
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

ROUTING IN THE INTERNET USING

PARTIAL LINK STATE INFORMATION

A dissertation submitted in partial satisfaction

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Marcelo Spohn

September 2001

The Dissertation of Marcelo Spohn

is approved:

Professor J.J. Garcia-Luna-Aceves, Chair

Professor Darrell Long

Professor Glen Langdon

Frank Talamantes

Vice Provost and Dean of Graduate Studies

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2001 2. REPORT TYPE

3. DATES COVERED
 00-09-2001 to 00-09-2001

4. TITLE AND SUBTITLE
Routing in the Internet Using Partial Link State Information

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

156

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright c
 by

Marcelo Spohn

2001

Contents

List of Figures v

List of Tables vii

Abstract viii

Acknowledgements x

Dedication xi

1 Introduction 1

1.1 Routing in Wired Networks . 3
1.2 Routing in Wireless Networks . 4
1.3 Organization of the Thesis . 7

2 Adaptive Link-State Routing 9

2.1 Network Model . 10
2.2 Operation of ALP . 11

2.2.1 Information Stored and Exchanged . 14
2.2.2 Validating Updates . 15
2.2.3 Processing Input Events . 16
2.2.4 Electing Designated Routers . 22

2.3 ALP Correctness . 24
2.4 Performance . 31
2.5 Conclusions . 34

3 Source Tree Routing 40

3.1 Updating Routes in Wireless Networks . 42
3.2 STAR Description . 45

3.2.1 Network Model . 45
3.2.2 Overview . 46
3.2.3 Information Stored and Exchanged . 48
3.2.4 Validating Updates . 49
3.2.5 Exchanging Update Messages . 51
3.2.6 Impact of The Link Layer in LORA . 57

iii

3.2.7 Details on The Processing of Input Events 59
3.3 STAR Correctness . 64

3.3.1 Correctness of STAR Under ORA . 64
3.3.2 Correctness of STAR Under LORA . 67

3.4 Performance Evaluation . 70
3.4.1 Simulation Experiments . 70
3.4.2 Comparison with Table-Driven Protocols 71
3.4.3 Comparison with DSR . 74
3.4.4 Comparison with DSR Using Reliable Broadcasts 75
3.4.5 Comparison with DSR Using Rules LORA-1 to LORA-7 77

3.5 Conclusions . 80

4 Neighborhood Aware Source Routing 83

4.1 NSR Description . 85
4.1.1 Overview . 85
4.1.2 Routing Information Maintained in NSR 87
4.1.3 Routing Information Exchanged by NSR 89
4.1.4 Operation of NSR . 91
4.1.5 Using Neighbor IDs in Source Routes 102

4.2 Proof of Correctness . 103
4.3 Performance Evaluation . 108

4.3.1 Protocol Con�guration . 109
4.3.2 Comparison with STAR . 110
4.3.3 Comparison with DSR . 111

4.4 Conclusions . 136

5 Summary and Future Work 137

5.1 Contributions . 137
5.2 Future Work . 140

Bibliography 142

iv

List of Figures

2.1 Topology as seen by routers indicated with �lled circle. Solid lines indicate links
in source graph; dashed lines indicate links in topology graph but not in source
graph. 13

2.2 ALP protocol building modules . 14
2.3 Processing update message msg received from neighbor k 17
2.4 State diagram for a link l . 19
2.5 Input events of the state diagram . 20
2.6 Procedures used to determine to which neighbors a link-state update can be

announced . 24
2.7 Results for links changing cost . 35
2.8 Results for links failing . 36
2.9 Results for links recovering after failure . 37
2.10 Results for nodes failing . 38
2.11 Results for nodes recovering after failure . 39

3.1 An example topology . 47
3.2 Routers running STAR without the last part of LORA-3 being in e�ect. 54
3.3 Routers running STAR with the last part of LORA-3 being in e�ect. 55
3.4 The last part of LORA-3 not always triggers the generation of an update mes-

sage: (a) network topology, and (b) source tree of node c after processing the
failure of link (c; b). 56

3.5 STAR Speci�cation . 60
3.6 STAR Speci�cation (cont.) . 61
3.7 Cumulative distribution of packet delay experienced by data packets 81
3.8 Cumulative distribution of packet delay experienced by data packets 82

4.1 Failure of links (b; c) and (c; d) do not cause the generation of RERR packets
when repairing the source route represented by the links in solid lines 87

4.2 Procedure to determine if X is greater than Y, where X and Y are derived from
Ei or SNi . 94

4.3 Link-state information learned from processing RREQ and RREP packets . . . 96
4.4 Type of repairs that can be applied to a source route in a RREP packet 97
4.5 Type of repairs that can be applied to a source route in a DATA packet 99
4.6 Broken source-routes leading to transmission of RERR packets 100

v

4.7 Using neighbor IDs in source routes . 102
4.8 Cumulative distribution function for the number of control packets generated . 116
4.9 The cumulative distribution function for the percentage of data packets received 117
4.10 The cumulative distribution function for the delay experienced by data packets 118
4.11 The cumulative distribution function for the number of hops traversed by data

packets . 119
4.12 Cumulative distribution function for the number of control packets generated . 120
4.13 A partial view of the cumulative distribution function for the number of control

packets generated . 121
4.14 The cumulative distribution function for the percentage of data packets received 122
4.15 The cumulative distribution function for the delay experienced by data packets 123
4.16 The cumulative distribution function for the number of hops traversed by data

packets . 124
4.17 Number of control packets transmitted using the Nsrc-Ndst pattern 125
4.18 Number of control packets transmitted using the Nsrc-1dst pattern 126
4.19 Number of control packets transmitted using the Nsrc-8dst pattern 127
4.20 Percentage of data packets received using the Nsrc-Ndst pattern 128
4.21 Percentage of data packets received using the Nsrc-1dst pattern 129
4.22 Percentage of data packets received using the Nsrc-8dst pattern 130
4.23 Number of control packets transmitted using the Nsrc-Ndst pattern 131
4.24 Number of control packets transmitted using the Nsrc-1dst pattern 132
4.25 Number of control packets transmitted using the Nsrc-8dst pattern 133
4.26 Percentage of data packets received using the Nsrc-Ndst pattern 134
4.27 Percentage of data packets received using the Nsrc-1dst pattern 135
4.28 Percentage of data packets received using the Nsrc-8dst pattern 136

vi

List of Tables

3.1 Average performance of STAR, ALP, and TOB. 73
3.2 Average performance of STAR and DSR . 76
3.3 Distribution of DATA packets delivered according to the number of hops tra-

versed from the source to the destination . 76
3.4 Performance of STAR and DSR . 78
3.5 Number of hops traversed by data packets (pause time 0) 79
3.6 Changes in link connectivity . 79

4.1 Number of control packets generated by NSR, STAR, and DSR in a 20-node
network . 111

4.2 Percentage of data packets delivered by NSR, STAR, and DSR in a 20-node
network . 111

vii

Abstract

Routing in the Internet Using Partial Link State Information

by

Marcelo Spohn

This thesis focuses on routing in wired and wireless segments of the Internet using

partial link-state information. Although eÆcient algorithms have been proposed based on both

link-state and distance-vector information, link-state routing is more eÆcient than distance-

vector routing when constraints are placed on the paths o�ered to destinations, which is the

case for QoS routing o�ering paths with required delay, bandwidth, reliability, cost, or other

parameters.

We present a new link-state routing protocol for wired internetworks called ALP

(adaptive link-state protocol). In ALP, a router sends updates to its neighbors regarding the

links in its preferred paths to destinations. Each router decides which links to report to its

neighbors based on its local computation of preferred paths. A router running ALP does not

ask its neighbors to delete links; instead, a router simply updates its neighbors with the most

recent information about those links it decides to take out of its preferred paths.

We introduce and analyze two routing algorithms for wireless networks: the source-

tree adaptive routing (STAR) protocol, and the neighborhood-aware source routing (NSR)

protocol. STAR is the �rst example of a table-driven routing protocol that is more eÆcient

than prior table-driven and on-demand routing protocols by exploiting link-state information

to allow paths taken to destinations to deviate from the optimum in order to save bandwidth

without creating loops. NSR is an on-demand routing protocol based on partial topology

information and source routing. STAR is shown to be more eÆcient than the dynamic source

routing (DSR) protocol in small ad hoc networks, and NSR is shown to outperform STAR and

DSR in large wireless networks with mobile nodes.

Acknowledgements

I am indebted to many people for their support, teaching, ideas, encouragement, and

criticism. The friendship and love of my wife, Luci, to whom this thesis is dedicated, was

essential for the successful development of my graduate studies. Thanks \Lu", for helping me

learn.

My sincerest thanks to my advisor J.J. Garcia-Luna-Aceves for all the invaluable

guidance and support he has given me since I arrived in Santa Cruz. I am immensely grateful

to him for leading me to so many good paths, with no loops! His positive attitude, enthusiasm,

good energy, and friendship are an inspiration.

I thank the members of my committee, Professors Glen Langdon and Darrell Long,

for their advice and feedback. I would also like to thank Carol Mullane for her friendly help

and advice.

A big thanks to my fellow \cocos" Brad Smith, Brian Levine, Chane Fullmer, Chris

Parsa, Clay Shields, Ewerton Madruga, Hans-Peter Dommel, Jochen Behrens, Jyoti Raju,

Lichun Bao, Lori Flynn, Mike Parsa, Rodrigo Garces, Soumya Roy, Srinivas Vutukury, and

Tzamaloukas Assimakis for the friendship and intellectually estimulating research environment.

Thanks also to Dave Beyer, John Hight, Takayuki Kaiso, and Thane Frivold from

Rooftop Communications, for their support with the simulation tool used in this thesis. It was

a real pleasure to have the opportunity to work with such enthusiastic and sharp team.

I am particularly indebted to my parents, for all their love and hard work that allowed

my dreams to come true. My grateful thanks mom and dad!

Special thanks are due to the CNPq, a Brazilian agency that funded part of this

work. This work was also supported in part by the Defense Advanced Research Projects

Agency (DARPA) under grant F30602-97-2-0338.

x

To my wife, Luci.

xi

Chapter 1

Introduction

Routing is the network-layer function that selects the paths that data packets traverse

from a source to a destination. The work on this thesis concentrates on routing based on the

Internet Protocol (IP) [44].

The Internet is based on packet switching, which requires the use of routing tables

specifying the next hops to destinations. These tables are maintained by means of distributed

routing algorithms, which must adapt to resource failures and additions, and link cost changes

caused by congestion, for example.

Routing algorithms can be categorized according to the way in which routers obtain

routing information, and according to the type of information they use to compute preferred

paths. In terms of the type of information used by routing protocols, routing protocols can be

classi�ed into link-state protocols and distance-vector protocols. Routers running a link-state

protocol use topology information to make routing decisions; routers running a distance-vector

protocol use distances and, in some cases, path information, to destinations to make routing

decisions. In terms of the way in which routers obtain information, routing protocols have been

1

classi�ed as table-driven and on-demand.In an on-demand routing protocol, routers maintain

path information for only those destinations that they need to contact as a source or relay

of information. In a table-driven algorithm, each router maintains path information for each

known destination in the network and updates its routing-table entries as needed.

Regardless of the way in which routers obtain routing information, or the type of

information they use to compute preferred paths, or the type of network infrastructure they

need to operate on, certain properties are desirable in a routing algorithm. Some of them

are [52]:

� Simplicity: Simple algorithms are preferred for ease of implementation and higher eÆ-

ciency in operational networks.

� Robustness with respect to failures and changing conditions: The algorithm must be

able to adjust the routing decisions when traÆc conditions change or when there is a

resource failure. The algorithm monitors the network constantly and updates the routing

information.

� Stability of the routing decisions: The routing algorithm should adapt smoothly to

changes in operating conditions, i.e., a small change in operating conditions should pro-

vide a comparatively small change in routing decisions.

� Fairness of the resource allocation: Data
ows with the same characteristics should result

in similar packet delay and throughput.

� Optimality of the packet travel times: The routing algorithm should maximize the network

designer's objective function, while satisfying design constraints.

� Loop freedom: At any instant, the paths implied from the routing tables of all hosts taken

together should not have loops. Each router in the path from a source to a destination

2

should be visited only once.

� Convergence characteristics: The time required to converge after a topology change

should not be high. This is required to maintain up-to-date network state information.

� Processing and memory eÆciency: The resources used at each router should be mini-

mal. The computation time spent at a node a�ects the convergence time of the routing

algorithm.

In this dissertation, our objective is to satisfy most of the above mentioned attributes

of routing algorithms, and address routing in wired and wireless networks.

1.1 Routing in Wired Networks

Prior work on routing protocols for wired internetworks is based on table-driven algo-

rithms. Both distance-vector protocols (e.g., BGP [51], IDRP [50], RIP [26], and EIGRP [1])

and link-state protocols (e.g., ISO IS-IS [39] and OSPF [35]) are used in today's Internet. Sev-

eral routing algorithms based on distance vectors have been proposed to eliminate the counting-

to-in�nity problem that prevents the Bellman-Ford algorithm from working eÆciently in large

networks (e.g., [18, 6, 47]) and a number of these algorithms have been shown to outperform

the traditional approach used in implementing link-state routing. Most approaches to link-

state routing are based on topology broadcast [17, 43]. Unfortunately, disseminating complete

link-state information to all routers incurs excessive communication overhead. The link-vector

algorithm (LVA) [19] was recently proposed to avoid the overhead of topology broadcast when

using link-state information. In LVA, each router updates its neighbors with the state of each

of the links it uses to reach a destination through one or more preferred paths, and also informs

them of the links that it stops using to reach destinations. Updates to link states or deletions

3

of links are propagated incrementally, based on the distributed computation of preferred paths

at routers, just like distance information propagates in a distance-vector algorithm.

Although eÆcient algorithms have been proposed based on both link-state and distance-

vector information, link-state routing is more eÆcient than distance-vector routing when con-

straints are placed on the paths o�ered to destinations, which is the case for QoS routing

o�ering paths with required delay, bandwidth, reliability, cost, or other parameters. The com-

munication overhead of a link-state protocol increases to the extent that more parameters

have to be communicated for each link whose state is updated, i.e., the added overhead is at

most linear with the number of link parameters. In contrast, the communication overhead

of a distance-vector protocol grows with the number of combinations of values of the link

parameters needed to de�ne the quality of paths [28].

As the Internet continues to evolve to support QoS routing, obtaining more eÆcient

approaches to link-state routing has become an important design and engineering problem.

We present a new link-state routing protocol for wired internetworks called ALP (adaptive

link-state protocol). In ALP, a router sends updates to its neighbors regarding the links in

its preferred paths to destinations. Each router decides which links to report to its neighbors

based on its local computation of preferred paths. In contrast to LVA, a router does not ask its

neighbors to delete links; instead, a router simply updates its neighbors with the most recent

information about those links it decides to take out of its preferred paths.

1.2 Routing in Wireless Networks

Multi-hop packet-radio networks, or ad hoc wireless networks, consist of mobile hosts

interconnected by routers that can also move. The deployment of such routers is ad hoc and

the topology of the network is very dynamic, because of host and router mobility, signal loss

4

and interference, and power outages. In addition, the channel bandwidth available in ad hoc

networks is relatively limited compared to wired networks, and untethered routers may need

to operate with battery-life constraints.

Most routing algorithms for wireless ad hoc networks obtain routing information

on an on-demand basis. The basic approach of an on-demand routing algorithm consists

of allowing a router that does not know how to reach a destination to send a
ood-search

message to obtain the path information it needs. The �rst routing protocol of this type was

proposed to establish virtual circuits in the MSE network [34], and there are several more

recent examples of this approach (e.g., Ad Hoc On Demand Distance Vector (AODV) [42],

Associativity-Based Routing (ABR) [55], Dynamic Source Routing (DSR) [30], Temporally-

Ordered Routing Algorithm (TORA) [40], Signal Stability-Based Adaptive Routing (SSA)

[13]). Source-tree bridges also use
ood-search packets to obtain source routes from source

to destination. Recently, the Dynamic Source Routing (DSR) protocol has been shown to

outperform many other on-demand routing protocols [11]. On-demand routing protocols di�er

on the speci�c mechanisms used to disseminate
ood-search packets and their responses, cache

the information heard from other nodes' searches, determine the cost of a link, and determine

the existence of a neighbor.

Examples of table-driven algorithms based on distance vectors are the routing protocol

of the DARPA packet-radio network [31], the Destination-Sequenced Distance-Vector protocol

(DSDV) [41], the Wireless Routing Protocol (WRP) [36], the Wireless Internet Routing Pro-

tocol (WIRP) [12], and least-resistance routing protocols [46]. Prior table-driven approaches

to link-state routing in wireless networks are based on topology broadcast. However, dissemi-

nating complete link-state information to all routers incurs excessive communication overhead

in an ad hoc network because of the dynamics of the network and the small bandwidth avail-

5

able. Accordingly, there are link-state routing approaches for packet-radio networks based on

hierarchical routing schemes [49, 48, 10]. The Zone Routing Protocol (ZRP) [25] is a hybrid of

on-demand and table-driven techniques.

A key issue in deciding which type of routing protocol is best for ad hoc networks is

the communication overhead incurred by the protocol. Because data and control traÆc share

the same communication bandwidth in the network, and because untethered routers use the

same energy source to transmit data and control packets, computing minimum-cost (e.g., least

interference) paths to all destinations at the expense of considerable routing-update traÆc is

not practical in ad hoc networks with untethered nodes and dynamic topologies. The routing

protocol used in an ad hoc network should incur as little communication overhead as possible

to preserve battery life at untethered routers and to leave as much bandwidth as possible to

data traÆc.

To date, the debate on whether a table-driven or an on-demand routing approach

is best for wireless networks has assumed that table-driven routing necessarily has to provide

optimum (e.g., shortest-path) routing, when in fact on-demand routing protocols cannot en-

sure optimum paths. The Distance Routing E�ect Algorithm for Mobility (DREAM) [14] was

proposed to address the perceived limitations of prior on-demand and table-driven routing

protocols. DREAM uses node coordinates rather than identi�ers for routing. It disseminates

coordinate information to all nodes and uses directed
ooding to forward data packets to des-

tinations. At each router, a data packet for a given destination is forwarded to all neighbor

routers in the direction of the destination. Another routing approach based on location in-

formation is the Location-Aided Routing (LAR) protocol [33]. LAR is an on-demand routing

protocol that uses location information to reduce the scope of the
ood search needed to obtain

a route to a destination.

6

We introduce and analyze two routing algorithms for wireless networks: the source-

tree adaptive routing (STAR) protocol, and the neighborhood-aware source routing (NSR)

protocol. STAR is the �rst example of a table-driven routing protocol that is more eÆcient

than prior table-driven and on-demand routing protocols by exploiting link-state information

to allow paths taken to destinations to deviate from the optimum in order to save bandwidth

without creating loops. NSR is an on-demand routing protocol based on partial topology

information and source routing.

1.3 Organization of the Thesis

This thesis is organized as follows:

� Chapter 2 presents ALP, a link-state table-driven routing protocol based on partial

topology information. We show through simulations that ALP has better performance

than the state of the art routing algorithms used in today's wired Internet.

� Chapter 3 describes STAR, a link-state table-driven routing protocol based on partial

topology information suitable for wireless mobile networks. Two variants of STAR are

investigated. In the �rst variant, the routing protocol attempts to update routing tables

as quickly as possible to provide paths that are optimum with respect to a de�ned metric.

In contrast, in the second variant, the routing protocol attempts to provide viable paths

according to a given performance metric, which need not be optimum, to incur the least

amount of control traÆc.

� Chapter 4 presents NSR, an on-demand routing protocol based on partial link-state

information that scales well in wireless mobile networks, outperforming Link-Cache DSR,

the best performing routing protocol.

7

� Chapter 5 gives a summary of this work, together with some conclusions and directions

for future research.

8

Chapter 2

Adaptive Link-State Routing

In the adaptive link-state protocol (ALP), a router sends updates to its neighbors

regarding the links in its preferred paths to destinations. Each router decides which links to

report to its neighbors based on its local computation of preferred paths.

Because routers have di�erent topology maps, routers may have to erase the records

of links that are no longer used, so that no router in the network attempts to use any link

on the basis of old link-state information distributed about that link when it was being used

by other routers. In all prior link-state protocols, any given link has only two local states: a

router either has or does not have a record for the link. In contrast, ALP enables the partial

dissemination of link-state information by assigning one of three di�erent labels to any link

record. A router may not have a local record of a link or decides to erase its local record of

the link (an implicit label of 0), or may be using the link to reach some destination (label 1),

or may have stoped using the link to reach a destination but has not asked its neighbors to

forget about the link (label 2).

ALP validates link states using time stamps and a router accepts only more recent

9

link-state updates. The state of failed links is erased by aging only. Furthermore, when multiple

routers are connected through a broadcast medium (e.g., a LAN), they elect distributedly a

designated router for each link reported over the broadcast medium; this reduces the number

of updates per link sent over a given network.

Unlike OSPF or any of the hierarchical link-state routing schemes proposed to date

[10], ALP does not require backbones, the dissemination of complete cluster topology within

a cluster, or the dissemination of the complete inter-cluster connectivity among clusters. Fur-

thermore, ALP can be used with distributed hierarchical routing schemes proposed in the past

for both distance-vector or link-state routing [32, 10, 38, 2]. Because routers in ALP propagate

link-state information selectively, it incurs less communication overhead than algorithms based

on topology broadcast.

The following sections introduce the network model assumed throughout the rest of

the chapter, describe ALP, show that ALP converges to correct paths a �nite time after the

occurrence of an arbitrary sequence of link-cost or topological changes, calculate its complexity,

and present simulation results comparing ALP's performance against the performance of an

ideal topology-broadcast algorithm, the distributed Bellman-Ford algorithm (DBF), and LVA.

2.1 Network Model

In ALP, routers maintain a partial topology map of their network. In this study we

focus on
at topologies only, i.e., there is no aggregation of topology information into areas or

clusters.

The topology of a network is modeled as a directed graph G = (V;E), where V is the

set of nodes and E is the set of edges connecting the nodes. Each node has a unique identi�er

and represents a router with input and output queues of unlimited capacity updated according

10

to a FIFO policy. For the purpose of routing-table updating, a Node A can consider another

Node B to be adjacent (we call such a node a \neighbor") if there is link-level connectivity

between A and B and A receives update messages from B reliably. Accordingly, we map a

physical broadcast link connecting multiple nodes into multiple point-to-point bidirectional

links de�ned for these nodes. A functional bidirectional link between two nodes is represented

by a pair of edges, one in each direction and with a cost associated that can vary in time but

is always positive.

An underlying protocol, which we call the neighbor protocol, assures that a router

detects within a �nite time the existence of a new neighbor, the loss of connectivity with a

neighbor, and the reliable transmission of packets between neighbors. All messages, changes

in the cost of a link, link failures, and new-neighbor noti�cations are processed one at a time

within a �nite time and in the order in which they are detected. Because of the neighbor

protocol, ALP assumes that all messages transmitted over an operational link are received

correctly and in the proper sequence within a �nite time. Routers are assumed to operate

correctly, and information is assumed to be stored without errors.

2.2 Operation of ALP

In ALP, each router reports to its neighbors the characteristics of every link it uses to

reach a destination through a preferred path. The set of links used by a router in its preferred

paths is called the source graph of the router. A router knows its adjacent links and the source

graphs reported by its neighbors; the aggregation of a router's adjacent links and the source

graphs reported by its neighbors constitute a partial topology graph. The links in the source

graph and topology graph must be adjacent links or links reported by at least one neighbor.

The router uses one or more local route selection algorithms, the topology graph to generate

11

its own source graph, and a routing table specifying the successor, successors, or paths to each

destination.

The basic update unit used in ALP to communicate changes to source graphs is the

link-state update (LSU). An LSU reports the characteristics of a link; an update message

contains one or more LSUs. For a link between router u and router or destination v, router u

is called the head node of the link in the u to v direction. The head node of a link is the only

router that can report changes in the parameters of that link.

The head of a link reports the state of the link in an LSU if it uses the link to reach

any destination, i.e., if the link is in its source graph. The LSUs from a router specify the state

of links that the router currently uses in its source graph and links that are removed from its

topology graph that had been recently used in its source graph. Hence, a router in ALP always

tells its neighbors about the links it uses to reach destinations, and does not tell its neighbors

about links it stops using to reach destinations, unless it is necessary to prevent old reports of

such links to be taken as valid.

More speci�cally, a router sends LSUs about a link in the following cases: (a) when

an LSU is received for the link, or the link changes state, causing the link to be added to the

router's source graph; (b) when the link is already in the router's source graph and a more

recent LSU is received for the link, or the link changes state; and (c) when the link is not in the

router's source graph but has been in the source graph before, and an LSU is received for any

link or a topology change occurs that forces the link to be deleted from the router's topology

graph.

As we show in subsequent sections, this method of sending LSUs ensures that, within

a �nite time, all routers in the network have consistent routing information, and in terms of

update messages generated is close to the minimum communication overhead possible.

12

1

1

1

1

1

1

1

10
1

10
y

p

q r u g

h

 fvzx

s
w C

BA

1

10

10 10 1

1010

1

1

1 1

1

10

 10

10

10

10 1

1

1
1 1

1 1 11

1

1

p

q r u g

h

 fvzx

s
w C

B

1

y

1

A

1

(a) (b)

10

10

10 1

1

1

1

1

10
1 1 11

1

y

p

q r u g

h

 fvzx

s
w C

A B

1

1
1

1

10

10

10 1

1

1

1

1 1

1 1 1

10

1

0

1

1

10
y

p

q r u g

h

 fvzx

s
w C

A B

1

1

(c) (d)

Figure 2.1: Topology as seen by routers indicated with �lled circle. Solid lines indicate links
in source graph; dashed lines indicate links in topology graph but not in source graph.

Figure 2.1 illustrates the fact that routers in ALP have to maintain only partial

topology information. For simplicity, this �gure and the rest of the paper assume that a single

parameter is used to characterize a link in one of its directions, which we will call the cost of the

directed link. Furthermore, although any number and type of local route selection algorithms

can be used in ALP, we describe ALP assuming that shortest paths are used for routing and

that Dijkstra's shortest-path �rst is used locally at each router. Figure 2.1b through 2.1d

show the selected topology according to ALP at the routers indicated with �lled circles. Solid

lines represent the links that are part of the source graph of the respective router, dashed

lines represent links that are part of the router's topology graph but not of its source graph.

Arrowheads on links indicate the direction of the link stored in the router's topology graph.

Router x's source graph shown in Figure 2.1b is formed by the source graphs reported by

its neighbors y and z, and the links for which router x is the head node (namely links (x; y)

and (x; z)). From the �gure, the savings in storage requirements are clear, even for the small

13

Neighbor
Protocol
Service

gateD API

Hello
Protocol

A L P

Retransmission Protocol

Figure 2.2: ALP protocol building modules

example shown in the �gure.

We have developed a routing protocol framework based on the API provided by gateD

[8] for implementation of routing protocols (Figure 2.2). A Hello Protocol is used to detect the

presence of new neighbors and the loss of connectivity to them; the Retransmission Protocol is

responsible for delivering update messages correctly and in the proper sequence to neighbors, as

long as the physical link and network interface are operational. Among other things, the gateD

API manages the routing forwarding table and relays indications to ALP reporting changes in

the parameters of adjacent links, such as link cost changes, link failures, and link recoveries. In

the rest of this paper we describe ALP assuming the services provided by the three underlying

modules, which corresponds to the services provided by the neighbor protocol.

2.2.1 Information Stored and Exchanged

The LSU for a link (u; v) in an update message is a tuple (u; v; l; ts; del) reporting the

characteristics of the link, where l represents the cost of the link, ts is the timestamp assigned

to the LSU, and del is a
ag set to 1 if the LSU is a DELETE.

In our description, we refer to an LSU that has a cost in�nity and the del �eld equal

14

to zero as a RESET, and refer to an LSU with an in�nity link cost and the del �eld set to one,

as a DELETE.

A router i maintains a topology graph TGi, a source graph SGi, a routing table, and

the set of neighbors Ni. The record entry for link (u; v) in the topology graph of router i is

denoted TGi(u; v) and is de�ned by the tuple (u; v; l; ts; age; F; l0; tag; rn), and a parameter p

in the tuple is denoted by TGi(u; v):p.

TGi(u; v):F contains the set of network interfaces through which node i has received

up-to-date link-state information for (u; v), and TGi(u; v):F (f) holds the addresses of the

neighbors who have reported up-to-date link-state information for (u; v) through interface f .

In the example shown in Figure 2.1, router x's topology graph would have a record for link

(s; u) indicating that y and z reported the same link. The link parameters l0, tag, and rn are

described in the next sections.

A vertex v in TGi is denoted TGi(v) and contains a tuple (d; pred) whose values are

used on the computation of the source graph. TGi(v):d is the distance of the path i; v, and

TGi(v):pred is v's predecessor in i; v.

The source graph SGi is a subset of TGi. The routing table contains record entries

for destinations in SGi, each entry consists of the destination address, the cost of the path to

the destination, and the address of the next-hop towards the destination.

2.2.2 Validating Updates

Because of delays in the routers and links of an internetwork, update messages sent by

a router may propagate at di�erent speeds along di�erent paths. Therefore, a given router may

receive an LSU from a neighbor with stale link-state information, and a distributed termination-

detection mechanism is necessary for a router to ascertain when a given LSU is valid and

15

avoid the possibility of LSUs circulating forever. ALP implements the termination-detection

mechanism used in several prior link-state protocols based on topology broadcast [43], which

consists in time stamps.

A router receiving an LSU accepts the LSU as valid if the received LSU has a larger

timestamp than the timestamp of the LSU stored from the same source, or if there is no entry

for the link in the topology graph. There is a special case in which a router other than the head

of the link can change the cost of a link to in�nity and report the new cost to the neighbors;

this type of LSU will be considered valid under certain circumstances, as discussed in the next

section. Each LSU sent by the same source speci�es the current timestamp. Alternatively,

a large linear sequence number space can be used, together with a reset mechanism for the

sequence number to guard against malfunctions [35]. We opt for the timestamp method in

order to make our treatment of ALP simple.

2.2.3 Processing Input Events

An update message from a router k consists of a list of LSUs reporting incremental

updates to its source graph and deletion of links from the topology graph not caused by aging;

the procedure Update (Figure 2.3) is executed when a router i processes an update message.

First, the topology graph is updated, then the source graph is updated, which may cause the

router to update its routing table and to send its own update message.

An LSU for (u; v) updates the topology graph if its timestamp is larger than the

timestamp maintained for the same link in the topology graph, or no entry for the link exists

in the topology graph, or the entry in the topology graph has the cost set to in�nity and the

LSU has the same timestamp as the entry in the topology graph but the link cost is not in�nity.

An LSU is considered outdated not only if it speci�es a timestamp that is smaller than

16

Update(k;msg)

f

Update Topology Graph(k;msg);

newSG Build Shortest Path Tree();

Process Cost Increase State 1(newSG);

Process Cost Increase State 2(newSG);

Process Links RemovedFrom SG(newSG);

event Update Routing Table(newSG);

if (event = NEW LINK or

event = PARAMETER CHANGE or

event = NEWSG EMPTY)

f

Compare Source Graphs(SGi; newSG);

g

SGi newSG;

if (k 6= i)

Send();

g

Figure 2.3: Processing update message msg received from neighbor k

the one in the topology graph, but also if the timestamps are the same and the LSU carries a

link cost in�nity, while the entry in the topology graph has a cost di�erent than in�nity and

the link is in the source graph. The reception of an outdated LSU causes the router to send

an LSU with up-to-date information to the neighbor that originated the update message.

If the LSU is a valid RESET and there is an entry in the topology graph for the link,

the LSU is forwarded to the neighbors.

A new source graph is computed and the routing table is updated if new link-state

information is added to the topology graph or links are deleted from the topology graph. The

shortest-path tree is generated by running Dijkstra SPF algorithm on the topology graph.

17

Rather than generating delete updates every time a link is removed from the source

graph, as is the case in LVA, ALP reports to its neighbors the new value of the parameters of a

link removed from the source graph if the cost of the link has increased. For those links that are

removed from the source graph and that had not a cost increase, the node will only announce

their removal when it learns that the cost of such links increased. The links stored in the

topology graph have a tag that is used to keep track of those links that had the source graph

removal announcement postponed, and gives the current state of the link in the state diagram

of Figure 2.4. The state diagram shows the transition to a new state for a link l = (u; v), given

its current state and the type of input event received for the link. The tag of a link (u; v) for

node i is denoted TTi(u; v):tag, and its possible values at time t are the following:

0: Link (u; v) is not in the source graph at time ti, where treset � ti � t and treset is the

time the link last transitioned to state 0. The tag of a link is set to 0 when the link is

inserted into the topology graph or when the cost of the link increases.

1: Link (u; v) is in the source graph at time t.

2: Link (u; v) is not in the source graph at time t, but it was in the source graph at time

ti, where treset � ti < t. The removal of the link from the source graph had not been

announced.

The transition to NIL in the state diagram corresponds to the deletion of the link

from the topology graph. The description of possible input events summarized on the state

diagram in Figure 2.4 are given in Figure 2.5.

In our current implementation of ALP, a link in the topology graph has just one

reporting neighbor. This contrasts with LVA, which considers a reporting neighbor to be any

neighbor that has reported an LSU with sequence number that matches the sequence number

18

RESET(l) OR COST_INCREASE(l)

LSU(l)

LSU(l) OR LSU(k)
OR VOID_RESET(l)
 LSU(l)

NO_INCREASE(l) LSU(l) OR OUTDATED_RESET(l) OR
DELETED(l) not from first reporting neighbor

LSU(l)

LSU(l) OR LSU(k)

LSU(l)

LSU(l) OR LSU(k), AND TG(l).cost is not infinity

0

LSU(l) OR RESET(l) OR COST_INCREASE(l) OR VOID_RESET(l)

LSU(l) if RESET(l)

2 1

nil nil

nil

RESET(l) OR
COST_INCREASE2(l)

DEL(l) DEL(l)

DEL(l)

RESET(l)

Set cost of l to infinity
if the node is not the
head of the link;

Figure 2.4: State diagram for a link l

for the link in the topology graph. The reporting neighbor for a link (u; v) in the topology

graph is denoted TTi(u; v):rn, and consists of the address of the neighbor that last reported a

valid LSU for the link if the state of (u; v) is 0, or the address of the neighbor that is in the

shortest-path to u if (u; v) is in the source graph (i.e, the state of (u; v) is 1), or the address of

the neighbor that was in the shortest-path to u at the time link (u; v) was removed from the

source graph and transitioned to State 2. The reporting neighbor of a neighbor's adjacent link

is the neighbor itself.

19

LSU(l) : LSU for link l other than RESET(l), VOID RESET(l),

OUTDATED RESET(l), COST INCREASE(l),

COST INCREASE2(l), and DELETE(l).

RESET(l) : LSU with cost in�nity generated when link l fails or when

l transitions from State 2 to State 0.

VOID RESET(l) : Timestamp of LSU is equal to the timestamp of the link in

the topology graph, the cost of the LSU is not in�nity, and

the cost of the link in the topology graph is in�nity.

OUTDATED RESET(l) : Timestamp of link in LSU is equal to the timestamp of the

link in the topology graph, the cost of the LSU is in�nity,

the del �eld of the LSU is zero, and link l is in the source

graph.

COST INCREASE(l) : Cost of link l has increased.

COST INCREASE2(l) : Cost of LSU is greater than TTi(l):l
0.

DELETE(l) : LSU reporting link l was removed from the topology graph.

DEL(l) : DELETE(l) or there is no reporting neighbor for link l.

NO INCREASE(l) : cost of link l in LSU is not greater than TTi(l):l
0

Figure 2.5: Input events of the state diagram

When a link (u; v) is removed from the source graph SGi and transitions to State 2,

node i needs to store the current cost of the link in TTi(u; v):l
0, which is used for checking

increases in the cost of the link while (u; v) is in State 2.

After computing the new source graph newSG (Figure 2.3) the router generates link-

state updates for those links whose cost has increased and were removed from the source graph,

i.e., the links have transitioned from State 1 to State 0 (Figure 2.4). Then, the router generates

RESETs for those links that had the cost increased while in State 2. If the router that transi-

tions a link from State 2 to State 0 is not the head of the link, the cost of the link in the topology

graph is set to in�nity. Procedure Update then executes Process Links RemovedFrom SG which

sets TTi(u; v):l
0 TTi(u; v):l and TTi(u; v):tag 2 for each link (u; v) that was removed from

the source graph and had not the cost increased. The router then compares the new source

graph newSG against the current source graph SGi, and LSUs are created with the link-state

20

information for links that are in newSG but not in SGi, or that are in both graphs but had

their timestamp changed. After LSUs are generated, newSG becomes the current source graph

SGi.

If a link cost changes, then its head node is noti�ed by an underlying protocol. The

router then runs Update with the appropriate message as input; the LSU in the message gets a

current timestamp. This holds for simple changes in link cost, as well as for a link failure. The

same approach is used for a new link or a link that comes up after a failure. When a router

establishes connectivity to a new neighbor, the router sends its complete source graph to the

neighbor (much like a distance vector protocol sends its complete routing table).

When the link (i; k) to neighbor k fails, the topology graph is updated to erase the

neighbor from the set TTi(i; k):F (f), and a RESET for (i; k) is transmitted to the neighbors.

For each link (u; v) in the topology graph whose reporting neighbor is router k, router i

generates a DELETE update for (u; v) and deletes the link from the topology graph. A router

that receives a DELETE update from a node other than the reporting neighbor transmits to

the sender of the DELETE an LSU with the current state of the link if the link is in the source

graph. This guarantees that the tree of reporting neighbors for link (u; v) 2 E, formed by the

links (i; TTi(u; v):rn) 2 E, for each node i 2 V , is updated accordingly. Link-state information

for failed links that have a reporting neighbor must be kept in the topology graph in order to

validate incoming LSUs for the link.

Consider the topology in Figure 2.1 and assume that link (y;B) increases its cost

dramatically (e.g., from 1 to 100). Node y processes the link-cost increase and generates a

new source graph; the update message sent by node y to its neighbors speci�es an LSU for

the link (y;B) with the new cost and LSUs for links (p; q), (x; z), (z;B) and (w; g), which

must now be used to reach all the nodes in the graph. Note that router y does not inform its

21

neighbors that it removed links (B; z), (B; q) and (u; g) from its source graph, as would be the

case in LVA [19], but makes the links to transition from State 1 to State 2 (see Figure 2.4). An

important di�erence between ALP and LVA is that in ALP a router informs its neighbors of a

link removed from its source graph only if it is removed because its cost increased or because

there is no reporting neighbor for the link anymore (in which case the cost is set to in�nity).

LVA reports all deletions to the source graph, and all such deletions represent in�nite link

costs.

2.2.4 Electing Designated Routers

Because routers in ALP communicate partial topology information to their neighbors,

de�ning a designated router as in OSPF to be in charge of sending topology information over

a network connecting multiple neighbor routers cannot be applied. In ALP, a link is assigned

a designated router if it needs to be reported by at least one router over a given broadcast

medium (a LAN, a network, or a link).

The idea of assigning one designated router per link-state update consists of making

only one router responsible for reporting the link-state update in a broadcast link. In this way,

when an adjacency is formed with a new neighbor x through a broadcast link, x will receive

only one copy of the link-state information for a link (u; v) from the routers that already have

adjacencies in the link. To accomplish this, the topology graph entry TGi(u; v) maintains the

set of interfaces through which node i has received link-state updates for the link (u; v), as

well as the list of neighbors attached to the interface that have reported the link-state update.

TGi(u; v):F contains the set of interfaces, and TGi(u; v):F (f) is the list of neighbors with

adjacencies through interface f that have reported a link-state update.

When node i receives a valid LSU from neighbor x for link (u; v), the LSU for

22

(u; v) is forwarded to all neighbors except x, i then stores neighbor's x's address in the list

TGi(u; v):F (f)

TGi(u; v):F ;;

TGi(u; v):F TGi(u; v):F [ffg;

TGi(u; v):F (f) f address of xg;

If the received LSU (u; v) is not valid, but its timestamp is equal to the one stored in

the topology graph, node i also stores neighbor's x's address in the list TGi(u; v):F (f), where

f is the incoming interface

if (f =2 TGi(u; v):F)

TGi(u; v):F TGi(u; v):F [ffg;

TGi(u; v):F (f) SORT(TGi(u; v):F (f) [f address of xg);

When a router i reports an LSU (u; v) through interface f , it adds the address of f

into TGi(u; v):F (f).

The list of neighbors TGi(u; v):F (f) is always sorted in ascending order of router

addresses. The �rst router address in the list (TGi(u; v):F (f):0) is the one with the smallest

address.

When a new adjacency is formed to a neighbor k through interface f , node i will only

report an LSU for link (u; v) to k if i is the head node of the link, or f 2 TGi(u; v):F and

TGi(u; v):F (f):0 equals f 's address. The procedure DST SET shown in Figure 2.6 returns

the set of interfaces through which a link-state update for link (u; v) can be announced, and

ANNOUNCE returns TRUE if node i can announce an LSU for (u; v) through the interface

i has connectivity to neighbor k. For any given link used by a set of routers connected to a

LAN, the router with the smallest ID is the only one allowed to send LSUs for the link over

the LAN.

23

DST SET(u; v)
f

F set of operational interfaces;

if (r 6= i)
for each (interface f 2 TGi(u; v):F)

if (TGi(u; v):F (f) 6= ; and TGi(u; v):F (f):0 6= f:address)
F F � ffg;

return F ;
g

ANNOUNCE(k; u; v)
f

announce TRUE;
f interface attached to k;

if (r 6= i and f 2 TGi(u; v):F)
if (TGi(u; v):F (f) 6= ; and TGi(u; v):F (f):0 6= f:address)

announce FALSE;

return announce;
g

Figure 2.6: Procedures used to determine to which neighbors a link-state update can be
announced

When i detects loss of connectivity to a neighbor x attached to a broadcast link

through interface f , and x was the only router in TGi(u; v):F (f), router i will announce an

LSU for (u; v) in the broadcast link if it has a path to destination v whose successor is not

a neighbor in the broadcast link. This guarantees that new neighbors that have not received

link-state information about (u; v) will get it as soon as i detects lack of connectivity to x.

2.3 ALP Correctness

In this section we show that routers executing ALP stop disseminating link-state

updates and obtain shortest paths to destinations within a �nite time after the cost of one or

more links changes and there are no more changes afterwards.

24

For simplicity of exposition, we assume that all links are bidirectional point-to-point

links and that shortest-path routing is implemented. Let t0 be the time when the last of a

�nite number of link-cost changes occur, after which no more such changes occurs. The network

G = (V;E) in which ALP is executed has a �nite number of nodes (j V j) and links (j E j), and

every message exchanged between any two routers is received correctly within a �nite time.

According to ALP's operation, for each direction of a link in G, there is a router that detects

any change in the cost of the link within a �nite time.

The following theorems relay on the use of timestamps as described in Section 2.2.2;

the same approach applies if an alternative update validation scheme based on resets is used.

We also assume that all routers use the same type of tie-braking rules in computing shortest

paths, e.g., if a shortest path to j is obtained through two di�erent relays, routers choose the

relay with the smallest identi�er.

Lemma 1 The dissemination of LSUs in ALP, other than DELETEs, stops a �nite time after

t0.

Proof: A router that detects a change in the cost of any outgoing link must update

its topology graph, update its source graph as needed, and send an LSU if the link is added

to or is updated in its source graph. Let l be the link that last experiences a cost change up

to t0, and let tl be the time when the head of link l originates the last LSU of the sequence

of LSUs originated as a result of the link-cost change occurring up to t0. Any router that

receives the LSU for link l originated at tl must process the LSU within a �nite time, and

decides whether or not to forward the LSU based on its updates to its source graph. A router

can accept and propagate an LSU only once because each LSU has a timestamp; accordingly,

given that G is �nite, there can only be a �nite chain of routers that can propagate the LSU

for link l originated at tl, and the same applies to any LSU originated from the �nite number

25

of link-cost changes that occur up to t0. Therefore, ALP stops the dissemination of LSUs a

�nite time after t0. 2

Lemma 2 The dissemination of DELETEs in ALP stops a �nite time after t0.

Proof: A router i that detects failure of the link to the reporting neighbor of a link

l in the topology graph must delete l from the topology graph, update its source graph, and

send a DELETE LSU for link l. Let the failed link be the link that last experiences a cost

change up to t0, and let tl be the time when node i originates the last LSU of the sequence

of LSUs originated as a result of the link-cost changes occurring up to t0. Any router that

receives the DELETE for link l originated at tl must process the DELETE within a �nite

time, and forwards the DELETE after deleting l from its topology graph if the sender of the

DELETE was the �rst reporting neighbor of l. A router can accept and propagate a DELETE

only once because the link is deleted from the topology graph when the DELETE is accepted

for the �rst time, and a DELETE for link l is not propagated if link l is not in the topology

graph of the router processing the DELETE. Given that G is �nite, there can only be a �nite

chain of routers that propagate the DELETE for link l originated at tl, and the same applies

to any DELETE originated from the �nite number of link-cost changes that occur up to t0.

Therefore, ALP stops the dissemination of DELETEs a �nite time after t0. 2

Theorem 1 The dissemination of LSUs in ALP stops a �nite time after t0.

Proof: The proof is immediate from Lemmas 1 and 2. 2

From Theorem 1, it must be true that there is a time ts when no more LSUs are

queued or in transit anywhere in the network.

Lemma 3 A router with a tag value of 1 for link l at time ts must be the head of the link or

have at least one neighbor with a tag value of 2 or 1.

26

Proof: The proof is obvious if the router is the head of the link. Assume that router

i is not the head of link l and that all of its neighbors have tags equal to 0 at time ts.

Because router i is not the head of link l and has link l in its source graph, it must

have received an LSU reporting l from at least one neighbor k at some time t0 < ts, which

required k to have link l in its source graph at that time, i.e., to have a tag value of 1 for l

at time t0 < ts. By assumption, k has a tag equal to 0 for link l, which means that k must

have transitioned its tag value from 1 or 2 to 0 before time ts. According to ALP's operation,

at the time of its transition, k must have sent an LSU reporting an increase in the cost of

link l, and it may also have sent LSUs for links that k adds or updates in its source graph.

Because by assumption no LSUs are queued at or in transit to router i at time ts, i must have

processed the LSU from k indicating the cost increase for l, as well as any LSUs needed to

bring i topology graph consistent with k's source graph.

Because none of i's neighbors use link l in their shortest paths, because i has received

the LSUs from k that exclude link l from being part of any shortest path from k, and because

all routers use the same tie-braking rules for shortest paths, it follows that router i cannot use

l in any of its shortest paths, because k does not. Accordingly, router i must transition to a

tag value of 0 or 2 after processing the LSUs from k, and the Lemma is true. 2

Lemma 4 A router with a tag value of 2 for link l at time ts must be the head of the link or

have at least one neighbor with a tag value of 2 or 1.

Proof: The proof is obvious if i is the head of link l, because i may have shorter

paths to the tail of the link than the link itself. Assume that router i is not the head of link l

and that all its neighbors have tags equal to 0 for link l at time ts.

Because router i is not the head of link l and has link l in its source graph, it must

have received an LSU reporting l from at least one neighbor k at some time t0 < ts. Following

27

the same line of argument used in the proof of Lemma 3, we can show that, at time ts, router

i must have processed the LSU from k indicating the cost increase for l, together with any

LSUs needed to bring i topology graph consistent with k's source graph. According to ALP's

operation, when router i has a tag value of 2 for link l and receives an LSU reporting a cost

increase for l, then it must transition to a tag value of 0 and send an LSU; therefore, the

Theorem is true. 2

Theorem 2 In a connected network, and in the absence of link failures, all routers have the

most up-to-date link-states they need to compute shortest paths to all destinations within a

�nite time after ts.

Proof: The proof is by induction on the number of hops of a shortest path to a

destination, and is basically a generalization of the proof for SPTA [3].

Consider the shortest path from router s0 to a destination j at time ts, and let h

be the number of hops along such a path. For h = 1, the path from s0 to j consists of one

of the router's outgoing links. By assumption, an underlying neighbor protocol provides the

correct parameter values of adjacent links within a �nite time; therefore, the Theorem is true

for h = 1, i.e., s0 must have link (s0; j) in its source graph, which means that its tag value for

the link is 1 and it must have sent its neighbors an LSU for that link.

Assume that that any router with a path of n or fewer hops to j has the correct

link-state information about all the links in the shortest path to j, and consider the case in

which the path from s0 to j at time ts is n+ 1 hops.

Router s0 has a tag value of 1 for each link in the shortest path to j, because the

path belongs to its source graph. For any such link l in the shortest path to j, it follows from

Lemma 3 that the router has a neighbor that by time ts has reported an LSU it can believe

that speci�es the up-to-date cost of l. Accordingly, the shortest path from s0 to j must be

28

through a neighbor s1 with a tag value of 1 or 2 for link l, which means that s1 must send the

most up-to-date LSUs it receives for each link in its shortest path to j. The sub-path from s1

to j has h� 1 hops and, by the inductive assumption we have made, such a path must be the

true shortest path from s1 to j by time ts. Because all routers use the same tie-braking rules

to choose shortest paths, this also means that that s1 must have a tag value of 1 for each link

in its shortest path to j.

Because it is also true that s0 has the most recent link-state information about link

(s0; s1), it follows that s0 has the most recent information about all the links in its chosen

path to j. The Theorem is therefore true, because the same argument applies to any chosen

destination and router. 2

Theorem 3 In a connected network, and in the absence of link failures, a tree of reporting

neighbors for a link l will be formed within a �nite time after ts.

Proof: For the neighbors of the head of the link l the root of the tree of reporting

neighbors is the head of the link. The tree of reporting neighbors consist of routers whose

value of the tag for link l can be 0, 1, or 2. Routers that have the tag set to 1 elect as the

reporting neighbor for l the next hop in the shortest-path to the head of the link. Given that

the source graph is computed within a �nite time after ts according to Theorem 2, the subtree

of the tree of reporting neighbors that includes the source graph is computed a �nite time

after ts. Whenever a valid link-state update for l is processed and l has a tag set to 0 or 2

after computing the source graph, the reporting neighbor is set to be the router which sent the

update message. Together with Lemma 1, this implies that the Theorem is true. 2

Theorem 4 All the routers of a connected network have the most up-to-date link-state infor-

mation needed to compute shortest paths to all destinations.

29

Proof: The result is immediate from Theorem 2 in the absence of link failures.

Consider the case in which the only link that fails in the network by time t0 is link (s; d).

Call this time tf � t0. According to ALP's operation, router s sends an LSU reporting an

in�nite cost for (s; d) within a �nite time after tf ; furthermore, every router receiving the LSU

reporting the in�nite cost of (s; d) must forward the LSU if the link exists in its topology

graph, i.e., the LSU gets
ooded to all routers in the network that had heard about the link,

and this occurs within a �nite time after t0. It than follows that no router in the network can

use link (s; d) for any shortest path within a �nite time after t0. DELETE updates will also

be propagated by router s for all those links in the topology graph that had router d as the

reporting neighbor, as described in the proof of Lemma 2. A router sends and LSU for a link

l to the router that transmitted a DELETE update if l is in the source graph and the router

is not the reporting neighbor of l. Accordingly, within a �nite time after t0 all routers must

only use links of �nite cost in their source graphs; together with Theorem 2, this implies that

the Theorem is true. 2

Theorem 5 If destination j becomes unreachable from a network component C at t0; the

topology graph of all routers in C includes no �nite-length path to j.

Proof: ALP's operation is such that, when a link fails, its head node reports an

LSU with an in�nite cost to its neighbors, and the state of a failed link is
ooded through a

connected component of the network together with DELETE updates for those links j that

are part of the disconnected component to all those routers that knew about the link. Because

a node failure equals the failure of all its adjacent links, it is true that no router in C can

compute a �nite-length path to j from its topology graph after a �nite time after t0. 2

Note that, if a connected component remains disconnected from a destination j all

link-state information corresponding to links for which j is the head node is updated when the

30

network components get connected.

The previous theorems show that ALP sends correct routing tables within a �nite time

after link costs change, without the need to replicate topology information at every router (like

OSPF does) or use explicit delete updates to delete obsolete information every time the source

graph of a router changes (like LVA does).

2.4 Performance

ALP has the same communication, storage, and time complexity than LVA. However,

worst-case performance is not truly indicative of ALP's performance advantage over LVA.

Because link-states are deleted from the topology graph of a router, rather than after receiving

explicit delete updates from neighbors, ALP incurs less communication overhead than LVA.

ALP also compares favorably against recent distance vectors based on \source tracing" [6] [47],

or the di�usion of distances [18], which do solve the looping problems of RIP and RIP-2.

Compared to the di�usion of distances, ALP disseminates link-state information from

only the source of an LSU out to those routers that need the link, while DUAL requires distances

to be disseminated from the source of the update out to those routers whose path included

the source of the update, followed by replies going back to the source. Hence, when such

coordination occurs in DUAL, ALP incurs half the communication overhead.

Compared to source tracing algorithms, it is interesting to observe that in ALP a

router noti�es its routing tree to its neighbors by specifying each link in the tree, while in a

source tracing algorithm the same tree is speci�ed by reporting, for each node on the tree, the

distance from the root of the tree to the node and the identi�cation of the previous node on the

tree. Clearly, there is an one-to-one mapping between the two representations, which means

that the same routers will receive LSUs or distance-vectors updates reporting changes to the

31

routing tree. In other words, the communication overhead is the same. Furthermore, in terms

of communication overhead, it is not possible to attain a smaller overhead than sending updates

(of links or distances) to only those routers whose shortest paths are a�ected by a topology

change, i.e., ALP and source-tracing algorithms make very eÆcient use of communication, and

both amount to a more distributed implementation of Dijkstra's SPF algorithm than protocols

using topology broadcast (e.g., OSPF), which replicate SPF runs at each router.

In terms of storage overhead, ALP has similar overhead than distance-vector proto-

cols and link-state protocols for the case of shortest-path routing. ALP and other link-state

protocols become more attractive than distance-vector protocols when providing multiple paths

to the same destinations becomes necessary.

Because of the way in which ALP updates link-state information, ALP outperforms

any topology broadcast protocol. Because ALP does not use \delete" updates we expect ALP

to outperform LVA, specially when nodes fail or resources recover. Furthermore, because no

counting-to-in�nity occurs in ALP, ALP should outperform protocols based on the Bellman-

Ford algorithm. To verify this, we ran a number of simulation experiments to compare its

average performance against DBF, topology-broadcast (called LSA in prior literature), and

LVA. We used the same topology and experiment reported in [19] in order to compare ALP

against the best-performing published results for other approaches. The performance metrics

consist of the number of steps and update messages that are required for each algorithm to

converge (i.e., the algorithm stops sending messages), and the size of these updates. When a

router receives an update message, it compares its local step counter with the sender's counter,

takes the maximum and increments the count. Update messages are processed one at a time

in the order in which they arrive. Like LVA and LSA, ALP uses Dijkstra's algorithm to

compute the local shortest-path tree. The results presented are based on simulations for the

32

DOE-ESNET topology (26-node wired network) [19] which was used in order to simply use

published simulation results for the competing approaches. The graphs in Figure 2.7 show

the results for every single link changing cost from 1 to 2; in Figures 2.8 and 2.9 for every

link failing and recovering; as well as every node failing and recovering again (Figures 2.10

and 2.11). All changes were performed one at a time, and the algorithms had time to converge

before the next change occurred. The ordinate of Figures 2.7, 2.8, and 2.9 represent identi�ers

of the links, and the ordinate of Figures 2.10 and 2.11 represent the identi�ers of the nodes

that are altered in the simulation.

ALP, DBF, and LVA propagate updates to only those routers a�ected by single link-

cost changes (Figure 2.7). In contrast, LSA shows almost constant behavior because the same

link-state update must be sent to all routers; ALP is the most eÆcient of the four algorithms.

Each update message contains one link-state update in LSA, and an average of 1.10 links in

ALP; the average number of messages transmitted in ALP is 43.36, 48.67 in LVA, and 57.45

in DBF.

Figure 2.8 depicts DBF su�ering from counting to in�nity in some cases. There is a

small di�erence in the average number of updates and synchronization steps required in ALP

and LVA. The average size of an ALP message is 2.40.

When a failed link recovers, ALP is superior to all three algorithms. The average

number of messages in LVA is 70% more than in ALP; LSA exhibits the same behavior as

with link-cost changes, and in average more than three times the number of update messages

generated by ALP. With an average of 5.85 steps, ALP is twice as fast as LSA, and 50% faster

than LVA. Messages in LSA are no longer one-link long due to the packets containing complete

topology information sent over the recovering link.

ALP also shows to have the best performance of the four algorithms for failing nodes.

33

DBF always su�ers from counting to in�nity. ALP needs to send 23% fewer updates than LSA,

and 80% less the amount experienced by LVA. For recovering nodes, ALP shows to be more

eÆcient than LVA, DBF, and LSA, both in terms of the amount of information sent through

the network and speed of convergence.

The simulation results show that ALP has better overall average performance than

LVA, LSA, and DBF. ALP behaves better than DBF and LVA when link cost changes and is

always faster and produces less overhead traÆc than LVA and LSA when resources are added

to the network, and behaves better than the ideal LSA when links or routers fail. This is

precisely the desired result, and indicates that ALP is desirable even if multiple constraints are

not an issue.

2.5 Conclusions

We have presented, veri�ed, and analyzed ALP. ALP is currently running in a small

testbed implemented with PCs running gateD, and the very same code was used in the reported

simulation experiment. The size of ALP's executable code, including the Hello Protocol and

the Retransmission Protocol (Figure 2.2) is 96 Kbytes, compared to the 226 Kbytes of OSPF.

Novel features in ALP include using three types of link state for any given link to disseminate

correctly partial link-state information, and using designated routers per link for each broadcast

medium.. Simulations using the actual gateD code for ALP corroborate the fact that ALP

achieves the most eÆcient way of updating routing tables compared to topology broadcast,

the distributed Bellman-Ford algorithm, and LVA. ALP addresses the complexity of today's

approach to link-state routing by making the computation of routing trees using link-states

costs a distributed computation.

34

0

20

40

60

80

100

120

140

5 10 15 20 25 30

up
da

te
s

link id

Number of updates for link changes

(a) number of update messages

0

2

4

6

8

10

5 10 15 20 25 30

si
ze

 o
f u

pd
at

es

link id

Size of updates for link changes

ALP
DBF
LSA
LVA

(b) average size of messages

0

2

4

6

8

10

12

14

5 10 15 20 25 30

st
ep

s

link id

Number of steps for link changes

(c) number of steps for convergence

Figure 2.7: Results for links changing cost

35

10

100

1000

10000

5 10 15 20 25 30

up
da

te
s

link id

Number of updates for link failures

(a) number of update messages

0

2

4

6

8

10

5 10 15 20 25 30

si
ze

 o
f u

pd
at

es

link id

Size of updates for link failures

ALP
DBF
LSA
LVA

(b) average size of messages

1

10

100

1000

5 10 15 20 25 30

st
ep

s

link id

Number of steps for link failures

(c) number of steps for convergence

Figure 2.8: Results for links failing

36

20

40

60

80

100

120

140

5 10 15 20 25 30

up
da

te
s

link id

Number of updates for link recoveries

(a) number of update messages

0

2

4

6

8

10

12

14

5 10 15 20 25 30

si
ze

 o
f u

pd
at

es

link id

Size of updates for link recoveries

ALP
DBF
LSA
LVA

(b) average size of messages

0

2

4

6

8

10

12

14

5 10 15 20 25 30

st
ep

s

link id

Number of steps for link recoveries

(c) number of steps for convergence

Figure 2.9: Results for links recovering after failure

37

10

100

1000

10000

5 10 15 20 25

up
da

te
s

node id

Number of updates for node failures

(a) number of update messages

0

2

4

6

8

10

5 10 15 20 25

si
ze

 o
f u

pd
at

es

node id

Size of updates for node failures

ALP
DBF
LSA
LVA

(b) average size of messages

1

10

100

1000

5 10 15 20 25

st
ep

s

node id

Number of steps for node failures

(c) number of steps for convergence

Figure 2.10: Results for nodes failing

38

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25

up
da

te
s

node id

Number of updates for node recoveries

(a) number of update messages

0

2

4

6

8

10

5 10 15 20 25

si
ze

 o
f u

pd
at

es

node id

Size of updates for node recoveries

ALP
DBF
LSA
LVA

(b) average size of messages

5

10

15

20

25

30

35

40

5 10 15 20 25

st
ep

s

node id

Number of steps for node recoveries

(c) number of steps for convergence

Figure 2.11: Results for nodes recovering after failure

39

Chapter 3

Source Tree Routing

The intuition behind the approach used in the source-tree adaptive routing (STAR)

protocol can be stated as follows. In an on-demand routing protocol, every source polls all the

destinations to �nd paths to a given destination; conversely, in a table-driven routing protocol,

every destination polls all the sources in the sense that they obtain paths to a destination

resulting from updates originated by the destination. Therefore, given that some form of

ooding occurs in either approach, it should be possible to obtain a table-driven protocol that

needs to poll as infrequently as on-demand routing protocols do to limit the overhead of the

routing protocol.

In STAR, a router sends updates to its neighbors regarding the links in its preferred

paths to destinations. The links along the preferred paths from a source to each desired

destination constitute a source tree that implicitly speci�es the complete paths from the source

to each destination. Each router computes its source tree based on information about adjacent

links and the source trees reported by its neighbors, and reports changes to its source tree to

all its neighbors incrementally. The aggregation of adjacent links and source trees reported

40

by neighbors constitutes the partial topology known by a router. STAR can be used with

distributed hierarchical routing schemes proposed in the past for both distance-vector or link-

state routing [32, 10, 37, 2].

Prior proposals for link-state routing using partial link-state data without clusters [19,

20] require routers to explicitly inform their neighbors which links they use and which links

they stop using. In contrast, because STAR sends only changes to the structure of source trees,

and because each destination has a single predecessor in a source tree, a router needs to send

only updates for those links that are part of the tree and a single update entry for the root of

any subtree of the source tree that becomes unreachable. Routers receiving a STAR update

can infer correctly all the links that the sender has stopped using, without the need for explicit

delete updates.

Section 3.1 describes two di�erent approaches that can be used to update routing

information in wireless networks: the optimum routing approach (ORA) and the least-overhead

routing approach (LORA), and elicit the reasons why STAR is the �rst table-driven routing

protocol that can adopt LORA. Section 3.2 describes STAR and how it supports ORA and

LORA. Section 3.3 demonstrates that routers executing STAR stop disseminating link-state

updates and obtain shortest paths to destinations within a �nite time after the cost of one

or more links changes. Section 3.4 compares STAR's performance against the performance

of other table-driven and on-demand routing protocols using simulation experiments. These

experiments use the same methodology described by Broch et al. to compare on-demand

routing protocols [11], and our simulation code is the same code that runs in embedded wireless

routers; the code we used for DSR was ported from the ns2 code for DSR available from CMU

[45]. The simulation results show that STAR is four times more bandwidth-eÆcient than the

best-performing link-state routing protocol previously proposed, an order of magnitude more

41

bandwidth-eÆcient than topology broadcasting, and, depending on the scenario, 1.3 to 6 times

more bandwidth-eÆcient than DSR, which has been shown to incur the least overhead among

several on-demand routing protocols [11]. To our knowledge, this is the �rst time that any

table-driven routing protocol has been shown to be more eÆcient than on-demand routing

protocols in wireless networks.

3.1 Updating Routes in Wireless Networks

We can distinguish between two main approaches to updating routing information

in the routing protocols that have been designed for wireless networks and that are based

on nodal identi�ers rather than node coordinates: the optimum routing approach (ORA) and

the least-overhead routing approach (LORA). With ORA, the routing protocol attempts to

update routing tables as quickly as possible to provide paths that are optimum with respect

to a de�ned metric. In contrast, with LORA, the routing protocol attempts to provide viable

paths according to a given performance metric, which need not be optimum, to incur the least

amount of control traÆc.

For the case of ORA, the routing protocol can provide paths that are optimum with

respect to di�erent types of service (TOS), such as minimum delay, maximum bandwidth, least

amount of interference, maximum available battery life, or combinations of metrics. Multiple

TOS can be supported in a routing protocol; however, this paper focuses on a single TOS to

address the performance of routing protocols providing ORA, and uses shortest-path routing as

the single TOS supported for ORA. We assume that a single metric, which can be a combination

of parameters, is used to assign costs to links.

On-demand routing protocols such as DSR follow LORA, in that these protocols

attempt to minimize control overhead by: (a) maintaining path information for only those

42

destinations with which the router needs to communicate, and (b) using the paths found after

a
ood search as long as the paths are valid, even if the paths are not optimum. On-demand

routing protocols can be applied to support multiple TOS; an obvious approach is to obtain

paths of di�erent TOS using separate
ood searches. However, we assume that a single TOS is

used in the network. ORA is not an attractive or even feasible approach in on-demand routing

protocols, because
ooding the network frequently while trying to optimize existing paths with

respect to a cost metric of choice consumes the available bandwidth and can make the paths

worse while trying to optimize them.

We can view the
ood search messages used in on-demand routing protocols as a

form of polling of destinations by the sources. In contrast, in a table-driven routing protocol,

it is the destinations who poll the sources, meaning that the sources obtain their paths to

destinations as a result of update messages that �rst originate at the destinations. What is

apparent is that some form of information
ooding occurs in both approaches.

Interestingly, all the table-driven routing protocols reported to date for ad hoc net-

works adhere to ORA, and admittedly have been adaptations of routing protocols developed

for wired networks. A consequence of adopting ORA in table-driven routing within a wireless

network is that, if the topology of the network changes very frequently, the rate of update

messages increases dramatically, consuming the bandwidth needed for user data. The two

methods used to reduce the update rate in table-driven routing protocols are clustering and

sending updates periodically. Clustering is attractive to reduce overhead due to network size;

however, if the aÆliations of nodes with clusters change too often, then clustering itself intro-

duces unwanted overhead. Sending periodic updates after long timeouts reduces overhead, and

it is a technique that has been used since the DARPA packet-radio network was designed [31];

however, control traÆc still has to
ow periodically to update routing tables.

43

A nice feature of such routing protocols as DSR [30] and WIRP [12] is that these

protocols remain quiet when no new update information has to be exchanged; they have no

need for periodic updates. Both protocols take advantage of promiscuous listening of packets

sent by neighbor routers to determine the neighborhood of the router. A key di�erence between

DSR and WIRP is that DSR follows LORA while WIRP follows ORA, which means that WIRP

may incur unnecessary overhead when the network topology is unstable.

Given that both on-demand and table-driven routing protocols incur
ooding of in-

formation in one way or another, a table-driven routing protocol could be designed that incurs

similar or less overhead than on-demand routing protocols by limiting the polling done by the

destinations to be the same or less than the polling done by the sources in on-demand routing

protocols. However, there has been no prior description of a table-driven routing protocol that

can truly adhere to LORA, i.e., one that uses node identi�ers for routing, has no need for

periodic updates, uses no clustering, and remains quiet as long as the paths available at the

routers are valid, even if they are not optimum. The reason why no prior table-driven routing

protocols have been reported based on LORA is that, with the exception of WIRP and WRP,

prior protocols have used either distances to destinations, topology maps, or subsets of the

topology, to obtain paths to destinations, and none of these types of information permits a

router to discern whether the paths it uses are in con
ict with the paths used by its neigh-

bors. Accordingly, routers must send updates after they change their routing tables in order

to avoid long-term routing loops, and the best that can be done is to reduce the control traÆc

by sending such updates periodically. In the next section, we describe STAR, which is the �rst

table-driven routing protocol that implements LORA.

44

3.2 STAR Description

3.2.1 Network Model

In STAR, routers maintain a partial topology map of their network. In this paper we

focus on
at topologies only, i.e., there is no aggregation of topology information into areas or

clusters.

To describe STAR, the topology of a network is modeled as a directed graph G =

(V;E), where V is the set of nodes and E is the set of edges connecting the nodes. Each node has

a unique identi�er and represents a router with input and output queues of unlimited capacity

updated according to a FIFO policy. In a wireless network, a node can have connectivity with

multiple nodes in a single physical radio link. For the purpose of routing-table updating, a

node A can consider another node B to be adjacent (we call such a node a \neighbor") if there

is link-level connectivity between A and B and A receives update messages from B reliably.

Accordingly, we map a physical broadcast link connecting multiple nodes into multiple point-

to-point bidirectional links de�ned for these nodes. A functional bidirectional link between two

nodes is represented by a pair of edges, one in each direction and with a cost associated that

can vary in time but is always positive.

In our description of STAR, we assume that an underlying protocol assures that a

router detects within a �nite time the existence of a new neighbor and the loss of connectivity

with a neighbor. However, depending on the MAC protocol used in the ad hoc network,

determining who the neighbors of a node are may be done based on promiscuous listening of

packets transmitted by neighbors. All messages, changes in the cost of a link, link failures, and

new-neighbor noti�cations are processed one at a time within a �nite time and in the order in

which they are detected. Routers are assumed to operate correctly, and information is assumed

to be stored without errors.

45

3.2.2 Overview

In STAR, each router reports to its neighbors the characteristics of every link it uses

to reach a destination. The set of links used by a router in its preferred path to destinations

is called the source tree of the router. A router knows its adjacent links and the source trees

reported by its neighbors; the aggregation of a router's adjacent links and the source trees

reported by its neighbors constitute a partial topology graph. The links in the source tree and

topology graph must be adjacent links or links reported by at least one neighbor. The router

uses the topology graph to generate its own source tree. Each router derives a routing table

specifying the successor to each destination by running a local route-selection algorithm on its

source tree. A critical aspect of the route selection algorithm is that a router can choose a

neighbor as its successor to a destination only if that neighbor has reported having a source

tree containing a path to the destination that does not involve the router itself.

Under LORA, a router running STAR sends updates on its source tree to its neighbors

only when it loses all paths to one ore more destinations, when it detects a new destination,

or when it determines that local changes to its source tree can potentially create long term

routing loops. Because each router communicates its source tree to its neighbors, the deletion

of a link no longer used to reach a destination is implicit with the addition of the new link

used to reach the destination and need not be sent explicitly as an update; a router makes

explicit reference to a failed link only when the deletion of a link causes the router to have

no paths to one or more destinations, in which case the router cannot provide new links to

make the deletion of the failed link implicit. The example shown in Figure 3.1 illustrates how

link failures may not cause the generation of update messages when STAR is running under

LORA. All links and nodes are assumed to have the same propagation delays, and all the

links have unit cost. Figures 3.1(b) through 3.1(d) show the source trees according to STAR

46

ga

b

c

f

e

d

ga

b

c

f

e

d

ga

b

c

f

e

d

(a) (b) (c)

d

a

b

c

f

e

g ga

b

c

f

e

d

ga

b

c

f

e

d

(d) (e) (f)

Figure 3.1: An example topology

at the routers indicated with �lled circles for the network topology depicted in Figure 3.1(a),

solid lines represent the links that are part of the source tree of the nodes, and the dashed

lines in Figure 3.1(b) represent the links that are in the topology graph of router f but not

in f 's source tree. After processing the failure of link (f; g) (Figure 3.1(e)) router f does not

need to report the changes to its source tree because all the destinations are reachable and no

permanent routing loop can be formed. The same is true when node e processes the failure of

link (e; g).

The basic update unit used in STAR to communicate changes to source trees is the

link-state update (LSU). An LSU reports the characteristics of a link; an update message

contains one or more LSUs. For a link between router u and router or destination v, router u

is called the head node of the link in the direction from u to v. The head node of a link is the

only router that can report changes in the parameters of that link. LSUs are validated using

time stamps, and each router erases a link from its topology graph if the link is not present in

47

the source trees of any of its neighbors.

3.2.3 Information Stored and Exchanged

We assume in the rest of the paper that a single parameter is used to characterize

a link in one of its directions, which we will call the cost of the directed link. Furthermore,

although any type of local route selection algorithm can be used in STAR, we describe STAR

assuming that Dijkstra's shortest-path �rst (SPF) algorithm is used at each router to compute

preferred paths.

An LSU for a link (u; v) in an update message is a tuple (u; v; l; t) reporting the

characteristics of the link, where l represents the cost of the link and t is the time stamp

assigned to the LSU.

A router i maintains a topology graph TGi, a source tree STi, a routing table, the

set of neighbors Ni, the source trees ST
i
x reported by each neighbor x 2 Ni, and the topology

graphs TGi
x for each neighbor x 2 Ni. The topology graph TG

i
x contains the links in ST i

x and

the links reported by neighbor x in a message being processed by router i, after processing the

message TGi
x � ST i

x.

The record entry for a link (u; v) in the topology graph of router i is denoted TGi(u; v)

and is de�ned by the tuple (u; v; l; t; del), and an attribute p in the tuple is denoted by

TGi(u; v):p. The same notation applies to a link (u; v) in STi, ST
i
x, and TGi

x. TGi(u; v):del

is set to TRUE if the link is not in the source tree of any neighbor.

A vertex v in TGi is denoted TGi(v). It contains a tuple (d; pred; suc; d
0; d00; suc0; nbr)

whose values are used on the computation of the source tree. TGi(v):d reports the distance

of the path i ; v, TGi(v):pred is v's predecessor in i ; v, TGi(v):suc is the next hop along

the path towards v, suc0 holds the address of the previous hop towards v, d0 corresponds to

48

the previous distance to v reported by suc0, d00 is the cost of the path i; v the last time the

cost of the path changed by �, and nbr is a
ag used to determine if an update message must

be generated when the distance reported by the new successor towards v increases. The same

notation applies to a vertex v in STi, ST
i
x, and TGi

x.

The source tree STi is a subset of TGi. The routing table contains record entries for

destinations in STi, each entry consists of the destination address, the cost of the path to the

destination, and the address of the next-hop towards the destination.

A router i running LORA also maintains the last reported source tree STi
0.

The cost of a failed link is considered to be in�nity. The way in which costs are

assigned to links is beyond the scope of this speci�cation. As an example, the cost of a link

could simply be the number of hops, or the addition of the latency over the link plus some

constant bias.

We refer to an LSU that has an in�nite cost as a RESET; furthermore TGi
i � TGi,

and ST i
i � STi.

3.2.4 Validating Updates

Because of delays in the routers and links of an ad hoc network, update messages

sent by a router may propagate at di�erent speeds along di�erent paths. Therefore, a given

router may receive an LSU from a neighbor with stale link-state information, and a distributed

termination-detection mechanism is necessary for a router to ascertain when a given LSU is

valid and avoid the possibility of LSUs circulating forever. STAR uses time stamps to validate

LSUs. A router either maintains a clock that does not reset when the router stops operating,

or asks its neighbors for the oldest known time stamp after it initializes or reboots.

A router receiving an LSU accepts the LSU as valid if the received LSU has a larger

49

time stamp than the time stamp of the LSU stored from the same source, or if there is no entry

for the link in the topology graph and the LSU is not reporting an in�nite cost. Link-state

information for failed links is erased from the topology graph after it ages out, which takes the

order of an hour after having processed the LSU of a link. LSUs for operational links are erased

from the topology graph when the links are erased from the source tree of all the neighbors.

Routers running STAR need to keep the state of failed links in their topology graphs

until all the nodes in a connected network are aware that there exist no path to a node that has

failed or has lost connectivity to all its neighbors. If a node that had more than one neighbor

fails and the nodes in the network delete the state of failed links from the topology graph, then

the termination-detection mechanism fails in those nodes that knew about the state of more

than one link which had the failed node as the tail of the link. Consequently, some nodes in

the network may keep a route to the failed destination, not necessarily creating routing loops,

wasting bandwidth by forwarding data packets to the unreachable destination.

When STAR is running under LORA the head node of a failed link only reports to

its neighbors the failure of the link if the tail node of the link becomes unreachable, i.e., all

the nodes that have the failed link in their source trees will be unaware of the new state of the

link. Consequently, the head node of the failed link may receive an outdated LSU for the failed

link in the �rst update message transmitted by a new neighbor. For STAR to work properly

under LORA, whenever a node receives an LSU for one of its outgoing links and the link is not

present in its topology graph or the link has an in�nite cost, the node must add an entry (if

there is none) for the link in its topology graph with an in�nite cost and (re-)start aging the

link. A failed link can be deleted from a router's topology graph only if the link is not present

in the reported source tree of any neighbor.

We note that, because LSUs for operational links never age out, there is no need for

50

the head node of a link to send periodic LSUs to update the time stamp of the link. This means

that STAR disseminates LSUs for a given link only when changes are made to the source tree

a�ecting the link. This is in contrast to other routing protocols based on sequence numbers or

time stamps together with aging, which age out LSUs and must, therefore,
ood an LSU for a

given link within a �xed time interval in the absence of changes to the link.

3.2.5 Exchanging Update Messages

How update messages are exchanged depends on the routing approach used (ORA or

LORA). The rest of this section describes how LORA and ORA can be supported in STAR.

For ORA to be supported in STAR, the only rule needed for sending update messages

consists of a router sending an update message every time its source tree changes.

In an on-demand routing protocol, a router can keep using a path found as long as the

path leads to the destination, even if the path does not have optimum cost. A similar approach

can be used in STAR, because each router has a complete path to every destination as part of

its source tree. To support LORA, router i running STAR reports updates to its source trees

in the event of unreachable destinations, new destinations, the possibility of permanent routing

loops, and cost of paths exceeding a given threshold. Router i accomplishes this by comparing

its source tree against the source trees it has received from its neighbors after any input event,

and by sending the updates to its source tree according to the following three rules.

LORA-1: Router i sends a source-tree update when it �nds a new destination, or any of its

neighbors reports a new destination.

Whenever a router hears from a new neighbor that is also a new destination, it sends

an update message that includes the new LSUs in its source tree. Obviously, when a router

is �rst initialized or after a reboot, the router itself is a new destination and should send an

51

update message to its neighbors. Link-level support should be used for the router to know its

neighbors within a short time, and then report its links to those neighbors with LSUs sent in an

update message. Else, a simple way to implement an initialization action consists of requiring

the router to listen for some time for neighbor traÆc, so that it can detect the existence of

links to neighbors.

LORA-2: Router i sends a source-tree update when the change in the cost of the path to at

least one destination exceeds a threshold � for router i or any of its neighbors.

In this paper, we assume � = 1, i.e., routers force source-tree updates when des-

tinations become unreachable. When a router processes an input event (e.g., a link fails, an

update message is received) that causes all its paths through all its neighbors to one or more

destination to be severed, the router sends an update message that includes an LSU specifying

an in�nite cost for the link connecting to the head of each subtree of the source tree that

becomes unreachable. The update message does not have to include an LSU for each node

in an unreachable subtree, because a neighbor receiving the update message has the sending

node's source tree and can therefore infer that all nodes below the root of the subtree are also

unreachable, unless LSUs are sent for new links used to reach some of the nodes in the subtree.

When at least one destination becomes unreachable to any of the router's neighbors and the

router has a path to that destination then the router sends an update message reporting the

changes to its source tree.

LORA-3: Router i sends a source-tree update after processing an input event if:

1. A path implied in the source tree of router i leads to a loop.

2. The new successor chosen to a given destination has an address greater than the

address of router i.

52

3. The reported distance from the new chosen successor n to a destination j is longer

than the reported distance from the previous successor to the same destination.

However, if the cost of the path i ; j increases and n 6= i is a neighbor of j, no

update message is needed regarding j or any destination whose path from i involves

j.

The loop-prevention mechanisms of LORA-3 assume that the local route selection

algorithm is such that a router cannot add a link (u; v) to its new source tree choosing neighbor

k as the successor to v if (u; v) is not in the source tree reported by k. This is easily done by

labeling each link in the topology graph with the neighbors that have reported the link, and

by allowing a link (u; v) to be added to the new source tree only if the neighbor k used in the

path from the root of the source tree to (u; v) is one of the reporting neighbors of the link.

To explain the need for the �rst part of LORA-3, we observe that, in any routing loop

among routers with unique addresses, one of the routers must have the smallest address in the

loop; therefore, if a router is forced to send an update message when it chooses a successor

whose address is greater than its own, then it is not possible for all routers in a routing loop

to remain quiet after choosing one another, because at least one of them is forced to send an

update message, which causes the loop to break when routers update their source trees.

The last part of LORA-3 is needed when link costs can assume di�erent values in

di�erent directions, in which case the �rst part of LORA-3 may not suÆce to break loops

because the node with the smallest address in the loop may not have to change successors

when the loop is formed. The following example illustrates this scenario.

Consider the six-node wireless network shown in Figure 3.2 and assume that the last

part of LORA-3 is not in e�ect at the routers running STAR. In this example, nodes are given

identi�ers that are lexicographically ordered, i.e., a is the smallest identi�er and f is the largest

53

a

b

c

f

d

e

51

1
5

a

b

c

f

d

e

a

b

c

f

d

e

(a) (b) (c)

a

b

c

f

d

e

a

b

c

f

d

e

a

b

c

f

d

e

(d) (e) (f)

Figure 3.2: Routers running STAR without the last part of LORA-3 being in e�ect.

identi�er in the graph. All links and nodes are assumed to have the same propagation delays,

and all the links but links (a; b) and (b; c) have unit cost. Figures 3.2(b) through 3.2(d) show

the source trees according to STAR at the routers indicated with �lled circles for the network

topology depicted in Figure 3.2(a). Arrowheads on solid lines indicate the direction of the links

stored in the router's source tree. Figure 3.2(e) shows c's new source tree after processing the

failure of link (c; d); we note that c does not generate an update message, because c > b by

assumption. Suppose link (b; e) fails immediately after the failure of (c; d), node b computes

its new source tree shown in Figure 3.2(f) without reporting changes to it because a is its new

successor to destinations d, e, and f , and a < b. A permanent loop forms among nodes a, b,

and c.

Figure 3.3 depicts the sequence of events triggered by the execution of the last part

of LORA-3 in the same example introduced in Figure 3.2, after the failures of links (c; d) and

(b; e). The �gure shows the LSUs generated by the node with �lled circle transmitted in an

54

a

a

b

c

f

d

e

51

1
5

a

b

c

f

d

e

(b, e, 1) (e, d, 1) (e, f, 1)

a

b

c

f

d

e

(b, e, 1) (e, d, 1) (e, f, 1)

(a) (b) (c)

a

b

c

e

(b, e, infinity)

(b, e, infinity)

 a

b

c

a

b

c

(b, e, infinity)

(d) (e) (f)

Figure 3.3: Routers running STAR with the last part of LORA-3 being in e�ect.

update message to the neighbors, and shows such LSUs in parentheses. The third element

in an LSU corresponds to the cost of the link (a RESET has cost infinity). Unlike in the

previous example, node c transmits an update message after processing the failure of link (c; d)

because of the last part of LORA-3; the distance from the new successor b to d and f is greater

than from the previous successor d. When link (b; e) fails, node b realizes that the destinations

d, e, and f are unreachable and generates an update message reporting the failure of the link

connecting to the head of the subtree of the source tree that becomes unreachable. The update

message from b triggers the update messages that allow nodes a, b, and c to realize that there

are no paths to d, e, and f . A similar sequence of events takes place at the other side of the

network partition.

The example shown in Figure 3.4 illustrates the scenario in which a router that chooses

a new successor to a destination with a larger distance to it does not need to send an update

55

a

b

c

f

d

e

1 5

10

a

b

c

f

d

e

(a) (b)

Figure 3.4: The last part of LORA-3 not always triggers the generation of an update message:
(a) network topology, and (b) source tree of node c after processing the failure of link (c; b).

message. Figure 3.4(b) shows the new source tree of node c after the failure of link (c; b). In

this case, c does not need to send an update message because the parent node of the subtree

headed by b is a neighbor of c and therefore no permanent loop can be formed.

To ensure that the above rules work with incremental updates specifying only changes

to a source tree, a router must remember the source tree that was last noti�ed to its neighbors.

If any of LORA-1 to LORA-3 are satis�ed, the router must do one of two things:

� If the new source tree includes new neighbors than those present in the source tree that

was last updated, then the router must send its entire source tree in its update, so that

new neighbors learn about all the destinations the router knows.

� If the two source trees imply the same neighbors, the router sends only the updates

needed to obtain the new tree from the old one.

The above rules are suÆcient to ensure that every router obtains loopless paths to

all known destinations, without the routers having to send updates periodically. In addition

to the ability for a router to prevent loops in STAR, the two key features that enable STAR

to adopt LORA are: (a) validating LSUs without the need of periodic updates, and (b) the

ability to either listen to neighbors' packets or use a neighbor protocol at the link layer to

determine who the neighbors of a router are.

56

The rules for update-message exchange stated above assume that an update message

is sent reliably to all the neighbors of a router. As the performance analysis of Section 3.4

shows, this is a very realistic assumption, because STAR working under LORA generates far

fewer update messages than the topology changes that occur in the network. However, if

preserving bandwidth is of utmost importance and the underlying link protocol is contention-

based, additional provisions must be taken as described in the next section.

3.2.6 Impact of The Link Layer in LORA

The rules for update-message exchange stated in the previous section assume that an

update message is sent reliably to all the neighbors of a router. If the link layer provides eÆcient

reliable broadcast of network-level packets, then STAR can rely on sending an update message

only once to all neighbors, with the update message specifying only incremental changes to

the router's source tree. The link layer will retransmit the packet as needed to reach all

neighbors, so that it can guarantee that a neighbor receives the packet unless the link is broke.

An alternative way to provide a reliable exchange of update messages consists of providing

collision-free broadcasts of update messages at the medium access control (MAC) layer and

implementing the retransmission strategy for update messages as part of STAR itself.

A reliable broadcast service at the link layer can be implemented very eÆciently at the

link layer or in STAR itself if the MAC protocol used guarantees collision-free transmissions of

broadcast packets. A typical example of A MAC protocol that can support collision-free broad-

casts is TDMA, and there are several recent proposals that need not rely on static assignments

of resources (e.g., FPRP [56], CARTS [54]).

Unfortunately, reliable broadcasting from a node to all its neighbors is not supported

in the collision-avoidance MAC protocols that have been proposed [16, 29, 7] or implemented in

57

commercial products for ad hoc networks operating in ISM bands. Furthermore, any link-level

or network-level strategy for reliable exchange of broadcast update messages over a contention-

based MAC protocol will require substantial retransmissions under high-load conditions and

rapid changes to the connectivity of nodes. Therefore, if the underlying MAC protocol does

not provide collision-free broadcasts, then STAR (and any table-driven routing protocol for

that matter) is better o� relying on the approach adopted in the past in the DARPA packet-

radio network, whereby a router broadcasts unreliably its update messages to its neighbors,

and each update message contains the entire source tree. For STAR to operate correctly

with this approach under LORA, routers must prevent the case in which permanent loops are

created because an update message is not received by a neighbor due to channel errors or

hidden-terminal interference.

When the routers transmit updates over a MAC protocol that does not provide

collision-free broadcasting, the following additional mechanisms are needed in STAR: (a) the

data packets must record the route traversed, and (b) four additional rules are used to send

an update messages. These added rules are used to provide persistence in the exchange of

updates, probe neighbor routers for updates when paths to a destination are not known, and

break loops detected by the traversal of data packets.

LORA-4: Router i sends its update message as a reliable unicast to the neighbor that makes

router i send its update, and all neighbors of i process the update message.

LORA-5: A router sends periodic updates in intervals of 60 seconds while at least one of its

neighbors does not report having a path to a destination known to the router; otherwise,

periodic updates are transmitted in intervals of 600 seconds or longer.

LORA-6: When router i has a data packet to send to a destination j for which it has no

paths, it sends an update message to its neighbors reporting the absence of a path to

58

j. This message acts as a query, because any neighbor with a path to j receiving the

message will generate an update message and send it reliably to router i. While router

i has no path to j, it retransmits its update message in intervals of 600 milliseconds, 6

seconds, and 60 seconds, and then backs o� to periodic updates transmitted in intervals

of 600 seconds or longer.

LORA-7: Router i receives a data packet to destination j and one of the routers in the

traversed path is in i's path to the destination, the data packet is discarded and a

ROUTE-REPAIR update message is generated to break the loop. A ROUTE-REPAIR

contains the complete source tree of the sender's router and the route repair path, and

is transmitted reliably to the router in the head of the route repair path. The route

repair path corresponds to the path i; x, where x is the last router in the data packet's

traversed path that is �rst found in the path i ; j 2 STi. When a router receives

a ROUTE-REPAIR update it removes itself from the route repair path and transmits

a ROUTE-REPAIR with its source tree to the head of the route repair path. When a

router detects a loop it will only transmit a ROUTE-REPAIR update to neighbor k if

30 seconds have elapsed since the last time a ROUTE-REPAIR was sent to k.

3.2.7 Details on The Processing of Input Events

Figures 3.5 and 3.6 specify the main procedures of STAR (for both LORA and ORA

approaches) used to update the routing table and the link-state database at a router i. It is

assumed that the link layer provides reliable broadcast of network-level packets. Procedure

NodeUp is executed when a router i starts up. The neighbor set of the router is empty initially.

If the neighbor protocol reports a new link to a neighbor k (procedure NeighborUp),

the router then runs Update with the appropriate message as input; the LSU in the message gets

59

NodeUp()
description

Node i initializes itself

f
TGi ;;
STi ;;

ST 0
i
 ;;

Ni ;;
Mi FALSE;
NSi FALSE;

g

NeighborUp(k)
description

Neighbor protocol reports connectivity

to neighbor k
f
Ni Ni [fkg;

TGi
k
 ;;

STi
k
 ;;

sendST TRUE;

if (LORA and k 2 TGi and TGi(k):pred 6= null)
f
NSi TRUE;
sendST FALSE;

g

Update(i; (i; k; li
k
; Ti));

if (sendST)
f
MSGi ;;

for each (link (u; v) 2 STi)
MSGi MSGi [f(u; v; TGi(u; v):l;

TGi(u; v):t)g;
g

Send();
g

NeighborDown(k)
description

Neighbor protocol reports link

failure to neighbor k
f
Ni Ni � fkg;

TGi
k
 ;;

STi
k
 ;;

Update(i; (i; k;1; Ti));

Send();
g

LinkCostChange(k)
description

Neighbor protocol reports link

cost change to neighbor k
f

Update(i; (i; k; li
k
; Ti));

Send();
g

Update(k;msg)
description

Process update message msg
sent by router k

f
UpdateTopologyGraph(k;msg);

if (k 6= i)
BuildShortestPathTree(k;null);

BuildShortestPathTree(i; k);
UpdateRoutingTable();

if (k 6= i)
Send();

g

UpdateTopologyGraph(k;msg)
description

Update TGi and TGi
k

from LSUs in msg

f
for each (LSU (u; v; l; t) 2 msg)
f
if (l 6=1)
ProcessAddUpdate(k; (u; v; l; t));

else

ProcessVoidUpdate(k; (u; v; l; t));
g

g

ProcessAddUpdate(k; (u; v; l; t))
description

Update topology graphs TGi and TGi
k

from LSU

f
if ((u; v) =2 TGi or t > TGi(u; v):t)
f
if ((u; v) =2 TGi)
f
TGi TGi [f(u; v; l; t)g;
if (LORA and k 6= i and u = i)
TGi(u; v):l 1;

g
else

f
TGi(u; v):l l; TGi(u; v):t t;

g
g
if (k 6= i)
f

if (9 (r; s) 2 TGi
k
j r 6= u and s = v)

TGi
k
 TGi

k
� f(r; s)g;

if ((u; v) =2 TGi
k
)

TGi
k
 TGi

k
[f(u; v; l; t)g;

else

f

TGi
k
(u; v):l l; TGi

k
(u; v):t t;

g
g
TGi(u; v):del FALSE;
if (TGi(u; v):l =1) Start aging (u; v);

g

ProcessVoidUpdate(k; (u; v; l; t))
description

Update topology graphs TGi and TGi
k

from LSU

f
if ((u; v) 2 TGi)
f
if (t > TGi(u; v):t)
f
TGi(u; v):l l; TGi(u; v):t t;
Start aging (u; v);

g

if (k 6= i and (u; v) 2 TGi
k
)

f

TGi
k
(u; v):l l; TGi

k
(u; v):t t;

g
TGi(u; v):del FALSE;

g
g

Send()
f
if (MSGi 6= ;) Broadcast message MSGi;
MSGi ;;

g

InitializeSingleSource(k)
f

for each (vertex v 2 TGi
k
)

f

TGi
k
(v):d 1; TGi

k
(v):pred null;

TGi
k
(v):suc0 TGi

k
(v):suc;

TGi
k
(v):suc null; TGi

k
(v):nbr null;

g

TGi
k
(k):d 0;

g

Figure 3.5: STAR Speci�cation

60

BuildShortestPathTree(k; k0)
f
InitializeSingleSource(k);

Q set of vertices in TGi
k
;

u ExtractMin(Q); newST ;;

while (u 6= null and TGi
k
(u):d <1)

f

if (TGi
k
(u):pred 6= null and TGi

k
(u):pred =2 newST)

f

(r; s) TGi
k
(u):pred; newST newST [(r; s);

if (LORA and k = i)
f

if (k0 6= i and TGi
k0
(u):suc = i and TGi(u):suc

0 = k0)

Mi TRUE; // LORA-3 rule

if (TGi(u):suc 6= TGi(u):suc
0 and TGi(u):suc > i)

Mi TRUE; // LORA-3 rule

if (6 9 (x; y) 2 ST 0
i
j y = u)

Mi TRUE; // LORA-1 rule

if (j TGi(u):d � TGi(u):d
00 j > �)

f
Mi TRUE; // LORA-2 rule

TGi(u):d
00 TGi(u):d;

g

if (k0 6= i and TGi
k0
(u):pred = null)

Mi TRUE; // LORA-2 rule

w TGi(u):suc;
if (w 6= i)
path w u cost TGi(u):d � TGi(i; w):l;

else path w u cost 0;

if (path w u cost > TGi(u):d
0)

f
if (r = w or TGi(r):nbr = i)
TGi(s):nbr i;

if (TGi(s):nbr 6= i)
Mi TRUE; // LORA-3 rule

g

TGi(u):d
0 path w u cost;

TGi(u):suc
0 TGi(u):suc;

g
g

for each (vertex v 2 adjacency list of TGi
k
(u)

j TGi
k
(u; v):l 6=1 and NOT TGi(u; v):del)

f
if (k = i)
f
if (u = i) suc i;
else if (TGi(u):suc = i)
suc fx j x 2 Ni and x = ug;

else suc TGi(u):suc;
g
else

f
if (u = k)
if (v = i) suc i;
else suc k;

else suc TGi(u):suc;
g

if (k 6= i or u = i or (u; v) 2 STisuc)
RelaxEdge(k; u; v; Q; suc);

g
if (Q 6= ;) u ExtractMin(Q);
else u null;

g
UpdateNeighborTree(k;newST);
if (k = i)
f
if (LORA and Mi)
f

ReportChanges(ST0
i
; newST);

ST 0
i
 newST ; NSi FALSE;

g
else if (ORA)
ReportChanges(STi; newST);

for each (link (u; v) 2 TGi j TGi(u; v):del = TRUE)

if (ORA or (LORA and (Mi or (u; v) =2 ST 0
i
)))

TGi TGi � f(u; v)g;
Mi FALSE;

g

STi
k
 newST ; newST ;;

g

RelaxEdge(k; u; v; Q; suc)
f

if (TGi
k
(v):d > TGi

k
(u):d + TGi

k
(u; v):l or

(k = i and TGi
k
(v):d = TGi

k
(u):d + TGi

k
(u; v):l and

(u; v) 2 STi))
f

TGi
k
(v):d TGi

k
(u):d + TGi

k
(u; v):l;

TGi
k
(v):pred TGi

k
(u; v);

TGi
k
(v):suc suc;

if (LORA and k = i and TGi(v):suc
0 = null)

f
// v was an unknown destination

TGi(v):suc
0 suc;

TGi(v):d
00 TGi(v):d;

if (suc 6= i)

TGi(v):d
0 TGi(v):d � TGi(i; suc):l;

else

TGi(v):d
0 0;

g
Insert(Q; v);

g
g

ReportChanges(oldST;newST)
description

Generate LSUs for new links in the router's source tree

f
for each (link (u; v) 2 newST)
if ((u; v) =2 oldST or newST(u; v):t 6= oldST (u; v):t

or NSi)
MSGi MSGi [f(u; v; TGi(u; v):l; TGi(u; v):t)g;

g

UpdateNeighborTree(k;newST)
description

Delete links from TGi
k

and report failed links

f

for each (link (u; v) 2 STi
k
)

f
if ((u; v) =2 newST)
f

// k Has removed (u; v) from its source tree

if (LORA and TGi
k
(v):pred = null)

f
// LORA-2 rule: k has no path to destination v
Mi TRUE;

if (k = i)
for each (link (r; s) 2 TGi j s = v)
if (TGi(r; s):l =1)
MSGi MSGi [f(r; s; TGi(r; s):l; TGi(r; s):t)g;

g
if (ORA and k = i and (u = i or TGi(v):pred = null))
f

// i has no path to destination v or i is the head node

if (TGi(v):pred = null)
for each (link (r; s) 2 TGi j s = v)
if (TGi(r; s):l =1)
MSGi MSGi [f(r; s; TGi(r; s):l; TGi(r; s):t)g;

else if (TGi(u; v):l =1)
// i Needs to report failed link

MSGi MSGi [f(u; v; TGi(u; v):l; TGi(u; v):t)g;
g
if (LORA and k = i and TGi(v):pred = null)
f

TGi(v):d
0 1;

TGi(v):d
00 1;

TGi(v):suc
0 null;

g
if (NOT (k = i and u = i))
f

if ((u; v) 2 TGi
k
)

TGi
k
 TGi

k
� f(u; v)g;

if (k = i and TGi(u; v):l 6=1 and TGi(u):pred 6= null
and TGi(v):pred = null)

// (u; v) is the root of an unreachable subtree

MSGi MSGi [f(u; v;1; TGi(u; v):t)g;

if (TGi(u; v):l 6=1 and 6 9 x 2 Ni j (u; v) 2 TGix)

TGi(u; v):del TRUE;
g

g
g

g

Figure 3.6: STAR Speci�cation (cont.)

61

a current time stamp. The same approach is used for link failures (NeighborDown) and changes

in link cost (LinkCostChange). When a router establishes connectivity to a new neighbor, the

router sends its complete source tree to the neighbor (much like a distance vector protocol sends

its complete routing table). The LSUs that must be broadcast by router i to all neighbors are

inserted into the list MSGi.

The procedure Update is executed when router i receives an update message from

neighbor k or when the parameters of an outgoing link have changed. First, the topology

graphs TGi and TG
i
k are updated, then the source trees ST i

k and STi are updated, which may

cause the router to update its routing table and to send its own update message.

The state of a link in the topology graph TGi is updated with the new parameters for

the link if the link-state update in the received message is valid, i.e., if the LSU has a greater

time stamp than the time stamp of the link stored in TGi.

The parameters of a link in TGi
k are always updated when processing an LSU sent

by a neighbor k, even if the link-state information is outdated, because they report changes to

the source tree of the neighbor. A node in a source tree ST i
k can have only one link incident

to it. Hence, when i receives an LSU for link (u; v) from k the current incident link (u0; v) to

v, u 6= u0, is deleted from TGi
k.

The information of an LSU reporting the failure of a link is discarded if the link is

not in the topology graph of the router.

A shortest-path algorithm based on Dijkstra's SPF (procedure BuildShortestPathTree)

is run on the updated topology graph TGi
k to construct a new source tree ST i

k, and then run

on the topology graph TGi to construct a new source tree STi.

The incident link to a node v in router's i new source tree is di�erent from the link

in the current source tree STi only if the cost of the path to v has decreased or if the incident

62

link in STi was deleted from the source trees of all neighbors.

A new source tree newST for a neighbor k, including the router's new source tree, is

then compared to the current source tree ST i
k (procedure UpdateNeighborTree), and the links

that are in ST i
k but not in newST are deleted from TGi

k. After deleting a link (u; v) from

TGi
k the router sets TGi(u; v):del to TRUE if the link is not present in the topology graphs

TGi
x;8x 2 Ni.

If a destination v becomes unreachable, i.e., there is no path to v in the new source

tree newST , then LSUs will be broadcast to the neighbors for each link in the topology graph

TGi that have v as the tail node of the link and a link cost in�nity.

For simplicity, this speci�cation assumes that the link layer provides reliable broadcast

of control packets and consequently update messages specify only incremental changes to the

router's source tree instead of the complete source tree.

The new router's source tree newST is compared to the last reported source tree

(STi
0 for LORA and STi for ORA) (procedure ReportChanges), and an update message that

will be broadcast to the neighbors is constructed from the di�erences of the two trees. An LSU

is generated if the link is in the new source tree but not in the current source tree, or if the

parameters of the link have changed. For the case of a router running LORA, the source trees

are only compared with each other if at least one of the three conditions (LORA-1, LORA-2,

and LORA-3) described in Section 3.2.5 is met, i.e., Mi = TRUE.

If the new router's source tree was compared against the last reported source tree

then the router removes from the topology graph all the links that are no longer used by any

neighbor in their source trees.

Finally, the current shortest-path tree ST i
k is discarded and the new one becomes the

current source tree. The router's source tree is then used to compute the new routing table,

63

using for example a depth-�rst search in the shortest-path tree.

3.3 STAR Correctness

For simplicity, we assume that all links are point-to-point and that shortest-path

routing is implemented. Let t0 be the time when the last of a �nite number of link-cost

changes occur, after which no more such changes occurs. The network G = (V;E) in which

STAR is executed has a �nite number of nodes (j V j) and links (j E j), and every message

exchanged between any two routers is received correctly within a �nite time. According to

STAR's operation, for each direction of a link in G, there is a router that detects any change

in the cost of the link within a �nite time.

For simplicity, the following theorems assume that link-state information does not

age-out.

3.3.1 Correctness of STAR Under ORA

This section addresses STAR correctness for the case in which ORA is applied. The

following theorems show that routers running STAR under ORA send correct routing tables

within a �nite time after link costs change, without the need to replicate topology information

at every router (like the Open Shortest Path First (OSPF) protocol does) or use explicit delete

updates to delete obsolete information (like the Link Vector Algorithm (LVA) [19] and the

Adaptive Link-State Protocol (ALP) [20] do).

Theorem 6 The dissemination of LSUs by routers running STAR under ORA stops a �nite

time after t0.

Proof: A router that detects a change in the cost of any outgoing link must update

its topology graph, update its source tree as needed, and send an LSU if the link is added to

64

or is updated in the source tree. Let l be the link that last experiences a cost change up to

t0, and let tl be the time when the head of the link l originates the last LSU originated as a

result of the link-cost changes occurring up to t0. Any router that receives the LSU for link

l originated at tl must process the LSU within a �nite time, and decides whether or not to

forward the LSU based on its updates to its source tree. A router can accept and propagate an

LSU only once because each LSU has a time stamp; accordingly, given that G is �nite, there

can only be a �nite chain of routers that propagate the LSU for link l originated at tl, and the

same applies to any LSU originated from the �nite number of link-cost changes that occur up

to t0. Therefore, STAR stops the dissemination of LSUs a �nite time after t0. 2

Because of Theorem 6, there must be a time ts > t0 when no more LSUs are being

sent.

Theorem 7 When ORA is applied, in a connected network, and in the absence of link failures,

all routers have the most up-to-date link-states they need to compute shortest paths to all

destinations within a �nite time after ts.

Proof: The proof is by induction on the number of hops of a shortest path to a

destination (the origin of an LSU), and is similar to the proof for SPTA [3].

Consider the shortest path from router s0 to a destination j at time ts, and let h be

the number of hops along such a path. For h = 1, the path from s0 to j consists of one of the

router's outgoing links. By assumption, an underlying protocol informs the router with the

correct parameter values of adjacent links within a �nite time; therefore, the Theorem is true

for h = 1, i.e., s0 must have link (s0; j) in its source tree and must have sent its neighbors an

LSU for that link. Assume that the Theorem is true for h = n hops, i.e., that any router with

a path of n or fewer hops to j has the correct link-state information about all the links in the

path and has sent LSUs to its neighbors with the most up-to-date state of each such link, and

65

consider the case in which the path from s0 to j at time ts is n+1 hops. Let s1 be the next hop

along the shortest path selected by s0 to j at ts. The sub-path from s1 to j has n hops and,

by the inductive assumption, such a path must be in the source tree of s1 at time ts, which

implies that all the links in the path from s1 to j are in its source tree, and that s0 received

and processed an LSU for each link in the path from s1 to j with the most recent link-state

information. Because it is also true that s0 has the most recent link-state information about

link (s0; s1), it follows that s0 has the most recent information about all the links in its chosen

path to j. The Theorem is therefore true, because the same argument applies to any chosen

destination and router. 2

Theorem 8 When ORA is applied, all the routers of a connected network have the most up-

to-date link-state information needed to compute shortest paths to all destinations.

Proof: The result is immediate from Theorem 7 in the absence of link failures.

Consider the case in which the only link that fails in the network by time t0 is link (s; d).

Call the time when link (s; d) fails tf � t0. According to STAR's operation, router s sends an

LSU reporting an in�nite cost for (s; d) within a �nite time after tf ; furthermore, every router

receiving the LSU reporting the in�nite cost of (s; d) must forward the LSU if the link exists

in its topology graph, i.e., the LSU gets
ooded to all routers in the network that had heard

about the link, and this occurs within a �nite time after t0; moreover, links with in�nite cost

are not erased from the topology graph. It then follows that no router in the network can

use link (s; d) for any shortest path within a �nite time after t0. Accordingly, within a �nite

time after t0 all routers must only use links of �nite cost in their source trees; together with

Theorem 7, this implies that the Theorem is true. 2

Theorem 9 When ORA is applied, if destination j becomes unreachable from a network com-

ponent C at t0; the topology graph of all routers in C includes no �nite-length path to j.

66

Proof: STAR's operation is such that, when a link fails, its head node reports an

LSU with an in�nite cost to its neighbors, and the state of a failed link is
ooded through a

connected component of the network to all those routers that knew about the link. Because a

node failure equals the failure of all its adjacent links, and because every neighbor of a failed

node must detect the failure of its link to the node within a �nite time, it is true that no router

in C can compute a �nite-length path to j from its topology graph after a �nite time after t0.

2

Note that, if a connected component remains disconnected from a destination j all

link-state information corresponding to links for which j is the head node is erased from the

topology graph of the routers in the network component.

3.3.2 Correctness of STAR Under LORA

This section addresses the correctness of STAR for the case in which LORA is applied.

Correctness under LORA simply means that routers stop sending updates and the source trees

at the routers of a network do not imply routing table loops, include no paths to unreachable

destinations, and span all reachable destinations within a �nite time after the moment when

no more topology changes or link cost changes occur. Assume that the successor entries of the

nodal routing tables in G de�ne another graph for each destination j, denoted Sj(G), whose

nodes are the same nodes of G and in which a directed edge exists from node i to node k if

and only if node k is i's successor to j. Also assume that Pxj denotes the path from node x

to node j in Sj(G). In steady-state, loop freedom is guaranteed in G if Sj(G) is a tree within

a �nite time. Node i is said to be upstream of node k in Sj(G) if the directed chain Pij from

node i to node j includes node k. Similarly, node k is downstream of node i.

For simplicity, we assume that � =1. As we described in Section 3.3.1, we assume

67

that there is a time t0 after which no topology changes occur. The following theorems show

that routers running STAR under LORA set correct routing tables within a �nite time after

link cost change without incurring permanent loops.

Theorem 10 The dissemination of LSUs by routers running STAR under LORA stops a �nite

time after t0.

Proof: A router that detects a change in the cost of any outgoing link must update

its topology graph, update its source tree as needed, and sends an LSU only if a new destination

is found, a destination becomes unreachable, or a permanent loop can be formed, which is a

subset of the cases under ORA. Accordingly, the result is immediate from Theorem 6. 2

Because of Theorem 10, there must be a time ts > t0 when no more LSUs are being

sent.

Theorem 11 The path to a destination j is loop-free within a �nite time after t0 if a node

sends an update message reporting changes to its source tree whenever the distance implied

in the source tree of the new chosen successor s for a given destination j is longer than the

distance implied in the source tree from the previous successor for the same destination.

Proof: Assume that a router i running STAR only reports changes to its source tree

when i �nds a new destination, a destination becomes unreachable, or the cost of the path to j

reported by the new successor is larger than the cost of the path to j reported by the previous

successor.

Let l = (i; x) be the link that last experiences a cost change at t0, and assume that

the cost of l has decreased. If the distance implied in the reported source tree of the new

successor s to x is shorter or equal to the distance implied in the source tree of the previous

successor, then it is true that s is downstream of node i in Sx(G) and therefore no permanent

loop can be formed. This is also true for any destination j that has l in Sj(G).

68

On the other hand, if the cost of the link l had increased and the distance reported

by the new successor s to x is longer than the reported distance from the previous successor

to x, then i generates an update message reporting the changes to its source tree. In turn,

upstream nodes that have i in their paths to x must either experience a distance increase and

send an update, or �nd an alternate loop-free path to x of the same length. From Theorem 10,

the last update message is processed within a �nite time after t0. 2

Theorem 12 No permanent loop can be formed if no update message is generated by a node i

regarding destination j or any destination whose path from i involves j when the new successor

s 6= i to j is a neighbor of j and i > s.

Proof: The proof is by contradiction. Consider that at time ti < t0 the cost of

the link (i; j) 2 STi changes and node i does not generate an update message after choosing

s 2 Nj as the new successor to j. Also, assume that a permanent loop to j between i and

s is formed at time t0 when the cost of the link (s; j) changes and s chooses i 2 Nj as the

successor to j without reporting changes to its source tree. According to STAR's operation,

if at time ti node i did not generate an update message, then i > s. This implies that at

time t0 node s should have generated an update message, because s < i, which contradicts the

Theorem. According to STAR's operation, router i cannot add a link (u; v) to its new source

tree choosing neighbor s as the successor to v if (u; v) is not in the source tree reported by s.

Given that the update message transmitted by s reports the addition of the link (i; j) to its

source tree and the implicit deletion of the link (s; j), node i cannot choose s as its successor

towards j and consequently no permanent loop can be formed. 2

Theorem 13 thm8 When LORA is applied, all the routers in a connected network C have a

loop-free path to every destination in C within a �nite time after t0.

69

Proof: According to STAR's operation, an LSU reporting a new destination is
ooded

by all the routers in C. Moreover, a router reports the changes to its new source tree to a

neighbor if the router has a path to a destination in C that became unreachable to the neighbor.

Therefore, a �nite-length path to any destination in a connected network C is known by all

the routers in C. 2

Theorem 14 When LORA is applied, if destination j becomes unreachable from a network

component C at t0; the topology graph of all routers in C includes no �nite-length path to j.

Proof: STAR's operation is such that, when a node i in C �nds that j has become

unreachable, i reports an LSU to its neighbors for each link in the topology graph that has an

in�nite cost and j as the tail node. The state of the failed links is
ooded through a connected

component of the network to all those routers that knew about j and �nd j unreachable.

Because a node failure equals the failure of all its adjacent links, it is true that no router in C

can compute a �nite-length path to j from its topology graph after a �nite time after t0. 2

3.4 Performance Evaluation

3.4.1 Simulation Experiments

STAR has the same communication, storage, and time complexity than ALP [20]

and eÆcient table-driven distance-vector routing protocols proposed to date (e.g., WRP [36]).

However, worst-case performance is not truly indicative of STAR's performance; accordingly,

we ran a number of simulation experiments to compare STAR's average performance against

the performance of table-driven and on-demand routing protocols.

The protocol stack implementation in our simulator runs the very same code used in

a real embedded wireless router and IP (Internet Protocol) is used as the network protocol.

70

The link layer implements a medium access control (MAC) protocol similar to the

IEEE 802.11 standard and the physical layer is based on a direct sequence spread spectrum

radio with a link bandwidth of 1 Mbit/sec. An underlying protocol is con�gured to report

loss of connectivity to a neighbor if the quality of the link with the neighbor decreases to

unacceptable levels in a period of about 10 seconds.

The simulation experiments use 20 nodes forming an ad hoc network, moving over

a
at space (5000m x 7000m), and initially randomly distributed at a density of one node

per square kilometer. Nodes move in the simulation according to the \random waypoint"

model [11]. Each node begins the simulation by remaining stationary for pause time seconds.

It then selects a random destination and moves to that destination at a speed of 20 meters per

second for a period of time uniformly distributed between 5 and 11 seconds. Upon reaching

the destination, the node pauses again for pause time seconds, selects another destination,

and proceeds there as previously described, repeating this behavior for the duration of the

simulation.

The simulation study was conducted in the C++ Protocol Toolkit (CPT) simulator

environment [4]. STAR based on ORA is �rst compared against two other table-driven routing

protocols, and STAR based on LORA is then compared with DSR, which has been shown to

be a very bandwidth eÆcient on-demand routing protocol.

3.4.2 Comparison with Table-Driven Protocols

We chose to compare STAR against the traditional link-state approach and ALP [20].

The traditional link-state approach (denoted by TOB for topology broadcast) corresponds to

the
ooding of link states in a network, or within clusters coupled with
ooding of inter-cluster

connectivity among clusters; a link-state update is
ooded throughout the network only when

71

the cost of the link changes. ALP is a routing protocol based on partial link-state information

that we have previously shown to outperform prior table-driven distance-vector and link-state

protocols [20]. For these simulations STAR uses ORA, because both ALP and TOB attempt

to provide shortest paths. In the simulation experiment, the three protocols rely on the reliable

delivery of broadcast packets by the link layer. As such, the results presented present the best

possible behavior for any link-state protocol based on
ooding, and the best possible behavior

for ALP and STAR.

We ran our simulations with movement patterns generated for 5 di�erent pause times:

0, 30, 45, 60, and 90 seconds. A pause time of 0 seconds corresponds to continuous motion.

The simulation time in all the simulation scenarios is of 900 seconds.

As the pause time increases, we expect the number of update packets sent to decrease

because the number of link connectivity changes decreases. Because STAR and ALP generate

LSUs for only those links along paths used to reach destinations, we expect STAR and ALP

to outperform any topology broadcast protocol.

A link in the topology graph of a router running ALP can be in one of three states:

state 0 if the link is in the topology graph but is not in the preferred paths of the router,

state 1 if the link is in the preferred paths of the router, and state 2 if the link was deleted

from the preferred paths of the router and the cost of the link has not increased at the time of

its deletion from the preferred paths. A router running ALP does not report to its neighbors

the deletion of a link from its preferred paths if the cost of the link has not increased, i.e.,

when the state of the link in the topology graph transitions from 1 to 2. Consequently, all the

routers that have a link in state 2 in their topology graphs have to forward to their neighbors

an LSU that announces the failure of the link. Unlike ALP, routers running STAR only have

in their topology graphs link-state information for those links that are in the preferred paths

72

Pause Connectivity Update Packets Generated
Time Changes STAR ALP TOB
0 1090 2542 { {
30 154 411 1765 5577
45 102 262 1304 3908
60 90 239 1144 2502
90 50 138 623 1811

Table 3.1: Average performance of STAR, ALP, and TOB.

of their neighbors, i.e., the failure of a link will only make a router send an update message

reporting the failure if the link is in the preferred paths of the router and a destination becomes

unreachable. The head node of a failed link must report the failure of the link both in STAR

and ALP.

Table 3.1 summarizes the behavior of the three protocols according to the pause time

of the nodes. The table shows the number of link connectivity changes and the total number

of update packets generated by the routing protocols; ALP generates on average more than 4

times more update packets than STAR, and topology broadcast generates more than 10 times

more packets than STAR. The performance of ALP and TOB for pause time 0 could not be

assessed because the amount of update packets generated by the routers lead to congestion at

the link layer.

Because STAR can be used in combination with any clustering scheme proposed in

the past for packet-radio networks, it is clear from this study that STAR should be used instead

of ALP and topology broadcast for the provision of QoS routing in packet radio networks, given

that any overhead traÆc associated with clustering would be equivalent for STAR, ALP, and

topology broadcast.

73

3.4.3 Comparison with DSR

As we have stated, our simulation experiments use the same methodology used re-

cently to evaluate DSR and other on-demand routing protocols [11]. To run DSR in our

simulation environment, we ported the ns2 code available from [45] into the CPT simulator.

There are only two di�erences in our DSR implementation with respect to that used in [11]: (1)

there is no access to the MAC layer in the embedded wireless routers and simulated protocol

stack we used, which implies that packets already scheduled for transmission over a link cannot

be rescheduled in either protocol, and (2) routers cannot operate their network interfaces in

promiscuous mode because the MAC protocol operates over multiple channels and a router

does not know on which channels its neighbors are transmitting, unless the packets are meant

for the router. Both STAR and DSR can bu�er 20 packets that are awaiting discovery of a

route through the network.

The overall goal of the simulation experiments was to measure the ability of the

routing protocols to react to changes in the network topology while delivering data packets to

their destinations. The data traÆc load was kept small to ensure that, if links were congested, it

was due to control traÆc. We applied to the simulated network three di�erent communication

patterns corresponding to 8, 14, and 20 data
ows. The total workload in the three scenarios

was the same and consisted of 32 data packets/sec, in the scenario with 8
ows each continuous

bit rate (CBR) source generated 4 packets/sec, in the scenario with 20 sources each CBR source

generated 1.6 packets/sec, and in the scenario with 14
ows there were 7
ows from distinct

CBR sources to the same destination D generating an aggregate of 4 packets/sec and 7
ows

havingD as the CBR source and the other 7 sources of data as destinations. In all the scenarios

the number of unique destinations was 8 and the packet size was 64 bytes. The data
ows

were started at times uniformly distributed between 20 and 120 seconds (we chose to start the

74

ows after 20 seconds of simulated time to give some time to the Link Layer for determining

the set of nodes that are neighbors of the routers).

Since the performance of STAR depends on the type of service provided by the link-

layer, we run two sets of simulation experiments. In the �rst experiment the MAC protocol

ensures the reliable broadcast of control packets to all the neighbors of a router and, thus,

allowing routers running STAR to send incremental updates. In the second experiment routers

running STAR send their complete source tree in every update message and exchange update

messages according to LORA rules LORA-1 to LORA-7.

3.4.4 Comparison with DSR Using Reliable Broadcasts

The protocol evaluations are based on the simulation of 20 wireless nodes in continuous

motion (pause time 0) for 900 seconds of simulated time. The total number of changes in link

connectivity is 1460.

Table 3.2 summarizes the behavior of STAR and DSR. The table show the total num-

ber of update packets transmitted by the nodes and the total number of data packets delivered

to the applications for the three simulated workloads. The total number of update packets

transmitted by routers running STAR varies with the number of changes in link connectivity

while DSR generates control packets based on both variation of changes in connectivity and

the type of workload inserted in the network. Routers running STAR generated fewer update

packets than DSR in all simulated scenarios: routers running DSR sent from 0.35 to 4.40 times

more update packets. Both STAR and DSR were able to deliver about the same number of

data packets to the applications in the simulated scenarios with 8 and 14
ows. When we

increased the number of sources of data from 8 to 20 nodes, while inserting the same number

of data packets in the network (32 packets/sec), we observed that STAR was able to deliver

75

Number Update Pkts Sent Data Pkts Delivered Data Pkts
of Flows STAR DSR STAR DSR Generated

8 585 791 14898 14740 24100
14 560 1466 15206 15367 25917
20 575 3122 13922 6830 23718

Table 3.2: Average performance of STAR and DSR

Number Protocol Number of Hops
of Flows 1 2 3 4 5 6

8 STAR 92.0 7.4 0.2 0.4
DSR 64.9 31.2 2.6 1.3

14 STAR 82.0 16.0 1.7 0.3
DSR 64.1 26.9 4.0 4.5 0.5

20 STAR 92.6 5.1 2.0 0.3
DSR 61.9 32.4 5.1 0.3 0.3

Table 3.3: Distribution of DATA packets delivered according to the number of hops traversed
from the source to the destination

twice the amount of data packets delivered by DSR during 900 seconds of simulated time.

The MAC layer discards all packets scheduled for transmission to a neighbor when

the link to the neighbor fails, which contributes to the high loss of data packets seen by nodes.

In DSR, each packet header carries the complete ordered list of routers through which the

packet must pass and may be updated by nodes along the path towards the destination. The

low throughput achieved by DSR for the case of 20 sources of data is due to the poor choice

of source routes the routers make, leading to a signi�cant increase in the number of ROUTE

ERROR packets generated. Data packets are also discarded due to lack of routes to the

destinations, because the network may become temporarily partitioned or because the routing

tables have not converged in the highly dynamic topology we simulate.

Figures 3.7(a) through 3.7(c) show the cumulative distribution of packet delay expe-

rienced by data packets during 900 seconds of simulated time, for a workload of 8, 14, and

20
ows, respectively. The higher delay introduced by DSR when relaying data packets is not

directly related with the number of hops traversed by the packets (as shown in Table 3.3), but

76

with the use of stale source routes when the number of
ows increase from 8 to 20.

In all the simulation scenarios the number of destinations was set to just 40% of the

number of nodes in the network in order to be fair with DSR. For the cases in which all the

nodes in the network receive data, STAR would introduce no extra overhead while DSR could

be severely penalized. It is also important to note the low ratio of update messages generated

by STAR compared to the number of changes in link connectivity (Table 3.2).

We note that in cases where routers fail or the network becomes partitioned for

extended time periods, the bandwidth consumed by STAR is much the same as in scenarios

in which no router fails, because all that must happen is for updates about the failed links to

unreachable destinations to propagate across the network. In contrast, DSR and several other

on-demand routing protocols would continue to send
ood-search messages trying to reach the

failed destination, which would cause a worst-case bandwidth utilization for DSR. To illustrate

the impact the failure of a single destination has in DSR we have run the simulation scenario

with 8
ows present in the network for 1800 seconds making one of the destinations fail after

900 seconds of simulated time, routers running STAR sent 942 (946 without the node failure)

update packets while routers running DSR sent 3043 (1963 without the node failure) update

packets. The existence of a single
ow of data to a destination that was unreachable for 900

seconds made DSR to generate 55% more update packets while STAR generated about the

same number of updates.

3.4.5 Comparison with DSR Using Rules LORA-1 to LORA-7

When routers exchange update messages according to rules LORA-1 to LORA-7 the

performance of STAR depends on the type of workload inserted in the network. For this reason,

the protocol evaluations are based on simulations with movement patterns generated for �ve

77

Pause Num. Update Pkts Sent Data Pkts Delivered Data Pkts
Time Flows STAR DSR STAR DSR Generated

8 908 791 15110 14740 24100
0 14 930 1460 15845 10975 25917

20 916 3122 13689 6830 23718
8 615 460 19544 20831 24396

15 14 636 702 23027 23210 25989
20 686 1535 17254 10129 23649
8 559 350 20180 20492 24160

30 14 551 464 23086 23228 25892
20 580 763 19929 18341 23716
8 517 280 21685 22683 24100

45 14 526 2352 23776 20481 25917
20 507 1880 20749 19898 23731
8 522 482 22536 19102 24100

60 14 507 1357 24473 23436 25917
20 493 744 22218 21899 23775

Table 3.4: Performance of STAR and DSR

di�erent pause times: 0, 15, 30, 45, and 60 seconds. The experiments are based on a 20-node

network with a simulated time of 900 seconds.

Table 3.4 summarizes the behavior of STAR and DSR. The table shows the total

number of update packets transmitted by the nodes and the total number of data packets

delivered to the applications for the three simulated workloads. Table 3.5 shows the number of

hops traversed by data packets when nodes are in continuous motion. Routers running STAR

generate fewer update packets than DSR in most of the simulated scenarios, the di�erence

increases signi�cantly when the number of
ows in the network is 20 (routers running DSR

sent up to two times more control packets than STAR when nodes were in continuous motion).

Both STAR and DSR were able to deliver about the same number of data packets to the

applications in the simulated scenarios with 8 and 14
ows. When we increase the number of

sources of data from 8 to 20 nodes, while inserting the same number of data packets in the

network (32 packets/sec), we observe that STAR is able to deliver as much as twice the amount

of data packets delivered by DSR when nodes are in continuous motion. It is also important to

78

Number Protocol Number of Hops
of Flows 1 2 3 4 5 6

8 STAR 94.0 4.1 1.9
DSR 64.9 31.2 2.6 1.3

14 STAR 76.0 16.4 4.2 3.0 0.4
DSR 64.1 26.9 4.0 4.5 0.5

20 STAR 90.8 6.4 1.6 1.1 0.1
DSR 61.9 32.4 5.1 0.3 0.3

Table 3.5: Number of hops traversed by data packets (pause time 0)

Pause Connectivity
Time Changes
0 1461
15 605
30 424
45 350
60 322

Table 3.6: Changes in link connectivity

note the low ratio of update messages generated by STAR compared to the number of changes

in link connectivity (Table 3.6).

Figures 3.8(a) through 3.8(c) show the cumulative distribution of packet delay expe-

rienced by data packets when nodes are in continuous motion for a workload of 8, 14, and 20

ows respectively. We note that the distribution of the latency is about the same for both

STAR and DSR.

To illustrate the impact the failure of a single destination has in DSR we have run

the simulation scenario with 8
ows present in the network for 1800 seconds making one of the

destinations fail after 900 seconds of simulated time, routers running STAR sent 1823 (1583

without the node failure) update packets while routers running DSR sent 3043 (1963 without

the node failure) update packets. The existence of a single
ow of data to a destination that

was unreachable for 900 seconds made DSR generate 55% more update packets while STAR

experienced an increase of 15%.

79

3.5 Conclusions

We have presented STAR, a link-state protocol that incurs smaller communication

overhead than the ideal topology broadcast protocol and ALP (which in turn has been shown

to incur less communication overhead than protocols based on the Distributed Bellman Ford

algorithm and LVA), and also incurs less overhead than one of the most bandwidth-eÆcient

on-demand routing protocols proposed to date. STAR accomplishes its bandwidth eÆciency

by: (a) disseminating only that link-state data needed for routers to reach destinations; (b)

exploiting that information to ascertain when update messages must be transmitted to detect

new destinations, unreachable destinations, and loops; and (c) allowing paths to deviate from

the ideal optimum while not creating permanent loops. The bandwidth eÆciency achieved in

STAR is critical for ad hoc networks with energy constraints, because it permits routers to

preserve battery life for the transmission of user data while avoiding long-term routing loops

or the transmission of data packets to unreachable destinations.

Our simulation experiments show that STAR is an order of magnitude more eÆcient

than the traditional link-state approach, and more than four times more eÆcient than ALP

(which has been shown to outperform prior topology-driven protocols), in terms of the num-

ber of update packets sent. The results of our experiments also show that STAR is 1.3 to 6

times more bandwidth eÆcient than DSR, which in turn has been shown to be one of the most

bandwidth-eÆcient on-demand routing protocols. Because STAR can be used with any cluster-

ing mechanism proposed to date, these results clearly indicate that STAR is a very attractive

approach for routing in packet-radio networks. Perhaps more importantly, the approach we

have introduced in STAR for least-overhead routing opens up many research avenues, such as

developing similar protocols based on distance vectors and determining how route aggregation

and geographical routing works under LORA.

80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(a) 8
ows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(b) 14
ows

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(c) 20
ows

Figure 3.7: Cumulative distribution of packet delay experienced by data packets

81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(a) 8
ows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(b) 14
ows

]
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

%
 o

f d
at

a
pa

ck
et

s

delay (secs)

STAR
DSR

(c) 20
ows

Figure 3.8: Cumulative distribution of packet delay experienced by data packets

82

Chapter 4

Neighborhood Aware Source

Routing

On-demand routing protocols have been shown to be very e�ective for ad hoc net-

works. The success of a caching algorithm for an on-demand routing protocol depends of the

strategies used for the deletion of links from the routing cache [27]. DSR has been shown to

incur less routing overhead when utilizing a cache data structure based on a graph represen-

tation of individual links (link cache), rather than based on complete paths. DSR removes

failed links from the link cache when a ROUTE ERROR packet reports the failure of the link

and other links are removed by aging. The lifetime of a link is estimated based on a node's

perceived stability of both endpoint nodes of the link. In some scenarios, the use of link caches

has been shown to produce overhead traÆc as little as 50% of that incurred with path caches

[27].

The results reported on DSR indicate that a routing protocol based on link-state

information can make better routing decisions than one based on path information, because

83

the freshness of routing information being processed can be determined by the timestamp or

sequence number assigned by the head node of the links. On the other hand, in an ad hoc

network, it is very easy for a given node to learn about the neighbors of its neighbors. Based on

these observations, we introduce a new approach to link-state routing in ad hoc networks based

on on-demand source routing and knowledge of links that exist in the two-hop neighborhood of

nodes. We call this approach the neighborhood aware source routing (NSR) protocol. In NSR,

a node maintains a partial topology of the network consisting of the links to its immediate

neighbors (1-hop neighbors), the links to its 2-hop neighbors, and the links in the requested

paths to destinations that are more than two hops away. Links are removed from this partial

topology graph by aging only, and the lifetime of a link is determined by the node from which

the link starts (head node of the link), re
ecting with a good degree of certainty the degree of

mobility of the node.

Section 4.1 describes NSR in detail. Section 4.2 demonstrates that routers executing

NSR discover source routes to any destination in a connected network within a �nite time,

that the source of data packets is noti�ed within a �nite time when the destination becomes

unreachable, that data packets cannot form any routing loop, and that NSR achieves correct

reset of sequence numbers. Section 4.3 presents the performance comparison of NSR and DSR

using a 50-node network and eight simulation experiments with di�erent numbers of sources

and destinations. The simulation results indicate that NSR incurs far less communication

overhead while delivering packets with the same or better delivery rates and average delays as

DSR using path caches.

84

4.1 NSR Description

4.1.1 Overview

To describe NSR, the topology of a network is modeled as a directed graph, where

each node in the graph has a unique identi�er and represents a router, and where the links

connecting the nodes are described by some parameters. A link from node u to node v is

denoted (u; v), node u is referred as the head node of the link and node v is referred as the tail

node of the link. In this study it is assumed that the links have unit cost.

Routers are assumed to operate correctly and information is assumed to be stored

without errors. All events are processed one at a time within a �nite time and in the order in

which they are detected. Broadcast packets are transmitted unreliably and it is assumed that

the link-level protocol can inform NSR when a packet cannot be sent over a particular link.

The source route contained in a data packet speci�es the sequence of nodes to be

traversed by the packet. A source route can be changed by the routers along the path to the

destination and its maximum length is bounded.

NSR does not attempt to maintain routes from every node to every other node in the

network. Routes are discovered on an on-demand basis and are maintained only as long as

they are necessary.

Routers running NSR exchange link-state information and source routes for all known

destinations are computed by running Dijkstra's shortest-path �rst on the partial topology

information (topology graph) maintained by the router. If NSR has a route to the destination

of a locally generated data packet, a source route is added to the header of the packet and it is

forwarded to the next hop. Otherwise, NSR broadcast a route request (RREQ) to its neighbors

asking for the link-state information needed to build a source route to the destination. If

the neighbors do not have a path, a RREQ is broadcast to the entire network and only the

85

destination of the data packet is allowed to send to the source of the RREQ a route reply

(RREP) containing the complete path to the destination. A router forwarding a data packet

needs to send a route error (RERR) packet to the source of the data only when it is not able

to �nd an alternate path to a broken source route or when the failure of a link in the source

route needs to be reported to the source of the data packet in order to erase outdated link-state

information.

NSR has the property of being loop-free at all times because any change made to the

path to be traversed by a data packet does not include nodes from the traversed path.

A link to a new neighbor is brought up when NSR receives any packet from the

neighbor. The link to a neighbor is taken down either when the link-level protocol is unable to

deliver unicast packets to the neighbor or when a timeout has elapsed from the last time the

router received any traÆc from the neighbor.

A node running NSR periodically broadcasts to its neighboring nodes a hello (HELLO)

packet. HELLO packets have a dual purpose: they are used to notify the presence of the node to

its neighbors and as a way of obtaining reasonable up-to-date information about the set of links

two hops away from the node. By having such link-state information refreshed periodically the

nodes forwarding a data packet may not need to notify the source of the packet when a repair

is done to a broken source route. As an example, the links shown as solid lines in Figure 4.1

represent the source route followed by a data packet sent by node a to node e, a link shown as

a dashed line is known by the head node and its neighbors. Suppose links (b; c) and (c; d) fail

and node a sends a data packet. NSR is able to repair the source route twice, without needing

to report the link failures to node a, by making node b to add node f to the source route and

by making node c to replace node d by node g.

NSR uses sequence numbers to validate link-state information. All the outgoing links

86

da b c

f g

e

Figure 4.1: Failure of links (b; c) and (c; d) do not cause the generation of RERR packets when
repairing the source route represented by the links in solid lines

of a node are identi�ed by the same monotonically increasing sequence number. A node

increments its sequence number when it needs to send a control packet and a link was brought

up or taken down since the last time a control packet was transmitted.

Link-state information is only deleted from the topology graph due to aging. The

lifetime of a link is determined by the head node of the link. All the outgoing links of a

node are considered to have the same lifetime, which is computed according to a function that

estimates the average time a link to a neighbor is up.

4.1.2 Routing Information Maintained in NSR

A node i running NSR maintains the node's epoch Ei, the node's sequence number

SNi, the average lifetime of the node's links to neighbors Li, the broadcast ID, the neighbor

table, the topology graph, the shortest-path tree, the data queue, the RREQ history table,

and the RERR history table.

The node's epoch is incremented when the node boots up before NSR starts its

operation. The node's epoch is the only data that needs to be kept in non-volatile storage

because it is used to maintain the integrity of routing information across node's resets (a

separate section describes its role in NSR's operation).

The node's sequence number is used in the validation of link-state information. The

sequence number is incremented when the node needs to advertise the state of one of its

outgoing links and one of the node's outgoing links changed state since the last time a link-

87

state was advertised.

The lifetime of the node's links to neighbors is updated periodically by applying a

decay factor to the current lifetime and averaging the time the links to neighbors are up.

The broadcast ID is used with the node's address to uniquely identify a RREQ packet.

The broadcast ID has its value incremented when a new RREQ packet is created.

An entry in the neighbor table contains the address of a neighbor, the time the link to

the neighbor was brought up, the neighbor ID, and a delete
ag. When the link to a neighbor

is taken down the delete
ag is set to 1 to mark the entry as deleted. The neighbor table has

255 entries, and the neighbor ID consists of the number of the entry in the table. An entry

marked as deleted is reused when the link for the neighbor listed in the entry is brought up.

This guarantees that the neighbor ID is preserved for some time across link failures, which is

useful when building source routes based on this IDs, as described later.

The topology graph is updated with the state of the links reported in both control

packets and data packets. The parameters of each link (u; v) in the topology graph consists

of the tuple (sn; cost; lifetime; ageT ime; nbrID), where sn is the link's sequence number,

cost is the cost of the link, lifetime is the link's lifetime as reported by u, ageT ime is the

age-out time of the link, and nbrID is the neighbor ID assigned by node u to its neighbor v.

The shortest-path tree is obtained by running Dijkstra's shortest-path on the topology

graph when a control packet is received, when the state of an outgoing link changes, when a

link ages-out, and periodically if the shortest-path tree has not been updated within a given

time interval.

Data packets locally generated at the node waiting for a route to the destination are

kept in the data queue. The packet at the tail of the queue is deleted when the queue is full

and a new packet arrives to be enqueued. A packet is also deleted from the queue if a certain

88

period of time has elapsed since it was inserted into the queue. A leaky bucket controls the

rate with which data packets are dequeued for transmission in order to reduce the chances of

congestion.

Each node maintains in the RREQ history table, for a speci�c length of time, a

record with the source address and broadcast ID of each RREQ received. A node that receives

a RREQ with a source address and broadcast ID already listed on the table does not forward

the packet.

A node can send a RERR packet for a node src, through neighbor nbr, as a con-

sequence of processing a data packet sent by node src to destination dst, after detecting

the failure of the link (u; v), only if there is no entry in the RERR history table for the tuple

(src; dst; u; v; nbr). An entry is deleted from the table after a certain period of time has elapsed

since it was created. The RERR history table is a mechanism used to avoid the generation of

a storm of RERR packets reporting the failure of the same link.

4.1.3 Routing Information Exchanged by NSR

NSR can generate four types of control packets: RREQ, RREP, RERR, and HELLO.

Routing information is also sent in the header of data packets. RREQ and HELLO packets

are broadcast unreliably and RREP and RERR are transmitted reliably as unicast packets.

The link to the next-hop along the path to be traversed by RREP and RERR packets is taken

down if after several retransmissions the link-layer fails to deliver the packet to the intended

neighbor. All the packets transmitted by NSR have a �eld that keeps track of the number of

hops traversed by the packets. A packet is not forwarded if the it has traveled MAX PATHLEN

hops, however, the link-state information it carries is processed.

RREP, RERR, and data packets contain a source route. The source route consists of

89

the sequence of nodes to be traversed by the packet. The identi�cation of a node in a source

route does not need to be the node's address, it can be the neighbor ID assigned by the node

that precedes it in the source route. The neighbor ID is encoded in 1 byte, representing a

signi�cant reduction in the overhead added by the source route in a data packet when the

addresses of the nodes are encoded in several bytes (e.g., 4 bytes in IPv4 [44], or 16 bytes in

IPv6 [9]).

Every packet but HELLOs is updated with the state of the link over which it was

received (the receiving node is the head of the link and the neighbor which sent the packet is

the tail of the link). The source of a data packet also adds to the source route the sequence

number of the links along the path to be traversed. The receiver node processing a source

route updates its topology graph with the state of the links traversed by the packet.

The link state information (LSI) reported by NSR for a given link consists of the cost

the link (encoded in 1 byte), the sequence number of the head of the link (encoded in 2 bytes),

and the lifetime of the link (encoded in 4 bits). LSIs reported in control packets have an extra

�eld (encoded in 1 byte): the neighbor ID assigned by the head of the link to the tail node.

A node relaying RREQ, RREP, and RERR packets adds to the packet its neighborhood

link state (NLS) which consists of the LSIs for outgoing links to neighbors. The NLS also

contains the partialLSI
ag which is set when the node reports a partial list of its outgoing

links due to packet size constraints. All the links in an NLS have the same sequence number

and lifetime. After processing the LSIs received in an NLS with the partialLSI
ag not set,

the node sets to in�nity the cost of all the links in the topology graph having the same head

node of the NLS but with a smaller sequence number, and the sequence number of these

links is updated with the sequence number reported in the NLS. Consequently, the node that

advertises its NLS does not have to report the set of links that were removed from its NLS due

90

to failures.

HELLO packets carry the node's NLS and are not relayed by the receiving node. The

receiver of a HELLO processes the NLS reported in the packet in the same way NLSs are

processed when received in RREQ packets.

A RREQ packet contains the source node's address, the destination's address, the

maximum number of hops it can traverse, and a broadcast ID which is incremented each time

the source node initiates a RREQ (the broadcast ID and the address of the source node form

a unique identi�er for the RREQ). Two kinds of RREQs are sent: non-propagating RREQs

which can travel at most one hop, and propagating RREQs which can be relayed by up to

MAX PATHLEN nodes.

A RERR packet is generated due to the failure of a link in the source route of a data

packet. The RERR contains the source route received in the data packet, the head node of the

failed link, the LSIs having as head node the head of the failed link, and the LSIs for the links

in the alternate path to the destination (if any).

4.1.4 Operation of NSR

The NSR protocol is composed of four mechanisms that work together to allow the

reliable computation of source routes on an on-demand basis:

� Connectivity Management: by which a node can learn the state of those links on the

path to nodes two hops away. The cost of repairing a source route due to link failures

can be signi�cantly reduced by having available up-to-date state of such links.

� Sequence Number Management: by which the sequence number used in the valida-

tion of link-state information is updated such that its integrity is preserved across node-

resets and network partitions. This mechanism also ensures that RREQs are uniquely

91

identi�ed across node-resets.

� Route Discovery: by which the source of a data packet obtains a source route to the

destination when the node does not already know a route to it.

� Route Maintenance: by which any node relaying a data packet is able to detect and

repair a source route that contains a broken link, and by which the source of a data

packet is able to optimize source routes. A broken source route may be repaired multiple

times until it reaches the destination without needing to notify the source of the data

packet of such repairs.

Connectivity Management

This mechanism is responsible for determining the node's lifetime Li and the state of

the links to neighboring nodes. The link to a new neighbor is brought up when any packet is

received from the neighbor. The link to a neighbor is taken down if the node does not receive

any packet from the neighbor for a given period of time.

HELLO packets are broadcast periodically and have their transmission rescheduled

when RREQ packets are transmitted.

The node's lifetime Li is recomputed periodically based on the average time the links

to neighbors are up. The minimum lifetime Lmin is assumed to be 30 seconds and the maximum

lifetime Lmax is assumed to be 1800 seconds. When reported in an LSI the node's lifetime is

encoded in 4 bits after being rounded down to the nearest of one of the following values (in

seconds): Lmin, 45, 60, 75, 90, 105, 120, 150, 165, 180, 240, 360, 480, 900, and Lmax.

92

Sequence Number Management

NSR works with the assumption that only the source of data packets be noti�ed of

the failure of a link in the path being traversed by a data packet. Given that the cost of a

link may change over time without being noticed by some nodes in the network that have the

link in their topology graphs, link-state information must be aged-out to prevent routers from

keeping stale routes. A node can ascertain whether the link-state information reported by a

neighbor is valid by comparing the sequence number in the LSI against the sequence number

stored in the topology graph for the same link. The router considers the received LSI as valid

if its sequence number is greater than the sequence number stored for the same link, or if there

is no entry for the link in the topology graph.

The sequence number used in the validation of link-state information consists of two

counters maintained by the head node i of the link: the node's epoch Ei and the node's

sequence number SNi. Both Ei and SNi are encoded in one byte each and have a value in the

range [1, 254]. It is assumed that SNi wraps around when its value is either 127 or 254 and it

is incremented.

The value of SNi is incremented whenever the router needs to advertise changes to its

NLS. It is assumed that the time interval between node resets is greater or equal to Lmin = 30

seconds, and that SNi should wrap around in at least Lmax = 1800 seconds, i.e., any node

other than the head i of a link with lifetime set to Lmax will have deleted the link from its

topology graph by aging before Ei and SNi wrap around. If SNi wraps around before Lmax

seconds have elapsed since the previous wrap around, then Ei is incremented and SNi is set

to 1.

The procedure used to determine whether a value X based on SNi or Ei is greater

than a value Y is shown in Figure 4.2.

93

When SNi gets incremented to a value sn greater than 127 then all the nodes in the

network have already aged-out all the links reported by i with SNi in the range [1, sn - 127].

Likewise, when SNi gets incremented to a value sn smaller than 128 then all the routers have

already aged-out all the links reported by i with SNi in the range [128, sn + 127].

From the perspective of any node x 6= i in the network, the combination of Ei and

SNi is seen as an unbounded counter because the values of Ei and SNi have a lifetime.

The sequence number of a received LSI for the link (u; v) is greater then the sequence

number stored in the topology graph for the same link if the Eu component of the LSI's

sequence number is greater then the respective Eu stored in the topology graph, or if the

epochs are the same but the SNu component of the LSI's sequence number is greater than the

respective SNu component in the topology graph.

The broadcast ID set by node i in a RREQ packet also consists of two counters: the

node's epoch Ei and a 4-byte sequence number Bi. The source of a RREQ increments Bi

result FALSE;

if (X � 127)
A X; B Y;

else
A Y; B X;

if (B � 127)
if (A > B)
result TRUE;

else if (j A - B j > 127)
result TRUE;

if (X = A and result = TRUE)
X is greater than Y;

else if (Y = A and X 6= Y and result = FALSE)
X is greater than Y;

Figure 4.2: Procedure to determine if X is greater than Y, where X and Y are derived from Ei

or SNi

94

before creating the RREQ for transmission. By having Ei as part of the broadcast ID, RREQs

are uniquely identi�ed across node resets.

Route Discovery

When NSR receives a data packet from an upper-layer and the router has a source

route to the destination, the source route is inserted into the packet's header and the packet

is forwarded to the next hop towards the destination. Otherwise, NSR inserts the data packet

into the data queue and initiates the route discovery process, if there is none already in progress,

for the data packet's destination by broadcasting a non-propagating RREQ. By sending non-

propagating RREQs, NSR prevents unnecessary
ooding when the neighbors have a source

route to the required destination. If none of the neighbors send a RREP within a timeout

period, a propagating RREQ is transmitted. Each time a propagating RREQ is transmitted

the timeout period is doubled until a pre-de�ned number of attempts have been made, after

which it is kept constant. After a pre-de�ned number of RREQs have been transmitted for a

given destination, the route discovery process is restarted by sending a non-propagating RREQ

if the data queue holds a packet for the destination.

When a node receives a RREQ, it processes all the LSIs in the packet and then checks

whether it has seen it before by comparing the source address and the broadcast ID from the

RREQ against the entries in the RREQ history table. The RREQ is discarded if the node

has already seen it before, otherwise the node is said to have received a valid RREQ, and an

entry is added to the RREQ history table with the values of the RREQ's source address and

broadcast ID. Non-propagating RREQs are always considered valid RREQs.

The receiver node of a non-propagating RREQ sends a RREP if it has a source route

to the destination of the RREQ. Since a RREP to a non-propagating RREQ is not generated by

the destination of the RREQ, the lifetime of the LSIs reported in the RREP must correspond

95

h

a b c ed

ki j

gf h

a b c ed

ki j

gf

(a) (b)

h

a b c ed

ki j

gf

(c)

Figure 4.3: Link-state information learned from processing RREQ and RREP packets

to the time left for being aged-out from the node's topology graph.

If the node processing a valid RREQ is the destination of the RREQ then it sends

a RREP back to the source of the RREQ. The source route contained in the RREP consists

of the reversed path traversed by the RREQ packet. A node other than the destination of a

valid RREQ adds its NLS into the packet before broadcasting it. Likewise, a node other than

the destination of a RREP adds its NLS into the packet before forwarding it. The link-state

information learned from RREQs and RREPs increases the chances of a node �nding a source

route in the topology graph and, consequently, increases the likelihood of replying to non-

propagating RREQs. As an example, consider the network topology shown in Figure 4.3(a),

where solid lines indicate the path traversed by the �rst RREQ packet received by destination

node e from the source node a. The dashed lines in Figure 4.3(b) represent the links learned

from the RREP received by node a from destination e. The dashed lines in Figure 4.3(c)

96

da b c e a b c ed

f

(a) (b)

a b c ed

f

(c)

Figure 4.4: Type of repairs that can be applied to a source route in a RREP packet

represent the links learned from the RREQ received by node e from node a. The solid lines in

Figures 4.3(b) and 4.3(c) correspond to those links learned from HELLO packets.

A node forwarding a RREP packet may change its source route if the link to the

next hop has failed. The broken source route can be repaired if the node is able to �nd an

alternate path having at most 2-hops to any of the nodes in the path to be traversed by the

RREP packet. The order with which the nodes from the broken source route are visited when

seeking an alternate path is from the tail node towards the node that corresponds to the tail

of the failed link. Figure 4.4 shows the types of repairs that can be applied to the source route

(shown in solid lines) in a RREP: in Figure 4.4(a) the failure of the link (b; c) causes node b to

replace links (b; c) and (c; d) by (b; d), in Figure 4.4(b) the failure of the link (b; c) causes node

b to replace links (b; c) and (c; d) by (b; f) and (f; d), and in Figure 4.4(c) the failure of the

link (b; c) causes node b to replace link (b; c) by (b; f) and (f; c). An extra-hop can be added

to a broken source route only if the length of the new path does not exceed MAX PATHLEN

hops.

97

Route Maintenance

A node forwarding a data packet attempts to repair the source route when either the

link to the next hop or the link headed by the next hop in the path to be traversed has failed.

The repair consists in �nding an alternate path to the destination of the data packet, and may

involve the transmission of a RERR packet to the source of the data packet.

The repair made by a forwarding node to the source route of a data packet does not

trigger the transmission of a RERR packet if the following rules are satis�ed:

� Rule-1: the node processing the packet is listed in the original source route received in

the data packet.

� Rule-2: one of the nodes not yet visited by the data packet but listed in the original

source route is at most two hops away from the router itself in the repaired source route.

The path traversed by a RERR packet consists of the reversed path traversed by the

data packet, having as destination the source of the data packet that triggered its transmission.

Rule-1 and Rule-2 guarantee that the source of the data packet is noti�ed of all the link failures

present in its source route. When the RERR reaches its destination, the source of the data

packet updates its topology graph and recomputes its shortest-path tree.

Figure 4.5 illustrates the cases where repairs can be applied to the source route in

a data packet without triggering the generation of RERRs. The links shown as solid lines in

Figure 4.5 correspond to the source route carried by data packets originated at node a with

destination f , and the dashed lines represent the links added to the new source route repaired

by the nodes indicated with �lled circles.

Figure 4.5(a) illustrates the fact that a node considers a source route as broken if

any of the links in the next two hops following the node processing the packet has failed. In

98

HELLO

b c d e f

g

a fa b c d e

(a) (b)

fb c d

g

a e eb c d

g

a f

(c) (d)

g

b c da fe

(e)

Figure 4.5: Type of repairs that can be applied to a source route in a DATA packet

this particular case, node b receives a HELLO packet from node c reporting the failure of link

(c; d) before b receives a data packet to be forwarded. The node forwarding a data packet may

not have in its topology graph the link that is one hop away in the source route. In order to

prevent the node from dropping the data packet, NSR allows the packet to be forwarded if the

sequence number in the source route for the missed link is greater then the sequence number

of any link reported by the neighbor.

The failure of the link (b; c) shown in Figure 4.5(c) makes the links (b; c) and (c; d)

in the source route be replaced by the links (b; g) and (g; d). The failure of the link (b; c)

shown in Figure 4.5(d) causes the link (b; c) be replaced by the link (b; g) and the source route

be extended in one hop by adding link (g; c) to it. The failure of the link (b; c) shown in

99

i

RERRRERR

b c d e fa

g h i

RERRRERR

b c d e fa

g h

(a) (b)

f

RERRRERR

a b c d e

RERR

a b c d e f

(c) (d)

a b c d e f

RERR

g

(e)

Figure 4.6: Broken source-routes leading to transmission of RERR packets

Figure 4.5(e) causes the link (b; c) be replaced by link (b; g) and the source route be shortened

in one hop by replacing the links (c; d) and (d; e) by link (g; e).

If node g shown in Figure 4.5 receives a data packet with the source route repaired

by node b and it detects the source route is broken, a RERR packet needs to be transmitted

(even if g has an alternate path) since Rule-1 is not satis�ed when the node attempts repairing

the route.

Figure 4.6 illustrates the cases that trigger the transmission of a RERR packet when

a source route in a data packet is detected to be broken. The links shown as solid lines in

Figure 4.6 correspond to the source route carried by data packets originated at node a with

destination f , and the dashed lines represent the links added to the new source route repaired

100

by the nodes indicated with �lled circles.

The generation of RERR packets reporting the failure of the same link are spaced by

some time interval if the source route being processed was generated by the same source node,

and the data packet is for the same destination, and the data packet was received from the

same neighbor that caused the transmission of the previous RERR packet. This mechanism

prevents the generation of a RERR packet for every data packet in transit carrying the same

source route. After transmitting a RERR packet the node updates its RERR history table by

adding an entry with information about the RERR packet.

The failure of the link (c; d) shown in Figure 4.6(a) causes node c to transmit a RERR

packet to the source of a data packet received for forwarding. The RERR packet reports the

new source route to destination f , which consists of the links (c; g), (g; h), (h; i), and (i; f)

instead of the links (c; d), (d; e), and (e; f). The data packet being processed has its source

route updated accordingly and is forwarded to node g. When node b receives the RERR

packet its topology graph is updated with the link-state information reported in the packet,

its shortest-path tree is recomputed, its NLS is added to the packet, and the packet is then

forwarded to a.

Node b shown in Figure 4.6(b) adds to the RERR packet received from node c an

alternate path to f before forwarding the packet to a. NSR allows the node forwarding a

RERR to add an alternate path to the RERR packet only if it is a neighbor of the head node

of the failed link that triggered the generation of the RERR packet.

Node a shown in Figure 4.6(c) receives a RERR packet not reporting an alternate

path to the destination. Node b shown in Figures 4.6(d) and 4.6(e) does not forward the RERR

packet because it has an alternate path to the destination. The next data packet it receives

from a has the source route repaired with the alternate path.

101

4.1.5 Using Neighbor IDs in Source Routes

The source route given in a data packet can be formed by the sequence of neighbor

IDs mapped to each link along the path to be traversed by the packet, instead of being formed

by node's addresses. Such approach makes the source route very compact and allows more

data be carried in each packet. As an example consider the scenarios depicted in Figure 4.7.

The numbers beside links shown as solid lines in Figure 4.7 correspond to the source

route carried by data packets originated at node a with destination f , and the dashed lines

represent the links added to the new source route repaired by the nodes indicated with �lled

circles. The number beside a link is the neighbor ID given by the head of the link to the tail

node. The neighbor table contains the mapping between neighbor ID and the address of a

neighbor. The entry for the node with neighbor ID 5 is not deleted from the neighbor table of

node b when the link (b; c) fails (Figure 4.7(a)), allowing b to get the address of c and repair

the source route accordingly. Because links are deleted from the topology graph only due to

aging, node b in Figure 4.7(b) is able to identify the tail of the failed link (c; d) by looking for

all the links in the topology graph having node c as the head of the link and a neighbor ID 5.

The source route received by node f in the data packet sourced at a contains the state

of all the links in the reversed path traversed by the data packet. With the failure of either link

(b; c) or link (c; d) the source route received by node f contains LSIs for the links (d; g) and

(g; b). Node f cannot update the topology graph with the state of (d; g) and (g; b) if the links

5
b c d e f

g

a
5 2 1

24

3 5
b c d e f

g

a
5 2 1

24

3

(a) (b)

Figure 4.7: Using neighbor IDs in source routes

102

are not part of f 's topology graph and the source route lists neighbor IDs instead of node's

addresses. The likelihood of �nding alternate paths to destinations increases with up-to-date

link-state information carried in data packets, specially when the data
ows are bidirectional.

For this reason, the source of data packets are required to periodically use addresses instead

of neighbor IDs in the source routes.

4.2 Proof of Correctness

In what follows, we show that NSR works correctly by showing that NSR discovers

source routes to any destination in a connected network within a �nite time, that the source

of data packets is noti�ed within a �nite time when the destination becomes unreachable, that

data packets cannot form any routing loop, and that NSR achieves correct reset of sequence

numbers.

For simplicity we assume that the link-layer can inform NSR about link failure within

a �nite time after the link fails. We also assume that the rate of changes in link connectivity

a router can experience does not exceed Cmax = 15 changes per second. This assumption is

realistic given the fact that so many changes in link connectivity would cause routing instability

in a network and only broadcast of data packets would be feasible. It is assumed that NSR

starts its operation at least Wmin = 30 seconds after the router resets. It is also assumed that

the propagation time of any packet from the source to the destination does not exceed Pmax

= 300 seconds. The value of MAX PATHLEN is a �nite number used by NSR to determine

the maximum number of hops any packet can traverse in the network.

Theorem 15 NSR achieves correct reset of sequence numbers.

Proof: The sequence number reported by router i in the LSIs for its outgoing links

consists of the counters Ei and SNi. Both Ei and SNi have a value in the range [1, 254],

103

and the value of Ei is stored in non-volatile storage when it is incremented. Assume that

Emax = SNmax = 254 is the maximum value Ei and SNi can have. The value of SNi wraps

around either when it is incremented from 127 to 128 or when it changes from 254 to 1. When

SNi wraps around before Lmax (maximum lifetime of an LSI) seconds have elapsed since the

previous wrap around, Ei is incremented. Ei is also incremented after the router resets and

before NSR starts its operation. Assuming that a control packet needs to be transmitted

whenever a change in link connectivity occurs, router i may have to increment its sequence

number Cmax times in 1 second. Thus, given that at most LC = Cmax � Lmax changes in

link connectivity can occur in Lmax seconds, and that LC < (Emax � 1) � (SNmax=2), and

that ((Emax � 1) � (SNmax=2)� LC)=Cmax > Pmax it is clear that it takes more than Lmax

seconds between wraparounds of Ei. The Theorem is true because the time elapsed between

wraparounds of Ei is greater than Lmax seconds, the maximum lifetime for an LSI, and because

node resets can causeEi to be incremented at most Lmax=Wmin < Emax times in Lmax seconds.

2

Theorem 16 The path traversed by RREQ packets is �nite and has no cycles.

Proof: The maximum number of hops a RREQ can traverse is given in the packet's

header (RREQmaxHops) by the source of the RREQ. After decrementing by one the value

of RREQmaxHops, the receiver node of a RREQ forwards the packet if RREQmaxHops 6= 0

and the node is not the destination of the RREQ. The Theorem is true for a non-propagating

RREQ because the source of the packet initializes RREQmaxHops to 1. The path traversed by

a propagating RREQ is recorded in the packet. NSR's operation is such that a node discards

a propagating RREQ if the node is listed in the path traversed by the packet, thus preventing

the formation of a cycle. The Theorem is proved because the path traversed by a propagating

RREQ does not have a cycle and the value of RREQmaxHops is initialized to MAX PATHLEN

104

by the source of the RREQ. 2

Theorem 17 The path traversed by RREP packets is �nite and has no cycles.

Proof: The source route added to a RREP by the source of the packet consists of

the reversed path traversed by a RREQ packet. Due to Theorem 16 this source route is �nite

and has no cycle. NSR's operation is such that when a forwarding node �nds an alternate

path for a broken source route 1) the path to be traversed in the new source route does not

contain any of the nodes from the traversed path, 2) the path traversed by the RREP packet

is included in the new source route, 3) and the total number of nodes in the new source route

cannot exceed MAX PATHLEN. Therefore, the source route repaired by a forwarding node

is of �nite length with no cycles. Given that forwarding nodes discard RREP packets that

cannot have the source route repaired and that the destination of a RREP packet does not

forward the packet, then the Theorem is proved because neither the source of the packet nor

the forwarding nodes introduce a cycle in the source route and the source route is always of

�nite length. 2

Theorem 18 The path traversed by data packets is �nite and has no cycles.

Proof: The source routes maintained by a node are obtained by running the Dijkstra's

shortest-path tree algorithm on the topology graph. Because the cost of all the links in the

topology graph is positive, the source route for any destination in the shortest-path tree consists

of a path with no cycles. Because NSR computes paths having at most MAX PATHLEN nodes

the source route for any destination in the shortest-path tree consists of a �nite number of

nodes. NSR's operation is such that when a forwarding node �nds an alternate path for a

broken source route 1) the path to be traversed in the new source route does not contain any

of the nodes from the traversed path, 2) the path traversed by the data packet is included in

105

the new source route, 3) and the total number of nodes in the new source route cannot exceed

MAX PATHLEN. Therefore, the source route repaired by a forwarding node is of �nite length

with no cycles. Given that forwarding nodes discard data packets that cannot have the source

route repaired and that the destination of a data packet does not forward the packet, then the

Theorem is proved because neither the source of the packet nor the forwarding nodes introduce

a cycle in the source route and the source route is always of �nite length. 2

Theorem 19 The path traversed by RERR packets is �nite and has no cycles.

Proof: The source route added to a RERR by the source of the packet consists of

the reversed path traversed by a DATA packet. Due to Theorem 18 this source route is �nite

and has no cycle, then the Theorem is proved because forwarding nodes cannot change the

source route of a RERR packet. 2

Lemma 5 If at time t0 a node s chooses a source route for destination d and the source route

is not correct, then s will stop using the source route within a �nite time.

Proof: Suppose that node s chooses a source route for d and within a �nite time

starts transmitting data packets using that source route. A forwarding node sends a RERR

packet if it does not have a correct source route to any of the nodes in the path to be traversed

by the received data packet. A source route is considered correct if its concatenation with the

path traversed by the data packet results in a path with no cycles and of �nite length. When

data packets are forwarded along a source route, they will either reach a node sn, at a distance

of n hops from s, which either has a correct source route to d or has no correct source route

to d. If the �rst condition is satis�ed then the Lemma is proved because data packets can

be routed towards d based on s's source route to d. For the second condition the problem at

sn becomes similar to the problem at s, which implies a recursion. Because a source routes

106

is �nite, after the data packet has traversed a �nite number of hops, a node sn either selects

a node sn+1 with no correct source route to any of the nodes in the path to be traversed or

the node itself has no correct source route to any of the nodes in the path to be traversed. In

the �rst case, sn+1 sends a RERR advertising a higher sequence number for the head node of

the failed link, which sn still thinks exists. Node sn processes the RERR within a �nite time

updating its source routes, and forwards the RERR packet to sn�1 if it does not have a correct

source route to any of the nodes in the path to be traversed by the data packet previously

sent to sn+1. Node sn�1 forwards the RERR packet received from sn reporting the link failure

regardless of having an alternate path to the destination. Accordingly, within a �nite time

node s will update its source routes and data packets stop
owing along the source route with

the failed link.

RREQ packets are also sent when a forwarding node �nds a correct source route to

the destination but fails to �nd a correct source route having any of the nodes in the path to be

traversed at most two hops away from itself. With the alternate path received in such RERR

packets the source of data packets starts using a new source route that has a better chance of

being repaired by a forwarding node without triggering the transmission of new RREQs. 2

Lemma 6 If a node does not have a source route to a destination d and has a data packet for

d, it obtains a correct source route to d, if there exists any, within a �nite time after sending

a RREQ.

Proof: A node s initiates a route discovery process by sending a non-propagating

RREQ. If none of the neighbors has a source route, a propagating RREQ is sent which traverses

multiple hops. Node s sends propagating RREQs periodically, in �nite time intervals, while

the node has a data packet for d and a RREP has not been received. Destination d should be

able to receive at least one of the propagating RREQs within a �nite time because the network

107

is of �nite size and is connected. By Theorem 17 the RREP sent by d or by a neighbor should

arrive at node s within a �nite time of its transmission because the RREP's source route is

�nite and has no cycles. The Lemma is true because the source route learned from a RREP

packet is of �nite length and has no cycles.

The proof is still valid if a node sends in its RREP an old path. This will make the

data packet
ow along the wrong path for some time, but due to Lemma 5, the error would

be detected within a �nite time and in the worst case another RREQ has to be sent. 2

Theorem 20 If a node becomes disconnected at time t1, every node with a source route to the

node at t0 < t1, will have no path to it within a �nite time.

Proof: Each node failure can be assumed to be equivalent to multiple link failures.

Therefore, using Lemmas 6 and 5 we can say that after a node failure every node wishing to

reach the failed node will have no path to it. 2

4.3 Performance Evaluation

We run a number of simulation experiments to compare the average performance of

NSR with respect to STAR and DSR. Both NSR, STAR, and DSR use the services of a medium

access (MAC) protocol based on an RTS-CTS-DATA-ACK packet exchange for unicast traÆc

(similar to the IEEE 802.11 standard [7]). The promiscuous mode of operation is disabled on

DSR because the MAC protocol uses multiple channels to transmit data. (Both NSR and DSR

might bene�t from having the node's network interface running in promiscuous mode.) The

physical layer is modeled as a direct sequence spread spectrum radio with a link bandwidth of

1 Mbit/sec, accurately simulating the physical aspects of a wireless multi-hop network.

In order to show that NSR scales better than STAR we use a small network formed by

20 routers. The simulation experiments not involving STAR are based on a 50-node network.

108

In the simulation experiments described in this Section, a router running NSR and

relaying RREQ, RREP, and RERR packets adds to the packet its neighborhood link state (NLS)

and there is no transmission of HELLO packets. Two variants of NSR are simulated in order

to determine the gains introduced by di�erent mechanisms:

� NSR-HE: Unlike NSR, HELLO packets reporting the node's NLS are transmitted pe-

riodically.

� NSR-NL: UnlikeNSR-HE, a node relaying RREQ, RREP, and RERR packets replaces

the NLS information added by the sender of the packet with its own NLS.

The two variants of DSR are simulated and analyzed: the �rst utilizes a cache data

structure based on complete paths (path cache) and is referred simply by DSR, the second

(DSR-LC) has a cache data structure based on a graph representation of individual links (link

cache).

4.3.1 Protocol Con�guration

The values for the constants controlling DSR operation during the simulations are

those present in the ns-2 implementation of DSR [15].

Since the performance of adaptive routing caches is comparable to that of well-tuned

static caches, we chose to use the Link-Static-5 [27] link cache algorithm in our simulated

experiments. This is a generational cache, such that the source of data packets marks the links

used in the source route to not timeout. A link is deleted from the routing cache of a node

if the source routes used to route the node's data packets have not included the link in a 5

seconds interval.

Routers running STAR are con�gured to send incremental updates and exchange

update messages according to the rules LORA-1 to LORA-3.

109

The values for the constants controlling NSR operation are listed below:

� Time between successive transmissions of RREQs for the same destination is 0.5 seconds.

This time is doubled with each transmission and is kept constant to 10 seconds with the

transmission of the sixth RREQ.

� The minimum lifetime of an LSI is 30 seconds, and the maximum lifetime is 1800 seconds.

� The average time interval between the transmission of HELLO packets is 59 seconds with

a standard deviation of 1 second (used by the NSR-HE and NSR-NL variants).

� The maximum number of entries in the data queue, RREQ history table, and RERR

history table is 50, 200, and 200, respectively.

� The lifetime of an entry in the data queue, RREQ history table, and RERR history table

is 30, 30, and 5 seconds, respectively.

� Data packets with a source route are removed from the data queue for transmission spaced

from each other by 50 milliseconds.

� The maximum number of nodes (MAX PATHLEN) traversed by any packet is 10.

4.3.2 Comparison with STAR

The protocol evaluations are based on the simulation of 20 wireless nodes in continuous

motion (pause time 0) for 900 seconds of simulated time. These experiments use the same

data traÆc model presented in Section 3.4.4.

Tables 4.1 and 4.2 summarize the behavior of NSR, STAR, and DSR. The Tables

show the total number of update packets transmitted by the nodes and the percentage of data

packets delivered to the applications for the three simulated workloads.

110

Flows NSR NSR-HE NSR-NL STAR DSR DSR-LC
8 181 319 340 585 791 617
14 159 336 356 560 1251 564
20 328 325 398 575 3298 852

Table 4.1: Number of control packets generated by NSR, STAR, and DSR in a 20-node network

Flows NSR NSR-HE NSR-NL STAR DSR DSR-LC
8 0.67 0.64 0.65 0.62 0.61 0.69
14 0.62 0.55 0.56 0.63 0.63 0.53
20 0.59 0.64 0.65 0.58 0.23 0.56

Table 4.2: Percentage of data packets delivered by NSR, STAR, and DSR in a 20-node network

STAR generates 2.5 times more control packets than NSR when data packets are

destined to a subset of the routers in the network. NSR is more bandwidth eÆcient than STAR

even when all the destinations in the network are sink of data packets, i.e., NSR transmits 57%

of the number of control packets sent by STAR.

While DSR-LC shows to be more eÆcient than DSR both in bandwidth usage and

delivery of data packets, it generates more control packets than STAR when data packets are

destined to all the nodes in the network. NSR delivers on average more data packets than both

STAR and DSR. Overall, NSR presents the best performance regardless of the data traÆc

pattern inserted in the network.

4.3.3 Comparison with DSR

Mobility Pattern

The simulation experiments use 50 nodes moving over a rectangular
at space of 5Km

x 7Km and initially randomly distributed at a density of 1.5 nodes per square kilometer. Nodes

move in the simulation according to the random waypoint model [11]. In this model, each node

begins the simulation by remaining stationary for pause time seconds, it then selects a random

destination and moves to that destination at a speed of 20 meters per second for a period

111

of time uniformly distributed between 5 and 11 seconds. Upon reaching the destination, the

node pauses again for pause time seconds, selects another destination, and proceeds there as

previously described, repeating this behavior for the duration of the simulation.

The simulation experiments are run for the pause times of 0, 15, 30, 45, 60, 90, and

900 seconds, and the total simulated time in all the experiments is 900 seconds. A pause time

of 0 seconds correspond to the continuous motion of the nodes, and in a pause time of 900

seconds the nodes are stationary.

Data TraÆc Model

The overall goal of the simulation experiments is to measure the ability of the routing

protocols to react to changes in the network topology while delivering data packets to their

destinations. The aggregate traÆc load generated by all the
ows in a simulated network

consists of 32 packets/second and the size of a data packet is 64 bytes. The data traÆc load

was kept small to ensure that congestion of links is due only to heavy control traÆc.

We applied to the simulated network three di�erent communication patterns: a pat-

tern of N-sources and N-destinations (Nsrc-Ndst), a pattern of N-sources and 8-destinations

(Nsrc-8dst), and a pattern of N-sources and 1-destination (Nsrc-1dst). For each communica-

tion pattern we run a number of simulation experiments with di�erent number of data
ows.

The data
ows consist of continuous bit rate traÆc, all the
ows in a simulation experiment

generate traÆc at the same data rate, and each node is the source of no more than one data

ow. We run four simulation experiments with 8, 16, 32, and 50 sources for both the Nsrc-Ndst

and the Nsrc-1dst patterns, and 3 simulation experiments with 16, 32, and 50 sources for the

Nsrc-8dst pattern. The data
ows are started at times uniformly distributed between 10 and

120 seconds of simulated time.

112

Comparison Between Di�erent Variants of NSR

Figures 4.8, 4.9, 4.10, and 4.11 summarize the comparative performance of the di�er-

ent variants of NSR in all the simulation experiments. The behavior of the protocols according

to the node mobility and traÆc pattern is depicted in more detail in Figures 4.17 to 4.22. (The

coordinates having a value of 100 in the x-axis correspond to the results obtained for networks

with stationary nodes.)

As shown in Figure 4.8, in most of the simulated experiments NSR generated signif-

icantly less control packets than NSR-HE and NSR-NL. In 40% of the experiments NSR sent

less than 1300 control packets, while NSR-HE and NSR-NL produced that same amount of con-

trol packets in 12% and 9% of the experiments, respectively. The extra link-state information

reported in RREQ, RREP, and RERR packets enabled routers running NSR to �nd alternate

paths to broken source routes without starting a Route Discovery process and, consequently,

sending less control packets than NSR-NL.

NSR-HE and NSR-NL were able to deliver more data packets than NSR (Figure 4.9) in

the NsrcNdst data pattern. NSR-HE and NSR-NL need to send control packets more frequently

than NSR to repair a broken source route. Since RREQ packets propagate faster towards the

destination along less congested links, the new paths resulting from a Route Discovery process

usually tend to deliver more data packets to the destination than the source routes repaired with

the extra link-state information maintained in the topology graph. This explains why NSR-HE

and NSR-NL delivered more data packets than NSR under the NsrcNdst data pattern, at the

expense of generating more control packets when compared to the other data patterns. Both

the propagation delay experienced by data packets and the number of hops traversed by data

packets is about the same among the three variants of NSR.

Overall, NSR showed to be more eÆcient than its two variants NSR-HE and NSR-NL.

113

Comparison Between NSR and Variants of DSR

Figures 4.12, 4.13, 4.14, 4.15, and 4.16 summarize the comparative performance of

NSR and DSR in all the simulation experiments. The behavior of the protocols according to

the node mobility and traÆc pattern is depicted in more detail in Figures 4.23 to 4.28. (The

coordinates having a value of 100 in the x-axis correspond to the results obtained for networks

with stationary nodes.)

As shown in Figure 4.12, in most of the simulated experiments NSR generated signif-

icantly less control packets than DSR-LC and DSR. From Figure 4.13 we can see that DSR-LC

and DSR are able to generate less than 4000 control packets in only 47% and 19% of the

experiments, respectively, while NSR produces that amount in 91% of the experiments. The

maximum number of control packets transmitted by NSR, DSR-LC, and DSR in a simulated

experiment was 7330, 16260, and 83010, respectively.

Figures 4.23, 4.24, and 4.25 show that the type of workload introduced in the network

makes DSR to behave in an unpredictable manner while NSR and DSR-LC are very little

a�ected. In the simulation experiments with Nsrc-Ndst traÆc pattern DSR generates up to

9.9 times more control packets than NSR, with Nsrc-1dst traÆc pattern DSR generates up to

45 times more control packets, and with Nsrc-8dst traÆc pattern DSR generates up to 18.5

times more control packets than NSR.

The bene�ts of using link-state information instead of path information for routing

decisions is noticeable when N sources send data packets to the same destination (Nsrc-1dst

traÆc pattern): most of the ROUTE REPLIES generated by nodes running DSR carry stale

routing information, which leads to the transmission of more ROUTE REQUESTS. And, as

shown in Figure 4.24, this behavior is independent of the pause time (except when the nodes

are stationary and the number of data
ows is low).

114

Figures 4.26, 4.27, and 4.28 give the average performance of NSR, DSR-LC, and DSR

in terms of the percentage of data packets delivered to the destinations for a given pause time

and traÆc pattern. We see that the highest number of packets are delivered as the nodes become

less mobile. This behavior is expected because all the packets enqueued for transmission at the

link-layer are dropped after link failures, and link failures occur less frequently when the nodes

in the network become more stationary. Because DSR-LC needs to perform Route Discovery

much more frequently than NSR, under high node mobility (pause time 0) NSR delivered less

data packets due to congested links. Overall, NSR delivers about the same number of data

packets than DSR-LC.

We observe from Figure 4.14(a) that, on average, NSR is able to deliver to the des-

tinations more data packets than DSR. The lack of a source route to the destination in the

experiments with Nsrc-1dst traÆc pattern caused DSR to discard a high number of packets

awaiting for a route (Figure 4.14(c)).

The end-to-end delay experienced by data packets (Figure 4.15) routed by NSR is

slightly higher than the end-to-end delay experienced by data packets routed by DSR-LC

and DSR because routers running NSR tend to share the same paths towards a destination,

particularly when source routes are repaired by forwarding routers. This behavior is clearly

noticeable when all the routers send data to the same destination (Figure 4.15(c)).

We observe from Figure 4.16 that the number of hops traversed by data packets routed

by NSR and DSR-LC is about the same, while DSR makes use of longer paths. Most of the

data packets routed by NSR and DSR-LC traversed from 2 to 3 hops, while most of the packets

routed by DSR traversed from 2 to 4 hops.

Overall, NSR outperforms both DSR-LC and DSR.

115

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Number of Control Packets

NSR
NSR-HE
NSR-NL

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
NSR-HE
NSR-NL

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.8: Cumulative distribution function for the number of control packets generated

116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Percentage of Data Packets Received

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Percentage of Data Packets Received

NSR
NSR-HE
NSR-NL

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Percentage of Data Packets Received

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Percentage of Data Packets Received

NSR
NSR-HE
NSR-NL

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.9: The cumulative distribution function for the percentage of data packets received

117

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Delay Experienced by Data Packets (sec)

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Delay Experienced by Data Packets (sec)

NSR
NSR-HE
NSR-NL

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Delay Experienced by Data Packets (sec)

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Delay Experienced by Data Packets (sec)

NSR
NSR-HE
NSR-NL

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.10: The cumulative distribution function for the delay experienced by data packets

118

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Hops

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Number of Hops

NSR
NSR-HE
NSR-NL

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Hops

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Hops

NSR
NSR-HE
NSR-NL

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.11: The cumulative distribution function for the number of hops traversed by data
packets

119

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Number of Control Packets

NSR
DSR

DSR-LC

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
DSR

DSR-LC

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.12: Cumulative distribution function for the number of control packets generated

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Number of Control Packets

NSR
DSR

DSR-LC

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Control Packets

NSR
DSR

DSR-LC

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.13: A partial view of the cumulative distribution function for the number of control
packets generated

121

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Percentage of Data Packets Received

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Percentage of Data Packets Received

NSR
DSR

DSR-LC

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Percentage of Data Packets Received

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Percentage of Data Packets Received

NSR
DSR

DSR-LC

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.14: The cumulative distribution function for the percentage of data packets received

122

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Delay Experienced by Data Packets (sec)

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Delay Experienced by Data Packets (sec)

NSR
DSR

DSR-LC

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Delay Experienced by Data Packets (sec)

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Delay Experienced by Data Packets (sec)

NSR
DSR

DSR-LC

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.15: The cumulative distribution function for the delay experienced by data packets

123

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Hops

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

(%
)

Number of Hops

NSR
DSR

DSR-LC

(a) All the traÆc patterns (b) Nsrc-Ndst pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Hops

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)

Number of Hops

NSR
DSR

DSR-LC

(c) Nsrc-1dst pattern (d) Nsrc-8dst pattern

Figure 4.16: The cumulative distribution function for the number of hops traversed by data
packets

124

100

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

100

1000

10000

0 20 40 60 80 100
N

um
be

r
of

 C
on

tr
ol

 P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

(a) 8 sources and 8 destinations (b) 16 sources and 16 destinations

100

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

100

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

(c) 32 sources and 32 destinations (d) 50 sources and 50 destinations

Figure 4.17: Number of control packets transmitted using the Nsrc-Ndst pattern

125

100

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

100

1000

10000

0 20 40 60 80 100
N

um
be

r
of

 C
on

tr
ol

 P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

(a) 8 sources and 1 destination (b) 16 sources and 1 destination

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

(c) 32 sources and 1 destination (d) 50 sources and 1 destination

Figure 4.18: Number of control packets transmitted using the Nsrc-1dst pattern

126

100

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

1000

10000

0 20 40 60 80 100
N

um
be

r
of

 C
on

tr
ol

 P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

(a) 16 sources and 8 destinations (b) 32 sources and 8 destinations

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

(c) 50 sources and 8 destinations

Figure 4.19: Number of control packets transmitted using the Nsrc-8dst pattern

127

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
P

er
ce

nt
ag

e
of

 R
ec

ei
ve

d
P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

(a) 8 sources and 8 destinations (b) 16 sources and 16 destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

(c) 32 sources and 32 destinations (d) 50 sources and 50 destinations

Figure 4.20: Percentage of data packets received using the Nsrc-Ndst pattern

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
P

er
ce

nt
ag

e
of

 R
ec

ei
ve

d
P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

(a) 8 sources and 1 destination (b) 16 sources and 1 destination

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

(c) 32 sources and 1 destination (d) 50 sources and 1 destination

Figure 4.21: Percentage of data packets received using the Nsrc-1dst pattern

129

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
P

er
ce

nt
ag

e
of

 R
ec

ei
ve

d
P

ac
ke

ts

Pause Time

NSR
NSR-HE
NSR-NL

(a) 16 sources and 8 destinations (b) 32 sources and 8 destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
NSR-HE
NSR-NL

(c) 50 sources and 8 destinations

Figure 4.22: Percentage of data packets received using the Nsrc-8dst pattern

130

100

1000

10000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

100

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

(a) 8 sources and 8 destinations (b) 16 sources and 16 destinations

100

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

100

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

(d) 32 sources and 32 destinations (e) 50 sources and 50 destinations

Figure 4.23: Number of control packets transmitted using the Nsrc-Ndst pattern

131

100

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

100

1000

10000

100000

0 20 40 60 80 100
N

um
be

r
of

 C
on

tr
ol

 P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

(a) 8 sources and 1 destination (b) 16 sources and 1 destination

100

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

100

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

(d) 32 sources and 1 destination (e) 50 sources and 1 destination

Figure 4.24: Number of control packets transmitted using the Nsrc-1dst pattern

132

100

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

100

1000

10000

100000

0 20 40 60 80 100
N

um
be

r
of

 C
on

tr
ol

 P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

(a) 16 sources and 8 destinations (b) 32 sources and 8 destinations

1000

10000

100000

0 20 40 60 80 100

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

(c) 50 sources and 8 destinations

Figure 4.25: Number of control packets transmitted using the Nsrc-8dst pattern

133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
P

er
ce

nt
ag

e
of

 R
ec

ei
ve

d
P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

(a) 8 sources and 8 destinations (b) 16 sources and 16 destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

(d) 32 sources and 32 destinations (e) 50 sources and 50 destinations

Figure 4.26: Percentage of data packets received using the Nsrc-Ndst pattern

134

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
P

er
ce

nt
ag

e
of

 R
ec

ei
ve

d
P

ac
ke

ts

Pause Time

NSR
DSR

DSR-LC

(a) 8 sources and 1 destination (b) 16 sources and 1 destination

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

(d) 32 sources and 1 destination (e) 50 sources and 1 destination

Figure 4.27: Percentage of data packets received using the Nsrc-1dst pattern

135

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

(a) 16 sources and 8 destinations (b) 32 sources and 8 destinations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

P
ac

ke
ts

Pause Time

NSR
DSR

DSR-LC

(e) 50 sources and 8 destinations

Figure 4.28: Percentage of data packets received using the Nsrc-8dst pattern

4.4 Conclusions

We have presented the neighborhood aware source routing protocol (NSR), which we

derived from the performance improvements observed in DSR when link caches were used, and

the ease with which nodes can inform their neighbors of their own neighbors. The key feature

of NSR is that nodes reduce the e�ort required to �x source routes due to node mobility by

using alternate links available in their two-hop neighborhood. Simulations demonstrate the

advantages derived from the availability of such alternate paths.

136

Chapter 5

Summary and Future Work

5.1 Contributions

The goal of this thesis has been to provide robust, eÆcient, and scalable solutions for

unicast routing in both wired and wireless IP networks. We found that link-state information

holds the key to achieving this goal. We explored the use of partial link-state information, and

made considerable progress in understanding how it can be used to incur low routing overhead

while delivering data packets.

Our �rst routing algorithm, the adaptive link-state protocol (ALP), is targeted to

networks based on wired links. Novel features in ALP include using three types of state for

any given link to disseminate correctly partial link-state information, and using a designated

router per link for each broadcast medium (e.g., a LAN). In ALP, a router sends updates to

its neighbors regarding the links in its preferred paths to destinations. Each router decides

which links to report to its neighbors based on its local computation of preferred paths. In

contrast to LVA, which is the only prior routing algorithm based on selective dissemination

137

of link states, a router does not ask its neighbors to delete links; instead, a router simply

updates its neighbors with the most recent information about those links it decides to take out

of its preferred paths. Furthermore, when multiple routers are connected through a broadcast

medium, they elect distributedly a designated router for each link reported over the broadcast

medium; this reduces the number of updates per link sent over a given network. Unlike OSPF,

ALP does not require backbones, a designated router does not require the exchange of control

packets, and can be used with distributed hierarchical routing schemes proposed in the past for

distance-vector routing. Because routers in ALP propagate link-state information selectively,

it incurs less communication overhead than algorithms based on topology broadcast. ALP ran

successfully in a small testbed implemented with PCs running gateD, and the very same code

was used in the reported simulation experiments. Simulations using the actual gateD code

for ALP corroborate the fact that ALP achieves the most eÆcient way of updating routing

tables compared to topology broadcast, the distributed Bellman-Ford algorithm, and LVA. ALP

addresses the complexity of today's approach to link-state routing by making the computation

of routing trees using link-states costs a distributed computation.

We proposed the source-tree adaptive routing (STAR) protocol for multi-hop packet-

radio networks that require routers to maintain paths to all destinations in the network. In

STAR, a router sends updates to its neighbors regarding the links in its preferred paths to

destinations. The links along the preferred paths from a source to each desired destination

constitute a source tree that implicitly speci�es the complete paths from the source to each

destination. Each router computes its source tree based on information about adjacent links

and the source trees reported by its neighbors, and reports changes to its source tree to all its

neighbors incrementally if the link-layer provides reliable broadcast, or atomically otherwise.

The aggregation of adjacent links and source trees reported by neighbors constitutes the partial

138

topology known by a router. Prior proposals for link-state routing using partial link-state data

without clusters [19, 20] require routers to explicitly inform their neighbors which links they

use and which links they stop using. In contrast, because STAR sends only changes to the

structure of source trees, and because each destination has a single predecessor in a source tree,

a router needs to send only updates for those links that are part of the tree and a single update

entry for the root of any subtree of the source tree that becomes unreachable due to failures.

Routers receiving a STAR update can infer correctly all the links that the sender has stopped

using, without the need for explicit delete updates. STAR incurs smaller communication

overhead than the ideal topology broadcast protocol and ALP, and also incurs less overhead

than DSR, which is one of the most bandwidth-eÆcient on-demand routing protocols proposed

to date. STAR accomplishes its bandwidth eÆciency by: (a) disseminating only that link-state

data needed for routers to reach destinations; (b) exploiting that information to ascertain when

update messages must be transmitted to detect new destinations, unreachable destinations, and

loops; and (c) allowing paths to deviate from the ideal optimum while not creating permanent

loops. Because STAR can be used with any clustering mechanism proposed to date, these

results clearly indicate that STAR is a very attractive approach for routing in packet-radio

networks. The very same code written for the simulation experiments was used in a testbed

formed by 40 �xed wireless routers.

Lastly, we proposed the neighborhood aware source routing (NSR) protocol for wire-

less ad hoc networks with a large number of routers. NSR introduces a new approach to

link-state routing in ad hoc networks using on-demand source routing and knowledge of links

that exist in the two-hop neighborhood of nodes. In NSR, a node maintains a partial topology

of the network consisting of the links to its immediate neighbors (1-hop neighbors), the links

to its 2-hop neighbors, and the links in the requested paths to destinations that are more

139

than two hops away. Links are removed from this partial topology graph by aging only, and

the lifetime of a link is determined by the node from which the link starts (head node of the

link), re
ecting with a good degree of certainty the variations in mobility of the node. The

key feature of NSR is that nodes reduce the e�ort required to �x source routes due to node

mobility by using alternate links available in their two-hop neighborhood. Simulations demon-

strate the advantages derived from the availability of such alternate paths. The simulation

results indicate that NSR incurs far less communication overhead while delivering packets with

the same or better delivery rates and average delays as DSR using either path caches or link

caches. Perhaps, more importantly, NSR scales well for a large number of routers and varied

data workload.

The text of this dissertation includes material that has previously been published

in [20], [21], [22], [23], [24], and [53]. The co-author listed in these publications directed and

supervised the research which forms the basis for this dissertation.

5.2 Future Work

One important area for future research is the optimization of local path computations.

A major drawback of link-state protocols is that they need to run computationally expensive

shortest-path algorithm at every router. Although the smaller topology graph size in ALP and

STAR improves the running time for the shortest-path algorithm, the local computations are

still far more complex than those needed in distance-vector algorithms. An ideal solution for

the local computations would provide for incremental changes in the source graph, rather than

a complete rebuilding after any change.

Multimedia applications using the Internet create a demand for quality of service

(QoS) guarantees, such as a guaranteed bandwidth and delays. To be able to support QoS,

140

congestion control and avoidance need to be integrated with the routing decisions. Extending

ALP and STAR to provide multiple loop-free paths to the same destination, as well as com-

puting such paths based on multiple constraints (e.g., delay, bandwidth, jitter) are research

topics that need to be addressed.

Large populations of mobile nodes can be supported in an ad hoc network by accepting

longer route acquisition latencies in an on-demand protocol. Starting from a network without

structure or valid routes, the minimum route acquisition latency that allows full connectivity

is the product of the maximum diameter of the network multiplied by the minimum node

traversal time for route requests. The average route acquisition latency at any given time can

be much worse than this depending on the dissemination of valid route information and network

congestion [5]. An obvious extension of the work reported on NSR would be to investigate how

it scales with the number of routers, link-layer capacity, node mobility, area of coverage, and

data traÆc pattern.

As the global Internet evolves we may �nd topologies formed by multi-hop wireless

networks with �xed routers (anchors) o�ering connectivity to the Internet for mobile routers

and hosts. For this type of networks, a hybrid approach of table-driven with on-demand

routing might result in the best performing solution. For instance, given that most of the data

traÆc would be with destinations not belonging to the wireless network, the routes from each

mobile node to the anchor nodes, and vice versa, might be updated in a proactive way, and

the routes between mobile nodes might be updated in a reactive form. An interesting venue

of research is to study how the routing mechanisms of STAR and NSR could be combined

to provide an eÆcient routing solution for such topologies. Several other areas invite further

investigation in multi-hop wireless networks, including: routing solutions to provide quality of

service guarantees to applications, secure routing, and multicast routing.

141

Bibliography

[1] R. Albrightson, J.J. Garcia-Luna-Aceves, and J. Boyle. EIGRP-A Fast Routing Protocol
Based on Distance Vectors. Proc. Networld/Interop 94, May 1994.

[2] J. Behrens and J. J. Garcia-Luna-Aceves. Hierarchical Routing Using Link Vectors. Proc.
IEEE INFOCOM, March 1998.

[3] D. Bertsekas and R. Gallager. Data Networks. 2nd Ed. Prentice-Hall, 1992.

[4] D. Beyer. The C++ Protocol Toolkit - Reference Manual. Rooftop Communications, 1998.

[5] Ed. C. Perkins. Ad Hoc Routing. Addison-Wesley Longman, 2001.

[6] C. Cheng and et. al. A Loop-Free Extended Bellman-Ford Routing Protocol Without
Bouncing E�ect. Proc. of ACM SIGCOMM, 1989.

[7] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Speci�cations. IEEE Std 802.11, 1997.

[8] Merit GateD Consortium. GateD Documentation. http://www.gated.org, 1998.

[9] S. Deering and R. Hinden. Internet Protocol Version 6 (IPv6) Speci�cation. RFC, 2460,
1998.

[10] M. Steenstrup (Ed.). Routing in Communication Networks. Prentice-Hall, 1995.

[11] J. Broch et al. A Performance Comparison of Multi-HopWireless Ad Hoc Network Routing
Protocols. Proc. ACM MOBICOM, October 1998.

[12] J.J. Garcia-Luna-Aceves et al. Wireless Internet Gateways (WINGS). MILCOMM,
November 1997.

[13] R. Dube et al. Signal Stability-Based Adaptive Routing (SSA) for Ad-Hoc Mobile Net-
works. IEEE Personal Communications Magazine, February 1997.

[14] S. Basagni et al. A Distance Routing E�ect Algorithm for Mobility (DREAM). Proc.
ACM MOBICOM, pages 76{84, October 1998.

[15] K. Fall and K. Varadhan. ns Notes and Documentation. The VINT Project, UC Berkeley,
LBL, USC/ISI and Xerox PARC, http://www.isi.edu/nsnam/ns, 1999.

[16] C. L. Fullmer and J.J. Garcia-Luna-Aceves. Solutions to Hidden Terminal Problems in
Wireless Networks. Proc. of ACM SIGCOMM, September 1997.

142

[17] E. Gafni. Generalized Scheme for Topology-Update in Dynamic Networks. G. Goos and
J. Hartmanis, Eds., 312:187{196, 1987.

[18] J.J. Garcia-Luna-Aceves. Loop-Free Routing Using Di�using Computations. IEEE/ACM
Trans. Networking, 1:130{141, February 1993.

[19] J.J. Garcia-Luna-Aceves and J. Behrens. Distributed, scalable routing based on vectors
of link states. IEEE Journal on Selected Areas in Communications, 13, October 1995.

[20] J.J. Garcia-Luna-Aceves and M. Spohn. Scalable Link-State Internet Routing. Proc.
International Conference on Network Protocols, October 1998.

[21] J.J. Garcia-Luna-Aceves and M. Spohn. EÆcient Routing in Packet-Radio Networks Using
Link-State Information. Proc. IEEE WCNC, September 1999.

[22] J.J. Garcia-Luna-Aceves and M. Spohn. Source-Tree Routing in Wireless Networks. Proc.
International Conference on Network Protocols, October 1999.

[23] J.J. Garcia-Luna-Aceves and M. Spohn. Transmission-EÆcient Routing in Wireless Net-
works using Link-State Information. ACM Mobile Networks and Applications Journal,
accepted for publication in Special Issue on Energy Conserving Protocols in Wireless Net-
works, 1999.

[24] J.J. Garcia-Luna-Aceves and M. Spohn. Bandwidth-EÆcient Link-State Routing in Wire-
less Networks. Ad Hoc Routing (C. Perkins, Ed.), Chapter 10, Addison-Wesley Longman,
2001.

[25] Z. Haas and M. Pearlman. The Zone Routing Protocol for Highly Recon�gurable Ad-Hoc
Networks. Proc. of ACM SIGCOMM, August 1998.

[26] C. Hedrick. Routing Information Protocol. RFC, 1058, June 1988.

[27] Yih-Chun Hu and D. Johnson. Caching Strategies in On-Demand Routing Protocols for
Wireless Ad Hoc Networks. Proc. ACM MOBICOM, 2000.

[28] J.M. Ja�e. Algorithms for Finding Paths with Multiple Constraints. Networks, 14:95{116,
1984.

[29] J.J. Garcia-Luna-Aceves and A. Tzamaloukas. Reversing the Collision Avoidance Hand-
shake in Wireless Networks. Proc. ACM MOBICOM, August 1999.

[30] D. Johnson and D. Maltz. Protocols for Adaptive Wireless and Mobile Networking. IEEE
Personal Communications Magazine, 3(1), February 1996.

[31] J. Jubin and J. Tornow. The DARPA Packet Radio Network Protocols. Proceedings of
the IEEE, 75(1), January 1987.

[32] L. Kleinrock and F. Kamoun. Hierarchical Routing for Large Networks: Performance
Evaluation and Optimization. Computer Networks, 1:155{174, 1977.

[33] Y-B. Ko and N. Vaidya. Location-Aided Routing (LAR) in Mobile Ad Hoc Networks.
Proc. ACM MOBICOM, pages 66{75, October 1998.

[34] V.O.K. Li and R. Chang. Proposed Routing Algorithms for the US Army Mobile Sub-
scriber Equipment (MSE) Network. MILCOMM, October 1986.

143

[35] J. Moy. OSPF Version 2. RFC, 2328, 1998.

[36] S. Murthy and J.J. Garcia-Luna-Aceves. An EÆcient Routing Protocol for Wireless Net-
works. ACM Mobile Networks and Application Journal, Special issue on Routing in Mobile
communications Networks, 1996.

[37] S. Murthy and J.J. Garcia-Luna-Aceves. Loop-Free Internet Routing Using Hierarchical
Routing Trees. Proc. IEEE INFOCOM, April 1997.

[38] S. Murthy and J.J. Garcia-Luna-Aceves. A Loop-Free Routing Protocol for Large-Scale
Internets Using Distance Vectors. Computer Communications (Elsevier), 21(2):147{161,
1998.

[39] International Standards Organization. Intra-Domain IS-IS Routing Protocol. ISO/IEC
JTC1/SC6 WG2 N323, September 1989.

[40] V. Park and M. Corson. A Highly Adaptive Distributed Routing Algorithm for Mobile
Wireless Networks. Proc. IEEE INFOCOM, April 1997.

[41] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers. Proc. of ACM SIGCOMM, October 1994.

[42] C. Perkins and E. Royer. Ad-Hoc On-Demand Distance Vector Routing. Proc. of the 2nd
IEEE Workshop on Mobile Computing Systems and Applications, pages 90{100, February
1999.

[43] R. Perlman. Fault-Tolerant Broadcast of Routing Information. Computer Networks and
ISDN, 7:395{405, 1983.

[44] J. Postel. Internet Protocol. RFC, 791, 1981.

[45] The CMU Monarch Project. Wireless and Mobility Extensions to ns-2 - Snapshot 1.0.0-
beta. http://www.monarch.cs.cmu.edu/cmu-ns.html, August 1998.

[46] M. Pursley and H.B. Russell. Routing in Frequency-Hop Packet Radio Networks with
Partial-Band Jamming. IEEE Trans. Commun., 41(7):1117{1124, 1993.

[47] B. Rajagopalan and M. Faiman. A New Responsive Distributed Shortest-Path Routing
Algorithm. Proc. of ACM SIGCOMM, September 1989.

[48] C.V. Ramamoorthy and W. Tsai. An Adaptive Hierarchical Routing Algorithm. Proc.
IEEE COMPSAC, pages 93{104, November 1983.

[49] R. Ramanathan and M. Steenstrup. Hierarchically-Organized, Multihop Mobile Wireless
Networks for Quality-of-Service Support. Proc. ACM Mobile Networks and Applications,
3(1):101{119, 1998.

[50] Y. Rekhter. Inter-Domain Routing Protocol (IDRP). Internetworking: Research and
Experience, 4(2):61{80, June 1993.

[51] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC, 1644, 1994.

[52] S. Murthy. Routing in Packet-Switched Networks Using Path-Finding Algorithms, Ph.D.
Thesis. University of California, Santa Cruz, September 1996.

144

[53] M. Spohn and J.J. Garcia-Luna-Aceves. Neighborhood Aware Source Routing. To appear
in Proc. of ACM Symposium on Mobile Ad Hoc Networking and Computing, October 2001.

[54] Z. Tang and J.J. Garcia-Luna-Aceves. A Protocol for Topology-Dependent Transmission
Scheduling. Proc. IEEE WCNC, September 1999.

[55] C-K. Toh. Wireless ATM & Ad-Hoc Networks. Kluwer, 1996.

[56] C. Zhu and S. Corson. A Five Phase Reservation Protocol (FPRP) for Mobile Ad-Hoc
Networks. Proc. IEEE INFOCOM, 1998.

145

