenario single-criterion) problem using the min-max 
formulation. The absolute robust solution was defined to minimize the maximum criterion value 
selected from among all realizable scenarios over all feasible designs. As a result, finding the 
robust design was based on multi-criteria optimization.

Traditional design process considers designing a single product. However, since the nineteen 
nineties product platform design has been studied. A product platform is a set of common 
components or parts from which several variations of a product can be made. Product platform 
design requires the selection of shared parts and the assessment of potential sacrifices in 
individual product performance resulting from parts sharing. In platform design models some 
design variables that are common to the products of a particular platform are kept at the same 
level through the commonality constraints. Fujita and Ishii [8], Fujita et al. [7], and Simpson et 
al. [19] associated a criterion with each product in a platform and grouping the products (criteria) 
solved the resulting multi-criteria problem. Nelson et al. [12] modeled a product platform as a 
single multi-criteria optimization problem and an optimal platform design was in the Pareto set 
of this problem. A collection of platforms (combinations of common parts) resulted in several 
multi-criteria problems and several Pareto sets to be analyzed simultaneously. An optimal 
platform design for a collection was defined to belong to one of these Pareto sets associated with 
a certain platform in the collection, which was chosen based on product performance and other 
factors. Fellini et al. [6] applied multi-criteria optimization-based product platform design to a 
family of automotive powertrains. In general, a product platform represents a particular scenario 
of the problem and several product platforms correspond to several scenarios. Depending on the 
number of products in a platform, a multi-criteria problem can be formulated for each scenario. 
For example, if there are two products in a platform, a bi-criteria problem can be formulated by 
associating some type of performance criterion to each of the products.

 Vehicle design is another area in which two or more multi-criteria models can be analyzed 
simultaneously. Efforts have been undertaken to optimize vehicle performance indices in 
different operating scenarios or maneuvers. Gobbi and Mastinu [9] applied multi-criteria 
optimization to find a best compromise between several performance indices when the vehicle is 
driven on roads with changing roughness. Chakravartula [3] developed a simulation-based 
methodology to heavy vehicle design for eight performance indices across eight driving 
maneuvers. 

In view of the applications discussed above we intend to formalize the research efforts in 
which collections of multi-criteria problems have been used. We introduce the notion of multi-
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scenario multi-criteria optimization and formulate the problem mathematically. We argue that a 
scenario-oriented approach can become a more flexible design tool than the classical all-at-once 
approach in which one solves an optimization problem with all criteria neglecting their relevance 
to particular scenarios. We believe that the all-at-once approach eliminates the possibility of 
customizing the design while the scenario-oriented approach allows for a detailed analysis of 
each scenario individually. With optimization-based design moving these days in the direction of 
mass customization, one needs a tool for designing products for multiple uses performing well in 
multiple scenarios. 

Furthermore, in the traditional all-at-once approach the following three exertions become 
increasingly complex with the number of criteria: (i) preference setting and decision making; (ii) 
physical and geometrical perception of the problem; and (iii) visual and graphical representation 
of the solution set, which is limited to three or four dimensions. As a result, it is clear that 
dealing with a series of simple problems, i.e., one per scenario, is easier than with a large all-at-
once problem. Even though, as it will be shown in the following sections, all the solutions of the 
all-at-once approach cannot be found by the scenario-oriented approach, we believe that the 
advantages of the latter should be exploited. The challenge, which is the core of this research, is 
to study the similarities between the sets of solutions of the two methods and to show that the 
scenario-oriented approach is an attractive design tool.

Let S = {1, 2, . . . , N} be the set of scenarios (platforms, maneuvers, etc.). We define the 
multi-scenario multi-criteria problem as follows

 
N21

s
)s(m

s
2

s
1

X...XXx.t.s

Ss)],x(f),...,x(f),x(f[min




(1.1)

where every scenario s  S is modeled by m(s) real-valued criterion functions, 
)s(m,...,1j,RR:f 1ns

j  , to be minimized over a set of feasible designs ns RX  , with nR

being the n-dimensional Euclidean space and n the number of design variables. Problem (1.1) 
incorporates N multi-criteria problems, each with possibly different criterion functions 
minimized over a different feasible set. While solving each multi-criteria problem is understood 
as finding its Pareto solutions, the idea for solving problem (1.1) may not be clear. Before we 
explicitly introduce solution concepts for problem (1.1) in Section 3, based on motivating 
applications we expect problem (1.1) to have a solution good or satisfactory for all N scenarios. 
Ideally, that solution should be ‘optimal’ for all scenarios. The challenge now is to define the 
optimality, examine whether such an optimal solution exists, and if so, find it.

The paper is organized as follows. Section 2 is concerned with the single-scenario multi-
criteria case. We review well-established techniques for finding and/or approximating Pareto sets 
of multi-criteria problems, examine the efficiency of solutions when the number of criterion 
functions changes, and evaluate the lack of efficiency of designs. In Section 3, we first present 
simple mathematical examples highlighting the issues of concern when dealing with two bi-
criteria problems simultaneously. We define the optimality concept for the bi-scenario case and 
propose a scenario-oriented approach to finding optimal solutions in which the results of Section 
2 are employed. The approach uses extensively the capability of approximating the Pareto set 
and representing it graphically. Section 4 includes engineering examples illustrating the 
methodology and Section 5 concludes the paper.
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2. The Single-Scenario Case
In order to enhance our understanding of the all-at-once approach and a scenario-oriented 

approach, we are interested in studying the link between their respective solution sets.  Consider 
the case of a single scenario, i.e., N = 1 and m(s) = m. Dropping the superscripts, problem (1.1) 
reduces to

n
m21

RXx.t.s

)]x(f),...,x(f),x(f[min


(2.1)

which is the well-known multi-criteria minimization problem whose solving is understood as 
finding its Pareto outcomes and efficient designs. 

A design Xx 0   is said to be efficient for problem (2.1) if there is no ,xx,Xx 0   such 

that ,m,...,1i),x(f)x(f 0
ii   with a strict inequality for at least one index i. The set of all 

efficient designs of problem (2.1) is denoted by XE. The set of all feasible criterion vectors of 
problem (2.1) defined as ),X(f}Xx),x(fz:Rz{Z m   where )]x(f),...,x(f[)x(f m1  is 

referred to as the set of outcomes in the objective space. The image )x(fz 00   of an efficient 

design 0x  is called a Pareto outcome of problem (2.1), and the set of all Pareto outcomes is 
denoted by ZE. 

Pareto sets typically include infinitely many points and therefore it is usually of interest to 
find a preferred efficient design (Pareto outcome) based on designer’s preferences additionally
introduced to the problem.

2.1. Solving multi-criteria optimization problems 

The essence of multi-criteria optimization is to find or approximate the Pareto set in the 
objective space and its pre-image, the efficient set in the design space. Significant results have 
been accomplished on this subject. Early efforts focused on developing methods for generating 
selected points of these sets (the weighted-sum method [10], the -constraint method [2, 4], and 
the weighted-Tchebycheff method [5, 20, 21, 23], and others). Most recently, vast progress has 
been made towards developing methodologies to approximate the Pareto set [16]. With highly 
developed computer power, graphical representations of the Pareto set have become a 
fundamental tool for evaluating Pareto solutions [13].

In this paper, solving a multi-criteria optimization problem is understood as finding 
numerical point-wise representations of the Pareto and efficient sets. While any approximation 
approach from the literature could be used, we produce point-wise approximations with the 
weighted-Tchebycheff method and the norm-based method [17, 18]. Graphically, both methods 
yield a piecewise linear approximation of the Pareto set with all extreme points being Pareto. 
Numerically, they produce a set of Pareto points and their pre-images, the efficient points. The 
methods are suitable for a broad class (continuous and/or discrete, convex and/or nonconvex) of 
bi-criteria problems. 

2.2. Efficient solutions for problems with a variable number of criteria

In this section we study the conditions under which efficiency of a design is preserved while 
going from an m to an (m+p)-dimensional criterion space, where p > 1. We also consider the 
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consequences of reverting back from an (m+p) to an m-dimensional space. We will use these 
results in Section 3.

From m to (m+p)-dimensional criteria space 

Example 2.2.1   Consider the bi-criteria problem with three feasible designs

}x,x,x{Xx.t.s

)]x(f),x(f[min
321

21



Let ],2,1[)x(f 1  ],1,2[)x(f 2   and ]4,3[)x(f 3  . Then 1x  and 2x  are both efficient for this 
problem. Assume now that this problem has been modified by adding one criterion yielding the 
three-criteria problem

}x,x,x{Xx.t.s

)]x(f),x(f),x(f[min
321

321



Let ],3,2,1[)x(f 1  ],7,1,2[)x(f 2   and ]1,4,3[)x(f 3  , which makes 1x , 2x  as well as 3x
efficient for the new problem. We therefore find that the bi-criteria problem cannot capture all 
the efficient points of the three-criteria problem.

Example 2.2.2     Consider the bi-criteria problem

},x,x{Xx.t.s

)]x(f),x(f[min
21

21



where 21 xx  . Let ]2,1[)x(f 1   and ],2,1[)x(f 2   which makes both x1 and x2 efficient for 
this problem. Assume now that this problem has been modified by adding one additional 
criterion yielding the three-criteria problem

}.x,x{Xx.t.s

)]x(f),x(f),x(f[min
21
321



Now let ]3,2,1[)x(f 1   and ]4,2,1[)x(f 2  , and x1 becomes the only efficient point for this 
new problem. We therefore observe that one of the efficient points of the bi-criteria problem is 
no longer efficient for the three-criteria problem. 

In order to formalize these observations we need the definition of injective mapping. 
Consider a criterion ,m,...,1i,f i   as given in problem (2.1), which is a real-valued mapping 

from X to Zi, where }Xx),x(fz:Rz{Z i
1

i  . A criterion ,m,...,1i,f i   of problem (2.1) 

is called injective (or one-one) if whenever 21 xx   then )x(f)x(f 2
i

1
i  , or equivalently, 

)x(f)x(f 2
i

1
i   then 21 xx  , where Xx,x 21  .

Theorem 2.2.1  Consider the following two multi-criteria problems of form (2.1) composed of m

and m+p criterion functions, respectively, where p > 1: 

Xx.t.s

)]x(f),...,x(f[min m1


(2.2)

and
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Xx.t.s

)]x(f),...,x(f),x(f),...,x(f[min pm1mm1


 (2.3)

If there exists }m,...,1{i  such that if  is injective, then any efficient solution of problem (2.2) is 
efficient for problem (2.3).

Proof    Let XE1 and XE2 denote the efficient sets of problems (2.2) and (2.3), respectively. Let x 
 XE1  there is no x*  X, x*  x such that fi(x*)  fi(x), i = 1,...,m, and fi(x*)  fi(x) for at 
least one i, i {1,…,m}.   By contradiction, suppose x  XE2  there exists an Xx  , xx  , 
such that 

)x(f)x(f ii   for i = 1,…,m+p (2.4)

and )x(f)x(f kk   for at least one k, k  {1,...,m+p}.

Case 1 Suppose that for k  {m+1,...,m+p} we have )x(f)x(f kk  . From (2.4) 

)x(f)x(f ii   for i = 1,...,m (2.5)

Since xx   and fj is injective for a j  {1,...,m}, then 

)x(f)x(f jj  (2.6)

Expressions (2.5) and (2.6) imply that )x(f)x(f ii  , i = 1,...,m, and )x(f)x(f jj   for a 

j{1,...,m}, which contradicts the assumption that x  XE1. Hence x  XE2. 

Case 2 Suppose that for k  {1,...,m} we have )x(f)x(f kk  . This together with (2.4) 

immediately contradicts the assumption that x  XE1. Hence x  XE2.

Case 3 Suppose )x(f)x(f ii   for i = 1,...,m+p. This immediately contradicts the assumption that 

x  XE1. Hence x  XE2.

Remark 2.2.1 The condition that fi is injective for at least one index i in problem (2.2) is needed 
for Case 1 of the proof above in which the strict inequality holds for a criterion k present in 
problem (2.3) but not in problem (2.2). If the strict inequality holds for one of the m criteria of 
problem (2.2), then this condition is not needed.

Remark 2.2.2 If none of the criterion functions of problem (2.2) is injective, cases 2 and 3 of the 
proof above still hold. However in case 1, )x(fi   can be equal to )x(fi , i = 1,...,m, even when 

xx  . This simply means that two different designs produce the same Pareto outcome in the 
criteria space and the theorem does not hold.

From (m+p) to m-dimensional criteria space 

We now examine efficiency of solutions when one moves from am (m+p)-dimensional 
criteria space to an m-dimensional criteria space. Again, we first present an example.

Example 2.2.3 Consider the three-criteria problem

}x,x{Xx.t.s

)]x(f),x(f),x(f[min
21

321


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(i) Let ]2,1,1[)x(f 1   and ]1,3,2[)x(f 2  . Then 1x  and 2x  are both efficient for this problem. 

Now suppose that the criterion 3f  is dropped which results in the bi-criteria problem. In this case 

]1,1[)x(f 1  , ]3,2[)x(f 2   and 1x  becomes the only efficient point for the new problem.

(ii) Let ]6,2,3[)x(f 1   and ]5,1,4[)x(f 2  . In this case 1x  and 2x  are both efficient for the 

three-criteria problem. If the criterion 3f  is dropped, ]2,3[)x(f 1  , ]1,4[)x(f 2   and 1x  and 
2x  remain efficient for the bi-criteria problem.

Remark 2.2.4 Given two efficient points, if the conflict between criterion functions is only in one 
criterion, one of these points is not efficient when that criterion has been dropped.

Remark 2.2.5 Given two efficient points, if the conflict between the criterion functions is within 
a certain group of criteria, both points remain efficient when other criteria not being in this group 
have been dropped.

Engineering relevance 

The analysis above shows that changing the dimension of the objective space may 
significantly affect the structure of the efficient set. It is also obviously difficult in practice to 
check the injectivity condition and, in fact, one may expect that this condition is not satisfied for 
many engineering applications. Despite these facts, we still advocate solving a series of smaller 
multi-criteria problems rather than the all-at-once problem due to already presented arguments 
and other features illustrated later. 

2.3. Quantification of lack of efficiency

The scenario-oriented approach proposed in this paper makes use of quantification of the 
lack of efficiency of a design. For a multi-criteria optimization problem, consider a Pareto set 
and a design Xx 0   that is not efficient, i.e., E

0 Xx  .  The lack of efficiency of 0x , denoted 

by LOE( 0x ), can be quantified with two approaches: (i) Benson’s method [2] and (ii) the 
approximation-based method proposed in this paper.

Benson’s method 

Benson [2] developed a method to either inform the designer that a design 0x  is efficient for 
a multi-criteria optimization problem or quantify the design’s lack of efficiency for the problem. 
To apply Benson’s method for the bi-criteria case (let m = 2 in (2.1)), the following single-
criterion maximization problem must be solved.

Xx

0t,0t

0)x(ft)x(f

0)x(ft)x(f.t.s
t,t,xt.r.w

tt)t,t(wmax

21

0
222

0
111

21

2121









(2.7)

Let )t,t,x( B
2

B
1

B  be an optimal solution of problem (2.7) with the optimal objective value 

)t,t(ww B
2

B
1

B  . If 0w B   then the candidate design 0x  is efficient for the problem (and also 
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0B xx  ). If 0w B   then the candidate design 0x  is not efficient for the problem and the design 
Bx  produced by (2.7) is efficient. From the equality constraints of (2.7), the quantity Bw  can be 

written as

)x(f)x(f)x(f)x(fttw B
2

0
2

B
1

0
1

B
2

B
1

B 

and interpreted as the difference between the outcomes of candidate design 0x  and efficient 
design Bx . This positive quantity Bw  measures LOE( 0x ) with respect to the problem.  The 
concept is illustrated in Figure 1. 

Approximation-based  approach

As an alternative to Benson’s method for the quantification of lack of efficiency of a design, 
we introduce the approximation-based approach. While Benson’s method was developed under 
the assumption that the Pareto set remains unknown to the designer, we make use of the fact that 
an approximation of the Pareto set has been constructed and is available. We propose to  quantify 
the lack of efficiency of a design by measuring a distance in the objective space between )x(f 0 , 

the outcome of 0x , and the available approximation: 

z,)x(fmin)x(LOE 0
)Z(APRz

0

E

where APR(ZE) denotes the approximation of the Pareto set ZE, and | . , . | denotes a distance 
measure derived from a norm of choice.  For bi-criteria problems the approximating set comes in 
the form of a piecewise linear curve when a suitable approximation approach is used (see Section 
2.1).

As illustrated in Figure 2, LOE( 0x ) may be calculated as the minimum Euclidean distance 
between f( 0x ) and the approximating curve. While the issue of the choice of the norm measuring 
the distance will be addressed in the future, the Euclidean norm is used in the experiments 
presented in this paper.

Pareto 
set

f(x0)

t1
B = f1(x

0) - f1(x
B)

t2
B = f2(x

0) - f2(x
B)

f1

f2

f(xB)

t2
B

t1
B

Figure 1. Quantification of lack of efficiency of design x0

by Benson’s method [2]
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3. The Bi-Scenario Case
Problem (1.1) yields a multi-criteria minimization problem of form (2.1) for each s  S. All 

the concepts presented in section 2 can be defined in an analogous manner for each of the 
problems parameterized by the scenario s.

Consider the bi-scenario bi-criteria problem being a specific case of problem (1.1) with S = 
{1, 2}, m(1) = m(2) = 2:

 
21

s
2

s
1

XXx.t.s

2,1s)],x(f),x(f[min




(3.1)

Problem (3.1) is composed of two bi-criteria problems, namely the common design space 
problem 1 (CDSP1) for s = 1 and the common design space problem 2 (CDSP2) for s = 2:

21

ss
2

s
1

XXx.t.s

)x(f)]x(f),x(f[min




(3.2)

Let s
ECX  and s

ECZ , s = 1, 2, denote the efficient sets and the Pareto sets of CDSPs 1 and 2, 

respectively. Problem (3.1) can also be partitioned into the individual design space problem 1 
(IDSP1): 

1

1
2

1
1

Xx.t.s

)]x(f),x(f[min


(3.3)

and the individual design space problem 2 (IDSP2):

2

2
2

2
1

Xx.t.s

)]x(f),x(f[min


(3.4)

Let s
EIX  and s

EIZ , s = 1, 2, denote the efficient sets and the Pareto sets of IDSPs 1 and 2, 
respectively. 

We call attention to the difference between ‘common designs’ and ‘common efficient 
designs’. It is clear that a multi-scenario optimization problem is meaningless if there is no 

Exact Pareto set (ZE) 

Approximated Pareto set (APR(ZE))

f(x0)

f1

f2

d1

Figure 2. Quantification of lack of efficiency of design x0 by the 
approximation-based approach based on Euclidean distance
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common design between scenarios due to empty intersection between design spaces ,Xs Ss . 
Common efficient designs are those that are common and efficient for both scenarios. Therefore 
these designs are generally of prime interest to the designers and decision makers. However, as 
explained later, these common efficient designs may not be preferred over some other 
satisfactory solutions. We obtain additional insight into these problems analyzing simple 
mathematical examples that now follow.

3.1. Examples

In this section, working with example problems, we review the information from analyzing 
Pareto sets and their pre-image in the design space. In an attempt to facilitate the understanding 
of this paper and since several concepts may appear confusing to the novice reader, we discuss 
typical errors that may lead to premature and erroneous conclusions.

Example 3.1.1   Consider the following bi-scenario bi-criteria problem in which X1 = X2 = X:

 
Xx.t.s

]x)4x(,)4x()3x[(,])3x(x,)1x()2x[(min 2
2

2
1

2
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21  . Figure 3 
depicts the design space of this problem as well as the efficient sets.

Since the IDSPs and the CDSPs have the same design space, they are equivalent. Figure 4 
shows the plots of the Pareto points of these scenarios. Whether a common efficient design exists 
or not can be examined by checking the efficient sets in the design space (Figure 3) based on the 
knowledge of the Pareto sets. We find that the two scenarios have no efficient design in 
common.

Efficient set
Scenario 1

Efficient set
Scenario 2

x1

x2

Figure 3. Design space and efficient sets of Example 3.1.1
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Example 3.1.2   In this example the design space of the previous example is retained and again is 
common for two scenario problems: X1 = X2 = X. Consider the following problem:

 
Xx.t.s
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Once again, the IDSPs and the CDSPs are equivalent. Figure 5 shows the design space and
the efficient sets interpolated from the collection of 21 computed points depicted in Table 1. 
Figure 6 shows the Pareto sets of these problems.

Figure 5. Design space and efficient sets of Example 3.1.2

Efficient set
Scenario 1

Efficient set
Scenario 2

x1

  x2

f1

Figure 4. Pareto sets for the IDSPs and CDSPs of Example 3.1.1

f2
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Table 1. Efficient set for the IDSPs and CDSPs of Example 3.1.2

x1 x2 x1 x2

1.099 0.741 3.500 1.323
1.278 0.799 3.521 1.298
1.461 0.855 3.542 1.274
1.648 0.908 3.562 1.248
1.836 0.958 3.582 1.223
2.026 1.006 3.602 1.197
2.121 1.030 3.621 1.171
2.217 1.053 3.640 1.145
2.313 1.075 3.658 1.118
2.409 1.097 3.676 1.091
2.505 1.119 3.694 1.064
2.602 1.141 3.702 1.050
2.787 1.180 3.711 1.036
2.880 1.200 3.719 1.022
2.973 1.219 3.727 1.008
3.159 1.257 3.735 0.994
3.345 1.293 3.743 0.980
3.500 1.323 3.751 0.966
3.616 1.178 3.759 0.952
3.708 1.040 3.774 0.923
3.789 0.895 3.789 0.894

Scenario 1 Scenario 2

f1

f2

Figure 6. Pareto sets of the IDSPs and the CDSPs of Example 3.1.2
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Similar to Example 3.1.1, the Pareto curves have no point in common. Even though the two 
Pareto curves may be plotted on the same figure, i.e., bi-objective space (f1,f2), their location 
with respect to each other is meaningless. While this statement is trivial to the expert reader, this
concept must be emphasized. The fact the two Pareto curves of Figures 4 and 6 do not intersect 
does not imply that the two scenarios have no common efficient design. In other words, the 
Pareto curves in the criteria space do not convey any information regarding common efficient 
designs. It is only by examination of the sets of efficient solutions plotted in the design space that 
common efficient designs can be found. In fact, contrary to example 1, example 2 has common 
efficient designs even though the two Pareto curves do not intersect.

Table 1 reveals that the two scenarios have three common efficient designs. These points are 
shown in bold in the table and have some negligible differences due to numerical inaccuracies. 
Based on the numerical representation of the efficient sets, one might think that these points are 
the only common designs for the two scenarios. A closer look at the design space, shown in 
Figure 5, helps to see that there are infinitely many common points. In fact, the entire efficient 
set of scenario 2 appears to be also efficient for scenario 1. It must be recognized that this 
realization is possible for simple mathematical problems, but may be unfeasible in most large-
scale engineering problems. Those additional common designs are not contained in the table 
produced by the approximation algorithm. Clearly, however, if more iterations of the algorithm 
were run, then more common points might be found.

3.2. All-at-once approach 

The all-at-once approach is traditionally used to solve the bi-scenario bi-criteria problem 
(3.1) and we do not advocate it. We present it, however, to contrast with the scenario-oriented 
approach.

We convert the bi-scenario bi-criteria problem into the four-criteria problem in which 
feasible designs are constrained to the intersection of the feasible sets X1 and X2:

21

2
2

2
1

1
2

1
1

XXx.t.s

)]x(f),x(f),x(f),x(f[min


(3.5)

Efficient designs of problem (3.5) are considered solutions of problem (3.1) and can be found 
using any suitable method available in the literature (see Section 2.1). 

Definition 3.2.1   A design x* is said be a solution to the bi-scenario bi-criteria problem (3.1) if 
it is efficient for the all-at-once problem (3.5).

Though this approach seems to be naturally straightforward, it has certain drawbacks. The 
dimension of the criteria space increases, which makes the analysis more difficult for the 
designer. The greater the dimension of the criteria space, the more difficult the physical and 
geometrical perception of the problem. In addition, an increase in the dimension of the criteria 
space makes analyses of tradeoffs between criteria more cumbersome. Additionally, as we 
showed in Section 2.2, a Pareto solution of a problem with more criterion functions may not 
remain Pareto when some criteria have been eliminated. Therefore, when solving problem (3.5), 
one may find solutions that are not Pareto for any of the two CDSPs.

3.3. Scenario-oriented approach

In contrast to the all-at-once approach, in every stage of the scenario-oriented approach 
applied to a bi-scenario bi-criteria problem the objective space is confined to two dimensions. 
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Scenario problems are always treated separately which means that only the Pareto and efficient 
sets of IDSPs and CDSPs are analyzed. This approach is justified on the objective and subjective 
grounds. The former encompasses existing technical support for designers. If the IDSPs and 
CDSPs are bi-criteria, as it is in our case, the designers will be equipped with computer graphics 
tools guaranteeing easy visual access to all sets in the objective space. The latter relates to 
designers’ knowledge and experience. As indicated in the introduction, we believe that it is 
easier to deal with smaller scenario-oriented problems than with a large overall problem. 
Designers may have more insight into specifics of an individual scenario, be able to better define 
subjective preferences and make better tradeoff decisions, and eventually develop a customized 
design for two (or more) scenarios.

Defining a solution for problem (3.1) is now a challenging task. An ideal solution would be a 
design x*  X1  X2 that is efficient for each IDSP, i.e., x*  X1

E  X2
E. In ideal but extremely 

unlikely situations this intersection may be equal to a single point that becomes the optimal 
design x* of problem (3.1). If the intersection contains several or infinitely many points, one has 
to employ decision analysis techniques to select a preferred design becoming the optimal design 
x* for problem (3.1). If the intersection is empty, we solve the CDSPs and follow with a similar 
analysis. Furthermore, on top of resulting from a mathematical model, a design should be 
preferred by the designer in order to account for any requirement not considered in the 
mathematical formulation. In view of this discussion, we propose the following definition of an 
optimal design for problem (3.1). 

Definition 3.3.1  (i) A design x* is said be optimal to the bi-scenario bi-criteria problem (3.1) if it 
is feasible for each IDSP (3.3) and (3.4) and

1. Pareto for each IDSP and preferred by the designer, or 
2. Pareto for each CDSP of type (3.2) and preferred by the designer, or 
3. Pareto for one CDSP, satisfactory for the other CDSP and preferred by the designer, or
4. satisfactory for both CDSPs and preferred by the designer.

(ii) A design is considered satisfactory for a scenario if its lack of efficiency with respect to the 
other scenario is smaller than a predefined threshold value.

Although this definition is quite general, we interpret it as a sequence of four conditions. If a 
condition i, i = 1,…,3, holds then the subsequent conditions are not exercised. If a condition i 
does not hold then we move to the condition i+1.

According to this definition, the final solution design x* is selected from the set of efficient 
designs X1

EC  X2
EC. In most cases, however, the set of Pareto solutions is very large and the 

selection process is complicated and subjective. Being able to reduce the number of solutions to 
choose from in a systematic manner is a considerable advantage. Since all designs are efficient 
for at least one scenario, a design that has a low lack of efficiency in the other scenario is 
considered a good solution for the overall problem. From this definition, a threshold value can be 
defined to reduce the number of designs of interest. The threshold value is defined such that all 
the solutions that have a lack of efficiency smaller than or equal to the threshold value are 
considered acceptable. All other solutions are rejected on the basis that even though they are 
efficient for one scenario, they are far from being efficient in the other scenario.

We now present a procedure, called the scenario-oriented procedure, for finding candidate 
designs to be optimal solutions of (3.1) in the spirit of Definition 3.3.1.
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The scenario-oriented procedure

STAGE 1: Separately solve the IDSPs 1 and 2 (problems (3.3) and (3.4)). If the efficient sets 
of these problems have a nonempty intersection and there exists a solution x* in this intersection 
preferred by the designer, select x* as the solution of the bi-scenario bi-criteria problem (3.1). 
Otherwise proceed to stage 2.

STAGE 2: Separately solve the CDSPs 1 and 2 of type (3.2). Similar to stage 1, check the 
intersection of these efficient sets. If the efficient sets of these problems have a nonempty 
intersection and there exists a solution x* in this intersection preferred by the designer, select x* 
as the solution of the bi-scenario bi-criteria problem (3.1). Otherwise proceed to stage 3.

STAGE 3: Given the efficient sets Xs
EC computed in the previous stage, and the sets of 

outcomes Zs
EC = {fs(x) , x  Xs

EC } for s = 1, 2, compute the sets of outcomes Zij, i, j =1,2, ij, in 
the respective alternate scenarios defined as Z12 = {f1(x), x  X2

EC} and Z21 = {f2(x), x  X1
EC}. 

Then compute the lack of efficiency, LOE(x), of each efficient design x, x  Xs
EC, of a scenario 

for the respective alternate scenario using the approximation-based approach. For instance, if x0
1

is an efficient design for scenario 1, its lack of efficiency for scenario 2 is quantified by 
computing the distance between its outcome in scenario 2 and the Pareto set of scenario 2. Using 
the lack of efficiency, all designs are compared to a pre-defined threshold value dmax. For all x 
X1

EC  X2
EC, if LOE(x) > dmax, reject x. If LOE(x)   dmax, consider x as a design of interest. 

Then select a solution x* from the set of designs of interest. The definition of a design of interest 
ensures that the final solution x* will be selected from a set of designs that are efficient in one 
scenario and satisfactory in the other scenario.  At this point, we assume that a design preferred 
by the designer can be found at the conclusion of stage 3. In the case where none of the designs 
of interest are preferred by the designer, a fourth stage must be defined. This stage is the subject 
of further research.

It must be recognized that this procedure does not offer a method to select the final solution 
x* from a set of designs. Rather, the procedure is partly a tool that reduces the number of designs 
to choose from. At any stage, it is up to the designer to exercise judgment for the selection of x* 
based on experience, preferences, or additional criteria.

Concerning the tradeoff between scenarios, the scenario-oriented procedure allows 
specifying preferences between scenarios by defining a different threshold value for each 
scenario. For instance, if scenario 1 is considered more important than scenario 2, the threshold 
value for scenario 1 would be smaller than that for scenario 2. As a result, more efficient designs 
of scenario 2 would be rejected and the set of designs of interest would comprise predominantly 
solutions that are efficient for scenario 1. Also, all designs of interest would be either efficient or 
with a low lack of efficiency in scenario 1. 

4. Examples
Based on the scenario-oriented procedure, a fully automated computer code was developed. 

The designer must define each scenario optimization problem as well as the pre-defined 
threshold value dmax if stage 3 of the procedure is reached. The selection of dmax is aided by 
considering the range of variation of the lack of efficiency of all designs. This concept is 
exemplified in this section with numerical applications. We apply the scenario-oriented 
procedure to a structural three-bar truss problem and a tractor-trailer dynamics problem.
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4.1. Three-bar truss problem

The three-bar truss shown in Figure 7 is subject to static loading applied at node D. Two 
scenarios corresponding to two load cases are considered; i.e., (Fx, Fy) is equal to (20 kN, -20 
kN) for scenario 1 and (-20 kN, -20 kN) for scenario 2. The total weight and the displacement at 
node D are two criteria to be minimized with respect to the three cross-sectional areas, xi, i = 
1,...,3, of the three bars. Lower and upper bounds on the cross-sectional areas are defined. In 
addition, the normal stress is constrained by a maximum allowable stress of 200 MPa.

The corresponding IDSPs are written 
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(4.1)

where w is the total structural weight; ds is the amplitude of displacement at node D for scenario 
s; and s

iN  is the internal force in bar i for scenario s. The formulations of w, sd , and s
iN in terms 

of xi were explicitly derived based on structural mechanics. The scenario-oriented approach 
presented in Section 3.3 is now applied as follows. 

STAGE 1: We solve the two IDSPs as two bi-criteria optimization problems using the 
weighted-Tchebycheff method and the SQP Matlab optimizer to produce 22 efficient points for 
each scenario. The two efficient sets are graphically represented in Figure 8. In an attempt to 
improve the three-dimensional visualization of the efficient sets, their respective projections on 
the three coordinate planes x1=0, x2=0, and x3=0 are plotted. Upon analysis of the figure, it 
appears that the two efficient sets are relatively far apart and share only one common efficient 
design (200, 200, 200). This solution is efficient for both scenarios, which means that it is the 
solution of the problem as formally written in (4.1). However, this solution lies on the boundary 
of the feasible set and yields an extreme Pareto outcome. This means the minimization of one of 
the two objectives (displacement, in this case) is excessively emphasized at the expense of the 
other objective (weight). Therefore, from a practical point of view, this design may not be 
preferred by the designer. Assuming that it is the case, we go to stage 2.

1 2 3

Fx

Fy

x

y

L 2L√2L

A CB

D

L = 1000 mm
E = 200 GPa 
 = 7000 kg/m3

Figure 7. Three-bar truss under static loads
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STAGE 2: We solve the two CDSPs as two bi-criteria optimization problems. Note that a 
CDSP includes all the constraints of both IDSPs. The two efficient sets and their projections are 
graphically represented in Figure 9. Similar to the previous stage, we find that the two efficient 
sets are far apart and share only two common designs (200, 200, 200) and (95.3, 81.2, 87.0). 
However, yielding extreme Pareto outcomes, these designs may not be preferred by the designer. 
We then go to stage 3.

Figure 8. Efficient sets of IDSPs and their projections on coordinate planes, 
for s = 1 (solid and circles) and s = 2 (dash and triangles)

Figure 9. Efficient sets of CDSPs and their projections on coordinate planes, 
for s = 1 (solid and circles) and s = 2 (dash and triangles)
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STAGE 3: We first compute the sets Z21 and Z12. We then apply the approximation-based 
approach and measure the lack of efficiency of all designs in their respective alternate scenarios, 
i.e., we calculate the Euclidean distances in the normalized objective space between ZE1 and Z12

and between ZE2 and Z21. The four sets ZE1, ZE2, Z12, and Z21 are plotted in Figure 10 and the 
distances, which represent the lack of efficiency of the designs, are plotted in Figure 11.

Distance from Z21 to 
ZE2 (x  X1

EC)

Distance from Z12 to 
ZE1 (x  X2

EC)

Pre-defined threshold value

Final selected 
solution x*

Figure 11. Lack of efficiency in scenario s of efficient designs of the respective alternate scenario 
after normalization, s = 1 (solid and triangles) and s = 2 (dash and circles)

Pareto set of scenario 2 (ZE2)Pareto set of scen. 1 (ZE1)

Outcomes in 
scen. 1 of eff. 
sols. of scen. 2 
(Z12)

(a) Scenario 1 (b) Scenario 2

Figure 10. Pareto sets of CDSPs and their outcomes in respective alternate scenarios 
for s = 1 (solid and circles) and s = 2 (dash and triangles) after normalization

Outcomes in 
scen. 2 of eff. 
sols. of scen. 1 
(Z21)
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Assume that the threshold value is defined as 40 percent of the maximum lack of efficiency, 
i.e., 0.16, for both scenarios. By rejecting designs that have a lack of efficiency greater than 0.16, 
the set of acceptable solutions is reduced from 44 to 18 designs.

From this reduced set, an additional consideration can be exercised to select a final solution 
for the problem. This consideration is based on the fact that extreme Pareto solutions, i.e., one 
objective is overwhelmingly predominant over the other objective, are generally not preferred. 
Therefore, a good solution should be as far as possible from extreme Pareto outcomes, which are 
at both ends of the Pareto sets in the case of the three-bar truss problem. The corresponding final 
solution x* is highlighted in Figure 11.

Comparison with all-a-once approach

In order to validate the proposed scenario-oriented approach, the results are compared to 
those of the all-at-once (AAO) approach. The optimization problem (3.5) is solved using the 
weighted-Tchebycheff method with 22 values of the weighting coefficient for each criterion 
function, which results in 2024 efficient designs. These solutions are graphically represented in 
the design space along with the efficient solutions of both CDSPs (linearly interpolated) in 
Figure 12. It must be clear that the 2024 points are efficient for the AAO problem (3.5), and the 
linear interpolations are linear segments between efficient solutions of the CDSPs. In addition, 
Figure 12 includes the projections of all sets on the three coordinate planes. The reader is 
encouraged to refer to Figure 9 for direct comparison between the efficient solutions of AAO, 
CDSP1, and CDSP2.

The outcomes of the efficient solutions of the AAO problem are plotted in the scenario-
oriented objective spaces in Figure 13. Refer to Figure 10 for direct comparison with the CDSPs.

Figure 12. Efficient solutions of the AAO problem (dots), linear interpolations of sets of efficient 
solutions of CDSPs, s = 1 (solid) and s = 2 (dash), and all projections on coordinate planes
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From Figures 12 and 13 it appears, as expected, that the entire efficient set of the AAO 
problem is distributed on and between the efficient sets of the CDSPs. With a closer look, one 
can see that many solutions exactly lay on the efficient sets of the CDSPs. In fact, 65% of the 
AAO solutions have a lack of efficiency lower than 1% of the maximum lack of efficiency for 
either scenario 1 or scenario 2 (and 55% have a lack of efficiency lower than 0.1%). This means 
that 65% of the AAO solutions can be considered efficient for at least one scenario. The 
remaining 35% are designs that are found only by the AAO approach and cannot be captured by 
the scenario-oriented approach.

The fact that the majority of the AAO efficient designs can be captured by solving the 
CDSPs is an advantage for the scenario-oriented procedure. However, even though the remaining 
35 percent of the AAO solutions are fewer, the designer may be predominantly interested in 
these solutions since many of them may be satisfactory in all scenarios. This statement is the 
basis for the future development of a methodology targeting stage 4 of the scenario-oriented 
procedure.

4.2. Tractor-trailer dynamics problem

The previous engineering example falls in the category of continuous multi-criteria 
optimization problems and has the advantage of being simple enough for illustration purposes. In 
addition, it is a pertinent structural design problem scalable to much greater sizes with similar 
trends and conclusions expected to occur. An exact optimization solver (SQP) was used to solve 
all optimization problems related to this example.  

In this section, we discuss the applicability of the scenario-oriented procedure to a tractor-
trailer design problem, which falls in the category of non-continuous optimization problems 
(discontinuities in design variables, criteria, and/or constraints). To be precise, in the tractor-
tralier problem the discontinuities are due to the time-step-dependency of the vehicle dynamics 
analysis model. Heuristic and simulation-based methods such as genetic algorithms, simulated 
annealing, and design of experiments (DoE) are generally used to solve this type of problem.

(a) Scenario 1 (b) Scenario 2

Figure 13. Outcomes of the efficient solutions of the AAO problem in scenario s, s = 1 (circles) 
and s = 2 (triangles), and linear interpolations of Pareto sets of CDSPs, s = 1 (solid) and s = 2 

(dash), after normalization 
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The tractor-trailor, shown in Figure 14, is optimized for two standard maneuvers that 
correspond to two different scenarios, namely, the single lane change maneuver (SL) and the 
ramp steer maneuver (RS) [22]. The design variables include 21 physical parameters that have a 
significant effect on vehicle performance. They include, among others, the tire stiffness, the 
locations of the centers of gravity, the wheel-base length, and the track widths. For each 
scenario, two objectives are considered. For the single lane change (scenario 1), the load transfer 
ratio (LTR) and the rearward amplification factor (RWA) are to be minimized. For the ramp 
steer maneuver (scenario 2), the understeer coefficient (Ku) and the static rollover threshold 
(SRT) are to be maximized. These four objective functions are also refered to as performance 
indices. The numerical model used in this research is the ArcSim tractor-trailer model developed 
at the Automotive Research Center at the University of Michigan [1].

Latin Hypercube Design of Experiments

The optimization problem is solved using the Latin hypercube DoE technique with 1000 
points [14]. The idea behind the Latin hypercube technique is to span the entire 21-dimensional 
design space with a well-distributed sampling. For each point and each scenario, a time-
dependent numerical simulation is executed, upon which the criterion functions (performance 
indices: LTR, RWA, Ku, SRT) are computed.

In this particular optimization problem, since no constraints are defined, the IDSPs and 
CDSPs are equivalent, which means that stages 1 and 2 of the scenario-oriented procedure are 
identical. The DoE technique is carried out by evaluating the performance indices of the 1000 
designs conceived by the Latin Hypercube sampling. The results, shown in Figure 15, are then 
post-processed to extract the Pareto solutions of the CDSPs 1 and 2. In addition, the Pareto 
solutions of the AAO problem are plotted to allow further discussion on the benefits of the 
procedure. One can see that there is no common efficient design between the two scenarios. 
Therefore, we go to stage 3 by considering the sets of outcomes of the efficient designs of the 
CDSPs in their respective alternate scenario, i.e., Z12 and Z21. We then compute the lack of 
efficiency of all efficient designs using the approximation-based approach (Figure 16). By 

Scenario 1: Single lane change
Objectives: LTR (min), RWA (min)

Scenario 2: Ramp steer maneuver
Objectives: Ku (max), SRT (max)

Figure 14. ArcSim tractor-trailer model [1]
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comparison with a pre-defined threshold value, the set of designs of interest can be reduced to a 
few designs from which a final solution can be selected.

By using methods such as DoE, there is no significant gain in computational effort with the 
scenario-oriented approach as opposed to the AAO approach. This is due to the fact that the 
success in finding Pareto solutions relies on scanning the entire design space on a point-by-point 
basis without any evolving search during the optimization process and without consideration of a 
neighborhood around each point in the outcome set. For each point, performance analyses 
pertaining to each scenario must be executed to find the efficient sets of each CDSP, which 
requires as much effort as executing the performance analyses to find the efficient set of the 

Pre-defined threshold value

Figure 16. Lack of efficiency in scenario s of efficient designs of the respective 
alternate scenario after normalization, s = 1 (solid) and s = 2 (dash)

(a) Scenario 1 (SL) (b) Scenario 2 (RS)

Figure 15. Outcomes of 1000 designs (dots) in both scenarios, Pareto set of the AAO problem 
(circled dots), Pareto sets of the CDSPs, s = 1 (solid) and s = 2 (dash) and their images in 

respective alternate scenarios after normalization 

Pareto set of 
CDSP 1 (ZE1)

Pareto set of 
CDSP 2 (ZE2)

Z12

Z21
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AAO problem. Figure 15 shows that only a few of the Pareto solutions of the AAO problem 
(circled dots) are captured by the scenario-oriented procedure. Therefore, since all the AAO 
Pareto solutions can be extracted with the same amount of effort, the scenario-oriented procedure 
is not recommended. However, the concept of lack of efficiency can be applied to the set of 
AAO Pareto solutions in order to reduce the set of designs of interest to a minimum, from which 
a final solution can be selected.

Multi-objective Genetic Algorithm

Evolutionary methods such as multi-objective genetic algorithm (MOGA) are attractive 
alternatives to DoE often used for this type of problem [15]. Similar to exact methods (e.g., 
gradient-based), MOGA is limited by the number of criterion functions to consider. In other 
words, the optimization process becomes increasingly computationally intensive when the 
number of criterion functions increases, and the chance of success in finding Pareto solutions 
decreases accordingly. Therefore, the scenario-oriented procedure is expected to be significantly 
advantageous in this regard.

MOGA is an optimization technique developed to search for an entire Pareto set in a single 
execution. Therefore, solving the CDSPs of the tractor-trailer dynamics problem using MOGA 
would lead to Pareto solutions similar to the ones of the CDSPs shown in Figure 15. Following 
stage 2, one can see that these Pareto sets do not have any common efficient designs. Therefore, 
we go to stage 3. We then compute the lack of efficiency of all efficient designs and reduce the 
set of designs of interest by comparison with a pre-defined threshold value.

5. Discussion and Conclusion
The scenario-oriented procedure for multi-scenario multi-criteria optimization problems was 

presented and examplified by means of a continuous structural problem and a discrete vehicle 
dynamics problem. Its advantages and shortcomings were discussed and compared to that of the 
traditional all-at-once approach. The procedure is based on considerations in both the design and 
objective spaces, which complement each other. The main purpose of the scenario-oriented 
approach is to be able to deal with a series of small multi-criteria design problems as opposed to 
a single large multi-criteria problem. This results into a tradeoff between (1) capturing all the 
solutions and (2) being able to deal with a large number of scenarios and criteria in terms of 
computational effort, graphical and cognitive perception of the problem, decision-making, and 
scenario-oriented customization.

Even though the scenario-oriented procedure was exemplified with bi-scenario bi-criteria 
problems, there is no limit on the number of scenarios and criteria. In fact, the method becomes 
even more beneficial as the scale of the problem increases. The definition of the lack of 
efficiency based on a distance between an outcome and a Pareto curve is independent of the 
number of criteria. With more than two scenarios, we propose to use, for example, a weighted 
sum of the lack of efficiency quantities of all scenarios and use this total value to reduce the set 
of solutions. The coefficients of this weighted sum become then a means to control preferences 
between scenarios.

The proposed procedure was shown to be beneficial for problems solved using gradient-
based methods and evolutionary methods such as MOGA. However, it is not as beneficial when 
using DoE since the computational efforts involved in the scenario-oriented and the AAO 
approaches are virtually the same. In this case, the AAO approach has the advantage of finding 
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all the designs of interest from which a final solution should be selected. We then argue that this 
selection process can be facilitated by means of the scenario-oriented lack of efficiency 
presented in this paper.

Finally, the fourth stage of the scenario-oriented procedure is the subject of further research. 
This stage is dedicated to seeking solutions that are satisfactory for all scenarios without solving 
the AAO problem. We believe that these solutions are of prime interest to the designer and 
decision maker.
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