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Abstract

The Markov chain approximation method is a widely used, relatively
easy to use, and efficient family of methods for the bulk of stochastic con-
trol problems in continuous time, for reßected-jump-diffusion type models.
It has been shown to converge under broad conditions, and there are good
algorithms for solving the numerical problems, if the dimension is not too
high. We consider a class of stochastic differential games with a reßected
diffusion system model and ergodic cost criterion and where the controls
for the two players are separated in the dynamics and cost function. It is
shown that the value of the game exists and that the numerical method
converges to this value as the discretization parameter goes to zero. The
actual numerical method solves a stochastic game for a Þnite state Markov
chain and ergodic cost criterion. The essential conditions are nondegener-
acy and that a weak local consistency condition hold �almost everywhere�
for the numerical approximations, just as for the control problem.

1 Introduction

The Markov chain approximation method of [19, 20, 22] is a widely used method
for the numerical solution of virtually all of the standard forms of stochastic
control problems with reßected-jump-diffusion models. It is robust and can
be shown to converge under very broad conditions. Extensions to approxima-
tions for two-person differential games with discounted, Þnite time, stopping
time, and pursuit-evasion games were given in [18] for reßected diffusion models
where the controls for the two players are separated in the dynamics and cost
rate functions. In this paper, the basic ideas will be extended to two-player
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stochastic dynamic games with the same systems model, but where the cost
function is ergodic. Such ergodic and �separated� models occur, for example,
in risk-sensitive and robust control [2, 3, 7, 15]. In fact, the game formulation
of risk sensitive control problems for queues in heavy traffic was our original
motivation.
When the robust control is for controlled queues in heavy traffic, then the

state is conÞned to some convex polyhedron by boundary reßection [21]. In
many other applications, the state of the physical problem is conÞned to a
bounded set. One example is the heavy traffic limit of controlled queueing
networks with Þnite buffers [1, 21] or robust control of such systems as in [2, 3],
where the set is a hyperectangle. Then robust control would lead to a game
problem with a hyperrectangular state space. If the system state is not a priori
conÞned to a bounded set, then for numerical purposes it is commonly necessary
to bound the state space artiÞcially by adding a reßecting boundary and then
experimenting with the bounds. Our systems model is conÞned to a state space
G that is a convex polyhedron, and it is conÞned by a �reßection� on the
boundary. More generally, the boundaries could be determined by a set of
smooth curved surfaces as in [22], but we restrict attention to the polyhedral
case, since that is the most common and it avoids minor details which can be
distracting.
There are many results for various forms of the game problem; e.g., [4, 5,

6, 24, 28, 29]. But there seems to be nothing available concerned with the er-
godic problem for the reßected diffusion model. We will use purely probabilistic
methods of proof. Such methods have the advantage of providing intuition con-
cerning numerical approximations, they cover many of problem formulations to
date, and they converge under quite general conditions. The essential condi-
tions are weak-sense existence and uniqueness of the solution to the controlled
equations, �almost everywhere� continuity of the dynamical and cost rate terms,
and a natural �local consistency� condition: The local consistency and continu-
ity need hold only almost everywhere with respect to the measure of the basic
model, hence discontinuities in the dynamics and cost function can be treated
under appropriate conditions (see, in particular the treatment of discontinuities
and complex variational problems with singularities and Theorems 4.6 and 7.1 in
[22]). Furthermore, the numerical approximations are represented as processes
which are close to the original, which gives additional intuitive and practical
meaning to the method.
The methods to be used for the ergodic cost function are quite different than

those used in [18]. They share the foundation in the theory of weak convergence
[9, 13]. But they depend heavily on the approximations to the ergodic cost con-
trol problem as developed in [21, Chapter 4]. The development of the paper has
been structured to take advantage of the results in [21, 22], wherever possible.
To facilitate the development, Subsection 2.2 summarizes the results from [21]
which will be needed here, with an occasional change of notation to suit that
used here.
Subsection 2.1 deÞnes the basic systems model, where the control is in-

troduced via the Girsanov transformation [17]. The dynamical model is the
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reßected stochastic differential equation (2.4), also called the Skorohod problem
[12, 21, 22]. The conditions on the boundary of the state space are (A2.1)�
(A2.2). Condition (A2.1) covers the great majority of cases of current interest,
including those that arise from queueing and communications networks. The
condition is obvious when the state space is a hyperrectangle with reßection di-
rections being the interior normals. The strategies of the players are as follows.
Player 1 wishes to minimize and player 2 to maximize. For the infsup problem
(the upper value), at the start of the game (i.e., at t = 0) player 1 selects a
control. This can be either a pure (and time independent) feedback control or
a relaxed feedback control (see Subsection 2.1 for the deÞnition). The selected
control will be used at all t ≥ 0. Then player 2 selects its strategy. This can
be either a relaxed feedback or a classical relaxed control. Whatever it is, once
selected, it cannot be changed.
The situation is analogous if player 2 selects Þrst. Since the controls for the

player who chooses Þrst are time independent feedback and these are selected
and Þxed at the start of the game, and only the player choosing last can use
time dependent controls, complications due to the notions of strategy in the
time dependent case (e.g., concerning the deÞnition of the value either via a
limit of a discrete time game, or via the Elliott-Kalton deÞnition) do not arise.
In this sense the paper is simpler than [18]. On the other hand, the treatment
of the ergodic cost criterion adds substantial new complications. Subsection 2.3
establishes the existence of the controls yielding the upper and lower values,
using approximation methods from [21].
The Markov chain approximation numerical method is discussed in Subsec-

tion 3.1. The methods for getting the approximating chain and cost function
are the same as in [22] for the pure control problem, since it is the process for
arbitrary controls that is approximated. The natural local consistency condition
is stated. The proof of convergence of the numerical method is in Subsection
3.2 and depends on the fact that the original game has a value. The numerical
approximations are games for Markov chains. They might or might not have
a value, depending on the form of the approximation. But, it it seen that the
upper and lower values converge to the value of the original game as the approx-
imation parameter goes to its limit. Finally, the proof that the original game
has a value is given in Section 4.

2 The Dynamical Model and Background Re-
sults

2.1 Assumptions and the Dynamical Model

Assumptions. The Þrst assumptions deÞne the state space G.

A2.1. The state space G is the intersection of a Þnite number of closed half
spaces in Euclidean r-space IRr, and is the closure of its interior (i.e., it is a

3



closed convex polyhedron with an interior and planar sides). Let ∂Gi, i = 1, . . . ,
denote the faces of G, and ni the interior normal to ∂Gi. Interior to ∂Gi, the
reßection direction is denoted by the unit vector di, and hdi, nii > 0 for each i.
The possible reßection directions at points on the intersections of the ∂Gi are
in the convex hull of the directions on the adjoining faces. Let d(x) denote the
set of reßection directions at the point x ∈ ∂G, whether it is a singleton or not.
No more than r constraints are active at any boundary point.

A2.2. For each x ∈ ∂G, deÞne the index set I(x) = {i : x ∈ ∂Gi}. Suppose
that x ∈ ∂G lies in the intersection of more than one boundary; that is, I(x) has
the form I(x) = {i1, . . . , ik} for some k > 1. Let N(x) denote the convex hull
of the interior normals ni1 , . . . , nik to ∂Gi1 , . . . , ∂Gik , respectively, at x. Then,
there is some vector v ∈ N(x) such that γ0v > 0 for all γ ∈ d(x).
There is a neighborhood N(∂G) and an extension of d(·) to N(∂G) that is

upper semicontinuous in the following sense: For each ² > 0, there is ρ > 0 that
goes to zero as ²→ 0 and such that if x ∈ N(∂G)−∂G and distance(x, ∂G) ≤ ρ,
then d(x) is in the convex hull of the directions {d(v); v ∈ ∂G, distance(x, v) ≤
²}.
Let α = (α1,α2),α1 ∈ U1,α2 ∈ U2, denote the canonical control value, with

αi the canonical value for player i.

A2.3. The Ui, i = 1, 2, are compact sets in some Euclidean space. The (r × r)
matrix-valued function σ(·) on G is Hölder continuous, with σ−1(x) bounded,
and the IRr-valued functions bi(·) on G× Ui are continuous.
The uncontrolled model is the solution to the Skorohod problem

dx(t) = σ(x(t))dw(t) + dz(t), x(t) ∈ G. (2.1)

By a solution to (2.1) we mean the following. Let Ω denote the path space of
(x(·), z(·), w(·)), and let {Ft, t < ∞)} denote the Þltration on the space. The
x(·) and z(·) are IRr-valued, continuous and Ft-adapted, and w(·) is an Ft-
standard IRr-valued Wiener process. The z(·) is the reßection process. Let ΩT
denote the restriction of Ω to functions deÞned on [0, T ]. DeÞne F = limt Ft
and let Px denote the measure when the initial condition is x(0) = x, with Ex
the associated expectation. Let Px,T (·) denote the probability measure, when
we conÞne our interest to paths on the Þnite interval [0, T ].
The controlled system will be deÞned via the Girsanov transformation, start-

ing with (2.1). For a detailed discussion of the Skorohod problem and the as-
sumptions (A2.1) and (A2.2), see [21, Chapter 3]. See also the brief comment
below (A2.4). We will also need the following condition.

A2.4. There is a unique weak sense solution to (2.1) for each initial condition.

Comments on (A2.1) and (A2.2). One can always construct the extension
in (A2.2). To see that (A2.1) is natural in application note the following. If the
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state space is being bounded for purely numerical reasons, then the reßections
are introduced only to give a compact set G, which should be large enough
so that the effects on the solution in the region of main interest are small. A
common choice is a hyperrectangle with normal reßection directions, in which
case the right side of (2.1) is zero. Next, consider a queueing network model
in the heavy traffic limit [16, 21, 27] where the state space is the nonnegative
orthant, and the probability that an output of the ith processor goes to the jth
processor is qij . If the spectral radius of the routing matrix Q = {qij ; i, j} is
less than unity, then all customers will eventually leave the system. The model
is a special case of (2.4) with z(t) = [I −Q0]y(t), where yi(·) is nondecreasing,
continuous, and can increase only at t where xi(t) = 0. The condition (A2.1)
implies (see [12, 21]) the so-called �completely-S� condition [16, 21, 26] which
is used to ensure that z(·) has bounded variation w.p.1.

Classes of controls. A: Relaxed controls ri(·). Suppose that for some
Þltration {Ft, t <∞} and standard vector-valued Ft-Wiener process w(·), each
ri(·), i = 1, 2, is a measure on the Borel sets of Ui × [0,∞) such that ri(Ui ×
[0, t]) = t and ri(A × [0, t]) is Ft-measurable for each Borel set A ⊂ Ui. Then
ri(·) is said to be an admissible relaxed control for player i, with respect to
w(·). If the Wiener process and Þltration have been given or are obvious or
unimportant, then we simply say that ri(·) is an admissible relaxed control for
player i [14, 21, 22]. For Borel sets A ⊂ Ui, we will write ri(A× [0, t]) = ri(A, t).
For almost all (ω, t) and each Borel A ⊂ Ui, one can deÞne the derivative

ri,t(A) = lim
δ→0

ri(A, t)− ri(A, t− δ)
δ

.

Without loss of generality, we can suppose that the limit exists for each (ω, t).
Then for all (ω, t), ri,t(·) is a probability measure on the Borel sets of Ui and
for any bounded Borel set B in Ui × [0,∞),

ri(B) =

Z ∞

0

Z
Ui

I{(αi,t)∈B}ri,t(dαi)dt.

An ordinary control ui(·) can be represented in terms of the relaxed control ri(·),
deÞned by its derivative ri,t(A) = IA(ui(t)), where IA(ui) is unity if ui ∈ A
and is zero otherwise. The weak topology [22] will be used on the space of
admissible relaxed controls. Relaxed controls are commonly used in control
theory to prove existence theorems, since any sequence of relaxed controls has
a convergent subsequence.

B: Relaxed feedback control mi(·) [10, 21]. Suppose thatmi(x, ·), i = 1, 2,
is a probability measure on the Borel sets of Ui for each x ∈ G and that mi(·, A)
is Borel measurable for each Borel set A ⊂ Ui. Then we say that mi(·) is a re-
laxed feedback control. DeÞne U = U1×U2. For relaxed feedback controlsmi(·),
deÞne m(·) by m(x, dα) = m1(x, dα1)m2(x, dα2). Then m(·) is also a relaxed
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feedback control, but with control value space U . All m(·) will be of this prod-
uct form for some relaxed feedback controls mi(·), i = 1, 2. If x(·) is a solution
to (2.4), and m(·) a relaxed feedback control, then m(·) can be represented by a
relaxed control r(·) with derivative rt(dα) = r1,t(dα1)r2,t(dα2) = m(x(t), dα).
The control for the player that chooses its control Þrst will always be a

relaxed feedback control, but that for the player who chooses its control last
might be either a relaxed feedback control or a relaxed control which is not
representable in relaxed feedback form.

Defining the controlled dynamical system via the Girsanov transfor-
mation: Relaxed feedback controls. The controlled model will be deÞned
via the Girsanov transformation [17]. Some of the well known details will be
described, since the equations will be needed for the approximations. This will
be done Þrst for the relaxed feedback controls. Let mi(·), i = 1, 2, be relaxed
feedback controls and deÞne m(x, dα) = m1(x, dα1)m2(x, dα2). DeÞne

bi,mi(x) =

Z
Ui

bi(x,αi)mi(x, dαi), b(x,α) = b1(x,α1) + b2(x,α2),

and set bm(x) =
R
U b(x,α)m(x, dα) = b1,m1(x)+b2,m2(x). For T > 0 and relaxed

feedback control m(·), deÞne

ζ(T,m) =

Z T

0

£
σ−1(x(s))bm(x(s))

¤0
dw(s)− 1

2

Z T

0

¯̄
σ−1(x(s))bm(x(s))

¯̄2
ds,

and set
R(T,m) = eζ(T,m).

For each (x, T,m(·)), deÞne the measure Pmx,T on (ΩT ,FT ) via the Radon�
Nikodym derivative R(T,m):

dPmx,T = R(T,m)dPx,T . (2.2)

For each (x,m(·)), the family Pmx,T of measures, indexed by T , is consistent and
can be extended uniquely to a measure Pmx on (Ω,F) that is consistent with
the Pmx,T .When there is no control (i.e., where the system is (2.1)), we omit the
superscript m. The process wm(·) deÞned by

dwm(t) = dw(t)−
£
σ−1(x(s))bm(x(s))

¤
dt (2.3)

is an Ft-standard Wiener process on (Ω, Pmx ,F) [17]. Now, rewrite the uncon-
trolled model (2.1) as

dx(t) = bm(x(t))dt+ σ(x(t))dwm(t) + dz(t). (2.4)

Under the measures {Pmx , x ∈ G}, (2.4) is a Markov process and we use Pm(x, t, ·)
for its transition function. Use P (x, t, ·) for the transition function of the un-
controlled process (2.1). Strictly speaking, the process wm(·) should be indexed
also by the initial condition x = x(0), but we omit it for notational simplicity.
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The controlled dynamical system with relaxed controls. Let ri(·) be
a relaxed control for player i, with derivative ri,t(·), and deÞne bi,ri(x, t) =R
Ui
bi(x,α)ri,t(dαi). We will also have occasion to use relaxed (and not neces-

sarily relaxed feedback) controls for one of the players. For speciÞcity at this
point, suppose that a relaxed control is used for player 1 and a relaxed feedback
control is used for player 2. Write br1,m2

(x, t) = b1,r1(x, t) + b2,m2
(x), deÞne

ξ(T, r1,m2), P
r1,m2

x,T , P r1,m2
x , and wr1,m2(·) analogously to what was done for

the pure relaxed feedback control case, and rewrite the controlled equation as

dx(t) = b1,r1(x(t), t)dt+ b2,m2(x)dt+ σ(x(t))dwr1,m2(t) + dz(t). (2.5)

The measures P r1,m2
x are used with (2.5). The development is analogous if

player 1 uses the relaxed feedback control and player 2 the relaxed control.

Representation of the reflection process z(·). For either the model (2.4)
or (2.5), the process z(·) can be represented as

z(t) =
X
i

yi(t)di, (2.6)

where yi(·) is nondecreasing, right continuous, increases only at t where x(t)
is on the i-th face of G and satisÞes yi(0) = 0. Under (A2.1), (A2.2), and
(A2.4), the representation (2.6) is unique with probability one [21, Theorem
3.6, Chapter 4]. Let M² denote an ²-neighborhood of the boundary set where
more than one constraint is active. Then, the same theorem implies that, for
t > 0, supx,mE

m
x |y(t)|I{x(t)∈M²} → 0 as ²→ 0.

2.2 Background Results and the Cost Function

The development depends heavily on approximation, continuity, and limit re-
sults from [21, Chapter 4] for the control problem. The results carry over to the
game problem, since they are concerned with arbitrary relaxed feedback and
relaxed controls. To facilitate our development, several key results from [21]
will be stated, in the notation of this paper.

Illustration of the use of the Girsanov transformation: Mutual ab-
solute continuity of the transition functions. The following theorem is
[21, Theorem 3.1, Chapter 4]. We will outline the proof by copying some of
the details from the reference, since similar �Girsanov transformation� methods
underlie many of the results, there are some slight differences worth noting, and
it gives a feeling for the approach. Unless otherwise noted, �almost all� refers
to Lebesgue measure. The symbol ⇒ denotes weak convergence.

Theorem 2.1. Assume (A2.1)�(A2.4). Let mn(y, ·) ⇒ m(y, ·) for almost
all y ∈ G, where m(·) and mn(·) are relaxed feedback controls. Then for any
0 < t0 < t1 <∞ and bounded and measurable real-valued function f(·),Z

f(y)Pm
n

(x, t, dy)→
Z
f(y)Pm(x, t, dy) (2.7)
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uniformly for (x, t) ∈ G × [t0, t1]. For any t > 0, Pm(x, t, ·) is absolutely
continuous with respect to Lebesgue measure, uniformly in m(·) and in (x, t) ∈
G× [t0, t1]. For each relaxed feedback control m(·), the process deÞned by (2.4)
is a strong Feller process and it has a unique weak-sense solution for each initial
condition x.

Proof. We concentrate on the uniformity in x of the convergence (2.7). First
note that, by the weak convergence and the product form of mn(·), the limit
m(·) can always be represented as m(x, dα) = m1(x, dα1)m2(x, dα2) for some
relaxed feedback controls mi(·), i = 1, 2, for almost all x. The expression (2.7)
can be written equivalently as

Exf(x(t))R(t,m
n)− Exf(x(t))R(t,m)→ 0. (2.8)

For notational simplicity, let σ(x) = I, the identity. We will use the inequalities:¯̄
ea − eb¯̄ ≤ |a− b| ¯̄ea + eb¯̄ , (2.9a)

Ex

¯̄̄̄Z t

0

b0m(x(s))dw(s)−
Z t

0

b0mn(x(s))dw(s)

¯̄̄̄2
,

≤ Ex
Z t

0

|bm(x(s))− bmn(x(s))|2 ds.
(2.9b)

By the continuity and boundedness of b(·) and the weak convergence of the
mn(y, ·) for almost all y ∈ G, we have

bmn(y) =

Z
U

b(y,α)mn(y, dα)→ bm(y) =

Z
U

b(y,α)m(y, dα)

for almost all y. DeÞne

�bn(y) = |bm(y)− bmn(y)|2 .
Let t ∈ [t0, t1], where 0 < t0 < t1 <∞. By Egoroff�s theorem [11, Theorem 12,
page 149], for each ² > 0, there is a measurable set A² with l(A²) ≤ ² such that
�bn(y)→ 0 uniformly in y 6∈ A². Furthermore, P (x, t, ·) is absolutely continuous
with respect to Lebesgue measure for each x and t > 0 (and uniformly in
(x, t) ∈ G× [t0, t1] for any 0 < t0 < t1 <∞). These facts imply thatZ t

0

Ex�bn(x(s))ds→ 0,

uniformly in x ∈ G. The last expression, together with the inequalities (2.9),
implies (2.8) uniformly in x ∈ G.

Additional background results. We will also need the results of Theorems
2.2 to 2.8, most of which are either taken from [21] or are minor adaptations of
such results. Where an elaboration on a proof in [21] would be useful, additional
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comments will be made. Although the reference does not deal with games, the
fact that the product m(x, dα) = m1(x, dα1)m2(x, dα2) is a relaxed feedback
control allows the results to be carried over.

Theorem 2.2. (From [21, Theorems 3.1�3.3, Chapter 4].) Assume (A2.1)�
(A2.4). The process x(·) deÞned by (2.4) has a unique invariant measure µm(·)
for each relaxed feedback control m(x, dα) = m1(x, dα1)m2(x, dα2). Further-
more the transition function Pm(x, t, ·) is mutually absolutely continuous with
respect to Lebesgue measure, uniformly in m(·), x ∈ G, and t ∈ [t0, t1] for any
0 < t0 < t1 <∞.

A smoothed control. Extend the deÞnition of the relaxed feedback control
mi(y, ·) so that it is deÞned as a relaxed feedback control for all y ∈ IRr. For
example, let it be concentrated on some Þxed number in U for y 6∈ G. For small
² > 0 and x ∈ G, deÞne the smoothed control

mi,²(x, ·) = 1

(2π²)r/2

Z
IRr

e−|y−x|
2/2²mi(y, ·)dy, x ∈ G.

DeÞne m²(x, ·) = m1,²(x, ·)m2,²(x, ·).

Theorem 2.3. (This is [21, Theorem 3.4, Chapter 4].) Assume (A2.1)�(A2.4).
m²(·) is a relaxed feedback control and m²(x, ·)⇒ m(x, ·) = m1(x, ·)m2(x, ·) for
almost all x ∈ G. The function bm²(·) is continuous for each ², and bm²(x) →
bm(x) almost everywhere in G.

Theorem 2.4. (From [21, Theorem 4.2, Chapter 4].) Assume (A2.1)�(A2.4).
Then µm(·) is continuous in the control in that if mn(x, ·)⇒ m(x, ·) for almost
all x ∈ G, then for each Borel set A ⊂ G,

µmn(A)→ µm(A).

The cost function. We will need the following assumption.

A2.5. The real-valued functions ki(·) on G×Ui, i = 1, 2, are continuous, and c
is a vector with nonnegative components.

DeÞne k(x,α) = k1(x,α1) + k2(x,α2). For a relaxed feedback control m(·),
deÞne km(x) =

R
U
k(x,α)m(x, dα) and

γT (x,m) =
1

T
Emx

Z T

0

km(x(s))ds+
1

T
Emx c

0y(T ).

For relaxed feedback controls, the cost function of interest in this paper is

γ(m) = lim
T
γT (x,m). (2.10)
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We omit the x = x(0) from the argument of γ(m), since it will not depend on
the initial condition under our assumptions (see Theorem 2.5). If player i uses
a relaxed control ri(·), then deÞne

kri(x, t) =

Z
Ui

ki(x,αi)ri,t(dαi).

If player 1 selects its control Þrst and uses a relaxed feedback control and player
2 selects its control last and uses a relaxed control, then deÞne (the use of lim inf
is just a convention):

γT (x,m1, r2) =
1

T
Em1,r2
x

Z T

0

[k1,m1(x(s)) + k2,r2(x(s), s)] ds+
1

T
Em1,r2
x c0y(T ),

γ(x,m1, r2) = lim inf
T

γT (x,m1, r2),

If player 2 selects its control Þrst and uses a relaxed feedback control and player
1 uses a relaxed control, deÞne (the use of lim sup is just a convention):

γ(x, r1,m2) = lim sup
T

γT (x, r1,m2).

Representation of the cost in terms of a stationary system. Let m(·)
be a relaxed feedback control. The system (2.4) starts with an arbitrary initial
condition that does not necessarily have the stationary distribution. It turns
out that the limit (2.10) is the same as if the initial condition were distributed
as µm(·). This is the assertion of the next theorem.

Theorem 2.5. (This is [21, Theorem 4.1, Chapter 4].) Assume (A2.1)�
(A2.5). Let m(·) be a relaxed feedback control. Then the Emx yi(1) are continuous
functions of x and

lim
T
γT (x,m) = γ(m)

=

Z
km(x)µm(dx) +

Z
Emx [c

0y(1)]µm(dx).

2.3 Existence of Optimal Controls for the Upper and Lower
Values

DeÞne the upper and lower values, resp., for the game (fb denotes relaxed feed-
back, and rel denotes relaxed controls)

γ̄+ = inf
relaxed fb m1

sup
rel controls r2

γ(m1, r2), (2.11a)

γ̄− = sup
relaxed fb m2

inf
rel controls r1

γ(r1,m2). (2.11b)

10



It is shown below that the use of relaxed controls for the player selecting last
offers no advantage over feedback controls. In Section 4 it is shown that the
game has a value in that γ̄+ = γ̄− = γ̄. Then the numerical procedure converges
to γ̄ as the discretization level goes to zero (see Section 3).
The deÞnition (2.11a) is interpreted to mean that player 2 supposes that

player 1 has selected a relaxed feedback control for itself, which will be Þxed
throughout the game. [I.e., player 1 selects Þrst.] Given this presumed choice
of player 1, player 2 can select any relaxed or relaxed feedback control and will
choose so as to maximize. This maximizing control will exist and will actually
be of the relaxed feedback control form (implied by Theorem 2.8). It will depend
on the presumed choice of player 1. Given this relationship, player 1 will select a
minimizing control. By Theorem 2.8, it will exist and be of the relaxed feedback
form. The interpretation of (2.11b) is analogous.

Theorem 2.6. (This is [21, Theorem 4.3, Chapter 4], adapted to the notation
of the present case.) Assume (A2.1)�(A2.5). For a sequence {mn(·)} of relaxed
feedback controls, let mn(x, ·) converge weakly to m(x, ·) for almost all x ∈ G.
Then γ(mn)→ γ(m).
For Þxed m1(·), maximize over m2(·), and let {mn

2 (·)} be a maximizing se-
quence. Consider measures over the Borel sets of G× U which are deÞned by

mn(x, dα)dx = m1(x, dα1)m
n
2 (x, dα2)dx (2.12)

and take a weakly convergent subsequence. The limit can be factored into the
form

m1(x, dα1) �m2(x, dα2)dx, (2.13)

where �m2(·) is a relaxed feedback control for player 2. Since �m2(·) depends on
m1(·), write it as �m2(·) = m2(·;m1). Then, given m1(·), the relaxed feedback
control m2(·;m1) is maximizing for player 2 in that

sup
m2

γ(m1,m2) = γ(m1,m2(m1))

The analogous result holds in the other direction, where player 2 chooses Þrst.

Remark on the proof. First, note that owing to the product form any weak
sense limit of the sequence deÞned in (2.12) must be of the form (2.13) where
�m1(·) is a relaxed feedback control. The reference [21, Theorem 4.3, Chapter
4] is concerned with a minimization problem. Changing minimization to max-
imization and adapting the notation to our case where there are two controls
and one is Þxed, it shows that the limit m1(x, dα1) �m2(x, dα2) is maximizing,
which is the assertion of the second paragraph of the theorem.

Relaxed controls for the player who chooses last. Suppose that with
m1(·) Þxed, player 2 is allowed to use relaxed controls and not simply relaxed
feedback controls. The following theorem says that the maximization over this

11



larger class will not yield a better result for player 2. The analog of the result
for player 2 choosing Þrst also holds.

Theorem 2.7. (This is [21, Theorem 6.1, Chapter 4], adapted to the notation
of the present case.) Assume (A2.1)�(A2.5), Fix m1(·) and let m2(·;m1) be an
optimal relaxed feedback control and r2(·) an arbitrary relaxed control for player
2. Then for each x ∈ G,

γ(x,m1, r2) ≤ γ(m1,m2(m1)).

Theorem 2.8. Assume (A2.1)�(A2.5). Let player 1 go Þrst. Then it has
an optimal control, denoted by m+

1 (·). The analogous result holds if player 2
chooses Þrst, and its optimal control is denoted by m−(·).

Remark on the proof. The proof is essentially a consequence of [21, Theorem
4.3, Chapter 4], just as Theorem 2.6 was. Let player 1 go Þrst and let {mn

1 (·)}
be a minimizing sequence of relaxed feedback controls. By Theorem 2.6, if
player 1 uses mn

1 (·) then player 2 would use the (maximizing) relaxed feedback
control m2(·;mn

1 ). Following the method of the reference that was used to prove
Theorem 2.6, take a weakly convergent subsequence of the sequence of measures
on the Borel sets of G × U that is deÞned by mn

1 (x, dα1)m2(x, dα2;m
n
1 )dx.

and denote the limit by m+
1 (x, dα1) �m2(x, dα2)dx. Any weak sense limit must

have this form, where the m+
1 (·) and �m2(·) are relaxed feedback controls. For

notational simplicity, let n index the weakly convergent subsequence. Then,
we must have mn

1 (x, ·) ⇒ m+
1 (x, ·) and m2(x, ·;mn

1 ) ⇒ �m2(x, ·) for almost all
x ∈ G.
We need to show that m+

1 (·) is optimal for player 1 if it chooses Þrst, and
that it can be supposed that �m2(·) = m2(·;m+

1 ). Since {mn
1 (·)} is minimiz-

ing for player 1 when it chooses Þrst, γ(mn
1 ,m2(m

n
1 )) → γ̄+. Suppose that

γ̄+ < supm2
γ(m+

1 ,m2). Then there is �m2(·) such that γ̄+ < γ(m+
1 , �m2). Now,

let player 2 use �m2(·) instead of m2(·;mn
1 ) for large n. Since the sequence de-

Þned by mn
1 (x, dα1) �m2(x, dα2)dx converges weakly to the measure deÞned by

m+
1 (x, dα1) �m2(x, dα2)dx, Theorem 2.6 implies that γ(mn

1 , �m2)→ γ(m+
1 , �m2) >

γ̄+. This contradicts the fact that {mn
1 (·)} is minimizing, since it implies that

there is ² > 0 such that γ(mn
1 , �m2) ≥ γ̄+ + ² for large n. Thus m+

1 (·) is optimal
for player 1 if it chooses Þrst. Since γ̄+ = γ(m+

1 , �m2), without loss of generality
we can suppose that �m2(·) = m2(·;m+

1 ).

Remark on smooth nearly optimal controls. In Section 4 we will need the
fact that the optimal relaxed feedback controls for either player can be smoothed
with little loss. In particular, suppose that player 1 chooses Þrst, let ² > 0, and
replace m+

1 (·) by the smoothed m+
1,²(·) as deÞned above Theorem 2.3. It is true

that
lim
²→0

sup
m2

γ(m+
1,²,m2) = γ̄

+. (2.14)
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To prove (2.14), suppose that it does not hold in that there is δ > 0 such that

lim
²→0

sup
m2

γ(m+
1,²,m2) ≥ γ̄+ + δ. (2.15)

Then there are m2,²(·) such that γ(m+
1,²,m2,²) ≥ γ̄+ + δ/2 for all small ² >

0. Let ² index a weakly convergent subsequence of m+
1,²(x, dα1)m2,²(x, dα2)dx.

The limit can be written as m+
1 (x, dα1) �m2(x, dα2)dx for some relaxed feedback

control �m2(·). By Theorem 2.6, γ(m+
1,²,m2,²) → γ(m+

1 , �m2) ≥ γ̄+ + δ/2, a

contradiction to the optimality ofm+
1 (·) for player 1 if it chooses Þrst. Obviously,

there is an analog if player 2 chooses Þrst.

3 Convergence of the Numerical Procedure

Discuss the connection.

3.1 The Markov Chain Approximation Method

The numerical method to be employed is the Markov chain approximation
method of [19, 20, 22]. The approximating processes are the same. But the
numerical problem to be solved is an ergodic cost problem for a Markov chain.
The method approximates the system process (2.4) by a discrete parameter Þ-
nite state controlled Markov chain that is �locally consistent� with (2.4). The
cost function is also approximated and the game problem is then solved. Some
basic facts from [22] concerning the procedure will now be stated. Let h denote
the approximation parameter. Many methods for getting suitable approximat-
ing chains are in the references (e.g., see [22, Chapter 5]). The approximating
chain and local consistency conditions are the same for the game problems of
this paper. In the present case, where σ(x)σ0(x) is uniformly positive deÞnite,
for each small Þxed value of h the constructed chains can be selected to be
ergodic for each control [22, Chapter 7]) and this will be assumed to be the
case. In fact, the chains can be chosen such that for each small h, the rate of
convergence of the transition functions to the invariant measure (as time goes
to inÞnity) will be uniform in the control. See [22, Chapter 7] for a discussion
of the setup and convergence for the pure control problem.
To construct the approximation, one Þrst deÞnes Sh, a discretization of IR

r.
For example, Sh might be a regular h−grid. The precise requirements are quite
weak and it is only the points in G and their immediate neighbors that are of
interest. The state space for the chain is divided into two parts. The Þrst part
is Gh = G ∩ Sh, on which the chain approximates the diffusion part of (2.4). If
the chain tries to leave Gh, then it is returned immediately, consistently with
the local reßection direction. Thus, deÞne ∂G+h to be the set of points not in
Gh to which the chain might move in one step from some point in Gh. The set
∂G+h is an approximation to the reßecting boundary. The use of ∂G

+
h simpliÞes

the analysis and allows us to get a reßection process zh(·) that is analogous to
z(·).
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Local consistency on Gh. Let uhn = (uh1,n, u
h
2,n) denote the controls used

at step n for the approximating chain ξhn. Let E
h,α
x,n (respectively, covarh,αx,n)

denote the expectation (respectively, the covariance) given all of the data to
step n, when ξhn = x, u

h
n = α. Then the chain satisÞes the following consistency

condition. There is ∆th(x,α) = ∆th → 0 (it does not depend on (x,α) for
x ∈ G) such that

Eh,αx,n
£
ξhn+1 − x

¤
= b(x,α)∆th + o(∆th),

covarh,αx,n
£
ξhn+1 − x

¤
= a(x)∆th + o(∆th), a(x) = σ(x)σ0(x),

kξhn+1 − ξnhk ≤ K1h,

(3.1)

for some real K1. The o(∆t
h) terms are uniform in (x,α). Let P h(x, y|α1,α2) =

P h(x, y|α) denote the one-step transition probabilities. With the methods in
[22], ∆th is obtained automatically as a byproduct of getting the P h(x, y|α),
and it is used as an interpolation interval. More generally, ∆th can depend on
x,α. But for theoretical purposes for the ergodic cost problem, the problem is
rescaled to get constant intervals. See the discussion in [22, Chapter 7]. By
(3.1), in G the conditional mean Þrst two moments of ξhn+1 − ξhn are close to
those of the differences of the solution to (2.4).
The Þrst two lines of (3.1) give the conditional moments for any Þxed control

values α = (α1,α2). Suppose that the control is chosen at random, depending
only on the current state (i.e., it is randomized feedback). Letmh

i (x, dαi) denote
the associated probability, conditioned on the past and on the current state
value x, and deÞne mh(x, dα) = mh

1 (x, dα1)m
h
2 (x, dα2). Then the transition

probability is Z
U

P h(x, y|α1,α2)mh
1 (x, dα1)m

h
2 (x, dα2).

The Þrst two lines of (3.1) are now replaced by

Eh,m
h

x,n

£
ξhn+1 − x

¤
= bmh(x)∆th + o(∆th),

covarh,m
h

x,n

£
ξhn+1 − x

¤
= a(x)∆th + o(∆th), a(x) = σ(x)σ0(x).

(3.2)

Thus, the forms are the same as if relaxed feedback controls were used. Although
the actual sample paths would differ, the transition probabilities are the same
for the randomized and the relaxed feedback forms.

Local consistency on ∂G+
h . From points in ∂G+h , the transitions of the chain

are such that they move to Gh, with the conditional mean direction being a
reßection direction at x. More precisely,

lim
h→0

sup
x∈∂G+

h

distance(x,Gh) = 0, (3.3)

and there are θ1 > 0 and θ2(h)→ 0 as h→ 0 such that for all x ∈ ∂G+h ,
Eh,αx,n

£
ξhn+1 − x

¤ ∈ {aγ : γ ∈ d(x), θ2(h) ≥ a ≥ θ1h} ,
∆th(x,α) = 0 for x ∈ ∂G+h .

(3.4)
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The last line of (3.4) says that the reßection from states on ∂G+h is instantaneous.
Without loss of generality, we can suppose that the transition probabilities are
continuous in the control variables for each x (see [22, Chapter 5] for typical
methods of construction).

Continuous time interpolation. Only the discrete time chain ξhn is needed for
the numerical computations. But, for the proofs of convergence, the chain must
be interpolated into a continuous time process which approximates x(·). The
interpolation intervals are suggested by the ∆th(·) in (3.1) and (3.4). We will
use a Markovian interpolation, called ψh(·). Let {∆τhn , n <∞} be conditionally
mutually independent and �exponential� random variables in that

P h,αx,n

©
∆τhn ≥ t

ª
= e−t/∆t

h(x,α).

Note that ∆τhn = 0 if ξ
h
n is on the reßecting boundary ∂G

+
h . DeÞne τ

h
0 = 0, and

for n > 0, set τhn =
Pn−1

i=0 ∆τ
h
i . The τ

h
n will be the jump times of ψ

h(·). Now
deÞne ψh(·) and the interpolated reßection processes by

ψh(t) = x(0) +
X
τh

i+1
≤t
[ξhi+1 − ξhi ],

Zh(t) =
X
τh

i+1
≤t
[ξhi+1 − ξhi ]I{ξh

i
∈∂G+

h
},

zh(t) =
X
τh

i+1
≤t
Ehi [ξ

h
i+1 − ξhi ]I{ξh

i ∈∂G+
h
}.

DeÞne the continuous time interpolations uhi (·) of the controls analogously. Let
rhi (·) denote the relaxed control representation of uhi (·). The process ψh(·) is a
continuous time Markov chain. When the state is x and control pair is α, the
jump rate out of x ∈ Gh is 1/∆th(x,α). So the conditional mean interpolation
interval is ∆th(x,α); i.e., Eh,αx,n [τ

h
n+1 − τhn ] = ∆th(x,α).

DeÞne �zh(·) by Zh(t) = zh(t) + �zh(t). This representation splits the effects
of the reßection into two parts. The Þrst is composed of the �conditional mean�
parts Ehi [ξ

h
i+1 − ξhi ]I{ξh

i
∈∂G+

h
}, and the second is composed of the perturbations

about these conditional means [22, Section 5.7.9]. Both components can change
only at t where ψh(t) can leave Gh. Suppose that at some time t, Z

h(t) −
Zh(t−) 6= 0, with ψh(t−) = x ∈ Gh. Then by (3.4), zh(t) − zh(t−) points in
a direction in d(Nh(x)) where Nh(x) is a neighborhood with radius that goes
to zero as h → 0. The process �zh(·) is the �error� due to the centering of
the increments of the reßection term about their conditional means and has
bounded (uniformly in x, h) second moments and it converges to zero, as will
be seen in Theorem 3.1. By (A2.1), (A2.2), and the local consistency condition
(3.4), we can write (modulo an asympotically negligible term)

zh(t) =
X
i

diy
h
i (t),
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where yhi (0) = 0, and y
h
i (·) is nondecreasing and can increase only when ψh(t)

is arbitrarily close (as h→ 0) to the ith face of ∂G.

A representation for ψh(·). The process ψh(·) has a representation which
resembles (2.4), and is useful in the convergence proofs. Let ξh0 = x. By [22,
Sections 5.7.3 and 10.4.1], we can write

ψh(t) = x +

Z t

0

b(ψh(s), uh(s))ds

+

Z t

0

σ(ψh(s))dwh(s) + Zh(s) + ²h(s),

(3.5)

where ψh(t) ∈ G. The process ²h(·) is due to the o(·) terms in (3.1) and is asymp-
totically unimportant in that, for any T , limh supx,uh sups≤T Eh,u

h

x |²h(s)|2 = 0.
The process wh(·) is a martingale with respect to the Þltration induced by
(ψh(·), uh(·), wh(·)), and converges weakly to a standard (vector-valued) Wiener
process. The wh(t) is obtained from {ψh(s), s ≤ t}. All of the processes in (3.5)
are constant on the intervals [τhn , τ

h
n+1).

Let |zh|(T ) denote the variation of the process zh(·) on the time interval
[0, T ]. Then we have the following theorem from [22].

Theorem 3.1. (Theorem 11.1.3 and (5.7.5)][22].) Assume (A2.1), (A2.2), the
local consistency conditions, and let b(·) and σ(·) be bounded and measurable.
Then for any T < ∞, there are K2 < ∞ and δh, where δh → 0 as h → 0, and
which do not depend on the controls or initial condition, such that

E
¯̄
zh

¯̄2
(T ) ≤ K2, (3.6)

E sup
s≤T

¯̄
�zh(s)

¯̄2
= δhE

¯̄
zh

¯̄
(T ). (3.7)

Owing to the fact that the reßection directions at any corner or edge are linearly
independent, the inequalities hold for yh(·) replacing zh(·).

The cost function and upper and lower values for the discrete game.
Relaxed feedback controls, when applied to the Markov chain, are equivalent
to randomized controls. Let uh(·) = (uh1 (·), uh2 (·)) be feedback controls for the
approximating chain. Then the cost is

γhT (x, u
h) = γhT (x, u

h
1 , u

h
2 ) =

1

T
Eh,u

h

x

Z T

0

kuh(ψh(s))ds+ Eh,u
h

x

c0yh(T )
T

,

γh(uh) = limT γ
h
T (x, u

h).
(3.8)

Now suppose that mh(·) represents a randomized control (as discussed above
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(3.2)). Then the cost function can be written as

γhT (x,m
h) = γhT (x,m

h
1 ,m

h
2 ) =

1

T
Eh,m

h

x

Z T

0

kmh(ψh(s))ds+ Eh,m
h

x

c0yh(T )
T

,

γh(mh) = limT γ
h
T (x,m

h).
(3.9)

With the relaxed feedback control representation of an ordinary feedback con-
trol, (3.8) is a special case of (3.9). Also, we can always take the controls in
(3.9) to be randomized feedback.
Suppose that player 1 chooses its control Þrst and uses the relaxed feedback

(or randomized feedback) control mh
1 (·). Then player 2 has a maximization

problem for a Þnite state Markov chain. The approximating chain is ergodic for
any feedback control, whether randomized or not. Then, since the transition
probabilities and cost rates are continuous in the control of the second player,
the optimal control of the second player exists and is a pure feedback control
(not randomized) [8, volume 2], [25]. The cost does not depend on the initial
condition. The analogous situation holds if player 2 chooses its control Þrst.
These facts will be used in the next theorem. We use mh

i (·) to denote either a
randomized feedback, relaxed feedback, or the relaxed feedback representation
of an ordinary feedback control. DeÞne the upper and lower values, resp.:

γ̄+,h = inf
mh
1

sup
mh
2

γh(mh
1 ,m

h
2 ),

γ̄−,h = sup
mh
2

inf
mh
1

γh(mh
1 ,m

h
2 ).

Under our hypotheses, the upper and lower values might be different, although
Theorem 3.2 says that they converge to the same value asympotically. If the
dynamics are separated in the sense that P h(x, y|α) can be written as a function
of (x, y,α1) plus a function of (x, y,α2), then γ̄

+,h = γ̄−,h. [The proof is similar
to that giving the analogous result in Section 4, except that the state space is
discrete here.] One can choose the transition probability so that it is separated,
if desired.

3.2 Convergence of the Numerical Procedure

Theorem 3.2. Assume (A2.1)�(A2.5) and suppose that1

γ̄+ = γ̄− = γ̄. (3.10)

Then
γ̄− ≤ lim inf

h
γ̄−,h ≤ lim sup

h
γ̄+,h ≤ γ̄+. (3.11)

Hence
lim
h
γ̄+,h = lim

h
γ̄−,h = γ̄ (3.12)

1Equation (3.10) will be proved in the next section
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and both the upper and lower values for the numerical approximation converge
to the value for the original game.

Proof. Let player 1 choose its control Þrst and let ² > 0. Let m+
²,1(·) be an

²-smoothing of the optimal control m+
1 (·) for player 1, when it chooses Þrst, as

discussed at the end of Section 2. That discussion implies that, given δ > 0,
there is ² > 0 such thatm+

1,²(·) is δ-optimal for player 1 for the original problem.
Now, let player 1 use m+

1,²(·) on the approximating chain, either as a randomized
feedback or a relaxed feedback control. Given that player 1 chooses Þrst and
uses m+

1,²(·), we have a simple control problem for player 2. As noted above,
the optimal control for player 2 exists and is pure feedback, and we denote it
by �uh2 (·), with relaxed feedback control representation �mh

2 (·).
By the deÞnition of the upper value,

γ̄+,h ≤ sup
uh
2

γh(m+
1,², u

h
2 ) = sup

mh
2

γh(m+
1,²,m

h
2 ) = γ

h(m+
1,², �u

h
2 ), (3.13)

where uh2 (·) denotes an arbitrary ordinary feedback control, and mh
2 (·) an ar-

bitrary randomized feedback control. The maximum value γh(m+
1,², �u

h
2 ) of the

control problem for player 2 with player 1�s control Þxed at m+
1,²(·) does not

depend on the initial condition. Hence, without loss of generality, the cor-
responding continuous time interpolation ψh(·) can be considered to be sta-
tionary. Then, using the continuity in (x,α2) of

R
U1
b(x,α)m+

1,²(x, dα1) and

of
R
U1
k(x,α)m+

1,²(x, dα1) (and replacing the minimization problem by a maxi-

mization problem), yields [22, Theorem 3.1, Chapter 11] that there is a relaxed
control �r2(·) for the original problem such that:2

lim sup
h

γ̄+,h ≤ lim sup
h

γh(m+
1,², �u

h
2 ) = γ(m

+
1,², �r2) ≤ γ̄+ + δ. (3.14)

The last inequality of (3.14) follows from Theorem 2.7 and the δ-optimality of
m+
1,²(·) in the class of relaxed feedback controls for player 1 if it chooses Þrst.
Now, let player 2 choose Þrst, Then there is an analogous result with analo-

gous notation: In particular, given δ > 0, there is an ² > 0 and an ²−smoothing
m−
2,²(·) of the optimal control, and a relaxed control �r1(·) for the original problem

(2.4) such that

lim inf
h

γ̄−,h ≥ lim inf
h

γh(�uh1 ,m
−
2,²) = γ(�r2,m

−
2,²) ≥ γ̄− − δ. . (3.15)

Hence, since δ is arbitrary, (3.11) holds. This, with (3.10), yields the theorem.

2In [22, Theorem 3.1, Chapter 11], the symbol m(·) is used for a relaxed control and not
a relaxed feedback control. That reference does not use relaxed feedback controls.
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4 Existence of the Value of the Game

An approach to the proof. The existence of the value, namely (3.10), will
be proved in this section. Before proceeding with the proof, we will motivate
what will be needed by outlining a tentative approach. The outline is purely
formal. But, later, it will be seen that the method can be carried out.
Suppose for the moment that the game for the numerical approximation has

a value in that γ̄+,h = γ̄−,h, and let there be controls controls mh
1 (·),mh

2 (·)
for the numerical method (written in relaxed feedback form) which attain the
value, no matter who chooses Þrst. I.e., mh

i (·) is optimal for player i whether it
chooses its control Þrst or last. Thus,

γ̄+,h = γ̄−,h = γ̄h = γh(mh
1 ,m

h
2 ). (4.1)

Suppose also that there are relaxed feedback controls �mi(·) such that, for some
subsequence of h→ 0,

mh
1 (x, dα1)m

h
2 (x, dα2)dx⇒ �m1(x, dα1) �m2(x, dα2)dx. (4.2)

Finally, suppose that for any sequence (indexed by h → 0) of relaxed feedback
controls {mh

i (·)}, i = 1, 2, for which mh
1 (x, dα1)m

h
2 (x, dα2)dx converges weakly

to, say, m1(x, dα1)m2(x, dα2)dx, we have the convergence of the costs

γh(mh
1 ,m

h
2 )→ γ(m1,m2). (4.3)

Then by (3.11) it follows that

γ̄− ≤ γ( �m1, �m2) ≤ γ̄+.
We claim that, under the above hypotheses, the limit control �mi(·) is op-

timal for player i if it chooses Þrst. To prove this claim one can proceed as
follows. Suppose that �m1(·) is not optimal for player 1 if it chooses Þrst,
in that supm2

γ( �m1,m2) > γ̄+. Then there are δ > 0 and �m2(·) such that
γ( �m1, �m2) ≥ γ̄+ + 2δ. Following the approach in Theorem 3.2, for ² > 0 let
�m2,²(·) be an ²-smoothing of �m2(·). Then, for small ² > 0, γ( �m1, �m2,²) ≥ γ̄++δ.
Then apply �m2,²(·) to the approximating controlled process ψh(·) to get a con-
tradiction to the optimality of (mh

1 (·),mh
2 (·)) for small h. Such a contradiction

implies that supm2
γ( �m1,m2) ≤ γ̄+. But, the strict inequality < is impossi-

ble due to the deÞnition of the upper value. Hence supm2
γ( �m1,m2) = γ̄

+, as
desired.
To get the desired contradiction to the optimality of (mh

1 (·),mh
2 (·)) for small

h, let h index a weakly convergence subsequence of the measures deÞned in the
left side of (4.2). The limit must be of the form on the right side of (4.2) for some
�mi(·), i = 1, 2, where mh

i (x, ·) ⇒ �mi(x, ·) for almost all x ∈ G, i = 1, 2. Apply
the control pair (mh

1 (·), �m2,²(·)) to ψh(·). Then (along the chosen subsequence
of h)

mh
1 (x, dα1) �m2,²(x, dα2)dx⇒ �m1(x, dα1) �m2,²(x, dα2)dx.
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Since (4.3) implies that γh(mh
1 , �m2,²)→ γ( �m1, �m2,²), for small enough ² and

h, we must have γh(mh
1 , �m2,²) ≥ γ̄+,h + δ/2, which is a contradiction to the

optimality of mh
1 (·). We can now conclude that

sup
m2

γ( �m1,m2) = γ̄
+ = γ( �m1, �m2). (4.4)

Thus, if player 1 chooses its control Þrst and uses its optimal control �m1(·), then
�m2(·) is optimal for player 2. By repeating the procedure with the order of the
players reversed, we can Þnally conclude that, if (4.1)�(4.3) hold (at least for
some subsequence of h), then (3.10) holds.
The approach outlined above for proving (3.10) is attractive. But it cannot

work for the class of processes ψh(·) which are used for the actual Markov chain
approximation numerical method in Section 3, since for each h, the state space
is only some Þnite set. Hence, the controls are not deÞned for all x ∈ G, and
the transition function is not mutually absolutely continuous with respect to
Lebesgue measure. However, in this section we are concerned only with proving
(3.10), and not with the numerical procedure. Thus, we can use the approach
which was outlined above for an appropriately chosen alternative approximating
process for which (3.11) also holds. A discrete time process will be constructed
for which (3.11) and (4.1)�(4.3) hold. This process is to be used solely to prove
(3.10). It is not suitable for numerical solution. For future use, note that if
the mh

i (·), i = 1, 2, are relaxed feedback controls for each h and the mh
i (x, ·) are

deÞned for almost all x, then there is always a subsequence and relaxed feedback
controls �mi(·), i = 1, 2, for which (4.2) holds.

An alternative approximating process. To get the approximating process,
time will be discretized but not space. Let ∆ > 0 denote the time discretiza-
tion interval. We need to construct process whose n-step transition functions
P∆(x, n∆, ·|α) have densities that are mutually absolutely continuous with re-
spect to Lebesgue measure, uniformly in (∆, control, t0 ≤ n∆ ≤ t1) for any
0 < t0 < t1 <∞.
Consider the following procedure. Start with the process (2.4), but with the

controls held constant on the intervals [l∆, l∆ +∆), l = 0, 1, . . .. The discrete
approximation will be the samples at times l∆, l = 0, 1, . . .. The controls are
chosen at t = 0, with one of the players selected to choose Þrst, just as for the
original game. Let u∆i (·), i = 1, 2, denote the controls, if in pure feedback (not
relaxed or randomized) form. In relaxed control notation write the controls as
m∆
i (·), i = 1, 2. These controls are used henceforth, whenever control is applied.

The chosen controls are applied at random as follows. At each time, only one
of the players will use its control. At each time l∆, l = 0, 1, . . . , ßip a fair coin.
With probability 1/2, player 1 will use its control during the interval [l∆, l∆+∆)
and player 2 not. Otherwise, player 2 will use its control, and player 1 not. The
values of the controls during the interval will depend on the state at its start.
The optimal controls will be feedback. DeÞne x∆(t) = x(l∆) on [l∆, l∆+∆). For
pure (not randomized or relaxed) feedback controls u∆i (·), i = 1, 2, the system

20



is
dx = b∆(x, u∆(x∆))dt+ σ(x)dw + dz, (4.5a)

where the value of b∆(·) is determined by the coin tossing randomization proce-
dure at the times l∆, l = 0, 1 . . ., In particular, at t ∈ [l∆, l∆+∆), b∆(x,m∆(x∆))
is 2bi(x(t), u

∆
i (x

∆(t))), for either i = 1 or i = 2 according to the random choice
made at l∆. If the control is relaxed feedback, then write the model as

dx = b∆(x,m∆(x∆))dt+ σ(x)dw + dz, (4.5b)

where at t ∈ [l∆, l∆+∆), b∆(x,m∆(x∆)) is 2
R
Ui
bi(x(t),αi)m

∆
i (x(l∆), dαi), for

either i = 1 or i = 2 according to the random choice made at l∆. Following the
Girsanov transformation based usage in (2.4), the Wiener process w(·) should be
indexed by the controls u∆(·) or m∆(·), but we omit it for notational simplicity.
Let E∆,i,αi

x(l∆) denote the expectation of functionals on [l∆, l∆+∆) when player

i acts on that interval and uses control action αi. Let P
∆
i (x, ·|αi) denote the

the measure of x(∆), given that the initial condition is x, player i acts and uses
control action αi. The conditional mean increment in the total cost function on
the time interval [l∆, l∆+∆) is, for u∆i (x(l∆)) = αi, i = 1, 2,

C∆(x(l∆),α) =

1

2

X
i=1,2

E∆,i,αi

x(l∆)

"Z l∆+∆

l∆

2ki(x(s),αi))ds+ c
0 (y(l∆+∆)− y(l∆))

#
.

(4.6)
Note that C∆(x,α) is the sum of two terms, one depending on (x,α1) and the
other on (x,α2). The weak sense uniqueness of the solution to (2.4) for any
control and initial condition implies the following result.

Theorem 4.1. Assume (A2.1)�(A2.5). Then for each ∆ > 0, C∆(·) is con-
tinuous and the measures P∆i (·) are weakly continuous in that for any bounded
and continuous real-valued function f(·), R

f(y)P∆i (x, dy|α) and C∆(x,α) are
continuous in (x,α).

The reason for choosing the acting controls at random at each time l∆, l =
0, 1, . . . , is that the randomization �separates� the cost rates and dynamics in
the controls for the two players. By separation, we mean that both the cost
function and transition function are the sum of two terms, one depending on
(x,α1) and the other on (x,α2). This separation is important since it gives the
�Isaacs condition � which is needed to assure the existence of a value for the
game for the discrete time process, as seen in Theorem 4.2. Proceeding formally
at this point, let µ∆m∆(·) denote the invariant measure under the control m∆(·).
DeÞne the stationary cost increment

λ∆(m∆) =

Z
G

µ∆m∆(dx)

·Z
U

C(x,α)m∆(x, dα)

¸
.

Note that, due to the scaling, λ∆(m∆) is an average over an interval of length
∆: hence λ∆(m∆) = ∆γ∆(m∆). Suppose for the moment that there is an
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optimal control m∆
i (·), i = 1, 2, for each ∆ > 0 and deÞne λ

∆
= λ∆(m∆). The

�separation� is easily seen from the formal Isaacs equation for the value of the
discrete time problem, namely,

λ̄∆ + g∆(x) =

inf
α1
sup
α2

·
1

2

Z
g∆(x+ y)P∆1 (x, dy|α1) +

1

2

Z
g∆(x+ y)P∆2 (x, dy|α2) + C∆(x,α)

¸
,

(4.7)
where g∆(·) is the relative value or potential function.

Theorem 4.2. Assume (A2.1)�(A2.5). Then (3.10) holds.

Proof. We will work with the approximating process x(l∆), l = 0, 1, . . . just
described, where x(·) is deÞned by (4.5) with the piecewise constant control, and
verify the conditions imposed in the formal discussion at the beginning of the
section. Results from [21] will be exploited whenever possible. The result (3.11)
holds (with ∆ replacing h) for the same reasons that it holds for the numerical
approximating process of the last section. For any sequence of relaxed controls
m∆
i (·), i = 1, 2, there is a subsequence (indexed by ∆) and �m∆

i (·), i = 1, 2, such
that

m∆
1 (x, dα1)m

∆
2 (x, dα2)dx⇒ �m1(x, dα1) �m2(x, dα2)dx.

One needs to show the analog of (4.3), namely (along the same subsequence,
indexed by ∆)

γ∆(m∆)→ γ( �m). (4.8)

The process {x(l∆)} based on (4.5) inherits the crucial properties of (2.4), as
developed in [21, Chapter 4] and summarized in Subsection 2.2. In particular,
for each positive ∆ and n the n−step transition probability P∆(x, n∆, ·|m∆)
is mutually absolutely continuous with respect to Lebesgue measure, uniformly
in the control and in x ∈ G, n∆ ∈ [t0, t1], for any 0 < t0 < t1 < ∞, and
it is a strong Feller process. The invariant measures are mutually absolutely
continuous with respect to Lebesgue measure, again uniformly in the control.
Then the proof of (4.8) is very similar to the corresponding proof for (2.4) given
in [21, Theorem 4.3, Chapter 4] and the details are omitted. There are controls

m∆,+
1 (·) which are optimal if player 1 chooses its control Þrst (i.e., for the upper

value), and m∆,−
2 (·) which are optimal if player 2 chooses its control Þrst (i.e.,

for the lower value).
We will concentrate on showing the analog of (4.1), namely,

γ̄+,∆ = γ̄−,∆. (4.9)

By the (uniform in the controls) mutual absolute continuity of the one step
transition probabilities for each ∆ > 0, the process satisÞes a Doeblin condition,
uniformly in the control. Hence it is uniformly ergodic, uniformly in the control)
[23, Theorems 16.2.1 and 16.2.3]. In particular it follows that there are constants
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K∆ and ρ∆, with ρ∆ < 1 such that

sup
x,m∆

¯̄̄̄
E∆,m

∆

x

Z
U

C(x(n∆),α)m∆(x(n∆), dα)− λ∆(m∆)

¯̄̄̄
≤ K∆ [ρ∆]

n
,

where λ∆(m∆) is deÞned above (4.7).
DeÞne the relative value function

g∆(x,m∆) =
∞X
l=0

h
E∆,m

∆

x C(x(l∆),m∆(x(n∆))− λ∆(m∆)
i
.

The summands converge to zero exponentially, uniformly in (x,m∆(·)). Also,
by the strong Feller property the summands (for l > 0) are continuous. DeÞne
g∆,+(x) = g∆(x,m∆,+) and g∆,−(x) = g∆(x,m∆,−). Then, a direct evaluation
yields

λ̄∆,+ + g∆,+(x) = E∆,m
∆,+

x

£
g∆,+(x(∆)) + C∆(x,m∆,+(x))

¤
. (4.10)

Next we show that under m∆,+
1 (·) (and for almost all x)

λ̄∆,++ g∆,+(x) = sup
α2

·
E
∆,m∆,+

1 ,α2
x g∆,+(x(∆)) + C∆(x,m∆,+

1 (x),α2)

¸
. (4.11)

By (4.10), (4.11) holds for almost all x with the equality replaced by the in-
equality ≤. The function in brackets in (4.11) is continuous in α2, uniformly in
x ∈ G. Suppose that (4.11) does not hold on a set A ⊂ G of Lebesgue measure
l(A) > 0. Let �m∆

2 (·) denote the (relaxed feedback control representation of the)
maximizing control in (4.11). Then

λ̄∆,+ + g∆,+(x) ≤
·
E
∆,m∆,+

1 , �m∆
2

x g∆,+(x(∆)) + C∆(x,m∆,+
1 (x), �m∆

2 (x))

¸
,

(4.12)
with strict inequality for x ∈ A. Now, integrate both sides of (4.12) with
respect to the invariant measure µ∆{m∆,+

1 , �m∆
2 }
(·) corresponding to the control

(m∆
1 (·), �m∆

2 (·)) and note thatZ
g∆,+(x)µ∆{m∆,+

1 , �m∆
2 }
(dx) =

Z ·
E
∆,m∆,+

1 , �m∆
2

x g∆,+(x(∆))

¸
µ∆{m∆,+

1 , �m∆
2 }
(dx).

(4.13)
Also, by deÞnition,

λ∆(m∆,+
1 , �m∆

2 ) =

Z
C∆(x,m∆,+

1 (x), �m∆
2 (x))µ

∆
{m∆,+

1 , �m∆
2 }
(dx).

Then, canceling the terms in (4.13) from the integrated inequality and using the
fact that the invariant measure is mutually absolutely continuous with respect
to Lebesgue measure yields λ̄∆,+ < λ∆(m∆,+

1 , �m∆
2 ), which contradicts the opti-

mality of m∆,+
2 (·) for player 2, if player 1 selects its control Þrst. Thus, (4.11)

holds.
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Next, given that (4.11) holds, let us show that for almost all x

λ̄∆,+ + g∆,+(x) = inf
α1
sup
α2

E∆,α1,α2x

£
g∆,+(x(∆)) + C∆(x,α1,α2)

¤
, (4.14)

By (4.11), this last equation holds if m∆,+
1 (·) replaces α1 and the inf is dropped.

Suppose that (4.14) is false. Then there are A ∈ G with l(A) > 0 and ² > 0
such that for x ∈ A the equality is replaced by the inequality ≥ plus ², with the
inequality ≥ holding for almost all other x ∈ G. More particularly, let �m∆,+

1 (·)
denote the minimizing control for player 1 in (4.14). Then we have, for almost
all x and any m∆

2 (·),

λ̄∆,+ + g∆,+(x) ≥ E∆, �m∆
1 ,m

∆
2

x

£
g∆,+(x(∆)) + C∆(x, �m∆

1 (x),m
∆
2 (x))

¤
+ ²I{x∈A},

(4.15)
Now, repeating the procedure used to prove (4.11), integrate both sides of (4.15)
with respect to the invariant measure associated with ( �m∆

1 (·),m∆
2 (·)), use the

fact that the invariant measure is mutually absolutely continuous with respect
to Lebesgue measure, u niformly in the controls, and cancel the terms which
are analogous to those in (4.13), to get that

λ̄∆,+ > sup
m∆
2

λ∆( �m∆
1 ,m

∆
2 ).

This implies that m∆,+
1 (·) is not optimal for player 1 if it selects its control Þrst,

a contradiction. Thus, (4.14) holds. The analogous procedure can be carried
out for the lower value where player 2 selects its control Þrst..
Now the fact that the dynamics and cost rate are separated in the control

implies that infα1 supα2 = supα2 infα1 in (4.14). Thus, (4.14) holds with the
order of the sup and inf inverted. By working with the equation (4.14) with the
sup and inf inverted and following an argument similar to that used to prove
(4.14), one can show that λ̄∆,+ = λ̄∆,− and that m∆

i (·) is optimal for player i
whether it selects Þrst or last. The rest of the details are left to the reader.
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