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Observer Design for a Class of MIMO
Nonlinear Systems

Hao Lei, Jianfeng Wei and Wei Lin R. M. Kolacinski
Dept. of Electrical Engineering and Computer Science Orbital Researchinc.
Case Western Reserve University Cleveland, OH44103
Cleveland, OH 44106, USA USA

Abstract— Under the boundedness and observability condi- wherez € IR" andy € IRP are the system state and output,

tions, we present a globally convergent observer for a class respectively. The vector fields: R* — IR™ andh : R* —
of multi-output nonlinear systems which covers the block- RP are smooth, withy > p > 1.

triangular observer forms studied previously in the literature.
The result presented in this paper incorporates and generaes For the autonomous system (1.2), a common approach for
the earlier work on the observer design for single-output the observer design is to find a change of coordinates and
observable systems. Extensions to detectable systems andan output injection so that (1.2) can be transformed into the
controlled systems are also considered. Examples are given gq_called observer form. The approach was first introduced

to illustrated the validity of proposed method. L . .
Index Terms— Nonlinear systems, dynamic high-gain ob- by Krener and Isidori [10] and Bestle and Zeitz [1], in the

servers, universal control, observability and detectabity, ~Single-output case (i.ep,= 1), and then was generalized to
boundedness. the multi-output case by Krener and Respondek [12], Xia

and Gao [21] and to discrete-time nonlinear systems by Lin
. INTRODUCTION and Byrnes [18]. More recent extensions can be found in
e papers by Kazantzis and Kravvaris [7], and Krener and

_ _ _ t
In this paper, we are interested in the problem of gIObEBFiao [13].

observer design for a multi-output nonlinear system in the

- The observer form based design method was further
observable canonical form . .
extended by Rudolph and Zeitz [19] to multi-output au-
tn = o tonomous systems with a block triangular observer form,
o Tis which essentially requireg;(z) in (1.1) to have certain

triangular structure. In the work [20], an explicit form
of nonlinear observer was presented by Shim et al. for a
Tik, (1.1) _class of multi—_output multi-input (MIMO) _no_nlinear_system
b = filo) P19, in a block triangular form. However, it is required that
4k nes o P - the bounds of the control inputs and system states be
y = ( Y1, Y2, Yp ) = ( T11, %21, "+, Tpl ) known. The nonlinearities of the systems are assumed to be
Lipschitz with a known Lipschitz constant. In the paper by
Krener and Kang [11], a step-by-step, local observer design
method was developed for MIMO nonlinear control systems
which are also in a block-triangular form. An interesting
Feature of the paper [11] is that the observer gains are
nonlinear functions of the estimated states and recuysivel
p o= () designed.
y = h(z) (1.2) In this work, we consider the ob;erver design for the
observable canonical form (1.1) whiatoes not have a
is transformed into the canonical form (1.1) by the follogin block-triangular structurebecause the nonlinearitigs(-)'s

wherez = (Il, XTo, - ,ZCP)T, T, = (xil, XTi, ,xiki)T,
k;'s are suitable integers satisfying’_, k; = n. Without
loss of generality, suppose< k; < ky < --- <k, <n.

In [3], Gauthier and Bornard illustrated that under
uniform observability condition, the autonomous system

change of coordinates in (1.1) depend on the entire system states and all the sub-
blocks of system (1.1) are coupled each other. To remove the
r = @(2) block-triangular structure restriction in the previousriyo

= (hi(2),- - ’L’lehl(z); hy(2), - .,L’ijhp(z)))T we make the following assumption in this paper.

. . Assumption 1.1: For everyz(0) = z9 € R", the
This work was supported in part by the NSF under grants DM&837 . . .
and ECS-0400413, and in part by the AFRL Grant FA8650-0584e3  COrresponding solution trajectony(zo, t) of the observable
Corresponding author: Professor Wei Lin.  linwei@nonlirearu.edu system (1.1) uniquely exists and is globally bounded on



[0,+00). That is, there is an unknown constafit > 0 For anyz € R" andm > 0, define mappingat,, :
depending on the initial conditiony, such that R" — [-m, m]" as

|ij(z0, 1) < C, i=1,---,p; j=1,--+,k;; Vt €[0,00). saty, (z) = (msat(ﬂ),msat(ﬂ), . ,msat(x—n))
Assumption 1.1 is a mild condition for autonomous m m m

systems (without control), because it covers an important Now, we are ready to state the main theorem of the paper.

class of dynamic systems such as the Van der Pol equationTheorem 2.3:For the multi-output system in observer

and Duffing oscillator [5], [13] — both of them armstable ~canonical form (1.1), suppose the Assumption 1.1 holds.

at the origin but nevertheless haylebally boundedolution  Then, there exists a global observer. In particular, a dipba

trajectories from any initial condition. On the other handgconvergent observer can be constructed as

the boundedness condition excludes the class of nonlinear :

systems with unbounded solutions or having a finite escape xll = ffiz + (MN)Zil(yi - xil)

time, and hence is somewhat restrictive. This is, however, Tiz = @i+ (MN) aia(y; — &a1)

a trade-off for removing the block-triangular structure as

sumption. . A 1 .

With the aid of Assumption 1.1, a universal-like global ~ Fiki-1 = Tik + (MN)* ™ ai g, 1 (yi — Li)
observer can be designed for the multi-output autonomous ~ 2;x, = f;(satv(2)) + (MN)¥ia; 1, (yi — 1)
system (1.1). Following the spirit of our recent work [16], P A 9

. . . \ Yi Ti1
we propose, in section Il, an adaptive observer scheme N = WZ (7_ : ) , N(O)=1
) ) . . X . (M N )kp—kit1
in which a delicate rescaling technique is employed to ' i=1
deal with the inter-coupling termg;(x)’s in (1.1) that M = —-M+A(N), M@O)=1 (2.3)
consist of the entire system states. Due to the lack of the ) )
where a;; > 0,4 = 1,---,p,j = 1,---,k; are the

bound information of the solution trajectories, a satorati . : ) .
technique [8] is used in the construction of multivariabl osfﬂment:_qf the Hurwitz polynomialg;(s) = s™ +
observers but the saturation threshold is tuned by a umiverg—j—1 %", 7 = 1 is a prescribed constant, and
control law instead of being a prescribed constant. As dorfe(?Y) = 1 is & smooth function which can be determined
in the single-output case, the observer gain needs to bd urfplicitly.
adaptively. As a result, the proposed observer is a dynamjcMoreover, all the states of the closed-loop system (1.1)-
system with dimension of; + 2. (2.3) are well-defined and bounded finoo), and,

In addition to the main result presented in section Il, we };;,, [z(z0,t) — 2(20,8)] =0, ¥(z0,40) € R* x R™.
present in section Il an extension of the global observeriz

. - Remark 2.4: (2.3) is a universal-like high-gain observer
design scheme for a class of detectable systems. In sectign s i< motivated by the works [22], [6] and [15]. Different

IV, the problem of glob_al observer_ design is (_jiscussed fc1“?om the traditional high-gain observer [4] [9], the obsarv

a <_:Ia_155 of systems with control inputs. T(_) |IIu_strate Fh ain of (2.3) is composed of two parts. One is the moving

validity of t_he results, two.examplles are given In Sectioll,y ration level N(t) which needs to be tuned in a manner

V. Conclusions are (_jre_lwn_ In section VI. . similar to the one in [15], [16]. The other one ¥ (),

. Due to the space I_|m|tat|on, the proofs of the main resultg . 1\ is used to recover the offset df(satn (7)) from

in the paper are omitted. fi(xz), to be updated through a linear ODE driven by
I1. DYNAMIC HIGH-GAIN OBSERVERS FOR a nonlinear function ofN(t). The introduction of non-

OBSERVABLE SYSTEMS constant gaindv(¢) and M (t) enables us to deal with issue

. . . . of the unknown boundf the solution trajectories of the
In this section, we will propose a constructive observer
servable system (1.1) or (1.2).

design scheme for the globally observable system (1. It should be mentioned thak(N) in the observer (2.3)

Wh'Ch. satisfies the As§umpt|on 1'1'. ... can be calculated directly based on the observable system
To introduce the main result, we first recall the defmmor‘t1 1), in particular, by the nonlinear functions(z)’s. To

of a unit saturation function. make this point clear, we introduce the following technical
Definition 2.1: A unit saturation function sét) is P ' 9

defined as lemma.
_ Lemma 2.5: (Refer to [17]) Letg : R* — IR be aC*
1 if s>1 real-valued function. Then, there exist two smooth funetio
safs) = s '; ls| <1 1) «,B: [0,+00) — [1,+00), such thatvz, z € R",
-1 if s<-—1
From the definition, it is not difficult to show that -
Lemma 2.2: Given real numbers;, ss andm > 0, l9(x) —g9(2)] < OZ(||£C||)5(||Z||)Z; jwi — 2l (2.4)
suppose thafs, | < m. Then, Using the inequality (2.4)|f;(x) — fi(saty(2))| can
52 be estimated as follows. By Assumption [z (zo,t)|| <
— ) < Is1 — sal. : : ’
51 msa(m)| < ls1 = (2.2) C, ¥t > 0. Sincel|satv (z)|| < N, by Lemma 2.5, for each



i =1,2,---,p, there exist two smooth positive functionsglobally convergent observer exists and can be explicitly
a;(-) and 5;(-) such that constructed.

|fi(x) — fi(saty(2))] [1l. GLOBAL OBSERVERDESIGN FORDETECTABLE
k; SYSTEMS
< a;(C)Bi(N) Z |2i; — Nsa( I” )| (2.5) This section is devoted to the design of global observers
i=1j=1 for a class of detectable nonlinear systems. Consider a clas
Denotea(C) = 7, ai(C), B(N) = S, Bi(N), then of autonomous systems of the form
one can simply choose n = Am+¥(y)
A(N) = §%(N) > 1. (2.6) Tig = T

In the next subsection, it will be shown that such a choice
of A(N) suffices to ensure the dynamic system (2.3) being Tig1 = Tk (3.1)

a globally convergent observer of system (1.1). . _ e .
Tk, = [fi(x), 1=1,2,---,p

To sum up, a global observer for the observable system ’ - T
(1.1) with bounded solution trajectories can be constdicte y = Wy yp) = @020, 2p)
in three steps: wheren € R"* andz € R are the system stategae RP

Step 1. Pick a suitabley > 0 and choose constants are the outputs, antl < ky < ko < --- < ky, >0 ki =
au >0,i=1,---,p,j = 1,2,---,k;, such thatp;(s) = r, ¥(y) is a continuous function anﬁz( )s are a smooth

ki 4 ZJ L a;;s" 77 is Hurwitz; functions vanishing at origin.

Step 2. Use inequality (2.5) to esnmatéfz Clearly, the state; € R"" " is unobservable from the
fi(saty(2))| and find3(V) > 1. Then, compute\ (N ) outputy. This is becausg has no influence on the system
B%(N); output. However, if the matrix,, is Hurwitz, one can still

Step 3. With the obtained parameters, a;;’'s and design a global observer for the autonomous system (3.1)
A(N), design the observer (2.3). under the condition that the-subsystem is bounded.

Remark 2.6: It is worth pointing out that the dynamic  Theorem 3.1: Suppose the-subsystem of (3.1) satisfies
update law of M can be modified asM = —oM + the bounded assumption in the sense of Assumption 1.1,

A(N),oc > 0,A(N) > o without affecting the argument and A4, is a Hurwitz matrix. Then, a global observer can
in the above proof. A bigges makes the convergence of be constructed for the system (3.1) in the following way:

M faster and the gail. = M N smaller, however, the L .
o no= Aui+¥(y)
convergence of the estimation slower. . A .
Using Theorem 2.3, it is easy to obtain a corollary which T = Zig+ (MN)ai(yi — &)
is devoted to the design of a global observer for observable :
systems in a lower-triangular form: . R kel )
. Tiki—1 = Tig + (MN)""aip—1(yi — &a)
= s + fi(z1) Gim = fi(satyv(A)) + (MN)*a; 1, (y; — )
Zio = ziz + fia(21,22) , Yi — £in 2
N = (o) NO=1
2.7) 72 (M N YFo—Fi+1 (0)
Ziki—1 = Zik t fiki—1(21,22, 0, 2-1) M = —M + A(N), M@O)=1 (3.2)
ik = fik(2) where a;; > 0,i = 1,---,p,j = 1,---,k; are the
y = 2 coefficients of the Hurwitz polynomialg;(s) = sk +
M a;;s%79, 4 >1is a prescribed constant
where 1 < ki < --- < k, and 3P ki = n, 2ap1@S 72 P '
J P )T 1 < izfl P i The observer (3.2) guarantees that all the states of the
R N D7 7 closed-loop system (3.1)-(3.2) are well-defined and bodnde
(e 220, 2pi) IF K< S Byl =1 p = e = T ) in addition, Timy oo (10, 1) — (n0,1)] =
(z1---,2,) are states angl = z; = (211, 221, -+, 2p1)" € 0 1,’ (0. 1) ’A(A o = ’0 W ’ )
RP are the Outputsfl.j(.)’i = 1’...7p’j = 1?"'7ki are R,n lfnt?oo I]Slf{()n, — T (X, - ) Mo, To S
smooth functions withf;; (0, ---,0) = 0. ; (10, Z0) € R,

Due to the lower- tnangular structure, one can epr|C|tIy Rerrndark 3. fh Thﬁorem Sllt suggetsts that, in terms gftob—
construct a global change of coordinates= ¥(z) which serverdesign the observabliity IS hot a hecessary condition

renders system (2.7) globally diffeomorphic to system)(l.l-(!l-h,lS Its S:mnar tto the;_dmear F:tastﬁ e, _ ?n unol?servabble yet
he s consequence, v rave th folowing corduson.  *°Ce1E ST L PATLS e et oL cover
Corollary 2.7: Assume that all the solution trajectories " '

of the lower-triangular system (2.7) from any initial con-able sub-system is replaced by
dition are well-defined and bounded @ +cc0). Then, a 7 =) (A +¥(y), ¢(y)>0. (3.3)

3



In this case, one can still design a global observer using a of the proposed observer does not need the bound
manner similar to the one suggested in Theorem 3.1, with  information of the solution trajectories.

a slight modification.

IV. OBSERVERS FOR A CLASS OINONLINEAR

SYSTEMS WITH CONTROL INPUTS

Under the two assumptions above, we can design a global
observer for the MIMO system (4.1) by following the spirit
of observer design method in section Il.

Theorem 4.3: For the MIMO nonlinear control system

We now discuss briefly the observer design problem fq 1) synpose Assumptions 4.1 and 4.2 hold. Then, a global

the following multi-output multi-input (MIMO) nonlinear ohserver can be designed for the controlled systems (4.1)
system

as
i1 = T2+ gin(y,u) b Fio + (MN)ag (i — #41) + gi1 (y, u)
Tz = izt gio(w,u) Tio = @+ (MN)2ap(y; — 2a1) + gi2(y, &,u)
Tik—t = ikt ik (T,) i = fi(satw(®)) + (MN)ais, (y; — )
I’Lkl = fl('r) +gi7ki (CC,’LL) +gn(y7i’ u)
y = ($11,11721,"'a17p1)T (4-1) . p y'—fl 2
N = (7'1 ! ) , N()=1
wherex; = (zi1, @iz, -, xip,)", & = (21,--,2,)" € 7; (MN)kp=hitt 0
R", v € R™ andy € RP are the system state, input and M = —M+AN) MO) =1 (4.2)

output, respectivelyky < ko < -+ < kp, >0 ki = n.
The functionsy; ;(-) and f;(-) are smooth witty; ;(0,0) =  wherea;; > 0,i = 1,---,p,j = 1,---,k; are the coef-
0 and f;(0) = 0. ficients of the Hurwitz polynomials”: + Zf;l aijsti=i,

We assume that the functiop;(z,v) = gi;(y,z,u), ~ >1is a prescribed constant, add N) > 1 is a smooth
with z = (y*, 27)” andz = col(z;;,i = 1,---,p;j = function which can be determined explicitly. Moreover, all
2,---,k;) € R"7P, satisfies the following condition. the states of the closed-loop system (4.1)-(4.2) are well-

Assumption 4.1: Fori=1,---,pandj =2,---,k;, defined and bounded df, oo). In addition,

R LI R lim [,T(SCQ, t) — f(i‘o,t)] =0, V(,To, io) e R" x R".
1933 (0, 2, w) = 935 2y 0)| < ey w) (3 3 Jwa = ) The proof of this theorem can be carried out by modifying
=2 suitably the argument of Theorem 2.3. The boundedness
wherez = col(#;;,i = 1,---,p;j = 2,---,k;) € R""P,  property ofz andu has to be used, but the bound can be
ande(-,-) > 0 is a smooth function. unknown.
Assumption 4.2: For any control inputu(t) in the

compact setU C IRR™ and any initial conditionz, € V. EXAMPLES AND SIMULATIONS

IR", the corresponding solution trajectory,(xo,t) of the In this section, we give two examples to illustrate the
controlled system (4.1) is well-defined over the intervapplications of the observer design methods proposed in
[0, 4+00) and x,(xo,t) is globally bounded, i.e. this paper.

Example 5.1:Consider the two-output observable au-

_||I“(x0’t)|| =C tonomous systems
« In [20], a nonlinear observer was presented for a class

of MIMO nonlinear systems. The system studied there Ty = T2

is of a block triangular form. Moreover, it is required By = —@11 — X0y + Toz + 5

that the bounds of the system input and state be known. B9 = oy

The system nonlinearities are assumed to satisfy a .

Lipschitz condition with a known Lipschitz constant. tez = , (5.1)
o In [11], a step-by-step local observer design method Tyz = 3y T2 — T2z — T12

was proposed for a class of multi-input multi-output y = (yl,yz)T = (xu,le)T
nonlinear control systems. The systems under consid- This system is of the form (1.1). Choosing Lyapunov
eration are also in a block-triangular form, and thdunctionV (z) = £[z%; + 2%, + 323, + 23, + (23, + 223)%],
observer gains are nonlinear functions of the estimatezhe can see that the derivativelofz) along the trajectories
states. Due to the local design feature, the boundednesfs(5.1) satisfiesV = —z1, < 0, which implies that the
condition is automatically satisfied. system is stable but not asymptotically stable. Hence, all
« Assumption 4.2 basically requires that all the solutiorthe solutions trajectories of (5.1) are globally boundeudi a
trajectories do not blow up under bounded controlthe design method proposed in Theorem 2.3 can be applied.
It contains, for instance, bounded-input/bounded-state To find the functionA(V), we first compute’; (V) and
(BIBS) systems. It should be noticed that a key featurz(N) from f1(z) = —z11 — 235 + 223 + 23, and fo(x) =

4



—3x3, 99 — T2 — 712. By the mean value theorem, there 6 3
is a¢ € IR® betweenr and sat; (i), such that Y ] o g
|fi(z) — fi(satv(2))] o>
2 8f 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
o 1 & 3< 10 v
- | Zl 6517, (5) (Ill Nsa( )) 25 \%21 ok //\ P .
Z—3 af N \ i . T ’y \,/ / 22
1 $2 . N -10 \\ "
2 G (€)(ai — Nsat ) : L
i=1 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
2 200 o
xl 507 (U 1]
< (@+36h +38) - (Y |en - Nsa("l)) o B DTy
i=1 0\—L—*T/</—’v/v23\ -sop ZU
3 51721 o ! -100 2
+ Z |Q72Z Nsa(—)|) o o0z 04 06 08 1 o o0z 04 06 08 1
=1 Fig. 1. Observation of a 5-dimension 2-output system
< (446(C+ N)? Z |z1; — Nsa(&ﬂ Example 5.2:Consider the observation of a point-mass
satellite model (see, for instance, [2]):
3
To;
+) fwai - Nsa(—7)|) po= v
= 1
2 & — pr — 91—2 + 9211,1
< 6(CP+ DN+ 1)(Y oy, — Nsa(i)| : P
; ¢ = w (5.3)
1
To; w = —(2vw + Ous
+Z frss — Nsa( 22, ol :

in which (p, ¢) denotes the position of the satellite in polar
Thus, 31 (N) = N? + 1. coordinates on the plane,is the radial velocityw is the
Similarly, it is deduced frony,(x) thatsa(N) = N2+1.  angular velocity andu;,u, are the radial and tangential
Hence,3(N) = 31(N) + B2(N) =2N2 +2 and A(N) = thrust, respectively. We assume that the measurable signal
B2(N) = 4(N? +1)2. Choosea;; = a1z = az1 = ag3 = are
1,a20 = 3, v = 8. Then, the observer for the autonomous

system (5.1) can be designed as yi=p Yy2=9
Consider the case when the parametgrs- 4 andf, =
i1 = &0+ MN(z1q — 311) 1, while the control inputsi; = 4/p2 — p—v anduy = 2.
] #11 o3 Then, it is easy to verify that the system states are globally
12 = —Nsa(— ) N3sat°’( ) + Nsa{— ) bounded, by using the Lyapunov functibh= 3 (p* + v+
s - $* + p*w?) whose derivative i§/ = —v? < 0 The state
+N sa?( 1)+ M2N? (21 — @11) trajectories of the closed-loop system are shown in Fig. 2.
To1 = oot MN(SCzl — &g1) ¢ :
. 25 15
B9 = o3+ 3M2N2(:v21 — Z91) , )
By = —3N%saf(2 )sa(‘”ﬂ) Ns (@)
1 0 ISR
—Nsa(—) —+ M3N3(I21 — ZCQl) o° o8
0D 20 40 60 80 100 710 20 40 60 80 100
N = M4N4 (( —211)% 4+ MPN? (21 — £91)?) 4 4
M = —M+44(N?+1)? (5.2) 3 3
N@O)=1, M(0)=1 i X
Fig. 1 illustrates the transient response of the observer ::
(5.2) and the system (5.1) starting from the initial con- e e
ditions (a9, 2%,, 29, 23y, 293, 391, 875, 29y, 355, 395) = _ _ _ _ _
(2,2,2,-2,4,3,1,1,-2,2). Fig. 2. State trajectories of point-mass satellite model



For the closed-loop system, we can design a global
observer of the form [1]

p = 0+6MN(p—p), p(0)>0 ) 2

T N?’sa(%)sa?(%)—Nsa(%)—]\fsa(%) (3]
+HI(MN)2(p — p)

S 5 (4

¢ = w+MN(p—9)

_— peny O @ SAE) 5

O = 7Nsa(%)(2NA sa(N)sa(N)Jrsa(%)) .
+HMN)*(¢ — o)

= —> (0= )+ (6 — )2 - 17

Vo= Gple-atee-dr), o=

M = —M+ (N?4+1)? M(0)=1 (5.4) (g

Figure 3 illustrates the simulation results of the

closed-loop system and the observer (5.4) starting fronfo]
the initial conditions (p°,v°, ¢% w0, p°, 09, ¢¥, V)
(2,-1,3,1,4,2,1,2)

[10]
4 2
3s) 1 [11]
3 ‘E 0 ‘
| A [12]
2K =251
15 apt! [13]
1'g
1 -4 ‘jt [14]
0.5 -5
[¢] 1 2 3 4 0 1 2 3 4
T [15]
6 !
| 1
o 1B
i \
2 |
Ny [16]
-2
% 1 2 3 4 o 1 2 3 4 [17]
Fig. 3. Observation of point-mass satellite model [18]

VI. CONCLUSIONS

Under the global boundedness and observability condit9]
tions, we have shown that a globally convergent observizro]
can be explicitly designed for the multi-output autonomou
system (1.1) or (1.2) without requiring a block-triangular
structure nor imposing restrictions on the coupling refagi  [21]
between each sub-block. The constructed observer is b
high-gain type but different from the traditional one [9]
in the sense that the observer gains here are composed of
two time-varying components/ (¢) and N (¢), both of them
must be adaptively updated in order to deal with the issue
of the unknown bound of the solution trajectories. The gain
update law is reminiscent from the recent work [15] on
universal output feedback control of nonlinear systemh wit
unknown parameters. It was also showed that the proposed
observer design technique can be extended to a class of
detectable systems and multi-input/multi-output (MIMO)
nonlinear systems with bounded solution trajectorieshsuc
as bounded-input/bounded-state (BIBS) systems.
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