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Abstract 
 

A significant portion of knowledge discovery and data 
mining research focuses on finding patterns of interest in 
data. Once a pattern is found, it can be used to recognize 
satisfying instances. The new area of link discovery 
requires a complementary approach, since patterns of 
interest might not yet be known or might have too few 
examples to be learnable. This paper presents an 
unsupervised link discovery method aimed at discovering 
unusual, interestingly linked entities in multi-relational 
datasets. Various notions of rarity are introduced to 
measure the "interestingness" of sets of paths and 
entities. These measurements have been implemented and 
applied to a real-world bibliographic dataset where they 
give very promising results. 
 
1. Introduction 
 

Link discovery is a relatively new form of data mining 
with the goal of automatically identifying abnormal or 
threatening activities in large and heterogeneous data sets. 
Mooney et al. [10] describe it as the task of “identifying 
known, complex, multi-relational patterns that indicate 
potentially threatening activities in large amounts of 
relational data.” Under this view of link discovery, once a 
pattern of interest is known or has been learned, a 
sophisticated pattern matcher can use it to detect 
satisfying instances in the data. The match process is 
usually difficult given the scale, heterogeneity, 
distribution, incompleteness and corruption of the data. Its 
biggest limitation is, however, that it can only detect 
instances of known patterns and cannot cope with 
previously unknown or evolving patterns of interest. 
Senator [17] describes link discovery more broadly as the 
process of looking for “evidence of known patterns and, 
perhaps more important, for unexplainable connections 
that may indicate previously unknown but significant 
connections, representing, for example, a new group, 
threat, or capability.” It is this requirement for being able 
to discover novel, previously unknown kinds of links that 
motivated the work presented in this paper. We will call 

this requirement the novel link discovery (NLD) problem 
to distinguish it from the overall or more traditional 
pattern-based link discovery problem (LD). 

In the following we describe an unsupervised link 
discovery approach based on rarity analysis to address the 
NLD problem. Unsupervised link discovery is different 
from traditional link discovery from an input/output 
perspective. A traditional LD program takes multi-
relational evidence data and a set of learned patterns as 
inputs and produces (usually partial) instantiations of the 
patterns as results. For example, given some police 
evidence database and a pattern description of contract 
murders, the program will try to detect and report 
instances of such murder events. An unsupervised link 
discovery program takes the same evidence data as input 
but does not use any pattern information. Instead of 
pattern instantiations, the results are any interesting 
connections found in the evidence data based on some 
model of “interestingness”. For example, given the same 
evidence database the result might be a list of interesting 
connections between certain criminals or gangs. 

Traditionally, knowledge discovery and data mining 
research focuses on discovering and extracting previously 
unknown, valid, novel, potentially useful and 
understandable patterns from lower-level data [20]. Such 
patterns can be represented as association rules, 
classification rules, clusters, sequential patterns, time 
series, contingency tables, etc [9]. Identifying 
“interesting” information in large, multi-relational data 
sets without using a pattern, on the other hand, has not 
received much attention at all. We argue, however, that 
patterns and rules are not the only things that should be 
mined from data sets, and that some version of 
unsupervised, pattern-free link discovery is necessary to 
handle the NLD problem.  

The next section describes the problem and underlying 
assumptions in more detail. Section 3 defines different 
rarity measures and how they can be applied to NLD 
problems. Section 4 describes experiments performed to 
validate the proposed rarity measures, Section 5 describes 
related work and in the last section we conclude with a 
discussion and future work. 
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2. The problem 
 

In this paper we focus on discovering “interesting” 
paths and nodes from data that can be represented as sets 
of entities connected by a set of binary relations. In other 
words, each object in the data set is treated as a separate 
entity and there are different types of binary relations 
connecting these entities. This kind of data can naturally 
be represented by a labeled graph such as the one shown 
in Figure 1 where nodes stand for entities and links for 
binary relations. For example, social network data [16] or 
Web-pages with proper classification on hyperlinks can 
be represented in this way. We also assume that the data 
employs a rich vocabulary of relations where different 
link types represent different semantic relationships. For 
example, we have different links representing that “X 
wrote a letter to Y” or that “X is the brother of Y”. 
Therefore, different graphs with identical structure will 
usually have very different meanings depending on the 
types of links involved.  

Given these assumptions, we define the following three 
classes of NLD problems addressed by our approach: 

(1) Novel path discovery: given an arbitrary pair of 
entities in a graph, find the most interesting or novel paths 
between them.  

(2) Novel loop discovery: given an arbitrary entity in a 
graph, find the most interesting or novel loops starting 
and ending at it.  

(3) Significant node discovery: given an arbitrary entity 
in a graph, find other entities that are most significantly 
connected to it. For example, given some person A, find 
the set of people that A is most significantly connected to. 
 

2.1 Challenges in novel link discovery  
 

The first challenge of the NLD problem is that the term 
“novelty” or “interestingness” is user dependent. Each 
person might view data from different angles and, thus, 
which connections interest them varies. A good NLD 
program should therefore take users preferences into 
consideration while still doing most of the work 
automatically. Balancing this trade-off is a challenging 
design issue.  

The second challenge is that "interestingness" is 
domain specific, that is, it depends on the characteristics 
of the particular domain described by the data. For 
example, for the novel path discovery problem most 
people would probably think that the link "A killed B" is 
more interesting than "A wrote a letter to B". The 
justification for this is that, empirically, the event 
"killing" happens less frequently than the event "writing a 
letter". This, however, is only true if the mined data set 
describes the behavior of the general population. If 
instead we were looking at a police murder database 
containing primarily murder events, the reverse would be 
the case. This is because in this data set everybody is 

more or less involved in some "killing" event while 
"writing a letter" is considerably more rare or unusual. In 
other words, when investigating this data set, users will 
expect to find data related to “killing” but not necessarily 
to "writing a letter". Information-theoretically, we can say 
that “killing” conveys less information in this context. 
Therefore, the evidence "writing a letter" might surprise a 
user and trigger him or her to consult additional sources 
for further information. This explains why it is not 
sufficient to tackle the NLD problem simply by analyzing 
individual semantics of the relations, but that it is very 
important to consider the domain and context the data is 
in.  

A typical supervised learning approach for this problem 
would be to learn a weight of interestingness for each 
relation or series of relations in a data set and then apply a 
shortest path algorithm accumulating these weights to 
look for solutions. This, however, is not practical due to 
the difficulty of generating unbiased training data. Take 
the novel path discovery problem for example. To obtain 
unbiased training data we have to rank the novelty of 
training paths manually with consistency. In other words, 
we have to develop a “standard operating procedure” 
about how to quantify interestingness of paths in a 
specific domain. The third challenge arises from this 
“chicken and egg” dilemma: if we could develop a 
standard evaluation criterion to judge the interestingness 
of paths or nodes, then we could apply it directly as our 
novel link finder and would not have to learn it. But since 
we do not have such a criterion, we also cannot generate 
labeled training examples to learn it. This limits the 
applicability of a supervised learning approach to solve 
the NLD problem and shows that we are really dealing 
with a discovery and not a learning problem. 

There is a significant body of work in data mining that 
deals with measuring the interestingness of discovered 
association or classification rules [4, 8, 9]; however, these 
interestingness measures are not appropriate for the NLD 
problem. The reasons are twofold. First, most of these 
methods assume the data is in the form of a feature-vector 
(a single relational table), while for the NLD problem we 
have to be able to handle multi-relational data with 
potentially large vocabularies of relations. The second and 
more serious problem is that one has to first learn a 
pattern or rule before its interestingness can be measured. 
This, however, is only possible if there are enough 
supporting cases in the data to warrant the discovery of a 
particular rule. If a pattern of interest occurs only once, no 
rule or pattern would be available to be evaluated with 
one of these measures. These measures are therefore not 
directly applicable for novel link discovery.  
 

3. Novel link discovery via rarity analysis 
 

In this section we propose a set of rarity measures to 
capture the notion of “interestingness”. These measures 



form the foundation on which all our novel path, novel 
loop and significant node discovery algorithms are based. 
 

3.1 Novel path discovery  
 

Besides the challenges described in the previous 
section, another problem for novel path discovery is that 
the interestingness of a path is non-linearly related to the 
interestingness of its individual links. That is, each 
individual link of a path might not be interesting at all but 
it is the combination of them that represents something 
special. This non-linearity characteristic limits the 
effectiveness of a shortest-path like algorithm that might 
simply accumulate statically assigned link interestingness 
to compute path interestingness. 

To deal with novel path discovery problems, we 
observe that to some extent rarity carries the information 
of interestingness. That is, an event that occurs 
infrequently compared to other events has the potential to 
be interesting and, thus, worth being reported. Using 
rarity as a measure for interestingness fulfills the need of 
capturing domain specificity: the same event can be rare 
in one domain but not in the other. For example, the event 
“A cites B’s paper” could be interesting in a criminal 
database because it occurs rarely, despite the fact that 
people might think it to be uninteresting, since in general 
this citation behavior is not rare. Rarity is also flexible 
enough to handle different points of view. For example 
“A cites B’s paper” can be rare from A’s point of view 
but not from B’s point of view due to the fact that A 
rarely cites others but B is commonly cited by many other 
people. 

To apply these ideas to the novel path discovery 
problem, we have to define rarity measurements for paths 
in the network. Note that in a multi-relational network as 
shown in Figure 1, every path occurs exactly once, thus 
all of them are equally rare. We therefore need a more 
relaxed definition to measure path rarity. We do this by 
defining the rarity of a path as the reciprocal of the 
number of similar paths to it. We accommodate view 
dependency by defining four different measures based on 
different views of similarity. 

An n-step path can in general be defined as a 
combination of n+1 entities (or nodes) ei and n relations 
(or links) ri between them: 

0 1 1
0 1 2........ nr r r

ne e e e− →  → →  
Note that in the novel path discovery problem we do 

not consider paths that contain loops (in other words all n 
entities in a path must be distinct).  

We define the type of a path as the ordered sequences 
of relations [r0….rn-1] of that path. For example, the path 
“A writes a paper that cites a paper published at time t1” 
and the path “B writes a paper that cites a paper published 
at time t2” are of the same type [writes, cites, 
published_at].  

Figure 1: Example bibliography dataset containing 
 16 nodes and 21 links 

The first path rarity measurement considers two paths 
as similar if they have the same type as well as identical 
source and target nodes. Then the rarity of a path P can be 
defined as 1/N1, where N1 is the total number of paths in 
the dataset that are similar to P in this sense. For example, 
in Figure 1 the path p1 “A1 is the author of P2 and P2 
cites P1” (between A1 and P1) has rarity 1/2 since there 
exists only one other similar path “A1 is the author of P3 
and P3 cites P1”. For convenience we call N1 “spindle 
fan-out value” since according to the constraints the path 
emanates from the source and terminates to the target just 
like a spindle. 

The second path rarity measurement considers two 
paths as similar if they have the same type and emanate 
from the same source node. The rarity of a path P can 
then be defined as 1/N2, where N2 is the total number 
paths in the dataset that are similar to P in this sense. 
According to this rarity measure, the path p1 described 
above has rarity 1/3, since there is one more path “A1 is 
the author of P2 and P2 cites P5” that matches the 
similarity criteria. We call N2 the “source fan-out value”, 
since similar paths fans out from the source.  

The third measure 1/N3 is similar to the previous one 
but with identical target instead of source. The rarity of 
path p1 in this sense is 1/3, since besides the paths that 
satisfy N1 rarity, there is one more path “A4 is the author 
of P3 and P3 cites P1” that matches the criteria. N3 is 
called “target fan-out value”, since similar paths fan out 
from the same target. 

The fourth path rarity measure considers two paths with 
the same type as being similar. This rarity measure is 
defined as 1/N4 where N4 equals the total number of 
paths of the same type in the dataset. According to this 
measure, the rarity of p1 is 1/5 since there are five paths in 
Figure 1 of the type “X is the author of Y and Y cites Z”. 
We call N4 the “global fan-out value”, since it represents 
how rare this type of path is in general. 

Equipped with these measures, we can now answer 
novel path discovery questions for the graph displayed in 
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Figure 1. For example: Is the path “A1 writes P2 and P2 
cites P1” more interesting than the path “A1 writes P3, P3 
is published in journal J1 and J1 also contains P1”? This 
query will have different answers for different points of 
view (spindle, source, target, global fan out), and which 
view is chosen will depend on the user’s focus. For 
example, if the user is the author of P1, he/she might be 
interested in viewing things from P1 and using 1/N3 as 
the rarity measure. Therefore, he/she could discover that 
the first path is more interesting than the second given 
that not a lot of people in the dataset cite the paper, but 
many of them have papers published in the same journal. 
In general, 1/N2 can be used when the user cares more 
about the source than the target and 1/N3 is used vice 
versa. 1/N1 is used when the user focuses on both the 
source and the target. 1/N4 is used when the user is 
concerned more about the general rarity of the path-type 
(or pattern) without focusing on any individual nodes. 
Sometimes the query itself determines the view as well. 
For example, it is reasonable to use the target fan-out 
value when being asked whether “K1 is the keyword of 
paper P1 and P1’s author belongs Organization O1” is 
more interesting than “A1 belongs to O1”, since both 
paths ends at the same node.  

With these rarity measures, we have a systematic way 
to answer a query such as “what is the most interesting 
path between nodes X and Y?” We simply enumerate all 
paths between X and Y and return the one with the highest 
rarity value. By using rarity to determine the most 
interesting path, we not only take the domain specificity 
and user views into consideration, but also avoid being 
misled by the apparent meaning of the links.  
 

3.2 Novel loop discovery 
 

The novel loop discovery problem aims at finding 
interesting loops in the dataset. It is a variation of novel 
path discovery, since a loop can be treated as a special 
type of a path that has identical source and target. The 
rarity of a loop such as this one going from e0 to e0 

e0 r0 e1 r1 e2 .....

rn-1

en-1 
can be measured similarly to path rarity. But since in a 
loop the source node is identical to the target, the N1, N2, 
N3 value will be the same. Thus, there are only two 
different loop rarity measurements: 1/N1 measures how 
rare a specific loop is to the source and 1/N4 determines 
how rare this type of loop is in general. 
 

3.3 Significant node discovery 
 

The significant node discovery problem aims at finding 
the entities most significantly connected to a given node. 

Our intuition is that whether two nodes are significantly 
connected or not depends not only on the quantity but also 
on the quality of paths that connect them. In other words, 
two nodes are significantly connected with each other if 
there are many interesting or rare paths between them. We 
therefore claim that the significance between two nodes 
can be measured by aggregating the rarity of paths 
between them. Equation 1 shows how we compute the 
significance of connection between two nodes A and B by 
accumulating the path rarity of all paths connecting them.  

paths
between (A,B)

_ ( , ) _ ( )
i

i
P

node significance A B path rarity P
∈

= ∑

Equation 1: Computing the connection significance 
value between two nodes A and B. 

Again, which path rarity measure needs to be applied in 
Equation 1 depends on different points of view. Equation 
2 shows how we determine the node that is the most 
significantly connected with node A. Note that in this case 
the source fan-out value N2 is used for path rarity since 
we have to adopt A’s point of view to judge the rarity.  

paths paths
between ( , ) between ( , )

1argmax( _ ( )) argmax( )
2( )

i i

i
X XP P i

A X A X

path rarity P
N P∈ ∈

=∑ ∑

Equation 2: Determining the node that is most 
significantly connected to a given node A. 

For a specific type of path, the N1 value represents the 
total number of times it occurs between source and target. 
The N2 value stands for the total number of times the path 
occurs between the source and somebody else (this is the 
source fan-out value). Since 1/N2 stands for how rare a 
path is from the source’s point of view and N1 stands for 
how many times the path occurs between source and 
target, it is easy to show that the node significance value 
defined in Equation 1 is equivalent to the accumulation of 
N1/N2 for all different types of paths. Therefore, we call 
the N1/N2 value of a particular path type its contribution 
to the overall significance value. 

According to our definition, finding an entity that is 
significantly connected with the source entity A is not 
equivalent to finding an entity that is tightly connected 
with A. For example, entities A and B might have much 
more connections between each other than entities A and 
C, but entity C can still be more significant to A given 
that there are more rare paths between A and C.  
 
4.  Experiments 
 

Below we describe a set of experiments aimed to 
illustrate the validity and usefulness of our approach. The 
experiments are performed on the “High Energy Physics - 
Theory” bibliographic database (or HEP-Th), which is a 



natural dataset that was used as the experimental dataset 
for the KDD Cup 20031. 

The HEP-Th dataset contains a total of 29016 papers 
with 1.7Gbytes of associated data. Each paper in the 
dataset is described by a unique ID, its authors, their e-
mail addresses, paper title, the journal it appeared in, 
publication date, abstract and a set of other papers cited 
by it. The source text of each paper is also available 
which we ignore. 

To model the data we used five different types of nodes 
and ten different types of links. Nodes represent paper IDs 
(29016), author names (12755), journal names (267), 
organization names (753) and publication times encoded 
as year/season pairs (60). Numbers in parentheses indicate 
the number of different entities for each type in the 
dataset. Organizations are not given directly but inferred 
from author’s e-mail addresses. Different spellings of 
author names were not consolidated and resulted in 
multiple nodes. 

We defined the following types of links to connect 
nodes: 
author_of(a, p) : connects author a to his/her paper p. 
date_published(p, d) : connects paper p to its publication 
date d. 
affiliation(a, o) : connects person p to an organization o 
he/she belongs to. 
published_in(p, j) : connects paper p to journal j it is in. 
cites(p, r): connects paper p to a paper r it cites. 

All of these links are viewed to be directional with an 
implicit inverse link, thus there are a total of 5*2 link 
types. 

In sum there are 42871 different nodes and 461932 
links in the graph representing the data. We then applied 
our rarity measures to identify interesting paths, loops and 
significant nodes in this graph. 
 
4.1 Significant node discovery 
 

In our first experiment we attempted to evaluate our 
significant node discovery method. That is, given some 
source node S we wanted to find other nodes of various 
types that were significantly connected to S. Since the 
nodes represent real-world entities such as people, we can 
then manually “verify” the computed results by 
investigating whether they reflected real-world, 
significant connections visible on the World-Wide Web. 
For the experiment we picked C.N. Pope as the source 
node S, since in this dataset he is the one with the highest 
number of publications (130 in total), which provides us 
with a rich number of connections through this node.  
Table 1 lists the top three interesting nodes connected to 
C.N. Pope for various different node types with their 
significance scores relative to Pope.  

                                                           
1http://www.cs.cornell.edu/projects/kddcup/datasets.html 

Table 1: Nodes significantly connected to C.N. Pope 

The results show that among the 12755 people in this 
dataset, the one that is the most significantly connected to 
Pope is H. Lu, while M. Cvetic is the second and K.S. 
Stelle is the third. To get some further insight why these 
people were picked as the most significant ones, we can 
look at what path types contributed the most to the overall 
significance value. The most significant path for person 
entities connected to C.N. Pope is that of co-authorship. 
This type of path emanates from Pope a total of 332 times 
and ends up at H. Lu 117 times, i.e., Lu contributes 35% 
of them while the runners up Cvetic and Stelle contribute 
42 times (12.6%) and 21 times (6.3%), respectively. The 
second-most significant path represents a chain of co-
authorship (i.e., Person1 writes with Person2 and Person2 
writes with Person3 on different papers). This path is not 
really rare from Pope’s point of view (it occurs 34473 
times). However, Cvetic was involved in it 5376 times, 
thus, for her this type of relation still contributes 15.6% to 
the overall score. It shows that a significant path is not 
necessarily a rare path; it could be a non-rare one but 
occurs frequently for a specific target. The third-most 
significant path represents a citation relationship. Pope 
cites Lu’s papers much more often than those of others. 
Looking for organizations that are interestingly connected 
with Mr. Pope, we found that U. Texas A&M is the most 
important surpassing the second U. Michigan and third U. 
Pennsylvania significantly. 

Next we tried to verify whether the discovered 
relationships actually represent important real-world 
relationships visible through other means. After 
investigating through the World-Wide Web, we found 
that Dr. Pope is a professor at U. Texas A&M and he was 
Dr. Lu’s thesis advisor (1988-1994) and that Dr. Lu is 
currently a post-doc at U. Michigan. Dr. Cvetic is a 
professor at U. Pennsylvania, has similar research 
interests to Pope and works closely with him. Dr. Stelle is 
a professor of Imperial College London who has ties with 
Pope not only academically but also personally. For 
example, Dr. Pope’s homepage shows a picture showing 
him, Dr. Stelle, and others traveling together in 
Afghanistan. 

           Node 
Type 

Top-Three Scoring Nodes 
(sum of path rarity) 

Person H. Lu 
(4.1) 

M. Cvetic 
(2.60) 

K.S. Stelle 
(0.98) 

Organization UTexas 
(3.42) 

UMich 
(1.80) 

UPenn 
(1.18) 

Journal Nucl.Phys 
(1.33) 

Phys.Lett 
(0.30) 

Phys.Rev 
(0.27) 

Time 
Spring 
2000 
(0.40) 

Summer 
2002 
(0.37) 

Winter1995 
(0.37) 



While this “verification” is anecdotal, it does indicate 
that our unsupervised method, which did not know any 
semantics of the entities and links in this domain, is 
capable of returning significant relationships that are 
relevant in the real world. 

The rest of Table 1 describes journals and time periods 
significantly connected to Pope. The results show that the 
journal Nucl.Phys. has the highest score followed by 
Phys.Lett. and Phys.Rev. We checked the three types of 
paths that contribute the most to each of these rarity 
values. The most important relationship discovered and 
taken into account by our program is frequency of 
publication, which intuitively makes sense. Pope 
published a total of 110 journal papers and 52 of them are 
in Nucl.Phys. He did not publish that many papers in 
Phys.Lett., but a significant portion of his colleagues’ 
papers are published there. For his connection with 
Phys.Rev. the program discovered that the papers cited by 
Mr. Pope’s papers are also frequently cited by papers 
published in Phys.Rev. As to the time periods, Spring 
2000 followed by Summer 2002 and Winter 1995 connect 
significantly to Mr. Pope, because various types of paths 
such as, for example, the publication time for his papers 
and the publication time for his colleagues’ papers, 
contribute relatively highly from these nodes to Pope. 

 
4.2 Novel path discovery 
 

We also experimented with novel path discovery 
questions such as, for example, which path is the most 
interesting (or rarest) between two people. To determine 
rare paths between two known nodes, we applied 1/N1 as 
our rarity measure where N1 is the spindle fan-out 
described in Section 3.1. Looking at all paths between 
Pope and Lu we find the path “Pope belongs to 
organization O that has another member P who writes a 
paper together with Lu” to be the rarest according to this 
measure. This indicates that not many of Pope’s 
colleagues at his university write papers with Lu, which is 
consistent with Lu’s role as Pope’s student. However, this 
type of path is not the rarest between Pope and Cvetic, 
instead “Pope co-authors a paper with Cvetic” is rarer, 
since Cvetic seems to write more with Pope’s colleagues 
than with him. The examples show that our novel path 
discovery method can take point-of-view into account, 
since the computed interestingness of paths changes when 
the view shifts (e.g. from Lu to Cvetic in this case). 
In this domain rarity of individual paths does not convey 
such strong semantic relationships as node significance 
and is harder to evaluate. In this sense the relationship 
between path rarity and node significance resembles the 
relationship between a probability density function and its 
corresponding probability distribution function, since the 
integrated probability usually carries more real-world 
meaning than the density function itself. 

4.3 Novel loop discovery 
 

For experiments on novel loop discovery, we calculated 
loop rarity via 1/N4′ where N4′ is a variation of global 
fan-out (see Section 3.1) with the additional requirement 
that source and target have to be the same node. Said 
differently, for each possible path type leading from a 
node to itself we count how often that path occurs in the 
dataset. The rarest, least frequent loops are listed in the 
top portion of Table 2, the most common loops are listed 
at the bottom.  

 Table 2: The rarest and the most common loops 

The rarest loops are papers citing themselves directly, 
which only occurs 28 times in the whole dataset. We do 
not have a real world explanation for this and can only 
attribute it to errors in the dataset. The second, third and 
fourth loops are also citation loops of different length. 
The explanation behind this finding is that for a paper to 
cite another, the cited paper needs to be published earlier. 
In this sense a citation loop such as “P1 cites P2 cites P3 
cites P1” is really a temporal contradiction and should not 
occur at all. One explanation for such “contradictions” is 
that sometimes an author (or close colleague) might cite 
one of his/her own submitted but not yet published papers 
P2 (which has already cited P1) in a paper P1. The other 
explanation is that one journal might have a very long 
revising period and during that period other people can 
access the previous version. For both explanations we 
have found supporting instances from the dataset. The 
fifth path shows a similar concept where it is rare for a 
paper to cite another paper that was published during the 
same time period. This type of loop could also be an 
indicator for authors that work closely with each other. 
Finally, the last path shows that people seldom publish 
multiple papers at the same time. 

Top 6 loops with highest rarity value 

PaperX cites PaperX  
PaperX cites Paper1 Paper1 cites PaperX 
PaperX cites Paper1 Paper1 cites Paper2  Paper2 
cites PaperX 
PaperX cites Paper1 Paper1 cites Paper2  Paper2 
cites Paper3 Paper3 cites PaperX  
PaperX cites (or cited by) Paper1  Paper 1 published 
at Time1  At Time1, PaperX also published. 
PaperX is written by Person1  Person 1 has another 
Paper1  Paper1 published at the same time as PaperX 

Bottom 3 loops with lowest rarity value 
PaperX cites PaperY  PaperY is being cited by 
PaperZ  PaperZ is being cited by PaperX  
PaperX cites PaperY  PaperY published in the same 
journal as PaperZ  PaperZ cites PaperX 
PaperX is cited by Paper Y  Paper Y published in 
same season as PaperZ  PaperZ cites Paper X 



The bottom portion of the table shows the most 
frequently occurring loops as a contrast to the rare loops 
described above. For example, the most frequent loops are 
two papers published at the same time period that both 
cite X. They are loops that intuitively should occur very 
frequently. Note that “A cites B cites C” is a very 
common path, thus, we did not expect it to be interesting 
as a loop and were surprised by the results.  

The experiments demonstrate that our approach is 
capable of uncovering interesting instances masked inside 
thousands of uninteresting facts. Furthermore, the 
instances found by novel loop discovery lead us to the 
discovery of interesting hypotheses or patterns, e.g., that 
citation loops are an indicator for authors who work 
closely with each other or for journals that have a long 
revision cycle. 

 
4.4 Discussion 

 
The experiments show that our program can find 

interesting connections in a network without having to 
learn the patterns of interestingness. For the bibliography 
dataset, which does not have too many different types of 
relations, one might be able to write a rule-based system 
or supervised learning program to answer similar queries 
as we did. However, it is time consuming to do this, since 
different rules or training data are required for different 
queries (e.g. the rules to identify the people that are 
interestingly connect to a keyword are different from the 
ones required to determine the organizations that are 
interestingly connected to a person). The advantage of our 
method is that it does everything in an unsupervised 
manner and eliminates the necessity to regenerate new 
rules or new training data for different queries or even 
when the whole domain is changed. It also eliminates the 
risk of being biased by the apparent meaning of link 
types. 

Another advantage of our approach is that it can focus 
the user’s attention on events that are otherwise hard to be 
noticed. The inspirations triggered by such evidences can 
sometimes lead to the discovery of pattern/knowledge. 
For example, without being made aware of those rare 
loops, we might not ever look into the issue of citation 
loops at all, since there are thousands of different loops in 
the dataset that mask this phenomenon. They also prompt 
us to discover other related knowledge when we try to 
explain them, for example, that citation loops can be an 
indicator of authors adding additional citations during a 
revision of a journal submission. 
 

5. Related work  
 
To our knowledge there is no other work that addresses 

the NLD problem in multi-relational data via an 
unsupervised approach. One focus of current link 
discovery research is on learning patterns from complex 

multi-relational data. For example, inductive logic 
programming has been applied to learn relational patterns 
[11] . Additionally, graph-based methods such as [6] have 
been used to learn subgraph categories and isomorphisms. 
These approaches either require training examples or 
learn things at the structure/schema level, while for the 
NLD problem it is necessary to perform discovery at the 
instance level by using unsupervised methods. 
Kovalerchuk and Vityaev’s hybrid evidence correlation 
technique [1] first identifies common patterns via 
standard data mining techniques and then hypothesizes 
interesting or unusual patterns by negating some of the 
statistically significant patterns found. It is conceptually 
similar to our approach but requires the occurrence of 
very common patterns in the data.  

Other analysis algorithms such as PageRank compute 
the importance of links through the connections between 
nodes in an unsupervised manner [12, 13]. In that 
framework, however, all relations are treated to be 
identical (that is, “A kills B” is not different from “A 
writes to B“), therefore, this approach is not suitable for 
the multi-relational NLD problem. 

The area of outlier detection in data mining and 
statistics aims at detecting points that are considerably 
dissimilar or inconsistent with the remainder of the data  
[2, 3, 7, 14, 15]. This is conceptually related to our use of 
rarity analysis to solve the NLD problem. Current 
research on outlier detection, however, analyzes primarily 
numerical entity-attribute data instead of multi-relational 
social network data. In threat detection each individual 
event is usually not an outlier; nevertheless, combinations 
of seemingly harmless events can suddenly become 
threatening when they occur in a particular context. 
Outlier computations that do not take such combinations 
into account will fail to detect such threats. Our path 
rarity analysis is designed to search for these kinds of 
unusual connections in a multi-relational dataset. 

The area of social network analysis has investigated 
multi-relational social behavior using graph and matrix-
theoretic representations [16]. The concept of “centrality” 
is applied widely to determine important nodes in a 
network from a global point of view, while our significant 
node discovery tries to tackle the problem locally by 
answering “which node is important to a chosen node”. 
Moreover, centrality analysis uses only the connectivity 
(the number of paths) to judge the significance while our 
algorithm considers not only the quantity but also the 
quality (rarity) of the paths.  

Valdes-Perez [21] characterizes discovery in science as 
the generation of novel, interesting, plausible and 
intelligible knowledge about the objects of study. In this 
sense the novel link discovery problem is similar to 
literature-based discovery introduced by Swanson [18, 
19], since they both intend to find interesting facts and 
connections in large amounts of data. Since 1986 
Swanson has triggered interesting discoveries in 



biomedicine strictly by looking for mediators that connect 
otherwise unconnected corpora of scientific literature. 
Literature-based discovering systems are primarily aimed 
at finding one-step connections between independent 
corpora instead of ranking the interestingness of the 
multi-step paths in a multi-relational network, and are 
therefore different from our approach.  
 
6. Conclusion  
 

We presented an unsupervised link discovery method 
aimed at detecting interesting paths or interestingly 
connected nodes in multi-relational datasets. 
Interestingness is modeled via different measures of rarity 
that are based on computing how often similar paths 
occur in the data. The method does not rely on any pre-
existing or learnable pattern information and can detect 
novel, interesting connections that do not need to be 
conceived prior to the analysis. Our approach is a general-
purpose method and can be applied to arbitrary multi-
relational datasets. Potential applications are in law 
enforcement, threat detection, data cleaning [5] and 
scientific discovery. The experiment shows that our 
approach can capture interesting connections that are 
representative of meaningful real-world relationships. 
Future work will include more extensive evaluation with 
different data sets, handling of temporal information, 
negation and better handling of noise and corruption.  
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