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ABSTRACT 

This paper presents an approach to full-vehicle simulator 
control which accounts for nonlinearities in a 
vehicle/simulator system.  The control scheme presented 
is based on the estimation of the system inverse 
dynamics.  A composite linear/nonlinear approach to 
inverse system identification (SYS-ID) is presented.  The 
linear portion of the SYS-ID uses time-domain methods 
to estimate the impulse response of the inverse system 
in a least squares sense.  These results are then 
extended by using the regularized approach to least 
squares estimation.  The nonlinear part uses the support 
vector machine to approximate the nonlinear deviations 
from the linear model.  Two approaches to using this 
composite model are presented.  Examples of the linear 
SYS-ID techniques are shown for a 2x2 system. 

INTRODUCTION 

With an ever increasing emphasis on vehicle reliability 
both in the military and automotive industry, the science 
of simulation and laboratory testing has correspondingly 
developed.  To gain confidence that a particular vehicle 
will endure its expected service environment, durability 
tests are performed prior to production and fielding.  The 
time and cost of such tests has motivated the 
development of laboratory based full vehicle test rigs 
(FVTR) which have displaced much of the time-
consuming proving ground durability tests. 

These FVTRs were initially tire-coupled and over time 
evolved into multi-axial spindle-coupled configurations 
which are able to impose multiple forces at each spindle.  
Along with the development of the hardware has been a 
corresponding development of the control strategies 
used to simulate actual road inputs.  The earliest 
methods used road profile information, “effective road 
profiles” [10], or a stationary random process to simulate 
road roughness.  These methods used, to some degree 
or another, the concept of the road profile as a 
conceptual arbitrator between the test rig command input 
and the on-vehicle response.  Then Cryer, Nawrocki and 
Lund [5] removed the conceptual necessity of the road 
profile, by modeling the relationship between the 
command input and the on-vehicle response as a 

frequency response function (FRF).  They then showed 
how this FRF could be used to estimate the proper 
simulator command, given a desired on-vehicle 
response.  Their method became the foundation of the 
industry standard approach to simulator drive 
determination.   

Although this linear FRF-based approach has been the 
industry standard for nearly three decades, it has 
difficulty compensating for nonlinearities inherently 
present in automotive systems.  To overcome system 
nonlinearities, FRF-based methods use an iterative 
process to converge on the proper drive command. As 
the techniques have been applied to increasingly 
complex road simulators, they have been extended to 
the non-square case by Fash, Goode and Brown [6], and 
have incorporated singular value decomposition 
techniques to handle ill-conditioned FRFs, but they have 
still remained dependent on the linear mathematics of 
the FRF model.  

This paper presents an approach to drive command 
development which incorporates both linear and 
nonlinear modeling methods to directly learn the inverse 
dynamics of the simulator/vehicle combination.  First, it 
describes the problem of drive development in practical 
and historical terms.  Then, it discusses the mathematics 
and algorithms of the existing approaches and their 
associated limitations.  It formally states the problem of 
drive command development in mathematical terms and 
gives the rationale behind the composite model. It then 
discusses alternative approaches to both the linear and 
nonlinear modeling and justifies the particular choices 
made. Finally, it presents some proposed alternatives for 
drive command correction.  The paper concludes with 
some examples. 

BACKGROUND 

The fundamental problem of full-vehicle simulation is that 
of replication of the service environment. The service 
environment is typically approximated by a drive cycle on 
a set of courses at a proving ground.  At the proving 
ground vibrational excitation comes from a terrain profile 
represented by ( )p x  (where ( )x t  is the distance down 
the course as a function of time) which creates 
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acceleration responses ( )ia t  at the spindles of the 
vehicle under test (as shown in Figure 1).  On a full-
vehicle simulator the command inputs ( )ic t  directly affect 

the actuator displacements ( )id t , which in turn affect the 

acceleration responses ( )ia tɶ  at the spindles of the 
vehicle under test (as shown in Figure 2).  The standard 
of validity for full vehicle simulation is that the rig 
responses ( )ia tɶ  approximately match those recorded at 

the proving ground ( )ia t , which is mathematically stated 
as 

 ( ) ( ), 1, ,i ia t a t i n≈ ∀ =ɶ … . (1) 

Now the determination of the simulator command ( )ic t  
which assures that this is the case is called drive 
command development.  

Prior to the work of Cryer et al., drive file development 
focused on the measurement and replication of the 
terrain profile ( )p x .  The drive command was then 
derived from the profile as 

 ( ),( ) ( ( ))i p i ic t f p x t=   

for some distance function ( )ix t .  The function , ( )p if ⋅  is 

then used to assure that (1) holds.  The dependence on 
the profile ( )p x  is the fundamental limitation of this 
approach. 

The innovation of Cryer et al. was to directly replicate 
( )ia t  (called the desired response) by defining the drive 

command ( )ic t  as being solely dependent on the set 

{ } 1( ) n
i i

a t =  as 

 ( ), 1( ) ( ), , ( )i c i t n tc t f a aτ τ= …  (2) 

where the interval ( )up low,t t t t tτ − −≜  denotes a 

dynamic relationship between the desired response 

{ } 1( ) n
i i

a t =  and ( )ic t .  Let the simulator be governed by 

the dynamics  

 ( ), 1( ) ( ), , ( )i a i t n ta t f c cς ς=ɶ …  (3) 

for ( ),t tς = −∞ .  Equations (2) and (3) may then be 

vectorized as  

 
( )
( )

( ) ( )

( ) ( )

a t

c t

t

t

ς
τ

=

=

a f c

c f a

ɶ
 (4) 

where [ ]1( ) ( ) ( ) T
nt a t a t=aɶ ɶ ɶ⋯ , [ ]1( ) ( ) ( ) T

nt a t a t=a ⋯ , and 

[ ]1( ) ( ) ( ) T
nt c t c t=c ⋯  are 1n×  column vectors (i.e. nℝ ) 

by convention. Cryer et al. then regard the system as a 
black box relationship between its inputs and outputs 
without regard to the unnecessary concept of the terrain 
profile.  Their method will be elaborated in the 
“EXISTING METHODS” section. 

CONTROL PROBLEM – Given the definitions in (4), the 
function ( )c ⋅f  must be defined so that ( )taɶ  tracks the 

desired response ( )ta .  Cast in these terms, the 

determination of the proper ( )c ⋅f  is a control problem.  

Traditionally this control problem has been solved by 
attempting to guarantee that 

 ( )( ) ( ) ( )a ct t t≈ =a a f f aɶ �   

and solving for ( )c ⋅f  yields 

 ( ) ( )1
c a

−⋅ = ⋅f f . (5) 

If ( )a ⋅f  is perfectly known and is invertible everywhere 

over its range then (5) assures that (1) will hold.  Now 
given that ( )a ⋅f  consists of the dynamics of vehicle 

specimen, the simulator, and the PID controller, it is not 
readily derivable from first principles.  Additionally, ( )a ⋅f  

is typically not known down a finite number of unknown 
physical parameters due to the presence of the 
unmodeled vehicle dynamics.  Worse still ( )a ⋅f  is 

nonlinear.  Given these circumstances, existing practice 
is to perform a system identification on the plant (vehicle 
and simulator) to obtain the estimated system dynamics 

( )ˆ
a ⋅f .  The following section briefly describes the method 

of Cryer et al. in the determination of ( )c ⋅f . 

EXISTING METHODS – The methods developed by 
Cryer et al. are based on discrete-time, linear math in the 
frequency-domain.  Let the input and output signals 
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Figure 2. Simulator with HMMWV attached. 
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Figure 1. Field environment to be replicated. 



( ( )ic t  and ( )ia t  respectively) be discretized at a sample 

time sΤ  such that st kΤ= .  Also let the inputs and 
outputs be transformed into the frequency-domain as 

{ }( ) ( )jf k=a aɶ ɶ
ɶ

F  and { }( ) ( )jf k=c c
ɶ

F  where {}⋅F  

denotes the discrete Fourier transform (DFT).  Cryer et 
al. then define ( )a ⋅f  as 

 ( )( ) ( ) ( ) ( )a kk kς= ⋅ ∗a f c H cɶ ≜  (6) 

where ( )kH  is the system impulse response function 
and ∗  denotes the convolution operation.  Equation (6) 
has the corresponding frequency-domain representation 

 ( ) ( ) ( )j j jf f f=a H cɶ
ɶɶ ɶ

  

where ( )jfH
ɶ

 is the system FRF.  Since ( )jfH
ɶ

 is not 

known, it must be experimentally determined, so let ( )kn  
be a suitable colored-noise signal used to excite the 
simulator, obtaining the response ( )kr . If ( )kn  and ( )kr  

have DFTs ( )jfn
ɶ

 and ( )jfr
ɶ

 respectively, then the 

frequency response function is estimated as 

 1ˆ ( ) ( ) ( )j j jf f f−= rn nnH S S
ɶ ɶ ɶ

  

where ( ) E ( ) ( )H
j j jf f f =

 nnS n n
ɶ ɶɶ

 is the auto-spectral 

density (ASD) of ( )kn  and ( ) E ( ) ( )H
j j jf f f =

 rnS r n
ɶ ɶɶ

 is 

the cross-spectral density (CSD) of ( )kr  and ( )kn .  Now 

according to (5), ˆ ( )jfH
ɶ

 must be inverted to obtain the 

estimated drive ˆ( )kc  from ( )ka , thus yielding 

 ( ) invˆˆ( ) ( ) ( ) ( )ck k k= ⋅ ∗c f a H a≜   

where { }inv 1 1ˆ ˆ( ) ( )jk f− −=H H
ɶ

F .  In the frequency-

domain the drive command estimate is 

 1ˆˆ( ) ( ) ( )j j jf f f−=c H a
ɶɶ ɶ

  

which is independent for each frequency line jf . 

Now because ˆ ( )kH  is a linear estimate of a nonlinear 

system, ˆ( )kc  will not be optimal.  To obtain the best drive 
estimate the iteration process is used.  Let the initial 

drive estimate be defined as ( )inv
0 0

ˆˆ ( ) ( ) ( )k k= ⋅ ∗c w H a�  

where 0 [0,1]n∈w  is a weight vector and �  denotes an 

element-wise product.  Then 0ˆ ( )kc  is used to drive the 

simulator and the corresponding response 0( )kaɶ  is 

recorded.  Let 0 0( ) ( ) ( )k k k= −e a aɶ  denote error between 
the desired response and actual response, then the drive 
estimate correction is given by 

( )inv
1 0 1 0

ˆˆ ˆ( ) ( ) ( ) ( )k k k= + ⋅ ∗c c w H e� .  This process is 

repeated according to the rule 

 ( )inv
1 1

ˆˆ ˆ( ) ( ) ( ) ( )i i i ik k k+ += + ⋅ ∗c c w H e�  (7) 

and progress is measured by monitoring a statistic of the 
error which is typically 

 
( )
( )

RMS ( )

RMS ( )
k i

i
k

⋅
=

⋅
e

m
a

 (8) 

where RMS ( ) : n n
k

×⋅ ℓℝ ֏ ℝ  and division is computed 
element-wise.  This iterative process is terminated when 
each element of im  is sufficiently small. 

In practice this iterative process requires 10 to 20 such 
iterations to obtain satisfactory convergence.  It is widely 
known that the success of the iteration process is 
dependent on 
1. The quality of the forward model ˆ ( )kH . 

2. The choice of excitation ( )kn . 

3. The choice of the weights iw . 

4. The stationarity of the desired response ( )ka . 
Each of these issues can cause difficulty in obtaining 
sufficiently small relative errors im  and make the 
process highly dependent on the skills of the practitioner.  
It is believed that most of these difficulties originate from 
the essential nonlinear nature of the plant.  Thus to 
obtain effective improvement in drive file development, 
we claim that the nonlinearities of the plant must be 
incorporated into the inverse model ( )c ⋅f .  It is this goal 

that motivates the approach presented in the sequel. 

PROBLEM DEFINITION AND APPROACH 

Since the forward dynamics of the plant ( )a ⋅f  are 

nonlinear, the inverse ( )c ⋅f  will also be nonlinear.  

However since the linear model invˆ ( )kH  is used to yield 
a first order approximation of the inverse, it is clear that it 
contains significant information about the plant 
dynamics.  Therefore, the linear model will be retained 
here and a nonlinear modeling approach will be used to 
approximate the deviations from the linear model.  This 
approach is illustrated in Figure 3 where the forward 
dynamics are modeled as  

 ( ) ( )( ) ( ) ( ) ( )a kk k κ= ⋅ ∗ +f c H c ω c  (9) 

 and the inverse dynamics are modeled by 

 ( ) ( )inv( ) ( ) ( ) ( )c kk k κ= ⋅ ∗ +f a H a ψ a  (10) 

( )⋅H

( )kaɶ

( )⋅ω      

Σ( )kc

Forward Model

( )⋅ψ      

Σ

Inverse Model

( )ka ˆ( )kc

inv
( )⋅H

 
Figure 3. Linear/Nonlinear approach to modeling. 



where in each case { }max min, ,k k k k kκ − −≜ …  is an 

index set for ( )⋅c  or ( )⋅a .  The concept behind this 
approach is illustrated in Figure 4.  As can be seen, the 

linear model provides a global base-model and the 
nonlinear part is only concerned with the small deviations 
from the base model.  This approach may be divided into 
the modeling problem and the control problem as 
follows. 

Modeling Problem: Given a set of recorded inputs ( )kn  

and outputs ( )kr  assembled into the training set 

( ){ } 1
( ), ( )

i
k k =n r

ℓ
, find invˆ ( )kH  and ˆ ( )⋅ψ  such that  

 ( )invˆ ˆ( ) ( ) ( ) ( )kk k κ≈ ⋅ ∗ +n H r ψ r   

and there is a high expectation that such an inverse 
model will provide a good estimate of the proper 
command ( )⋅c  given the desired response ( )⋅a . 

Control Problem: Once obtained, how should the 
inverse model (10) be used to find the proper command 
input?  This assumes that the initial estimate of the 
inverse model will not be sufficiently accurate to generate 
the best estimate of the drive command. 

MODELING CHOICES 

This section begins the discussion of the modeling 

approach.  In the determination of inv ( )kH  and ( )⋅ψ  
many alternatives exist for both the linear and nonlinear 
parts.  Generally, these choices are as follows. 

PARAMETRIC VS. NONPARAMETRIC MODEL – The 
first and most important choice is whether to make use 
of prior information (if any exists) about the plant.  If 
explicit equations for the dynamics of the system are 
known down to a few unknown physical parameters, then 
it is generally preferable to use these equations to 
identify the system. This is called the parametric 
approach.  On the other hand, if the system’s governing 
equations are not known, then a “Black Box” approach is 
needed to model the system. Unfortunately, this is 
almost always the case so the black box (or 
nonparametric) approach will be used here. 

FORWARD VS. INVERSE IDENTIFICATION – The 
second choice is whether to identify the forward pair 

( )⋅H  and ( )⋅ω  from (9) and then algebraically invert 

them as ( ) 1inv ( ) ( )j jf f
−

=H H
ɶ ɶ

 and ( ) { }( )( ), ( )⋅ = ⋅ ⋅ ⋅ψ ψ H ω  

(this is usually called the explicit/indirect approach) or to 

identify the inverse models inv ( )⋅H  and ( )⋅ψ  in (10) 
directly (this is usually called the implicit/direct approach).  
As described above, the traditional linear method of 
Cryer et al. uses the explicit/indirect approach since the 
inversion of a linear operator is well understood.  In the 
nonlinear case, the inversion of these models is much 
more difficult and is usually impossible.  The approach 

pursued here will be the implicit/direct where inv ( )⋅H  and 

( )⋅ψ  are estimated directly. 

TIME- VS. FREQUENCY- DOMAIN – The last choice is 
whether to maintain the traditional frequency-domain 

approach to estimating the linear model inv ( )⋅H .  It is 
well known that linear time-domain methods are just as 

suitable to the calculation of inv ( )⋅H .  It is helpful to 
observe that the traditional methods were based on 
frequency-domain mathematics partly to take advantage 
of the efficiency of the fast Fourier transform (FFT).  With 
the exponentially increasing power of the 
microprocessor, this motivation is not as pressing.  

Furthermore there are advantages to estimating inv ( )⋅H  
in the time-domain which will be elaborated on in the 
following sections. 

LINEAR MODELING 

It may be shown that in the time-domain the forward 

model { }1( ) ( )jk f−=H H
ɶ

F  is a causal FIR filter where 

[ ]( ) ( )ijij
k h k=H  represents a matrix of impulse response 

functions ( )ijh k  for max0, ,k k= …  as shown in Figure 5.  

It may also be shown that ( )kH  has a stable causal 

inverse inv ( )kH  if it is minimum-phase.  If it is mixed 
phase, then a causal inverse is unstable, however it may 
be shown that an acausal inverse is stable.  Therefore 

we may approximate inv ( )kH  as an acausal FIR filter 

where min max, ,0, ,k k k= … …  and max min 1r k k− +≜  as 
illustrated in Figure 6.  The inverse linear model then 
takes the form 

 
max

min

inv inv
lin ( ) ( ) ( ) ( ) ( )

k

i k

k k i k i
=

= ⋅ ∗ −∑c H a H a≜ . (11) 

For computational reasons, inv ( )⋅H  (which is triple-
indexed or a three-way array) will be re-indexed as 

{ } max

min

inv inv ( )
kn nr

k k
k×

=
≡H Hℝ ∋  where the column and 

time dimensions are combined in the new index 
{ }1, ,nrλ ≜ …  which has a one-one correspondence to 

+ =

Nonlinear DeviationLinear Base Model Composite Model 

Figure 4. Illustration of composite model. 



the set of ordered pairs ( ){ } ,

, 1
,

n r

i j
i j λ= ↔ . This “flattened” 

version then takes the form 

 

inv inv
11 1

inv

inv inv
1

T T
n

T T
n nn

 
 
 
 
 

h h

H

h h

⋯

≜ ⋮ ⋱ ⋮

⋯

 

where inv inv inv
min max( ) ( )T

ij ij ijh k h k 
 

h ≜ ⋯  is the inverse 

impulse response between ( )ja kɶ  and lin ( )
i

c k . Let 

{ } max

min
( ) ( ) knr

kk k ηη =≡ −a aℝ ∋ ϕϕϕϕ  which is indexed by λ  and 

given by min max( ) ( ) ( )
TT Tk k k k k − −

 a a a≜ ⋯ϕϕϕϕ .  

Equation (11) may then be expressed as a matrix 
product 

 inv
lin ( ) ( )k k= ac H ϕϕϕϕ  (12) 

and will be used as a basis for estimating inv ( )kH  in the 
following section. 

LEAST SQUARES METHOD – Now as stated earlier, 
the system is excited with colored noise ( )kn  and the 

response ( )kr  for 1, ,k = … ℓ  is recorded.  Then for each 

( )kr  we form the regression vector ( )krϕϕϕϕ  using the 

index λ  where clearly ( )kr 0≜  for 1k <  and k > ℓ .  By 
hypothesis, the inverse plant model obeys (12) for any 
set of inputs and outputs which yields the transposed 
relation 

 inv( ) ( )T T Tk k= rn Hϕϕϕϕ .  

Let [ ](1) ( ) T n×∈N n n ℓ≜ ⋯ ℓ ℝ  and 

(1) ( )
T nr×  ∈

 r r r
Φ ℓ≜ ⋯ ℓ ℝϕ ϕϕ ϕϕ ϕϕ ϕ ; then the following 

aggregated model is obtained 

 invT= rN
Φ

H .  

The Moore-Penrose pseudo-inverse may be used to 

solve for invH  as  

 ( ) 1invˆ T T T−
= r r rH

Φ Φ Φ
N  (13) 

which may be shown to minimize the summed loss  

 ( ) 2inv inv

21

1
( ) ( )

2 k

k k
=

−∑ rH n H
ℓ

≜J ϕϕϕϕ  (14) 

and hopefully the expected loss  

 
2inv

2
E ( ) ( )k k
 − 
 

rn H ϕϕϕϕ . (15) 

REGULARIZED LEAST SQUARES METHOD – Now 
invH  as learned using the least squares method is a 

non-parametric estimate with 2n r  free parameters.  
Generally the half-length of the impulse response 

( )min maxmax ,k k  is chosen to correspond roughly to the 

settling time of the system.  So for a small sample time 

sΤ  and long settling time we typically have max 100k ∼  

which means that invH  will have hundreds if not 
thousands of free parameters.  This is typically more 
than the number of degrees of freedom dn  in the actual 

system.  Therefore an ideal model would only contain dn  

degrees of freedom.  Unfortunately, dn  is not known but 

it may be asserted with confidence that 2
dn r n≫ .  Due 

to this over parameterization and that (13) regards the 

elements of invH  as being independent, the 
phenomenon of over fitting is expected which means that 
the minimization of (14) does not generally imply good 
performance, i.e. small (15).  Such a problem with more 
parameters than degrees of freedom is called ill-posed. 

The solution of ill-posed problems was first studied by 
Tikhonov et al. [8] who found that the phenomenon of 
over-fitting can be mitigated by introducing a so-called 

regularization functional ( )inv : n nr×
+H ℝ ֏ ℝP  into the 

optimization problem (14) which will penalize those invH  
which are least preferred.  Now it is required that ( )⋅P  be 

k
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k
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( )h k

k
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k

nn
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maxk

maxkmaxk

 

Figure 5. Forward Impulse Response. 
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Figure 6. Inverse Impulse Response. 



positive semi-definite and is a super set of the null space 
of ( )⋅J  in (14).  With these two conditions met, it may be 
chosen to convey a preference for a particular structure 

of invH .  Thus the minimization problem now has two 
objectives which must be mutually weighted with the 
parameter γ  as 

 ( ) ( )
inv

inv invminimize: γ +
H

H HP J .  

Commonly the regularization functional is chosen to be 
of the following quadratic form 

 ( ) ( ) ( )inv inv inv1
vec vec

2

T
=Q H H Q HP  (16) 

where vec( ) : m n mn×A ℝ ֏ ℝ  vectorizes its argument for 

some m n×∈A ℝ  by stacking its columns and 
2 2T n r n r×= ∈Q Q ℝ  is a positive semi-definite symmetric 

matrix.  The regularized solution then becomes 

( ) ( ) ( )
1inv 1ˆ vec vecT T

n nγ
−−  = ⊗ + ⊗ 

 
r r rH I Φ Φ Q I Φ N  (17) 

where ⊗  denotes the Kronecker product of two matrices 

and 1vec ( )− ⋅  reverses the effects of vec( )⋅ .  Now we note 
if =Q I , then (17) is known as ridge regression and 
expresses a preference for a minimum norm solution.  In 
the case of time-domain modeling there are other more 
useful choices for Q  as will be developed next. 

Time-Domain Regularization – As mentioned, the matrix 
Q  may be chosen to express a preference/penalty for 
certain types of impulse responses.  This section 
describes how to choose Q  to express preferred time-

domain behavior of invH .  Without loss of generality 
consider the SISO (i.e. 1n = ) system with inverse 

impulse response inv ( )h k  and where inv invT r= ∈H h ℝ  

is a column vector inv inv
min max( ) ( )

T
h k h k 
 

⋯  which 

extends forward and backward in time.  Due to this 

acausality, it is expected that invlim ( ) 0
k

h k
→±∞

= .  If maxk  

roughly corresponds to the settling time of the system, 
then for exponential decay it is reasonable to expect that 

inv ( ) ( ) exp
c

k

k
h k e k α − ≤  

 
≜  for some α  and ck  (see 

Figure 7). Then if the expected settling behavior is such 

that inv inv
max( ) (0)h k hµ≈  where 0 1µ< ≪  then a 

regularization functional ( )inv inv inv1
2

T
k =h h hP  would 

unfairly penalize those values for which 0k ∼  and will 

tend to equalize all values of inv ( )h k .  If instead the 

values of inv ( )h k  were scaled with the envelope ( )e k  
then the settling preference would be properly 

expressed.  The regularization functional is then defined 
as

 

 ( ) max

min

2inv
inv inv inv1 ( )

( )
2 ( )

k
T

k k
k k

h k
h

e k=

 
⋅ = = 

 
 

∑ h Q hP  (18) 

where [ ] min
2

min

2 1

( 1)
expij

c

i k
k ijij ke i k

δ
δ − +

− +
 =  
 

Q ≜ .  Then by 

choosing ck  (which can be thought of as a time 

constant), the preferred settling behavior of ( )h k  may be 

expressed via ( )k ⋅P . 

Frequency-Domain Regularization – Similarly, 
preferences for the frequency-domain behavior of ( )h k  

(we drop the super-script inv( )⋅  for ease of notation) may 
be expressed using a regularization functional.  First 
observe that ( )h k  is a discrete-time aperiodic signal 
which uses the following Fourier transform pair 

 

{ }

{ }

( ) ( ) ( )

1
( ) ( ) ( )

2

k

k

k

H h k h k e

h k H H e d

θ

π
θ

π

θ

θ θ θ
π

∞
−

=−∞

−

=

=

∑

∫

≜
ɶ

≜
ɶ ɶ

-1

F

F

j

j

  

where -1≜j  and [ ),θ π π∈ −  corresponds to angular 

frequency such that an unsampled frequency may be 
obtained as 

2
f sf θ

π=  where 1f
s

s Τ= .  To penalize ( )h k  

in the frequency-domain, let [ )( ) : ,W θ π π +− ֏ ℝ
ɶ

 be a 

positive symmetric weighting function which ascribes a 
penalty to particular values of ( )H θ

ɶ
 for every θ .  A 

frequency-domain regularization functional may then be 
defined as  

 ( ) 21 1
( ) ( ) ( )

2 2
H W H d

π

θ
π

θ θ θ
π −

⋅ = ∫ɶ ɶɶɶ
P  (19) 

which is expressed in terms of { }( ) ( )H h kθ =
ɶ

F  which is 

not typically available.  Using Parseval’s Theorem (19) 
may be converted to the time-domain as  

k

kc
eα

−

k

kc
eα−

α

α−

µ α

k

( )h k
k

kc
eα

k

kc
e− α

−

 
Figure 7. Decaying Impulse response. 



 ( )
max max

min min

1
( ) ( ) ( ) ( ) ( )

2

k k

i k j k k

h h i h j w k w k i jθ
∞

= = =−∞
⋅ = + −∑ ∑ ∑P   

where { }( ) ( )w k W θ=
ɶ

-1F  has infinite extent (i.e. 

( ),k ∈ −∞ ∞ ) but does not have to be calculated explicitly.  

Let ( ) ( )f kij
w k w k i j

∞
=−∞

  = + −  ∑Q , then it may be 

shown that { }( )2( ) ( ) ( )
k

w k w k i j W i jθ∞
=−∞ + − = −∑

ɶ

-1F  

then  

 ( ) 1
2

( ) Thθ θ⋅ = h Q hP   

where θQ  is symmetric and positive definite and may be 

determined if { }2( )W θ
ɶ

-1F  can be calculated.  A typical 

example of this technique is when ( )h k  should be limited 

to the band of frequencies low upθ θ θ≤ ≤ .  In this case  

 low up0 ,
( )

1 otherwise
W

θ θ θ
θ

≤ ≤= 
ɶ

  

then it is easily shown that  

 [ ] ( ) ( )up lowsin ( ) sin ( )
( )

( )ij

i j i j
i j

i jθ
θ θ

δ
π

− − −
= − −

−
Q   

for i j≠  and [ ] up low1
ii

θ θ
θ π

−
= −Q  for i j= . 

Combined Regularization – These two regularization 
methods are often used together.  They may then be 
combined as  

 ka b θ= +Q Q Q   

where if , 0a b ≥  then Q  is then positive semi-definite. 

NONLINEAR MODELING 

Once the linear portion of the inverse model is learned, 
then the residues become the nonlinear part of the 
inverse, therefore  

 inv
nonlin

ˆ( ) ( ) ( )k k k= − rn n H ϕϕϕϕ   

and the nonlinear modeling task consists of learning a 

relationship : nr nψ ℝ ֏ ℝ  such that 

( ) nonlin( ) ( ) ( )k k k= +r
ψ n eϕϕϕϕ .  Because a nonparametric 

technique was used for the linear portion of the model, it 
is appropriate to use a nonparametric technique for the 
nonlinear portion as well.  The data set  

 ( ){ }nonlin
1

( ), ( )
k

k k
=

r n
ℓ

ϕϕϕϕ  (20) 

is available with which to train the estimator. 

CONSIDERATIONS – Given the desire to find a 
nonparametric model ( )⋅ψ  a suitable approach must be 
chosen.  Several techniques are available to estimate 

( )⋅ψ .  The final selection will be based on the following 
considerations. 

Capacity Control – When one seeks to learn a general 
mapping ( )⋅ψ , all nonparametric methods use a 
particular fixed structure which is parameterized by 

η∈
λ
ℝ  as ( ) ( ; )⋅ = ⋅ψ ψ λ

 such that the following 
optimization problem is solved 

 ( ) ( )( )nonlin
1

1
minimize : ( ), ( );

k

L k k
=
∑ rλ λ

n ψ λℓ

≜
ℓ

J ϕϕϕϕ  (21) 

given a loss function ( ), : n nL +⋅ ⋅ ×ℝ ℝ ֏ ℝ  which 

generates a penalty for ( ) nonlin( ); ( )k k≠r
ψ λ

nϕϕϕϕ .  It is 

widely known that the ability to minimize (21) over a 
training set (20) is dependent on the number of free 
parameters λ , the structure of ( ; )⋅ ⋅ψ , the inherent 
complexity of the process which generated the training 
data (20), and the size of the training set ℓ .  Given these 
concerns it is important to choose ( ; )⋅ψ λ  to avoid the 
phenomenon of over fitting defined as 

 ( )( ) ( )nonlinE ( ), ( ); o oL k k 
  rn ψ λ λ≫ Jϕϕϕϕ   

where oλ  is the optimum obtained in (21).  Vladimir 
Vapnik [9] formalized the notion of “freedom to fit” by 
defining the notion of capacity of ( ; )⋅ψ λ  to fit a set of 
data.  This capacity is theoretically quantifiable using the 
VC-dimension, h .  The phenomenon of over-fitting is 
then to be expected for ℓ≳h .  It is desirable then to 
have an estimator with a low VC-dimension.  Generally 
one should expect reasonable performance for an 
estimator for which 20ℓ h≳ . 

The “Curse of Dimensionality” – Due to the nature of 
nonlinear relationships, many more training samples are 
required to learn a nonlinear relationship than a linear 

one.  In general, to learn a mapping : nψ ֏ ℝD , it is 
necessary to observe its behavior in all “regions” of the 

bounded domain d⊂ ℝD .  The domain D  must then be 
decomposed into a set of regions iΩ  in which its 
behavior must be observed.  To properly estimate the 
mapping, each iΩ  must be sufficiently small such that a 

sample i∈ Ωx  contained therein represents all of iΩ  

and the set i iΩ∪  must cover D .  With a vector-valued 
domain, the number of regions necessary to decompose 
the domain is exponential in the dimension d  of the 
domain. So as the dimension of the input space 
increases, it becomes increasingly difficult to obtain 
sufficient samples to fill D .  This is called the “curse of 
dimensionality”.  The reader is referred to Figure 8.  This 



reality is a fundamental limitation of non-linear 
approaches.  It motivates the user to limit the dimension 
of their input space as much as possible and limit the 
extent of the domain to the smallest possible set. 

Available Approaches – Given the problem of learning a 
general mapping many approaches are available.  
Methods which have been studied in the literature 
include artificial neural networks [1], Takagi-Sugeno 
fuzzy logic, wavelets, splines, etc.  Recently a new class 
of methods called kernel methods has been shown to 
have some advantages over these other methods.  By 
far the most prominent kernel methods to date are the 
support vector machines (SVM).  Their desirable 
features include: 

1. They generalize well. 
2. They are based on linear mathematics. 
3. They result in a global optimum. 
4. They are solved using quadratic programming 

techniques. 

The support vector machine will be used to learn the 

mapping : nr nψ ℝ ֏ ℝ  on the set given in (20).   

SUPPORT VECTOR MACHINE – The support vector 
machine is a recently developed method for solving 
nonlinear classification and regression problems (see 
Cristianini et al. [4]).  It was invented by Vapnik and 
extended by many others.  The following two sections 
present a synopsis of the SVM regression problem for 
the scalar-valued and vector-valued cases. 

Scalar-Valued Support Vector Regression – Given a 

general mapping : mf ℝ ֏ ℝ  and the training set 

( ){ } 1
,i i i
y

=
x

ℓ
 the SVM seeks to find an estimator 

ˆ ( )i iy f= x  which will perform well on the training set and 
is expected to perform well in use. The SVM estimator 
takes the following form 

 ˆ( ) , ( )y b= +x w φ x  (22) 

which is linear in the mapped input vector ( )iφ x  and has 

free parameters w  (the weights) and b  (the bias).  The 

mapping : n νφ ℝ ֏ ℝ  takes any vector from the input 

space nℝ  to a higher-dimensional feature space νℝ , 
that is nν ≫ .  To determine the parameters w  and b  
which are optimal, a loss function is necessary.  In the 
standard SVM formulation,  

 ˆ ˆ( , )i i i iL y y y y ε= −   

where ε⋅ is called the ε -insensitive loss function which 

is defined as ( )max 0,e eε ε−≜  and is illustrated in 

Figure 9.  The optimum estimator (22) is then given by 

the weight and bias which minimizes 

1
ˆ( , ) i ii

b y y ε== −∑w
ℓ

J .  It is expected that ν > ℓ  

implying that the optimum w  and b  are not unique.  
Vapnik has shown that small w  usually generalize 

better than large w  (that is “flatter” models generally 

predict better).  As such, the SVM method employs the 

regularization functional 21
2

( )w w≜P  yielding the so 

called primal optimization problem 

 21
12,

ˆminimize: i iib
P C y y ε=+ −∑

w
w

ℓ
  

where ˆiy  is defined in (22).  Because of the potentially 
high dimension ν  of the feature space, the problem is 
recast into dual form (see Bazaraa et al. [2]) as 

{ } 1

1
2

, 1 1 1

1

maximize: - ( , )

such that  0 and

i i

i j i j i i i
i j i i

i i
i

D k y

C

β
β β β ε β

β β

= = = =

=

+ −

= ≤

∑ ∑ ∑

∑

x x
ℓ

ℓ ℓ ℓ

ℓ
(23) 

where ( , ) ( ), ( )i j i jk x x φ x φ x≜  is the so-called kernel 

function which defines an inner product in feature space.  
The weight vector in the dual variables iβ  becomes 

1
( )i ii

β==∑w φ x
ℓ

 and the dual form of the estimator then 

becomes, 

 
1

ˆ( ) ( , )i i
i

y k bβ
=

= +∑x x x
ℓ

. (24) 

Notice that both the optimization problem (23) and the 
estimator (24) are expressed in terms of the kernel 
function ( , )k ⋅ ⋅  only, not the mapping ( )⋅φ .  Mercer [7] 

showed that a function ( , )k ⋅ ⋅  which satisfies 

 2( ) ( , ) ( ) 0, ( ) ( )g k g d d g L
×

> ∀ ⋅ ∈∫ x x y y x y
X X

X   

for ( )dom ( )g ⋅≜X  implicitly defines the mapping ( )⋅φ , 

and guarantees that it is an inner-product space.  Such a 
kernel is called a Mercer kernel. 
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Figure 8. The curse of dimensionality. 
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Figure 9. ε -insensitive loss function. 



The solution to (23) is typically sparse so let 
{ }s : 0ii β ≠≜I  be the index set of non-zero dual 

variables.  Then the so-called support vectors are 
defined by { }

s
i i∈x
I

.  This sparseness property of the 

SVM allows them to adjust their capacity to the 
complexity of the training data.  This allows them to 
generalize well . 

Vector-Valued Support Vector Regression – A 
generalization of scalar-valued SVR is the vector-valued 
SVR which is designed to learn a mapping of the form 

: m df ℝ ֏ ℝ  given a training set ( ){ } 1
,i i i=

x y
ℓ

.  In VV-

SVR (see Brudnak [3] for full development) the estimator 
takes the general form 

 ˆ ( ) ( )= +y x W φ x b   

where d ν×∈W ℝ  is a weight matrix and d∈b ℝ  is the 
bias vector.  The vector-valued loss function is defined 
as  

 ˆ ˆ( , )i i i i p
L

ε
= −y y y y   

where 1 p≤ ≤ ∞  represents the p -norm of the error.  
The primal optimization problem is  

 21
12,

ˆminimize: i iF pi
P C

ε=+ −∑
W b

W y y
ℓ

  

which leads to the dual problem 

{ } 1

1
2

, 1 1 1

1

maximize: - ( , )

such that  0 and

i i

i j i j i i i q
i j i i

i i q
i

D k

C

ε
= = = =

=

+ −

= ≤

∑ ∑ ∑

∑

Γ Γ Γ
x x y

Γ ΓΓ Γℓ

ℓ ℓ ℓ

ℓ
  

where 
p

⋅  and 
q

⋅  are conjugate norms (i.e. 1 1 1
p q

+ = ).  

Given that 
1

( )i ii==∑W
Γ φ x

ℓ
, the final form of the 

estimator becomes  

 
1

ˆ ( ) ( , )i i
i

k
=

= +∑y x
Γ

x x b
ℓ

.  

The index set for the support vectors becomes 

{ }s : 0i q
i ≠

Γ
≜I  and the support vectors are defined as 

{ }
s

i i∈x
I

.  This vector valued version is used to learn 

nonlinear mappings for MIMO systems. 

COMPOSITE MODELING 

Now two models exist of the inverse of the plant.  One is 
linear; the other is nonlinear.  A composite model is 
created as shown in Figure 3 and Figure 4 by summing 
the output of the two models.  To estimate these models 
the plant is excited with the random time series ( )kn  and 

the associated response ( )kr  is recorded.  From these, 

the data set ( ){ } 1
( ), ( )

k
k k =n r

ℓ
 is used to learn the inverse 

impulse response function inv ( )⋅H  as discussed above.  
The best linear estimate of the inverse plant is therefore 

defined as invˆ ( )⋅H .  The predicted input based on the 

linear model then becomes invˆˆ ( ) ( ) ( )k k⋅ ∗n H r≜ .  The 
deviations from the linear model may then be estimated 
as ˆ( ) ( ) ( )k k k= −d n n .  By hypothesis ( )kd  contains 
information regarding the nonlinear part of the model, 

therefore the training set ( ){ }0 1
( ), ( )

k
k k

=r d
ℓ

≜D ϕϕϕϕ  may be 

learned as a mapping.  The vector-valued support vector 
machine approach will be used to accomplish this.  The 

estimated mapping will be denoted as 0ˆ : nr nψ ℝ ֏ ℝ  

and takes the form { }( ) ( )min

min0 0ˆ ˆ( ) ( )k
k kk k= ≡ rψ r ψ ϕϕϕϕ .  Once 

this mapping is learned it may be used to estimate the 
proper drive which will yield the proper response as 
follows 

 ( )inv
0

ˆˆ ˆ( ) ( ) ( )k k k+a ac H ψ≜ ϕ ϕϕ ϕϕ ϕϕ ϕ   

where ( )kaϕϕϕϕ  is the vectorized (i.e. indexed by λ ) 

desired response ( )ka .  So if invĤ and ( )0ˆ ⋅ψ  properly 

represent the inverse dynamics then ˆ( )kc  is will be a 
good estimate of the drive and it is expected that the 
actual rig response will be equal to the desired response, 
that is  

 ( )ˆ( ) ( )k k≈af c a .  

If the desired response ( )ka  is statistically dissimilar 

from the SYS-ID excitation response ( )kr  then the curse 

of dimensionality indicates that ( )0ˆ ⋅ψ  will not necessarily 

be a good model for the inputs ( )ka .  In such cases the 
nonlinear mapping may have to be re-learned for plant 
outputs which are closer to the desired response.  The 
next section discusses a couple of alternative 
approaches. 

THE CONTROL SCHEME 

In this section strategies for determining the best 
estimated drive ˆ( )kc  are discussed.  Typically the first 

estimate of the drive (called 0ˆ ( )kc ) is not the best 
possible drive by the criteria stated in (8).  To achieve the 
optimum drive, typically a sequence of drives is 
estimated 0 1 fˆ ˆ ˆ( ), ( ), , ( )⋅ ⋅ ⋅c c c…  until an acceptable level of 
accuracy is attained.  Two alternative strategies are 
presented here.  

PREDICT-CORRECT – This method requires a 
linearization of the estimated inverse plant.  Let  



 ( ) ( )inv inv
0

ˆ ˆ ˆ( ) ( ) ( )k k k+a a af H ψ≜ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ   

then  

 ( ) ( ) ( )inv inv inv
0

ˆ ˆ ˆ
δ δ

δ δ
= +a a a

a a
J f H ψ≜ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ

ϕ ϕϕ ϕϕ ϕϕ ϕ
  

where ( )inv
aJ ϕϕϕϕ  is the Jacobian of ( )invˆ

af ϕϕϕϕ .  The rig 

response which is generated by the drive ˆ ( )i ⋅c  is ( )i ⋅aɶ  

and the associated error is given by ( )i ⋅e .  The Jacobian 
may then be used to estimate a new drive given by 

 ( )( )inv
1 1ˆ ˆ( ) ( ) ( )i i i i+ +⋅ = ⋅ + ⋅ac c w J e� ϕϕϕϕ   

where [ ]1 0,1 n
i+ ∈w  is a weight vector.  Because of the 

nature of the method, it is called predict-correct.  First, 
note that this method reduces to the linear method in 
Equation (7) when ( )0ˆ ≡aψ 0ϕϕϕϕ .  Secondly, this method is 

expected to work well if ( )0ˆ aψ ϕϕϕϕ  is a very good 

approximation of the nonlinear portion of the inverse 
model’s derivative.  It is not expected that this will be the 
case.  For this reason the approach presented in the 
following section is preferred. 

OBSERVE-ADAPT – Another method which does not 
require the calculation or estimation of a derivative is the 
method called observe-adapt.  In this method, the linear 

part invĤ  is held fixed and the nonlinear part of the 
model is adapted to new plant observations.  Given the 
initial nonlinear inverse model ( )0ˆ aψ ϕϕϕϕ , which was 

trained on 0D , it is used to calculate an initial drive 

estimate 0ˆ ( )kc  which produces an associated rig 

response 0( )⋅aɶ .  It is expected that this response will not 
be optimal, however, by hypothesis, it should be closer to 
desired response ( )ka  than to the original random 

excitation response of ( )kr .  In this case then the 
associated deviation from the linear model may be 

estimated as inv
0 0 0

ˆˆ( ) ( ) ( )k k k= −d c H aɶ  and if the desired 

data is indexed by (1, , )L…  an augmented training set 
may then be developed as 

( ){ }01 0 0
1

( ), ( )
L

k
k k

=a dɶ≜ ϕϕϕϕD D ∪ .  The set 1D  may then be 

used to estimate a new mapping such that 1 1( )⋅ψ ⊨D  

where the symbol ⊨  denotes that 1( )⋅ψ  models or 

generalizes the set 1D .  This new nonlinear model may 
then be used to produce a better drive as 

( )inv
1 1

ˆˆ ˆ( ) ( ) ( )k k k+a ac H ψ≜ ϕ ϕϕ ϕϕ ϕϕ ϕ .  This process may then 

be generalized to the following algorithm. 

1. Given: The estimated drive ˆ ( )i kc , the corresponding 

response ( )
i

kaɶϕϕϕϕ , the linear model invĤ  and the 

training set iD . 

2. If ( )
( )

RMS ( ) ( )

RMS ( )
k i

k

k k
i k

−= ≤a a

a
m τɶ

 for some threshold τ  

then stop. 

3. Let invˆˆ( ) ( ) ( )
ii ik k k= − ad c H ɶϕϕϕϕ . 

4. Form ( ){ }1
1

( ), ( )
i

L

i i i
k

k k+ =a dɶ≜ ϕϕϕϕD D ∪ . 

5. Train 1( )i+ ⋅ψ  such that 1 1( )i i+ +⋅ψ ⊨D . 

6. Estimate the next drive 

( )inv
1 1

ˆˆ ˆ( ) ( ) ( )i ik k k+ ++a ac H ψ≜ ϕ ϕϕ ϕϕ ϕϕ ϕ . 

7. Play 1ˆ ( )i k+c  into the rig and record the response 

1( )i k+aɶ . 

8. Goto step 2. 

In this way, if the sequence of responses continues to 
get closer to the desired response (i.e. 1i i+>m m ) then 

the sequence of models ( )0 1( ), ( ), , ( ),i⋅ ⋅ ⋅ψ ψ ψ… …  should 

converge to the best representation of the nonlinear 
behavior at the operating point. 

EXAMPLE 

To demonstrate some of the methods presented, 
consider a 2x2 system (i.e. 2n = ) which comprises the 
rear two tires of a single-axle military trailer (see Figure 
10) where the two inputs 1( )c k  and 2( )c k  are 
displacement commands to the left and right actuators 
respectively and the responses 1( )a kɶ  and 2( )a kɶ  are the 
associated acceleration responses at the left and right 
wheel spindles.  The control problem is then to develop 
the proper drive command ( )kc  such that the 
acceleration responses match some a-priori specified 
response ( )ka .  In this example the linear SYS-ID 
portion of the above developed process will be 
demonstrated.  

To begin the system identification process a random 
noise command ( )kn  is generated with which to excite 
the system.  Such excitation commands are typically 
specified in the frequency-domain as shown in Figure 11.  
They are then converted to the time-domain such that 
they are uncorrelated in the time-domain.  Because the 
system is not linear, it is desirable to excite the system at 

 

Figure 10. Military trailer which comprises 2x2 system. 



all energy levels from mild to severe, the time history is 
linearly increased in amplitude throughout its duration.  In 
this particular case it was designed to begin at roughly 

0.5 cm± and progressively increase to roughly 2.5 cm± .  
The generated time histories are shown in Figure 12.  
This time history was played into the simulator and the 
associated response ( )kr  was recorded.  Both of the 
input and output were discretized at a sample rate of 

204.8 Hzsf =   The techniques of linear time-domain 
modeling were applied to the recorded inputs and 

outputs to learn the inverse time-domain model invˆ ( )kH .  
For reference purposes, the inverse impulse response 
function was calculated for min 400k = −  and max 400k =  
which is shown in Figure 13 where the average mean 
squared error was 0.1209 cm.   

The time-domain regularization technique is 
demonstrated by training on the same information 

however expressing a preference that invˆ ( )kH  decay to 

a value of 10% at s 400k = .  The estimated impulse 
response function is shown in Figure 14.  In this case the 
average mean squared error was 0.1218 cm which is 
very close to the unregularized optimum.  It is therefore 
observed that the performance has degraded by about 
0.7% but the model is much different.  This is evidence 
that the original solution in Figure 13 was unstable or the 
problem was ill-posed. 

The frequency-domain regularization technique is 
demonstrated by using this technique to penalize those 

components of invˆ ( )kH  for which 1 Hzf <  and 

50 Hzf > .  The estimated impulse response is shown in 
Figure 15.  Again in this case the average mean squared 
error was 0.1210 cm which is very close to the 
unregularized value of 0.1209 cm which is again 
evidence of an ill-posed problem. 

CONCLUSION 

This paper presented an approach to full-vehicle 
simulator control which accounts for nonlinearities in 
vehicle/simulator system.  To improve on the standard 
linear methods of Cryer et al. a composite linear and 
nonlinear approach to inverse system identification was 
developed.  The linear method developed operates in the 
time-domain and employs regularization to express 
preferences for model behavior in either the time- or 
frequency-domain.  The nonlinear portion of the model is 
designed to learn the nonlinear deviations from the linear 
model and the vector-valued support vector machine is 
used to learn this deviation.  Two approaches are 
presented which describe how to iteratively improve the 
drive command estimate which are called predict-correct 
and observe-adapt.  The linear regularized techniques 
are demonstrated for a 2x2 system. 
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Figure 12. Plot of random excitation ( )kn . 
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Figure 13. Plot of least squares result of invˆ ( )kH  
for unregularized least squares learning ( 0γ = ). 
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Figure 14. Plot of least squares result of invˆ ( )kH  
for time-domain regularization with settling time 
defined by 0.1µ = , s 400k =  and 1γ = . 
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

ASD  Auto Spectral Density. 

CSD Cross Spectral Density. 

DFT Discrete Fourier Transform. 

FFT Fast Fourier Transform. 

FIR Finite Impulse Response. 

FRF Frequency Response Function. 

FVTR Full Vehicle Test Rig. 

HMMWV High-Mobility Multipurpose Wheeled Vehicle. 

MIMO Multiple Input Multiple Output. 

RDECOM Research Development and Engineering 
Command. 

RMS Root Mean Squared. 

SISO Single Input Single Output. 

SVM Support Vector Machine. 

SVR Support Vector Regression. 

SYS-ID System Identification. 

TARDEC Tank Automotive Research Development 
and Engineering Command. 
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Figure 15. Plot of least squares result of invˆ ( )kH  
for frequency-domain regularization with settling 
time defined by low 1 Hzf = , up 50 Hzf =  and 

1γ = . 


