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ABSTRACT -

This paper summarizes the present state of research in scene analysis<
It identifies fundamental information-processing principles relevant to
representation and use of knowledge in vision and traces limitations of
existing programs to compromises of these principles necessitated by
extant processors. Some specific and general recommendations are offered
regarding a productive course of research for the next decade.

I INTRODUCTION

Visual perception, whether by a human or a machine, is a process
of explaining sensory data in terms of a priori models of the world.
In its simplest form, the perceptual process might entail partitioning
a picture into "coherent' regions, based on, say, models of texture
or color homogeneity. Higher levels of perception might entail partitiom-
ing the. picture into '"meaningful" regions, based on models of particu-
lar objects, classes of objects, likely events in the world, likely con-
figurations, and even nonvisual events. Vision might he viewed as a
vast, multilevel optimization problem, involving a search for the best
interpretation simultaneously over all levels of knowledge.

There is an important point to note here. The perceptual process,
as applied to a given scene, does not have a single '"correct'" solutiom;
the desired optimum must depend on the goals, interests, background, and
even sensory acuity of the perceiver.

This paper addresses the following key artificial intelligence
(AI) issues within the vision paradigm formulated above:

(1) What knowledge is necessary to segment and interpret
various classes of scene?
(2) How should knowledge be represented and used?

(3) 1Is there knowledge general enough to encompass a wide
class of scene types? ‘

(4) How should knowledge be acquired?

We begin with a brief summary of how knowledge has been represented
and used in some existing systems.



11 BACKGROUND

Research to date has resulted in a few scene-analysis systems that
perform tolerably well in segmenting and interpreting images in some
limited domains, notably polyhedra, human faces, indcor scemes, and
simple landscape scenes, and in a few uniform procedures for partitioning
arbitrary pictures into coherent regions. Table 1 presents just a few
representative systems that indicate the current level of competence
in the field.

The systems described in Table 1 depend strongly on characteristics
of their particular domains. The toy worlds are usually characterized
by sensorily deprived images {(e.g., no shadows or texture), a small
number of object prototypes, precise structural object descriptioms,
few constraints of a purely structural nature among objects or even
pieces of objects, and, perhaps most significantly, the existence of
unambiguous, goal-independent interpretations. The worlds of faces
and indoor scenes are characterized by strong contextual constraints,
unambiguous interpretations, classification by function, and slightly
richer sensory data, notably color. From these worlds it is a signifi~-
cant step to the outdoor world of landscape scenes, where overwhelming
amounts of image detail, ambiguity, weak contextual constraints, lack
of functional names, variability of members of a given conceptual class,
and many possible varieties of context occur.

It became apparent rather early that arbitrarily complex reasoning
involving many types and levels of knowledge may be necessary to pro-
duce a good description of a scene. Considering the richness and com-
plexity of the world, it was felt necessary to limit the range of
difficulties to be faced by limiting the problem domain. This led to
research into narrow systems with deep knowledge about a very restricted
class of scenes, for example, programs in the world of polyhedral
objects know about gravity and support. By relying heavily on particular
characteristics of the domain, such programs could afford to ignore
knowledge and broad principles necessary for scene analysis in general.
The selected characteristics are often caricatures of some limited
aspect of reality, and are commonly implicitly embedded in the computer
program in a way that makes it difficult to appreciate not only their
significance for performance, but sometimes even that they are repre-
sented at all. Thus scene-analysis systems for the world of polyhedra
are based on the straight line as an element of structure, whereas



Table 1

REPRESENTATIVE SCENE-ANALYSIS SYSTEMS

Domain Author Des¢ription of Program
Toy worlds .
Polyhedra Roberts Interpretation of extracted line drawings as three-dimensional-
objects, based on generic prototypes of wedge, rectangular prism,
and hexagonal prism (1).
Falk Interpretation of extracted, noisy, line drawings based on nine
fixed-size object prototypes (2).
Shirai Extraction of line drawings for arbitrary configurations of
bricks using heuristics that predict additional lines in a par-
tially completed.- drawing (3).
Waltz Interpretation of ideal line drawings as arbitrary trihedral
solids based on a catalog of legal edge and vertex types (4).
Curved
objects Agin Description of several curved objects, such as Barbie dolls and
toy horses, by fitting generalized cylinders to range data (5).
Horn Reconstruction of arbitrary curved surfaces, such as noses, from
brightness profiles (6).
Turner Interpretation of ideal line drawings as objects with second-
order curved surfaces. Interpretation of extracted line draw-
ings as cylinders, cones, and polyhedra (7).

Human faces Kelly Sequential location of prominent features, e.g., eyes, nose,
and mouth, top-down in a predetermined, contextually dependent
order within crude face outlines extracted from a coarse image
(8).

Fischler Simultaneous location of prominent facial features by finding

Indoor scenes

Qutdoor scenes
Landscapes

Road scenes

Cityscapes

Garvey and
Tenenbaum

Lieberman

Yakimovsky

Ohlander

optimal embedding of a flexible template (9).

Location of objects, e.g., door, tabletop, and chair, in muiti-
sensory images using interactively and automatically generated,
distinguishing-feature strategies (10).

Location of prominent landscape features, e.g., sky, trees, and
water, top-down in a predetermined, contextually dependent
sequence based on images crudely segmented into homogeneously
colored regions (1l1).

Segmentation of simple road scenes into regions yielding the
optimal joint interpretation according to semantics based
on Bayesian statistics (12).

Segmentation of outdoor scenes by recursively partitioning color
and brightness distributions (13).




most landscape programs totally ignore all structure other than adjacency.
Hindsight enables us to realize that, in many cases, while simplification
of the domain revealed some of the central issues, it actually made

scene analysis more difficult.

The performance and generality of programs within any domain de-
pend on the amount of available knowledge about the domain, the amount
of flexibility available in using that knowledge, and the degree of
modularity with which new knowledge is incorporated. Winston®* has
documented this phenomenon in successive generations of blocks-world
programs writtenm at MIT. Robert's line-extraction program, for example,
used implicit knowledge of the importance of straight edges in concatenat-
ing gradient points into line fragments, merging collinear fragments
into lines, and segmenting lines at corners. This knowledge and its
rigid application in a sequence of independent local operations proved
inadequate because some lines were (inevitably) missed, shadows, reflec-
tions, and surface markings caused extra lines and errors made at one
stage were compounded at later stages. These deficiencies motivated
Shirai to invoke additional domain-dependent knowledge in the line-
finding process.

Shirai's program found edges, one at a time, at each step using
heuristic knowledge about line drawings of polyhedral bodies implicit
in the context of previous results to predict where additional lines
would most likely be found. The program knew to look first for the
outer boundaries of an object or cluster of objects, presuming high
contrast between white blocks and black table, and then to guess lines
that were extensions of, or were parallel or perpendicular to, lines
already found. The search for predicted lines was concentrated around
vertices where they were most likely to be found. The priority of search
depended on the specificity of the prediction. The additional knowledge
helped Shirai's program obtain significantly better performance and
reliability.

Another interesting contrast is found in a comparison of the tech-
niques for line-drawing interpretation employed by Roberts and by Waltz.
Interpretation to Roberts meant choosing a stored, three-dimensional
model which, after translatiom, rotation, and scaling, could be pro-
jected to match part of the image. The recognized piece was then cut
away and the remainder considered. Unfortunately many distinct decompo-
sitions of cluttered scenes and even of single objects could usually be
obtained with a given set of models. Waltz's program avoided this
difficulty by abandoning object models and relying instead on a large
number of local descriptions of edges and vertices and rules for com-
bining them to form legal scenes of trihedral solids. (Comparisons of
this type are of course limited because programs seldom share exactly
the same objectives.)



The work of both Kelly and Fischler on faces also provides scme
illuminating contrasts on how the use of knowledge affects program
performance and generality. Both programs model faces with caricatures
of prominent features, such as head outline, eyeé, nose, and mouth,
whose relative positions are allowed to vary within prescribed limits.
Each feature is represented procedurally in terms of its gross attributes
(e.g., nose might be represented by a routine that tests for two dark
spots corresponding to nostrils), whose meaning derives primarily from
the global context. However, these programs use their common knowledge
of faces in dramatically different ways. Kelly's strategy was to search
the image top-down for a collection of edges that could correspond to
a plausible head outline. This outline was used to predict approximate
location in which to search for facial features using the crude pro=-
cedural templates. The program looked for the usually most reliable
features and used them to refine further the predicted locations for
subsequent features. Global confidence accrued as additional features
were verified., The eyes were sought in an area defined with respect
to the top and sides of the head outline. If ‘this search succeeded,
the nose was sought in an area predicted with respect to the eyes.

Then the mouth was sought in an area delimited vertically by the nostrils
and bottom of the head outline and horizontally by the two eye centers.

A major shortcoming of Kelly's and many similar programs was that
features were sought in a predetermined, contextually dependent sequence.
Hence a single obscured feature could derail the entire analysis. A
second, and related, drawback was lack of generality. Knowledge about
objects was deeply embedded in procedures often in the form of ad hoc
‘heuristics and thresholds. Developing these procedures was a tediocus
empirical process that had to be repeated for another narrow domain,

- Furthermore, even small modifications can involve extensive reprogramming;
a single new object might substantially alter the features needed to
distinguish previously defined objects as well as the contextual order

in which objects should be acquired.

Fischler avoided the above difficulties by abandoning the notion
of sequential search. Instead, he evaluated simultaneously the best
overall embedding of a face prototype in the image. The facial model
was used as data for a general optimization procedure that treated the
model as an elastic template. In Fischler's program, unlike gelly's
program, the same optimization procedure could be used with different
data to interpret a variety of domains.

Lieberman's program for interpreting landscape scenes used a
sequential context-driven strategy, similar to Kelly's, while Yakimovsky's
- program used a global optimization approach similar to Fischler's.



We mention in passing that another way of overcoming the above
limitations is to develop a system that can plan its own strategies
based on global knowledge about a particular domain and specific knowledge
about the current scene. Such a system could alter its strategy dynami-
cally to capitalize on th¢ strongest available evidence. Moreover, it
would have the inherent generality of being able to function in any en-
vironment for which its knowledge base and perceptual primitives were
adequate. Garvey's work on room scenes was the first attempt to auto-
mate the development of perceptual strategies in this way.

More importantly than particular programs, research to date has
given us some understanding of some of the design principles for visual
systems and an appreciation of the type of knowledge they must possess
to function well.

What Knowledge Is Needed?

Relevant knowledge, used appropriately, can have only a positive
effect upon the competence of a scene-analysis system. The more knowledge
the better, apparently without limit. Adding (correct) information
enables interpretation in some cases where interpretation was not pre-
viously possible, or corrects some erroneous analyses; deleting infor-
mation has the reverse effect. There are caveats, of course, but the
evidence indicates that there is enough redundancy in the real world
so0 that the gains from adding knowledge outweigh the additional burdens
when the knowledge is properly used. There appears to be no firm
boundary between seeing and reasoning; in order to see, various amounts
of reasoning may be necessary.

This precept finds support in the manifest disadvantages of a
parsimonious desecriptiom, that is, an object may be unrecognizable if
a single crucial feature is obscured. It is generally more economical
and reliable to characterize objects by a redundant juxtaposition of
many, perhaps crude, features than by a detailed but nonredundant
description of a single feature. Moreover, a redundant juxtaposition
may provide the only feasible descriptien for highly variable objects. A
tree, for example, is more naturally characterized by the gross attri-
butes '"large,' "green," and "irregularly shaped" than by a detailed
description of any single attribute. The desirability of redundant
data in the form of multiple or multisensory images follows as a con-

sequence of the desirability of redundant deseription.!®

A competent scene-analysis system must embody, explicitly or
implicitly, knowledge about the (picture-taking) process that relates



the picture to the scene. An understanding of this process involves
knowledge of projective geometry, topology, optics, and electro-optical
transducers, as well as information about surfaces and lighting, in-
cluding reflectivity, specularity, highlights, color, surface texture,
shading, and the like. This concern with the physical basis of the
picture is one of the principal distinctions between scene analysis

and pictorial pattern recognition.

The above knowledge explains the relation between a patch of sur-
face and the corresponding patch of picture, but patches of surface are
not arbitrarily arrayed: surfaces may be continucus or discontinuous
and may occlude one another. Structure is important and manifests
itself in terms of objects and their features, for example, bumps and
hollows. We normally describe the world in terms of objects, and we
wish a scene-analysis system to do the same. Note that "object" is a
fundamental notion, imposed by the beholder, and is context dependent.
Often, the evidence for attributing two regions of a picture to differ-
ent objects may be weaker than the evidence for further subdividing
one of the regions. Only experience and context allow the right de-
cision. For example, consider a black-and-white ecat sleeping on a
black fur rug. The system must know about likely objects and parts of
objects; to deal with new cases of the same sort, it should have both
generic and specific knowledge of cats.

Once the concept of object has been introduced, it follows that
knowledge of the ways in which objects interact and behave, likely
events, and so forth, helps in the analysis of pictures. For example,
.gravity and support help to judge relative sizes: Since two men cannot
be floating in the air, their feet must be resting on the ground, which
means that the man whose feet are higher in the picture is further
away. The fact that this man also appears larger must be reconciled
by concluding that the other man is short. MNaturally, we are mnot
suggesting that such reasoning occurs in precisely this form when we see;
however, knowledge often has ramifications that lead the system to be-
have as though such reasoning had occurred.

Reddy'® has listed some examples of knowledge that can be employed
in scene analysis and has categorized them in an interesting way. A
scene can be described hierarchically at the feature level as a vector
for each pixel, for example, intensity, hue, saturation, depth, and
the likej; at the segment level as a contiguous grouping of pixels which
do not differ significantly in one or more feature dimensions; at the
region level as sets of segments grouped over shadows, occlusions, and
highlights; at the object level as several regions belinging to one or
more objects; at the structural level as ensembles of objects which
obey known relationships (e.g., table and chairs); and finally at the



environment level as a single, meaningful description of the whole scene.
In addition to specific knowledge mentioned by Reddy, there is also

a substantial amount of metaknowledge concerned with applicability and
reliability in particular contexts. For example, the rule "sky is blue"
depends on implicit assumptions of time of day, season, weather, geo-
graphy, location, and so forth.

Reddy views knowledge as a set of rewriting rules which transform
an image represented at one level into a corresponding representation
at another, higher level. Two examples of knowledge expressed in
Reddy's hierarchy are '"sky is blue" (structure/feature) and '"city scenes
involve vertically oriented rectangular shapes' (environment/segment).
Note that knowledge may transcend several levels, and the logical struc-
ture of the scene does not dictate the processing sequence. A good
example of this is the acknowledged interdependence of segmentation and
interpretation, since the significance of pictorial entities can only
be evaluated in the broader context of interpretation. In fact, it no
longer seems appropriate to view segmentation and interpretation as
distinct processes.

How Are Knowledge and Descriptions Represented?

A number of issues and nonissues have arisen over the representa-
tion of knowledge in general, not just visual knowledge. Tt seems de-
sirable to have a redundant representation, on the grounds that data
organized in only one way may be easily accessed for some queries but
very awkwardly structured for others. To a large extent, however, this
is a nonissue, a detail of implementation rather than fundamental
science. The ability to manipulate easily the representation to extract
implicit information as required and the necessity for cross-links so
that relevant related information is readily available when needed are
more important issues.

The nonissue of procedural versus assertional representation has
been aired in domains other than the vision domain.'” s'® We simply
remark here that one man's procedure is another man's data: An in-
terpreter, a theorem prover, and a CPU all operate on data (assertiomns)
or all run procedures. What is at stake are the practical issues of
space and time. To the seeker of truth they are only important inscofar
as they affect his search. Compiling (procedural embedding) the knowledge
makes running faster, at the expense of making modification slower. It
seems that natural vision systems involve some compilation of frequently
used processes and retain the fundamental ability to work:-from scratch
using a reasoning ability: unfamiliar objects take some time to per-
ceive until they become familiar.



A similar nonissue is that of iconic versus symbolic representation.
Should the information be encoded by symbols that stand for generalized
stereotypes or should it stand for itself? It is only by abstracting
from the current particular case that general principles may be invoked,
so symbols are clearly vital. Because symbols lese touch with details
of reality, however, the original data must be maintained in some form
to handle questions whose answers are not embodied in the original
abstraction. What is very much an open question is the relation between
symbols and images. It may be that one should convert to symbolic repre-
sentation at a very early stage.19 The evidence concerning human repre-
sentation is mixed. Much of our wvisual imagery is in terms of stereo-
types, rather than the original images, as though we reconstruct images
from symbolic descriptions and associated iconic examples.20 However,
we are quite good at remembering details, which hints against highly
abstracted symbolic descriptioms.

Elementary considerations of flexibility in the use and acquisition
of knowledge dictate that knowledge, whatever its form, be it procedural,
assertional, or iconic, should be made explicit rather than buried in
the code and forgotten,

How Should the Knowledge Be Used?

Because of noisy data and constraints that involve likelihoods
rather than certainties, vision is not a purely deductive problem with
a unique, "correct' solutien. It requires determining a "best" inter-
pretation of the data in the light of the available knowledge. The
‘situation is exacerbated by the quantities of data and knowledge, by
the fact that the knowledge sources are error prone and not unanimous
in their recommendations, and by the strong interaction among knowledge
sources. (This interaction is manifest, for example, in the ways in
which segmentation and interpretation are inextricably interwined.)
These considerations preclude a straightforward search for the best
solution; ways must be found to circumvent the horrendous combinatorics.

Naive backtracking, that is, returning to a previous choice point
and taking a different alternative, is utterly hopeless. It appears
vital to take advantage of local independence of parts of the picture
and undo only the direct consequences of an erroneocus choice. (Perhaps
vision has something important to contribute to problem-solving here.zl)
It is even better to avoid redundant work in the first place by eliminat-
ing possibilities as soon as possible rather than eliminating them many
times over on different branches of the search tree. Waltz's filtering
algorithm provides a dramatic illustration of this point. A generaliza-
tion of this principle for optimization problems is to make locally



best choices which, if based on enough information, can be expected to
lead to a near-optimal solution with minimal search.

The assessment of local evidence requires integrating many sources
of knowledge, of different types and levels, which very often yield
contradictory evidence. For example, two adjacent patches of a picture
may have the same color, which suggests they belong to the same object,
but may have different brightnesses, which suggests they do not; or,
higher-level knowledge about shadows indicates that the patches are
from an object with a shadow across it, but perhaps knowledge of illumi-
nation indicates that the shadow could not be cast in such a position,
unless light had been reflected from some surface.

It would appear that some sort of consensus mechanism is necessary,
an enviromment where knowledge sources can compete and cooperate to
yield a result upon which they can largely agree. The relative weightings
attached to evidence from different sources of knowledge depend dynami-
cally on the current processing context and ultimately on the data, the
expectations, and the goals.

Some of these principles are illustrated in a working program,
MSYS, recently developed at SRI, for assigning interpretations to
regions in previously segmented office scenes.”® In M3YS, the problem
was to find the set of region interpretations having the highest joint
likelihood. Each possible interpretation is represented by a procass
which computes its global likelihood based on local region attributes
and the likelihoods of other contextually related interpretations.

These processes interact, compete, and cooperate, adjusting likelihoods

and eventually achieving a state of equilibrium that corresponds to the
best solution consistent with the evidence. The equilibrium state is

by its very nature reversible and processes can be defined so that in-
formation is never lost, but can be recomputed if the consensus demands

it. Because processes communicate via a global repository of data, it

is possible to add or remove them (dynamically if desired) with incremental
changes in system performance. Hence the system can readily be modified

or extended in a modular way.

The use of an equilibrium model eliminates some issues of sequencing,
but does not completely sidestep the need to strike a balance between
data~driven and goal-driven organizations; the relative importance of
observations and expectations still depends on goals. Data driving has
the advantage of being less likely to get out of touch with reality but
the disadvantage of considering too many possibilities. Goal driving
" considers only relevant possibilities, at the expense of ignoring the
unexpected. Evidently some comination of the two organizations is
necessary, such as a hypothesis-verify paradigm, but the best organiza-
tion is still in doubt.



The organization issue also arises in activation of relevant
knowledge and hypotheses within the network of equilibrium processes.
As a practical matter selection and activation must be done dynamically
as relevance emerges.

How Should Knowledge Be Acquired?

The substantial amount of world knowledge required for perception
is most reasonably acquired incrementally as deficiencies are discovered,
instead of exhaustively beforehand in a case analysis. Certainly as a
matter of experimental convenience, incremental improvement ranks high.
Humans certainly increment their visual skills, learning finer discrimi-
nations or broader generalizations as circumstances warrant.

Whether knowledge is acquired by supervised or unsupervised learn-
ing is not at issue here. As a practical matter, in the near term, it
will be important to have good interactive facilities for empirically
determining perceptual concepts and processes and communicating them

, 23
to a machine.

What Have We Learned?

Perhaps the most important thing we have learned from our experiences
in vision research is that vision is hard. We hope we have learned
why it is hard: All the key AI issues crop up--world models, representa-
tion, organization, reasoning, problem solving, even manipulation. The
full range of reasoning, from simple association to complex deductions,
with uncertain evidence and uncertain rules, is involved. The organiza-
tional problems of handling the large amounts of data and knowledge that
arise with real pictures rule out toy solutions.

The limited abilities of current scene-analysis systems can be
traced to compromises necessitated by the magnitude of the vision task.

The quantities of data are relatively huge but are still much
less than is desirable. Many seemingly insurmountable problems en-
countered in processing 64 X 64 x 4-bit pictures are greatly eased
(though not necessarily eliminated) by increasing resolution and number
of brightness levels, particularly if the digitization is performed
with something other than a noisy television camera.

The knowledge possessed by existing systems is very limited. There
are several blocks-world systems that specialize in some details of

i1




the problem, for example, Waltz's catalogue and Shirai's block-finder,
but there is no unified system that contains and uses all we currently
know about the blocks domain.

The knowledge that systems have is frequently rigidly embedded in
procedures which use knowledge in a limited way. For example, knowledge
used passively, as a recognition test, may not be available for active
use in searching for the object. 4

Finally, despite 10 years of research, there is still a feeling
of fundamental ignorance, of a few ad hoc successes which reflect
licttle true understanding of visual perception. The field remains more
Art than Science.

What Should Be Done?

Work in scene analysis is beginning to be directed toward some of
the issues raised above. We, and others, are dissatisfied with the
low~-level abilities of existing scene-analysis systems, which seen
overspecialized to particular domains. Because of the usual dependence
of these systems upon one characteristic, to the exclusion of others,
their performance is marginal and brittle; they are weak in forming
descriptions of novel situations, which hampers learning; and they
must be torn apart and rebuilt for each new domain. We greatly need a
better foundation on which to build the higher functions of scene-
analysis systems that are experts in their chosen domains.

In this prevailing climate, we believe the time is ripe for develop-
ing broadly based scene-analysis systems. By this we mean.systems that
have a great deal of low-level knowledge about similarity, continuity,
surfaces, reflectivity, shading, color, illumination, occlusion, shadows,
and so forth, that is common to many domains. Such systems would be
able to make a good attempt at segmenting and interpreting (in simple
terms) an arbitrary scene. Human beings can almost always make some
sense of a scene, even when it comes from a domain with which they are
unfamiliar, for example, photomicrographs or abstract art. They can
at least identify significant lines and regions even when the evidence
for them is quite weak, and despite their apparent lack of meaning.

No existing machine can appreoach human performance in such situations.

We need a unified framework for experimenting with both general
and domain-specific knowledge in scene interpretation, where the quality
of the result can be progressively improved by incorporating additional
knowledge., With low-level knowledge alone, the system should manifest
behavior consistent with the Gestalt laws of human vision; augmented

12



by domain-specific knowledge, it should rival the competence of the
best, current, special-purpose systems and be more readily extensible
and considerably more robust.

The proper organization of such a broadly based system of many
conflicting sources of knowledge is a key issue to which we have already
devoted some attention above. This issue has also received considerable
attention in the literature'®;®® as well as in other areas of AT, notably
speech understanding.26 4 concensus has begun to form on some specific
design criteria, Systems should be data driven; all knowledge should be
modularly represented in a shared global data base; and competing
hypotheses should be explicitly represented and freely available in
the data base, rather than hidden in the intermal backtracking variables.

This type of organization, as exemplified by MSYS and HEARSAY,
has so far been used only with domain-specific knowledge for interpreta=-
tion of segmented scenes. We believe it could be used with more general
knowledge to assign consistent low-level interpretations of, for example,
color, relative depth, orientation, and so forth, to edge fragments
and small sets of picture elements, and thereby to integrate segmentation
with interpretation.

In addition to the specific suggestions proposed above, we offer
a few more general suggestions based on lessons of the past decade:

(1) Researchers concerned with the scientific issues of
vision in general should acknowledge that the prodigious
quantities of data and knowledge preclude any hope of
near real-time operation on current serial computers.
Researchers should therefore avoid the preoccupation with
efficiency that characterized the ingenious but special-
purpose solutions described earlier,

(2) A corollary of Suggestion 1 is to work always with the
highest quality data that can be obtained. 1In the past,
many researchers settled for degraded, low-resolution
images which fit conveniently in core, and rationalized
their acceptance with arguments that this data could be
correctly perceived by humans. However, the elimination
of local detail (which might allow local, rather than
global interpretation), is probably making the problem
unnecessarily difficult. Humans can cope with such bad
pictures but perhaps it is premature to expect machines
to do so.

{3) All assumptions used in the research should be carefully
documented so that the work can be meaningfully evaluated,

13



(&)

(5)

(6)

(7

both with respect to its own objectives and in comparison
to related work with similar objectives. Examples of
assumptions would include the quality of data, the types
and quantities of knowledge required, processor require-
ments, whether the overall objective was general purpose
or special system, as well as detailed assumptions about
the types of objects and events in the scene domain.

Scientific research depends upon reproducibility of re-
sults: programs should therefore be much more widely
exchanged and run. This demands a higher standard of
documentation.

Libraries of standardized scenes should facilitate realistic
comparisons of alternative techniques.

Work should proceed simultaneously in several pictorial
domains to force generality and provide opportunities for
cross-fertilization.'

Motion perception has been seriously neglected, despite,
its paramount importance in human perception. Sequences
of pictures should be processed to explore the constraint
of continuity.

Systems should be designed to assimilate advice or new
knowledge provided incrementally by the experimenter to
prevent recurrence of errors, preferably via pictorial
examples. It is more natural to designate pictorial
concepts by pointing with a cursor than by editing a program.

14



III CONCLUSION

We conclude by reiterating some of the major premises underlying
this paper:

» The more knowledge, the better.

* The more data, the better.

» Vision is a gigantic optimization problem.

» Segmentation is low-level interpretation using general
knowledge.

o Knowledge is incrementally acquired.

* Research should pursue Truth, not Efficiency.

A further decade will determine our skill as visionaries ....
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