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2D Decision-Making for

Multi-Criteria Design Optimization

Alexander Engau Margaret M. Wiecek∗

Department of Mathematical Sciences Department of Mechanical Engineering
Clemson University, Clemson, South Carolina 29634, USA

Technical Report TR2006 05 EW

Abstract

The high dimensionality encountered in engineering design optimization due to large numbers
of performance criteria and specifications leads to cumbersome and sometimes unachievable
tradeoff analyses. To facilitate those analyses and enhance decision-making and design selection,
we propose to decompose the original problem by considering only pairs of criteria at a time,
thereby making tradeoff evaluation the simplest possible. For the final design integration, we
develop a novel coordination mechanism that guarantees that the selected design is also preferred
for the original problem. The solution of an overall large-scale problem is therefore reduced to
solving a family of bi-criteria subproblems and allows designers to effectively use decision-making
in merely two dimensions for multi-criteria design optimization.

Keywords: multi-criteria design optimization – interactive decision-making – decomposition
– coordination – tradeoff visualization – sensitivity

1 Introduction and Literature Review

Structural design optimization deals with the development of complex systems and structures such
as cars, airplanes, spaceships or satellites. Based on tremendous gain in experience and knowledge,
together with the rapid progress in computing technologies, the underlying mathematical models
and design simulations become better and better and provide designers with growing amounts of
data that need to be analyzed for choosing a final optimal design. In particular, the steadily increas-
ing number of specifications and criteria used to evaluate the performance of the simulated designs
leads to cumbersome and sometimes unachievable tradeoff analyses, thus resulting in complex and
difficult, if not unsolvable, decision-making problems.

Design optimization under multiple performance measures When evaluated by multiple
criteria, it is long known (Zadeh, 1963) that an overall optimal design, in general, does not exist,
but a set of nondominated or Pareto optimal solutions (Pareto, 1896). In principle, these solutions
can be found in three different ways. In the traditional but still widely applied first approach,
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the design space is sampled and a certain number of feasible designs is evaluated using simulation
codes that describe the underlying model (Verma et al., 2005). Thereafter, these designs are filtered
based on pairwise comparisons of their associated performances so that only nondominated designs
remain subject to further consideration (Mattson et al., 2004). In enhancement of the first, a second
approach makes additional use of genetic or evolutionary algorithms to further improve the initial
designs compared to a mere sampling (Narayanan and Azarm, 1999; Gunawan et al., 2004). Both
approaches are similar in that they provide the designer with a set of nondominated solutions, but
in general do not guarantee that any of these solution is also an optimal design.

Hence, opposed to the former two, the third approach is based on actual optimization and
finds one Pareto point at a time by solving an auxiliary single objective problem. The typical
formulation of this problem uses a linear combination (or weighted-sum) that aggregates all par-
ticipating criteria into a single objective, so that, by varying the weights assigned to each criterion,
different Pareto solutions can be generated. Although commonly used, numerous drawbacks of this
approach, including its failure to generate points in nonconvex regions of the Pareto set, are well
recognized (Das and Dennis, 1997). Recently, a family of aggregation functions more appropriate
for engineering design is presented in (Scott and Antonsson, 2005). The concept of an aggregate
objective function is also used in the context of physical programming for robust designs (Messac
and Ismail-Yahaya, 2002), with the integration of the physical programming methodology within
multidisciplinary design optimization described in (McAllister et al., 2005).

Decomposition of the design optimization problem The combination of multiple perfor-
mance measures into one single index is used not only to reduce the number of criteria, but more
importantly to reduce the complexity of the underlying optimization problem. Alternatively, a
reduction in the complexity of most design problems is typically achieved by various decomposition
strategies (Blouin et al., 2004). These are particularly well suited for design optimization as most
complex engineering systems usually consist of many subsystems and components having smaller
complexity (Chanron et al., 2005). Decomposition then means to divide the large and complex
system into several smaller entities, while responsibilities for the various subsystems or components
are assigned to different designers or design teams with autonomy in their local optimization and
decision-making. In general, however, these subsystems will still be coupled so that the solution of
each subsystem is dependent upon information from the others. Hence, along with the benefit of
reduced complexity comes the difficulty of coordinating the different design decisions to eventually
arrive at a single overall design solution that is feasible, thus meeting the design requirements,
preferably optimal and acceptable for all participating designers or decision-makers. A survey on
existing coordination approaches is given in (Coates et al., 2000; Whitfield et al., 2000) and, with
a special focus on decentralized design, in (Whitfield et al., 2002). The issue of converging to a
common overall design is addressed in (Chanron and Lewis, 2005; Chanron et al., 2005) who use
game theoretic concepts to model and analyze the competing interest of the different decision-
makers. Most recently, new strategies for the coordination between multi-objective systems are
also proposed in the framework of collaborative optimization (Rabeau et al., 2006).

Relevance of this paper Adding to these recent results on the decomposition of decision-making
problems, this paper presents an interactive decision-making procedure for replacing the intuitive
selection of the overall design (Agrawal et al., 2004, 2005) by a more systematic design integration.
This final design integration is based on a novel coordination mechanism that guarantees that
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the selected design is also preferred for the original problem. Previous interactive methods are
described in (Tappeta and Renaud, 1999; Tappeta et al., 2000; Azarm and Narayanan, 2000), but
none of these methods makes use of a decomposition as suggested by the approach presented in
this paper. Motivated by the several recent studies emphasizing the importance of visualizing the
optimization process (Messac and Chen, 2000), the design data (Eddy and Lewis, 2002) and Pareto
frontiers (Agrawal et al., 2004, 2005; Mattson and Messac, 2005), the new methodology includes the
feature of visualizing the tradeoff curves for every subproblem to support the choice of an optimal
design. In addition to the tradeoff between those objectives participating in the same subproblem,
information on the tradeoffs between different subproblems is obtained from a sensitivity analysis
and used for the subsequent coordination. This method thereby offers an alternative to the tradeoff
analyses for the complete problem as suggested in (Tappeta et al., 2000; Kasprzak and Lewis, 2000)
or, in the context of robust multi-criteria optimization, in (Gunawan and Azarm, 2005; Li et al.,
2005).

Only one paper (Verma et al., 2005) relies on a similar decomposition and visualization strategy
in order to successively filter solutions from a set of simulated designs. However, therein all decisions
are based merely on the intuition of the designer, and as no optimization is involved, the method
cannot guarantee that the final solution is also optimal for the overall problem. The procedure in
this paper, on the other hand, is capable of revealing tradeoffs, generating new solutions based on
the designer’s choices, and always guaranteeing Pareto optimality of the final and all intermediate
solutions.

Objectives of this paper The objective of this paper is thus three-fold. First, assuming that
Pareto optimal solutions can be found by either a traditional approach or genetic algorithms, an
interactive procedure is proposed for the selection of an optimal design for a complex and multi-
criteria design optimization problem. Second, this selection is facilitated using a decomposition
strategy, so that all intermediate decisions are made on smaller-sized subproblems involving only
two performance measures at a time. A new coordination mechanism then guarantees that the
final selection leads to a common design that is optimal for the overall problem. By choosing
this decomposition-coordination framework, the method is also well suited for decentralized design
processes and decision-making situations involving multiple decision-makers. Finally, the third
objective is to enhance the procedure by providing the designer or decision-maker with tradeoff
information in form of sensitivities and a 2D representation of the tradeoff curves for every sub-
problem.

2 Problem Statement and Preliminaries

For the scope of this paper, we consider the mathematical model of a multi-objective optimization
problem

MOP: minimize f(x) = [f1(x), f2(x), . . . , fp(x)]
subject to g(x) = [g1(x), g2(x), . . . , gm(x)] ≤ 0

h(x) = [h1(x), h2(x), . . . , hl(x)] = 0

xL
i ≤ xi ≤ xU

i , i = 1, . . . , n.
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In this formulation, x = (x1, x2, . . . , xn) ∈ Rn is the vector of design variables that is evaluated
by the performance function f : Rn → Rp to produce the associated performance vector y = f(x).
This vector function f is composed of p criteria that are modeled as real-valued functions fi : Rn →
R, i = 1, 2, . . . , p. Similarly, the constraint functions g : Rn → Rm and h : Rn → Rl consist of m
inequality constraints gi : Rn → R, i = 1, 2, . . . ,m, and l equality constraints hi : Rn → R, i =
1, 2, . . . , l, respectively. Finally, the values xL

i ≤ xU
i , i = 1, 2, . . . , n denote lower and upper bounds

on the design variables, and then the set of all feasible designs in the design space Rn is given by

X := {x ∈ Rn : g(x) ≤ 0, h(x) = 0, xL ≤ x ≤ xU}.

We denote the set of all realizable or attainable performance vectors in the performance space Rp

by
Y := f(X) := {y ∈ Rp : y = f(x) for some x ∈ X}.

Pareto optimal designs A design is a Pareto optimal design if it is not possible to improve its
performance with respect to one criterion without deterioration in at least one other criterion. If
it is possible to improve a design with respect to some but not all criteria at the same time, then
this design is not Pareto optimal but only weakly Pareto optimal (Chankong and Haimes, 1983).

It then follows that a Pareto optimal solution for some set of criteria remains at least weakly
Pareto optimal upon enlarging this set with additional performance indices. To see why this is a
true, note that for a Pareto optimal solution, no other design is available that is better in some
but not worse in any other criterion. Then, in particular, no other solution can be better in all
criteria, and clearly this must still be true after additional criteria are added. According to the
above definition, this means that the solution is at last weakly Pareto optimal for the larger set of
criteria, and thus the following result holds.

If a design is Pareto optimal for a subset of all performance measures, then it is (at
least weakly) Pareto optimal for the overall problem involving all criteria.

Therefore, it is possible to identify Pareto optimal solutions for a large-scale problem by merely
considering smaller sized problems with a reduced number of criteria. Clearly, such approach
requires to decide which criteria to choose and which to drop. In (Matsumoto et al., 1993) and
(Dym et al., 2002), it is shown how to develop a ranking among all criteria, and the related issue of
decomposing a multiobjective design based on criteria influence is addressed in (Yoshimura et al.,
2002, 2003). After these issues have been resolved, the reduced problem commonly takes the form
shown in Figure 1.

Traditional decomposition and integration Figure 1 illustrates the typical decomposition-
integration scheme for an overall MOP with p criteria that is divided into k subproblems of smaller
size. Since all subproblems are completely uncoupled, each problem can be solved separately and
then communicates one (or a set of) optimal solutions to the overall MOP. Since all subproblems
are formulated over the same feasible design set, every such solution is also feasible for the other
subproblems and, in particular, for the overall problem. Therefore, the only task remaining is to
select a final solution among the designs proposed by the subproblems, and the above result then
guarantees that this design is also (at least weakly) Pareto optimal for the overall problem.

This important observation can also be motivated using the following intuitive explanation.
Suppose that the problem of interest is the design of a system that consists of several, say k
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MOP: minimize f(x) = [f1(x), f2(x), . . . , fp(x)] subject to x ∈ X

MOP1: min [f1(x), . . . , fr(x)]
subject to x ∈ X

MOPk: min [ft(x), . . . , fp(x)]
subject to x ∈ X

. . .

. . .

. . .

MOP2: min [fr+1(x), . . . , fs(x)]
subject to x ∈ X

¢
¢

¢
¢® ¢

¢
¢
¢̧

?

6 A
A
A
AU A

A
A

AK
Decomposition Integration

Figure 1: Traditional decomposition and integration without coordination

subsystems, and that we decide to design only one selected subsystem to optimality. Then we
know that the overall system is still weakly Pareto optimal, because improvement in the weak
Pareto sense would require to improve all subproblems, including the one that is already optimal.

Nevertheless, by focusing on only one subsystem at a time, we might risk to significantly degrade
the performances of the remaining subsystems. For illustration assume that we have found four
designs x1, x2, x3 and x4 that are evaluated by the criteria f1, f2 and f3 which we wish to minimize,
as shown in Table 1.

Table 1: Drawback of traditional decomposition and integration without coordination

design f1 f2 f3 observation
x1 1 1 9 unique optimal design for subproblem with criteria f1 and f2

x2 1 9 1 unique optimal design for subproblem with criteria f1 and f3

x3 9 1 1 unique optimal design for subproblem with criteria f2 and f3

x4 2 2 2 not optimal for any subproblem, but overall min-max solution

It is easy to verify that all four designs are Pareto optimal for the complete problem with
criteria f1, f2 and f3. For every combination of two criteria, however, only one of the designs
remains optimal for the associated subproblem. If we consider the subproblem with criteria f1 and
f2, then x1 is better than x2 with respect to f2 (same for f1), better than x3 with respect to f1

(same for f2) and better than x4 in both f1 and f2. Hence, x1 is better than all other designs and
thus the unique optimal design for the subproblem with criteria f1 and f2. Similarly, we find that
x2 and x3 are the unique optimal designs for the subproblems with criteria f1 and f3, and f2 and
f3, respectively. Note, however, that each of these designs performs worst for the criterion omitted
from consideration in the respective subproblem in which it is optimal.

The remaining design x4 is not Pareto optimal for any of these three subproblems, but it is also
Pareto optimal for the overall problem. In particular, this design is the best compromise among
all four designs and, moreover, constitutes the overall min-max solution, that is the best design
for the strategy to minimize all worst performances (i.e., the worst performance of x1, x2, and x3

is 9, of x4 only 2). Hence, focusing on only one subsystem suffers from the major drawback of
regularly missing the best compromise solution for the overall problem and is, therefore, highly
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insufficient for the design of complex systems with several important subsystems. Hence, in such
cases, it would be preferable to design an overall optimal system such that all subsystems perform
comparably well, although maybe suboptimal when considered separately from the overall system.

Importance of tolerances and suboptimal designs The above observation indicates that
solving the individual subsystems to optimality before selecting a final design generally risks to
overemphasize one subsystem while significantly degrading the performances of the others. More-
over, it shows that the best compromise solution is not necessarily optimal for any subproblem
and thus remains unknown to the designer who follows the traditional decomposition-integration
approach. However, it also suggests that better solutions for the overall problem can be found by
enlarging a subproblem’s solution set with slightly suboptimal designs. In other words, a solution
is allowed to deviate by some tolerance from an optimal design for a subproblem, as long as the
improvement with respect to another subproblem guarantees that this solution is still optimal for
the overall problem. It then is better if a design meets all tolerances, although possibly being sub-
optimal in all subproblems, rather than it is optimal for one subproblem but violates the tolerances
for some or all the others.

Again consider the situation in Table 1. The optimal value for each of the three performance
criteria equals 1, and as we explained before, for every combination of two criteria there exists a
unique optimal design that achieves these optimal performances. This also means that no design is
optimal for all criteria pairs, or similarly, that no design is preferred in every subproblem. However,
if we also accept suboptimal solutions and allow an additional tolerance of 1 that is added to the
optimal performance values of 1, then the design x4 satisfies all new performance expectations of
at least 2. In fact, x4 then is the only solution that is accepted for all pairs of criteria and, thus, the
preferred overall design. Note how this analysis remains unchanged as long as the new performance
is allowed to be less than 9, or equivalently, as long as all tolerances are chosen to be at most 8.
In general, however, these additional tolerances should still be reasonably small, and in accordance
with the literature and common practice to denote small variations by the Greek letter ε, or epsilon,
we conform to this notation for the exposition of our new method in the subsequent section.

3 Decomposition and Integration with Coordination

Because of the broad familiarity of designers with the traditional decomposition-integration scheme
in Figure 1, our procedure uses a similar setup and initially decomposes the overall performance
function into subsets of criteria, thus reducing the complexity of the individual subproblems. In
particular, as one of our objectives is to enable decision-making based on a 2D visualization of the
underlying tradeoff curves, we suggest to divide the performance indices into pairs, thereby making
tradeoff evaluation the simplest possible.

Coordination between different subproblems While the decomposition into pairs gives a
convenient way to handle and reveal tradeoffs within every subproblem, the tradeoff between dif-
ferent subproblems then is to be accomplished by some other mechanism. For the coordination
between subproblem, we use the lexicographical ordering approach for multicriteria optimization
(Fishburn, 1974; Rentmeesters et al., 1996) but introduce the following two essential modifications
to the original formulation. First, instead of ordering all single objectives, we account for the spe-
cific feature of our approach and apply the proposed ordering to pairs of criteria at a time (Ying,
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1983). Second and based on the discussion in the previous section, we include additional epsilon
tolerances to reflect the implicit tradeoff between two different subproblems. This substantially ex-
tends the original approach and, in particular, guarantees that all Pareto optimal solutions for the
complete problem can still be found through a suitable coordination. To the authors’ knowledge, a
procedure combining these highly desirable benefits has not yet been formulated, so that we propose
a novel decomposition and integration scheme with coordination to enable 2D decision-making for
essentially every multicriteria design optimization problem. Consider Figure 2.

MOP: minimize f(x) = [f1(x), f2(x), . . . , fp(x)] subject to x ∈ X

COP1: minimize f1(x) =
[
f1
1 (x), f1

2 (x)
]

subject to x ∈ X

COP2: minimize f2(x) =
[
f2
1 (x), f2

2 (x)
]

subject to f1(x) ≤ f1(x1) + ε1

x ∈ X

COP3: minimize f3(x) =
[
f3
1 (x), f3

2 (x)
]

subject to f1(x) ≤ f1(x1) + ε1

f2(x) ≤ f2(x2) + ε2

x ∈ X

COPk: minimize fk(x) =
[
fk
1 (x), fk

2 (x)
]

subject to f1(x) ≤ f1(x1) + ε1

f2(x) ≤ f2(x2) + ε2

. . .
fk−1(x) ≤ fk−1(xk−1) + εk−1

x ∈ X

Tolerance update

Coordination

?

Decomposition
6

Integration

xk

6

ε1, ε2, . . . , εk−1

6

-

6
ε1, ε2

-

6ε1

-

?

x1

ε1

?

x2

ε2

?

x3 . . . xk−1

εk−1

Figure 2: Decomposition and integration with coordination

Description of procedure The performance function f = (f1, f2, . . . , fp) for the overall MOP
is decomposed into k pairs of criteria that are used as new performance functions f j = (f j

1 , f j
2 ), j =

1, . . . , k. As described in the above paragraph, the canonical subproblem formulations

MOPj : minimize f j(x) = [f j
1 (x), f j

2 (x)]
subject to x ∈ X

are modified by additional epsilon-constraints to account for the additional tolerances imposed by
the designer and to sequentially coordinate the performance tradeoffs between different subprob-
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lems. Therefore, we also call these new subproblems coordination problems

COPj : minimize f j(x) = [f j
1 (x), f j

2 (x)]

subject to f i(x) ≤ f i(xi) + εi for all i = 1, . . . , j − 1
x ∈ X,

where εi = (εi
1, ε

i
2) ∈ R2, i = 1, . . . , j − 1, are the performance tolerances specified by the designer.

Since each coordination problem COPj is, in particular, a bi-criteria problem, we can visualize
the tradeoff between optimal solutions in form of a two-dimensional Pareto frontier. The choice of
a preferred solution xj can, thus, be based on a visual representation and only requires decision-
making with respect to two dimensions. The chosen design xj is communicated as a baseline
design to the subsequent coordination problem COPj+1, together with two values εj = (εj

1, ε
j
2)

that specify acceptable tolerances for the two optimal performance values f j
1 (xj) and f j

2 (xj). This
provides a mechanism to also accept solutions with slightly worse performances than the previously
selected design and, eventually, to achieve better compromise solutions for the overall problem.
We later discuss possible choices of ε and show how the designer, through the choice of ε, gains
close control on the desired tradeoff between the different coordination problems. If no tradeoff is
desirable, the designer may also choose εj = 0 to guarantee that all subsequently found designs
meet the performances f j(xj) = [f j

1 (xj), f j
2 (xj)] achieved by the previously selected baseline design

xj . Moreover, to provide the designer with maximal flexibility, all tolerances εj can still be updated
throughout the remaining decision-making cycle, as indicated on the left of Figure 2.

As a special feature of this procedure, the designer does not actually need to solve all coordi-
nation problems. Based on the previous results, it is guaranteed that all intermediate designs xj

are already at least weakly Pareto optimal for the overall problem, although possibly in favor of
those subproblems COP1, . . . , COPj , so far participating in the coordination process, compared
to COPj+1, . . . , COPk that are omitted due to early termination. Nevertheless and different from
most other decomposition and decision-making schemes, the designer may thus choose to stop the
decision-making process after every iteration and still obtain an (at least weakly) Pareto-optimal
design for the overall problem.

Tolerance update To support the designer with the task of setting and changing the tolerance
values ε, or to reveal remaining tradeoff benefits and decide upon early termination, we propose to
perform a tradeoff and sensitivity analysis at the current design xj with respect to its performance
in different coordination problems.

To explain the details of this analysis, assume that the designer has solved COP1 through
COPj−1, that is, the designer has selected designs x1, x2, . . . , xj−1 and tolerances ε1, ε2, . . . , εj−1

for all previous coordination problems and arrives at COPj , as defined before. Based on a 2D
visualization of the Pareto curve for COPj and possibly supported by the underlying numerical data,
the designer should then select a new design xj and proceed to the next coordination problem. By
feasibility, it is always guaranteed that this new design satisfies the tolerances ε1, . . . , εj−1 specified
for all previous designs x1, . . . , xj−1 found in COP1, . . . , COPj−1. However, it might happen that
the designer is not satisfied with the achievable performance of xj with respect to the two objectives
f j = (f j

1 , f j
2 ) in COPj . In other words, the designer might be willing to accept a further relaxation

of one or more of the previous tolerances ε1, . . . , εj−1 to improve one or both of the performance
values f j

1 (xj) or f j
2 (xj). Denoting the selected tolerance by εi = (εi

1, ε
i
2), 1 ≤ i ≤ j−1, this situation
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is depicted in Figure 3 that illustrates the idea of the tradeoff at the current design xj between the
criterion pairs f i = (f i

1, f
i
2) in COPi and f j = (f j

1 , f j
2 ) in COPj .

-

6

-

6

f i
1

f i
2

f j
1

f j
2

t
xj

old

©©©©©©©©*
ε

-ε1

6
ε2

txj
new

t
xj

old
¡

¡
¡

¡
¡

¡ªtxj
new

∆f i
1(x

j)

∆f i
2(x

j)

∆f j
1 (xj)

∆f j
2 (xj)

Figure 3: Pareto curve for COPi with f i = (f i
1, f

i
2) and its image for COPj with f j = (f j

1 , f j
2 )

At first, when εi = 0, the epsilon-constraint pair f i(x) ≤ f i(xi) + εi in COPj guarantees that
any optimal solution xj for COPj still meets the performance of the optimal design xi selected for
coordination problem COPi, f i(xj) ≤ f i(xi). In particular, then xj must also lie on the Pareto
curve for COPi with the possible consequence that a satisfactory performance of xj with respect
to the two criteria f j = (f j

1 , f j
2 ) of COPj cannot anymore be achieved. Therefore, if we specify

some additional tolerances εi = (εi
1, ε

i
2) and allow xj , but in a controlled way, to move away from

the Pareto curve for COPi, then we expect to gain improvement with the previously unsatisfactory
performances in COPj . Using the notation introduced in Figure 3, the resulting achieved tradeoffs
can be computed as

∆f j
1 (xj)

∆f i
1(xj)

=
f j
1 (xj

old) − f j
1 (xj

new)

f i
1(x

j
new) − f i

1(x
j
old)

=
f j
1 (xj

old) − f j
1 (xj

new)
ε1

(1)

and similarly for ∆fj
1 (xj)

∆f i
2(xj)

, ∆fj
2 (xj)

∆f i
1(xj)

, and ∆fj
2 (xj)

∆f i
2(xj)

. In general, however, it is not obvious how far we
need to move away from the Pareto curve in COPi to achieve a satisfactory improvement in COPj ,
that is, how large we need to choose the value ε. To provide the designer with better intuition,
we propose to examine the sensitivity at the current design with respect to the criteria f i in COPi

and f j in COPj . Then, the higher the sensitivity, the higher the potential tradeoff, so that even
small additional tolerances for f i = (f i

1, f
i
2) are expected to yield a significant improvement with

respect to f j = (f j
1 , f j

2 ).

Sensitivity analysis Our approach uses sensitivity results from nonlinear programming (Fiacco,
1983; Luenberger, 2003), for which we first formulate the auxiliary sensitivity problem

SEPj1: minimize f j
1 (x)

subject to f i(x) ≤ f i(xi) + εi for all i = 1, . . . , j − 1

f j
2 (x) ≤ f j

2 (xj)
x ∈ X.
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Other than COPj , this problem minimizes only the first of the two objectives f j = (f j
1 , f j

2 ) while
including the second into the additional constraint f j

2 (x) ≤ f j
2 (xj). This guarantees that improve-

ment in f j
1 is not achieved through degradation of f2

j and, thus, that the sensitivity analysis strictly
distinguishes tradeoffs that, on the one hand, occur between the two criteria in the same subproblem
and, on the other hand, occur between two criteria in two different coordination problems.

As the formulation of this problem is only auxiliary, we do not need to actually solve it. Instead,
it can easily be shown that the design xj , that is Pareto optimal for COPj , must also be optimal for
SEPj1. Otherwise, if this were not the case, then there would exist a better design which improves
the first performance measure, as this is the objective we minimize, but be also at least as good as
the second objective, as we enforce that f j

2 (x) ≤ f j
2 (xj). Then, however, this design would also be

better than xj in COPj , which cannot be true as xj is already Pareto optimal.
Therefore, we do not need to solve SEPj1. The reason for that we still consider this problem

is that it allows to compute the sensitivities between its objective f j
1 and its constraint values f i

at the optimal design xj in terms of the associated Lagrangean multipliers λji. Then, under some
technical assumptions, the sensitivity theorem from nonlinear programming states that

∂f j
1 (x)

∂f i
1(x)

∣∣∣∣
x=xj

= −λji
11 and

∂f j
1 (x)

∂f i
2(x)

∣∣∣∣
x=xj

= −λji
12 for all i = 1, . . . , j − 1 (2a)

and similarly, if we change the roles of f j
1 and f j

2 and formulate the corresponding SEPj2,

∂f j
2 (x)

∂f i
1(x)

∣∣∣∣
x=xj

= −λji
21 and

∂f j
2 (x)

∂f i
2(x)

∣∣∣∣
x=xj

= −λji
22 for all i = 1, . . . , j − 1. (2b)

As almost all common optimization software provides Lagrangean multipliers together with a final
solution, these sensitivities can be very efficiently computed using an arbitrary optimization routine
and choosing xj as initial design. Then, since xj is known to be optimal, we obtain the desired
sensitivities in at most one iteration and, in view of (2), the associated tradeoff estimates

∆f j
1 (xj)

∆f i
1(xj)

≈ −λji
11,

∆f j
1 (xj)

∆f i
2(xj)

≈ −λji
12,

∆f j
2 (xj)

∆f i
1(xj)

≈ −λji
21,

∆f j
2 (xj)

∆f i
2(xj)

≈ −λji
22. (3)

As a rule of thumb, we can state that the larger the magnitude of a computed Lagrangean multiplier,
the larger the tradeoff we can expect. For example, if λji

11 À 1, then this tells us that even a small
additional tolerance εi

1 on f i
1(x

j) can be expected to yield a significant improvement in f j
1 (xj). On

the other hand, if, for example, λji
21 < 1, then the improvement in f j

2 (xj) is comparably smaller than
the allowed tolerance εi

1 that we would be willing to give up for f i
1(x

j). In general, a sensitivity value
less than 1 indicates the an additional tolerance exceeds the expected improvement and, thus, that
the corresponding tradeoff is not favorable at the current design. Then, if all sensitivities become
less than 1, this suggests to terminate the procedure with the current design as final preferred
design for the overall problem.

In general, however, we are not able to precisely predict the actual tradeoffs to be achieved.
This is because all former sensitivities only provide us with local tradeoff information at xj and,
thus, are accurate only if the designer decides to allow a very small tolerance. Nevertheless, if
the chosen tolerance εi

1 is very small, by (1) and (3) it then can be expected that the resulting
improvement in f j

1 (xj) or f j
2 (xj) is approximately

∆f j
1 (xj) ≈ −λji

11∆f i
1(x

j) = −λji
11ε

i
1, or ∆f j

2 (xj) ≈ −λji
21∆f i

1(x
j) = −λji

21ε
i
1, (4a)
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respectively. Similarly, if the designer decides to choose a very small tolerance εi
2, then

∆f j
1 (xj) ≈ −λji

12∆f i
2(x

j) = −λji
12ε

i
2, or ∆f j

2 (xj) ≈ −λji
22∆f i

2(x
j) = −λji

22ε
i
2. (4b)

Moreover, the designer may also choose to simultaneously change both tolerances εi = (εi
1, ε

i
2),

and, instead of restricting improvement to only one criterion f j
1 or f j

2 , choose a new design that
achieves improvements in both criteria. The sensitivity analysis for these cases, however, is out of
the scope of this paper.

Finally, it is always possible to replace this analytic sensitivity and tradeoff analysis by an
alternative trial and error approach based on the designer’s intuition. If the designer is expert, it
should be expected that such an approach works perfectly fine. Otherwise, if the designer is not
completely familiar with all relevant problem characteristics, we recommend to always perform the
above tradeoff and sensitivity analysis to obtain better insight and knowledge that otherwise would
not be available.

4 Examples

For a demonstration of the proposed 2D decision-making procedure and the underlying coordination
mechanism, we adopt the role of a hypothetical decision-maker and apply this method to two
examples from multiobjective programming and structural design optimization. By the nature of
this approach, it is unavoidable that all our decisions made remain subjective and, in practice, would
also depend on the expertise, preferences and performance expectations of the actual designer.

4.1 A mathematical programming problem

The problem chosen consists of four quadratic objective functions f1, f2, f3 and f4 which need to
be minimized, subject to three inequality constraints g1, g2 and g3 in the two variables x1 and x2.

Minimize
[
f1(x1, x2) = (x1 − 2)2 + (x2 − 1)2,
f2(x1, x2) = x2

1 + (x2 − 3)2,
f3(x1, x2) = (x1 − 1)2 + (x2 + 1)2,
f4(x1, x2) = (x1 + 1)2 + (x2 − 1)2

]
subject to g1(x1, x2) = x2

1 − x2 ≤ 0
g2(x1, x2) = x1 + x2 − 2 ≤ 0
g3(x1, x2) = −x1 ≤ 0.

The feasible set for this problem is X = {x ∈ R2 : gi(x) ≤ 0, i = 1, 2, 3}, and in spite of the lack
of an underlying physical meaning, we call X the set of all feasible designs. Without practical
interpretation, however, the four objectives also lack relative importances and thus do not allow
for priority ranking according to their relevance on the overall performance. Instead, we group
the objectives into the canonical pairs f1 = (f1

1 , f1
2 ) = (f1, f2) and f2 = (f2

1 , f2
2 ) = (f3, f4) and,

accordingly, reduce further notational burden by replacing all double indices 11, 12, 21 and 22 by 1,
2, 3 and 4, respectively.

To find a preferred design to the above problem using the proposed procedure, we then start
by solving

COP1: minimize f1 = [f1(x), f2(x)]
subject to x ∈ X.

11



Recall that solving COP1 means to find a set of Pareto solutions and, from among those, select one
design x1 that will be used as baseline design for the second coordination problem. Thus, using
an optimization approach to solve COP1, we first find the ten Pareto solutions that are depicted
on the left in Figure 4 and then select the highlighted middle point as first design x1 = (x1

1, x
1
2) =

(0.4471, 1.5529). In a practical context, this choice would be justified by the fact that this design
yields comparable performances of f1(x1) = 2.7173 and f2(x1) = 2.2939 and, thus, is one of the
best compromise designs for COP1.
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Figure 4: Pareto solutions for COP1 with f1 = (f1, f2) and their images for f2 = (f3, f4)

Note how, so far, our decision is merely based on the visualization of the two objectives f1 and
f2 and, hence, found by 2D decision-making. The visualization of the Pareto designs for COP1

with respect to the two other criteria f3 and f4 on the right in Figure 4 is not needed, but provided
here for convenience. In particular, for later reference we report that f3(x1) = 6.8232 and f4(x1)
= 2.3997.

Moreover, although usually not readily available, the two former plots depict a sample of the
complete set of attainable outcomes to show how all Pareto solutions for the first subproblem
are among the worst outcomes for the second. Recall that traditional decomposition methods
that do not allow for a better coordination would already stop at this point and, although clearly
undesirable, propose these solutions as final designs for the overall problem.

To formulate the coordination problem COP2, we first investigate the sensitivities of the current
design x1 with respect to the two criteria f3 and f4 by computing the Lagrangean multipliers for
the sensitivity problems

SEP3: minimize f3(x) SEP4: minimize f4(x)
subject to f1(x) ≤ f1(x1) + ε1 subject to f1(x) ≤ f1(x1) + ε1

f2(x) ≤ f2(x1) + ε2 f2(x) ≤ f2(x1) + ε2

f4(x) ≤ f4(x1) f4(x) ≤ f4(x1)
x ∈ X x ∈ X

where, initially, ε1 = ε2 = 0. Then choosing the optimal design x1 as initial design in our optimiza-
tion routine, this immediately (after one iteration) confirms optimality of x1 for both SEP3 and
SEP4 and, according to the sensitivity theorem (2), provides us with the sensitivity information

∂f3(x)
∂f1(x)

∣∣∣∣
x=x1

= −λ31 = 0.1706,
∂f4(x)
∂f1(x)

∣∣∣∣
x=x1

= −λ41 = 1.1706,

∂f3(x)
∂f2(x)

∣∣∣∣
x=x1

= −λ32 = 1.8294,
∂f4(x)
∂f2(x)

∣∣∣∣
x=x1

= −λ42 = 0.8294.
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Hence, we see that only two tradeoff values are greater than 1, thereby suggesting that improvement
in f3, or f4, is best achieved by allowing some additional tolerance ε2 on f2, or ε1 on f1, respectively,
and then solving the second coordination problem

COP2: minimize f2 = [f3(x), f4(x)]

subject to f1(x) ≤ f1(x1) + ε1 = 2.7173 + ε1

f2(x) ≤ f2(x1) + ε2 = 2.2939 + ε2

x ∈ X.

In particular, if we decide to focus on the more promising tradeoff between f3 and f2, we might
set the new tolerance ε2 = 1 and, after solving COP2 with ε = (ε1, ε2) = (0, 1), select the new
design xnew = (0.4402, 1.2393) with performances f(xnew) = (2.4903, 3.2939, 5.3278, 2.1314). In
particular, the actually achieved tradeoff between f3 and f2 can now be computed as

∆f3(x1)
∆f2(x1)

=
f3(x1) − f3(xnew)
f2(xnew) − f2(x1)

=
6.8232 − 5.3278
3.2939 − 2.2939

= 1.4954.

Note that although the chosen tolerance ε2 = 1 is rather large compared to the performance value
f2(x1) = 2.2939, the local tradeoff −λ32 = 1.8294 at x1 provides a quite reasonable estimate for the
actual tradeoff of 1.4954. However and as emphasized before, the local tradeoff values should not
be mistaken as predictions for the tradeoffs that are achieved globally, especially when we decide
to change the tolerance values ε1 and ε2 simultaneously.

For illustration, assume that we now decide to set ε = (ε1, ε2) = (1, 2). Based on the initial
tradeoff values computed at x1 and the tradeoff estimates (4), we might expect to gain improvements
of ∆f3(x1) ≈ −λ32ε2 = 1.8294 · 2 = 3.6588 and ∆f4(x1) ≈ −λ41ε1 = 1.1706 · 1 = 1.1706. Then
solving COP2 for five new designs, we obtain the Pareto solutions depicted in Figure 5 and, together
with their updated sensitivities, listed in Table 2. For convenience, we also circle all those sampled
outcomes from Figure 4 that satisfy the new performance bounds of f1(x1) + ε1 = 3.7173 and
f2(x1) + ε2 = 4.2939 and, thus, form the underlying set of attainable outcomes for COP2.
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Figure 5: On the right, Pareto solutions for COP2 with f2 = (f3, f4) and, on the left, their images
for f1 = (f1, f2), with tolerances ε = (ε1, ε2) = (1, 2)

Note how the maximal improvements with respect to f3 and f4,

∆maxf3(x1) = f3(x1) − f3(0.5026, 0.9897) = 6.8232 − 4.2064 = 2.6168 (expected: 3.6588)

∆maxf4(x1) = f4(x1) − f4(0.0720, 1.0000) = 2.3997 − 1.1491 = 1.2506 (expected: 1.1706)
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Table 2: Pareto solutions for COP2 as depicted in Figure 5 and their updated sensitivities

x1 x2 f1 f2 f3 f4 λ31 λ32 λ41 λ42

0.5026 0.9897 2.2424 4.2939 4.2064 2.2578 0 0.9898 1.0034 0
0.3838 0.9637 2.6133 4.2939 4.2358 1.9163 0 0.9898 0.8558 0
0.2400 0.9418 3.1009 4.2939 4.3481 1.5410 0 0.9898 0.7036 0
0.1220 0.9314 3.5317 4.2939 4.5013 1.2635 0 0.9898 0.5964 0
0.0720 1.0000 3.7173 4.0052 4.8613 1.1491 0 1.0602 0.5560 0

are achieved by two different Pareto solutions and, thus, not achievable simultaneously. Therefore,
a preferred solution must also compromise between these two improvements, which then can be
accomplished by 2D decision-making for COP2. Again selecting the best compromise design, we
find the highlighted third design in Figure 5 or Table 2, x2 = (0.2400, 0.9418) with performances
f(x2) = (3.1009, 4.2939, 4.3481, 1.5410), as preferred overall design. In particular, note that at
this design all sensitivities and hence all remaining tradeoffs are reduced to values less than 1,
suggesting to terminate the algorithm.

To conclude this example, also observe that while our final and, in fact, all highlighted designs
in Figure 5 are Pareto optimal for the COP2 and, thus, (at least weakly) Pareto optimal for the
original MOP, none of these solutions actually lies on the Pareto curve for either the first or second
subproblem. Hence, as expected, our methodology is capable to find a best compromise design that
cannot be found using the traditional decomposition approach.

4.2 A structural optimization problem

While the discussion of the first example focused in detail on the evaluation of tradeoffs, we omit
some of those details for our more practical second test problem to design a four bar plane truss
structure (Koski, 1984, 1988; Stadler and Dauer, 1992).

The original mathematical model is a biobjective program with the two conflicting objectives
of minimizing both the volume V of the truss and the displacement d1 of the node joining bars 1
and 2, given the loading condition depicted for the leftmost truss in Figure 6.
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Figure 6: Three different loading conditions on a four bar plane truss structure

In addition, we use the two additional loading conditions (Koski, 1984) that are depicted for
the middle and right truss in Figure 6, for which one can compute the two respective displacements
d2 and d3 (Blouin, 2004). The length L = 200 cm of the structure, the acting force F = 10 kN,
Young’s modulus of elasticity E = 2× 105 kN/cm2 and the only nonzero stress component σ = 10
kN/cm2 are assumed to be constant. The cross sectional areas x1, x2, x3 and x4 of the four bars
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are subject to physical restrictions yielding the feasible design set

X =
{

x = (x1, x2, x3, x4) : (F/σ) ≤ x1, x4 ≤ 3(F/σ),
√

2(F/σ) ≤ x2, x3 ≤ 3(F/σ)
}

.

The overall problem then becomes to select a feasible preferred design that minimizes the structural
volume V (x) and joint displacements d1, d2, d3 for the three different loading conditions

Minimize
[
V (x) = L(2x1 +

√
2x2 +

√
2x3 + x4),

d1(x) =
FL

E

(
2
x1

+
2
√

2
x2

− 2
√

2
x3

+
2
x4

)
,

d2(x) =
FL

E

(
2
x1

+
2
√

2
x2

+
4
√

2
x3

+
6
x4

)
,

d3(x) =
FL

E

(
6
√

2
x3

+
3
x4

)]
subject to x ∈ X.

This problem can be viewed as a multi-scenario multi-objective problem, with each loading
condition acting as one of three possible scenarios. Based on the assumption that the first loading
scenario occurs most often and the third scenario only very rarely, we decompose the overall problem
into the three associated criteria pairs f1 = (f1

1 , f1
2 ) = (d1, V ), f2 = (f2

1 , f2
2 ) = (d2, V ) and

f3 = (f3
1 , f3

2 ) = (d3, V ). Note how the volume criterion participates in every scenario and, thus,
is repeated in each subproblem. Using the proposed procedure to find a common design that is
preferred for all three scenarios, we then start by solving

COP1: minimize f1(x) = [d1(x), V (x)]
subject to x ∈ X.

Again, recall that solving COP1 means to find a number of Pareto designs, from which we need
to select a first baseline design for the subsequent coordination problems. As before, we choose an
optimization approach and find the ten solutions that are highlighted in Figure 7.
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Figure 7: From left to right, Pareto solutions for COP1 (first scenario) and their images for the
second and third scenario
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For convenience, we also plot a sample set of all attainable outcomes and show where the Pareto
designs for COP1 lie in the two other subproblems. In particular, provided we would be willing to
accept maximal node deflections in all three scenarios, we see that we could choose the topmost
design that is, in fact, Pareto optimal for all three scenarios. In practice, however, this design is
not preferred because of its extremely poor performance with respect to all three node deflection
criteria.

Therefore returning to the 2D decision-making as proposed by our procedure, we only focus on
the first subproblem and select the highlighted point as preferred compromise design for COP1.
The corresponding design x1 = (1.7459, 2.4732, 1.4142, 2.4730) is illustrated in Figure 8 and has
performance values of V (x1) = 2292.5 cm3, d1(x1) = 0.0110 cm, d2(x1) = 0.0721 cm and d3(x1) =
0.0872 cm.
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Figure 8: Selected Pareto design x1 for COP1 (first scenario)

Before we solve the next coordination problems, we formulate the two sensitivity problems

SEP21: minimize d2(x) SEP31: minimize d3(x)
subject to d1(x) ≤ d1(x1) + εd1 subject to d1(x) ≤ d1(x1) + εd1

V (x) ≤ V (x1) + εV V (x) ≤ V (x1) + εV

x ∈ X x ∈ X

but, for conceptual simplicity, restrict our analysis to the tradeoff between the different deflection
criteria. Solving the two sensitivity problems SEP21 and SEP31 with x1 as initial design, we obtain
the associated Lagrangean multipliers

∂d2(x)
∂d1(x)

∣∣∣∣
x=x1

= −λ21 = 413.77 and
∂d3(x)
∂d1(x)

∣∣∣∣
x=x1

= −λ31 = 538.03.

The very large magnitudes of these values clearly indicate that the currently selected design x1

should be further improved. However, as emphasized before and quite obvious at this point, these
values do not give us an actual prediction on the improvement that we should expect.

Considering that the current first node deflections of d1(x1) = 0.01 cm is significantly smaller
than the second and third, d2(x1) = 0.0721 cm and d3(x1) = 0.0872 cm, we assume that we would
still be willing to accept a design that yields a first node deflection of up to 0.03 cm, provided a
reasonable tradeoff with respect to d2 or d3. Thus, we select the corresponding tolerance values εd1

= 0.02 cm and then solve the next coordination problem
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COP2: minimize f2 = [d2(x), V (x)]

subject to d1(x) ≤ d1(x1) + εd1 = 0.0310

V (x) ≤ V (x1) + εV = 2292.5
x ∈ X.

By solving COP2 for the second scenario, we find a new set of Pareto optimal designs, that is
depicted in the middle plot of Figure 9, with the corresponding performances for the first and third
scenario depicted on the left and right, respectively.
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Figure 9: In the center, Pareto solutions for COP2 (second scenario) and, on the left and right,
their images for the first and third scenario, respectively

Note from the left plot that all these new solutions, in fact, meet the specified upper performance
bound on d1 for the first subproblem, while now visualizing a tradeoff between the volume and
second node deflection in COP2. Assuming that main incentive is still the improvement with
respect to node deflection d2, we decide not to further improve the structural volume and, thus,
select the highlighted bottommost point as improved second design x2 = (1.1754, 1.6582, 2.7837,
2.8298), depicted in Figure 10.
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Figure 10: Selected Pareto design x2 for COP2 (second scenario)

The performances of this new design are given by V (x2) = 2292.5 cm3, d1(x2) = 0.0310 cm,
d2(x2) = 0.0411 cm and d3(x2) = 0.0756 cm. Hence, the actual tradeoffs achieved are
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∆d2(x)
∆d1(x)

=
d2(x1) − d2(x2)
d1(x2) − d1(x1)

=
0.0721 − 0.0411
0.0310 − 0.0110

= 1.5500,

∆d3(x)
∆d1(x)

=
d3(x1) − d3(x2)
d1(x2) − d1(x1)

=
0.0756 − 0.0872
0.0310 − 0.0110

= 0.5800.

As expected, the tradeoff between d1 and d2 achieved a value greater than 1 and, thus, was a
favorable one. The smaller tradeoff value between d1 and d3 is not surprising either as we only
solved COP2 which, in fact, did not minimize with respect to d3. Nevertheless, from the right
plot in Figure 9 we see that the current design x2 already gives a reasonable compromise solution
with respect to the third loading scenario that also involves d3. In particular, upon computing the
updated sensitivity λ21 from SEP21 at the new design x2 and, in addition, including the additional
constraint d2(x) ≤ d2(x2) + εd2 with εd2 = 0 into a new SEP31

minimize d3(x)

subject to d1(x) ≤ d1(x1) + εd1 = d1(x2) = 0.0310

d2(x) ≤ d2(x2) + εd2 = 0.0411

V (x) ≤ V (x2) + εV = 2.2925
x ∈ X,

we obtain a set of new Lagrangean multipliers, yielding the updated sensitivities

∂d2(x)
∂d1(x)

∣∣∣∣
x=x2

= −λ21 = 0.7877,
∂d3(x)
∂d1(x)

∣∣∣∣
x=x2

= −λ31 = 0,
∂d3(x)
∂d2(x)

∣∣∣∣
x=x2

= −λ32 = 0.2481.

In particular, since all Lagrangean multipliers are now less than 1, these sensitivities reveal that
solving the third coordination problem is unlikely to yield significant further improvement and,
thus, suggests to terminate this problem with x2 from Figure 10 as final design.

5 Conclusion

In this paper, we have proposed an interactive decision-making procedure to select an overall
preferred design for a complex and multi-criteria design optimization problem. Taking into account
that these problems are usually solved by multiple designers or multi-disciplinary design teams, the
selection of a final design is facilitated using a decomposition-integration framework, together with
a novel coordination mechanism that guarantees that the chosen design is also commonly preferred
for the overall problem.

The method requires that only one subproblem needs to be solved at a time, upon which the
designer communicates a new baseline design and a set of new tolerances to the other design teams
to sequentially coordinate the final design integration. Moreover, in order to not overload the
individual designers with analytical analyses and to make tradeoff evaluation and decision-making
the simplest possible, all decisions are reduced to merely two dimensions. As one of the main
features of this procedure, this also enables the complete visualization of all design decisions in the
form of 2D tradeoff curves.
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The specification of tolerances for a selected design is supported by an additional tradeoff
analysis that provides a very efficient way to compute design sensitivities with respect to different
performance criteria. In particular, this extends the consideration of performance tradeoffs within
one subproblem to tradeoffs that occur between different subproblems, in further enhancement of
the proposed coordination and final design integration.

Based on several theoretical results and the illustration of the procedure on two examples, this
method has been shown to

1. offer the capability of replacing the cumbersome tradeoff analysis for an overall multi-criteria
problem with tradeoff analyses for a collection of smaller-sized bi-criteria problems;

2. make designers’ judgment and knowledge about smaller-sized problems sufficient for the final
design integration;

3. allow designers to visualize the Pareto curves in each subproblem and for each decision;

4. provide a general framework for the independent participation of multiple designers.

In our future work, we intend to further investigate the information that can be obtained from
the proposed tradeoff and sensitivity analysis. In view of the current approach, we are aware of the
remaining weakness that this information only allows a local tradeoff assessment and, thus, cannot
be used for more accurate estimates in a larger region of the outcome space.

As for now, however, we believe that the proposed method is already well suited for performance-
based decision-making, in particular because of its capability to allow for 2D decision-making with
respect to all underlying tradeoff and design decisions. We are convinced that our future efforts will
even further improve the recognized features of the current method and eventually provide a new
and useful decision-making tool for finding better solutions in multi-criteria design optimization.
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