AWARD NUMBER: DAMD17-02-1-0142

TITLE: Vitamin D Treatment of Prostate Cancer: The Inhibitory Role of IGFBP-3

PRINCIPAL INVESTIGATOR: David Feldman, M.D.

CONTRACTING ORGANIZATION: Stanford University
Stanford, California 94305-5401

REPORT DATE: January 2006

TYPE OF REPORT: Final Addendum

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Vitamin D Treatment of Prostate Cancer: The Inhibitory Role of IGFBP-3

Calcitriol plays a critical role in maintaining mineral homeostasis but also exhibits antiproliferative activity in many cancers. We have shown that the antiproliferative actions of calcitriol in LNCaP human prostate cancer cells are mediated mainly by induction of insulin-like growth factor binding protein–3 (IGFBP-3). We also found that androgens increase expression of IGFBP-3 and cause a major enhancement of IGFBP-3 stimulation by calcitriol. The purpose of this study was to determine the molecular mechanisms involved in calcitriol and androgen regulation of IGFBP-3. We cloned 6 kb of the IGFBP-3 promoter and demonstrated its responsiveness to calcitriol and androgen in transactivation assays. Computer analysis identified a putative vitamin D response element (VDRE) and a potential androgen response element (ARE) in the IGFBP-3 promoter. We proved each to be inducible by calcitriol or androgen. Mutations created in the VDRE or ARE resulted in a loss of IGFBP-3 induction confirming the critical response element sequences. Chromatin immunoprecipitation assays demonstrated that calcitriol recruited VDR/RXR heterodimers to the VDRE site and androgen recruited the AR/AR homodimer to the ARE site. In conclusion, we have identified a functional VDRE and ARE in the human IGFBP-3 promoter that directly mediates the action of calcitriol and androgen to regulate IGFBP-3 expression.

15. SUBJECT TERMS
vitamin D, calcitriol, prostate cancer, vitamin D receptor, VDRE, IGFBP-3, antiproliferation, androgens, androgen receptor, ARE
Appendix-
The Role of Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3) in Mediating the Biphasic Actions of Androgens on the Growth of LNCaP Human Prostate Cancer Cells.
INTRODUCTION

We have previously shown that calcitriol (1,25-dihydroxyvitamin D₃) the active hormonal form of vitamin D, is antiproliferative in several prostate cancer (PCa) models including human prostate cancer cell lines (1-3). This has led us to hypothesize that calcitriol may be a useful therapy for PCa (4). In studies of the LNCaP human PCa cell line, we further demonstrated that calcitriol induction of insulin-like growth factor binding protein–3 (IGFBP-3) was necessary for the antiproliferative activity (5). The IGFBP-3 gene appears to mediate the antiproliferative activity of calcitriol by inducing a subsequent gene, p21, an inhibitor of the cell cycle. Prevention of IGFBP-3 expression, using antibodies to immunoneutralize IGFBP-3 or antisense to prevent IGFBP-3 mRNA transcription, abrogated the antiproliferative activity of calcitriol and the induction of p21. We therefore concluded that induction of IGFBP-3 is the critical step in calcitriol's antiproliferative activity in the LNCaP cells (5).

IGFBP-3 is the major binding protein for circulating IGF-1, a potent mitogen (6). IGFBP-3 has activities that are antimitogenic because it sequesters IGF-1. However, it has recently become clear that IGFBP-3 also has IGF-independent actions that are antiproliferative and proapoptotic (7). These activities make IGFBP-3 a potentially important factor in halting cancer cell growth (5, 8, 9, 10). The circulating blood level of IGFBP-3 has also been studied as a potential marker of PCa risk (11).

The goal of the current project is to further investigate the role of IGFBP-3 in the antiproliferative actions of vitamin D in PCa. Calcitriol regulates target genes by binding to the vitamin D receptor (VDR) (12). The calcitriol-bound VDR dimerizes with retinoid X receptor (RXR) and this complex then binds to a vitamin D regulatory element (VDRE) in the promoter region of target genes (13). Therefore, to study the vitamin D regulation of IGFBP-3, we set out to determine whether a VDRE was present in the promoter region of the IGFBP-3 gene.

In addition, we hoped to resolve another controversy about the nature of calcitriol regulation of the critical gene, p21. This gene is a cyclin-dependent kinase (Cdk) inhibitor and an important regulator of the cell cycle and cell proliferation. In our studies, calcitriol appeared to regulate IGFBP-3 that then regulated p21. In contrast, the studies of Liu et al (14) concluded that calcitriol directly regulated p21. The differences could be resolved, at least partially, by demonstrating a VDRE in the IGFBP-3 promoter region and demonstrating direct regulation of IGFBP-3 by calcitriol.

BODY

Calcitriol Regulation of IGFBP-3

In our Statement of Work, our major goal was to investigate the regulation of IGFBP-3 by calcitriol in PCa cells. We have clearly demonstrated that calcitriol’s antiproliferative actions in some PCa cells are mediated by induction of IGFBP-3 (5).

The second goal of this project was to determine the molecular mechanism of calcitriol’s action on IGFBP-3. We have successfully identified a functional VDRE in the distal region of the IGFBP-3 promoter (15). The induction of IGFBP-3 by calcitriol is directly mediated via VDR interaction with this VDRE.
Identification of an ARE in the IGFBP-3 Promoter

IGFBP-3, the most abundant circulating IGF binding protein, inhibits cell growth and induces apoptosis by both IGF-I dependent and independent pathways. The ability of IGFBP-3 to inhibit tumor growth has been demonstrated in many cancers including PCa. High concentrations of androgens, that inhibit the growth of the LNCaP human PCa cell line, have been shown to have both positive and negative effects on IGFBP-3 expression by different labs. To further explore the relationship between IGFBP-3 and androgens, we examined IGFBP-3 expression in LNCaP cells (16). We demonstrate that IGFBP-3 expression can be induced by 10 nM of the synthetic androgen R1881 or DHT. Transactivation assays show that the 6 kb IGFBP-3 promoter sequence directly responds to androgen treatment. In silico analysis identified a putative ARE at -2879/-2865 in the IGFBP-3 promoter. A single point mutation in this ARE disrupted transactivation by R1881. Combining the data obtained from EMSA, chromatin immunoprecipitation and mutational analysis, we conclude that a novel functional ARE is present in the IGFBP-3 promoter that directly mediates androgen induction of IGFBP-3 expression. Furthermore, we found that the combination of androgens and calcitriol significantly potentiated the IGFBP-3 promoter activity, suggesting that enhanced induction of the expression of the endogenous IGFBP-3 gene may contribute to the greater inhibition of LNCaP cell growth by combined calcitriol and androgens (16). Since androgens are well known to stimulate PCa growth, androgen deprivation therapy causes PCa to regress, the stimulation by androgens of this anti-proliferative and pro-apoptotic protein is paradoxical and raises interesting questions about the role of androgen-stimulated IGFBP-3 in PCa.

Calcitriol-Androgen Interaction, Inhibition of LNCaP Cell Proliferation by Androgens

In the androgen-dependent LNCaP human prostate cancer (PCa) cell line calcitriol exerts its anti-proliferative action predominantly through inducing cell cycle arrest. We have previously shown that growth arrest by calcitriol is primarily mediated by induction of IGFBP-3, which subsequently increases the expression of the cell cycle inhibitor p21. We also have identified functional response elements for androgens and calcitriol in the IGFBP-3 promoter. In this study we show that low doses of the synthetic androgen R1881 that stimulate LNCaP cell proliferation, do not induce IGFBP-3 expression, while high doses of R1881 that inhibit cell growth, significantly increase expression of IGFBP-3 (17). Importantly, we demonstrate that calcitriol and androgens in combination synergistically up-regulate IGFBP-3 expression through VDR and AR response elements within the IGFBP-3 promoter. The hormone combination inhibits cell growth better than either hormone alone. siRNA blockade of IGFBP-3 expression abrogates the growth inhibition by calcitriol as well as by androgens. Furthermore, we demonstrate that the growth inhibitory dose of R1881 leads to an increase in the cyclin dependent kinase inhibitors, p21 and p27 and G1 arrest. These changes can be blocked or partially reversed by IGFBP-3 siRNA. Addition of exogenous IGFBP-3 protein causes growth inhibition. Our data suggest that IGFBP-3 mediates the anti-proliferative effect of high doses of androgen partly through p21 and p27 pathways and that IGFBP-3 plays an important role in the androgen-dependent biphasic growth regulation of LNCaP cells (17).

Other IGFBP-3 Regulators

We have also studied the interaction of other important regulators of IGFBP-3 including 9-cis retinoic acid [(9 cis-RA), the RXR ligand], rosiglitazone [a peroxisome proliferator-activated receptor (PPAR)γ ligand], and tricostatin A [TSA, a histone deacetylase (HDAC) inhibitor] using Northern blot analysis as well as our established IGFBP-3 promoter-reporter transactivation system. We found that all of these regulators significantly enhanced calcitriol’s up-regulation of IGFBP-3 expression. These findings suggest that these agents given in combination with calcitriol would increase calcitriol’s antiproliferative activity. It is possible that combination therapy would allow the use of lower doses of calcitriol to achieve a therapeutic antiproliferative effect and thereby diminish the hypercalcemic side-effects of calcitriol in prostate cancer therapy.
Calcitriol Analogs

Another goal of the project was to evaluate IGFBP-3 regulation by several calcitriol analogs that are less hypercalcemic than calcitriol. In other words, we wanted to know whether ability to induce IGFBP-3 could be used to explore the antiproliferative activity of the calcitriol analogs on PCa cells. To establish this assay, we measured both the effect of the analogs on PCa cell proliferation as well as real-time PCR to assess the analog’s ability to induce IGFBP-3. We used LNCaP cells for both the growth studies and the IGFBP-3 induction. Analogs EB1089, Ro24-5531, KH1060 and Ro27-0574, each at 10 nM, resulted in over 10-fold increase in IGFBP-3 mRNA compared to the vehicle treatment. The analogs inhibited cell proliferation by over 65%. In comparison, 10 nM calcitriol induced a 2-3 fold of induction of IGFBP-3 mRNA and about 55% inhibition of cell growth. The studies indicate that these analogs have a higher potency than calcitriol at both IGFBP-3 induction and antiproliferative activity.

Differential Regulation of Polymorphic Variants of IGFBP-3

Recently Deal et al. (18) found a novel polymorphism that varies between an “A” or a “C” nucleotide at –202 from its transcription start site in the IGFBP-3 promoter. The “A” allele is more active than the “C” allele that is consistent with the relationship between genotype and circulating IGFBP-3 levels in the serum (AA>AC>CC). The potency of calcitriol analogs as antiproliferative agents may be predicted by their ability to induce IGFBP-3 in an allele-specific manner. On the other hand, the VDR gene also exists in several polymorphic forms. Especially important is the FokI polymorphism at the translation start site that alters the translated protein. The FokI polymorphism results in two VDR variants, the “f” variant (427 amino acids) and “F” variants (3 amino acids shorter) (19, 20). Epidemiologic studies have reported that the FokI polymorphism correlates with the risk of osteoporosis and PCa. Thus we hypothesized that the FokI polymorphism in the VDR gene contributes to the efficacy of calcitriol action on the level of induction of target genes. Since calcitriol’s antiproliferative activity in LNCaP cells is dependent on stimulation of IGFBP-3, the interaction of VDR and IGFBP-3 polymorphisms may determine the response of the IGFBP-3 gene to calcitriol therapy.

To assess whether the VDR FokI polymorphism exhibits differential activity to activate the IGFBP-3 promoter variants, the two VDR variants, “f” and “F”, were tested for transactivation potency on the IGFBP-3 A and C variants. Plasmids expressing the VDR variants were co-transfected with the different IGFBP-3 promoters. Both VDR variants were tested on each IGFBP-3 promoter. We found that the combination of VDR-f with IGFBP-3-C did not respond to calcitriol in LNCaP cells. The other three combinations (VDR-F/IGFBP-3-A, VDR-F/IGFBP-3-C, or VDR-f/IGFBP-3-A) induced gene expression.

To explore the mechanism by which the IGFBP-3 polymorphic forms differentially regulate the level of gene expression, we performed gel shifts assays. The experiments used nucleic extracts isolated from LNCaP cells using the oligonucleotide probe containing the A or C allele at -202 of the IGFBP-3 promoter. Both alleles produced similar binding complexes but showed different binding activity with the A allele probe stronger than the C allele. This result is consistent with the transcriptional activity of the IGFBP-3 promoter with the A allele being stronger than the C allele. Point mutations in promoter DNA near –202 identified the critical nucleotides involved in the DNA-protein complex. Supershifts further characterized N-Myc in this complex that might contribute to the differential regulation of IGFBP-3 expression.

Nuclear Actions of IGFBP-3

The last part of this project is to study the nuclear mechanisms of IGFBP-3 interaction with RXR and VDR to inhibit PCa cell growth. It has been postulated that IGFBP-3 translocates to the nucleus and binds to RXR altering nuclear receptor function (21, 22). Using GST pull-down assays, we found that IGFBP-3 specifically binds to RXR and not VDR. In transactivation assays, we failed
to see that over-expressed IGFBP-3 changes the 24-hydroxylase promoter’s response to calcitriol. We have not completed this area of study and can not yet reach any conclusions about interactions of IGFBP-3 and either RXR or VDR that have been postulated by Cohen and associates (22, 23).

Analysis of Calcitriol-Regulated Prostate Cancer Cell Gene Expression Profiles

Although not part of the SOW, this grant helped to support our studies of all of the genes regulated by calcitriol in the LNCaP human PCa cell. These studies used cDNA microarrays to evaluate the entire profile of genes up- or down-regulated by calcitriol (24). It is of interest that IGFBP-3 had the greatest fold-induction of all genes in the LNCaP cell by calcitriol. At 6 hours, IGFBP-3 achieved a statistically significant up-regulation (2.4-fold) supporting the idea of direct regulation. At 24 hours IGFBP-3 was 33.2-fold stimulated over control cells, the highest level by far of any gene in LNCaP cells. These results confirm the importance of the IGFBP-3 response to calcitriol in LNCaP cells.

Studies of Prostate cancer Cells with Mutant Androgen Receptor

The grant also helped to support studies of mutant androgen receptors (ARs) that resulted in "promiscuous" binding of glucocorticoids to the androgen binding site. Although not part of the SOW these studies are closely related to our major goal of improving therapy for prostate cancer patients. This paper demonstrated that the synthetic glucocorticoid triamcinolone did not bind to the mutant AR whereas many glucocorticoids such as cortisol did. These findings were part of the preliminary data that allowed us to submit a new DAMD grant proposal to the prostate cancer program to study triamcinolone therapy of androgen-independent prostate cancer (PC030122).

KEY RESEARCH ACCOMPLISHMENTS

- Identified the presence of both VDRE and ARE sites in the IGFBP-3 promoter.
- Proved that both calcitriol and androgen directly regulate IGFBP-3.
- Found that the combination of calcitriol and androgen greatly enhances expression of IGFBP-3 and cell growth inhibition.
- Found that androgen has a biphasic regulatory effect on expression of IGFBP-3. 10^{-11} M of R1881 does not affect IGFBP-3 till 5×10^{-11} M. This may explain the biphasic actions of androgens on PCa cell growth.
- Demonstrated that calcitriol indirectly regulates p21/p27 and the effect is mediated through IGFBP-3 induction.
- Demonstrated that the growth inhibitory effect of high concentrations of androgens are due, at least in part, to the increased expression of IGFBP-3 and its regulation of p21 and p27.
- Characterized important VDRE and ARE with unique characteristics in an important calcitriol target gene.
- Provided information on the promoter region of the IGFBP-3 gene.
- Established an advanced biotechnique, the ChIP assay, to study DNA-protein interactions in our lab that will be very useful to investigate additional hormone receptor-DNA interactions.
- Demonstrated the induction of IGFBP-3 via action on its promoter by other important regulators including retinoids, PPAR ligands and HDAC inhibitors.
- Provided data on possible approaches to combination therapy that would improve the therapeutic potency of calcitriol in PCa therapy.
REPORTABLE OUTCOMES

All of the above mentioned research accomplishments are reportable. We had two publications, one in Molecular Endocrinology and one in Endocrinology describing the identification of functional VDRE and ARE in the IGFBP-3 promoter (15, 16 and also see Appendix). We wrote another manuscript describing the role of IGFBP-3 in mediating the biphasic actions of androgens on the growth of LNCaP cells and it is submitted for publication (17). We have provided our IGFBP-3 promoter-reporter constructs (15) to five investigators including D. Edward P. Gelmann (Georgetown University), Dr. Hiroshi Nakagawa (University of Pennsylvania), Dr. Jianming Xu (Baylor College of Medicine), Dr. Yu-Chung Yang (Case Western Reserve University), and Dr. Shuyuan Yeh (University of Rochester). This saves the other labs time and labor and provides them with important reagents making their research efforts possible so that it is very beneficial to our research community.

PUBLICATIONS

Peng L, Wang J, Malloy PJ, Feldman D 2006 The Role of Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3) in Mediating the Biphasic Actions of Androgens on the Growth of LNCaP Human Prostate Cancer Cells. (submitted for publication)
CONCLUSIONS

Our research has elucidated the presence of a VDRE and an ARE in the distal promoter region of the IGFBP-3 gene. These findings establish the fact that calcitriol or androgen directly regulates IGFBP-3 via a classical hormone response element. Since only a modest number of VDREs or AREs have been characterized, these findings add to the series of known VDREs or AREs and provide useful data for further elucidation of additional response elements. The research also demonstrates how this critical gene is regulated and provides DNA sequence data for the IGFBP-3 promoter region to support further analysis of additional regulators or modulators of IGFBP-3 gene expression. Most importantly, the work clarifies how calcitriol or androgen induces this most important regulator of PCa cell growth.

Our study has also demonstrated enhanced calcitriol action to induce IGFBP-3 by other important regulators including retinoids, rosiglitazone (a diabetes drug that binds to PPARs) and HDAC inhibitor and has evaluated the potency of several calcitriol analogs with less hypercalcemic activity. The results have provided new insights into improving calcitriol’s therapeutic efficacy in PCa therapy.

REFERENCES

17. Peng L, Wang J, Malloy PJ, Feldman D 2006 The Role of Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3) in Mediating the Biphasic Actions of Androgens on the Growth of LNCaP Human Prostate Cancer Cells. (submitted for publication)
Growth Inhibitory Concentrations of Androgens Up-Regulate Insulin-Like Growth Factor Binding Protein-3 Expression via an Androgen Response Element in LNCaP Human Prostate Cancer Cells

Lihong Peng, Peter J. Malloy, Jining Wang, and David Feldman

Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5103

IGF binding protein-3 (IGFBP-3), the most abundant circulating IGF binding protein, inhibits cell growth and induces apoptosis by both IGF-I-dependent and -independent pathways. The ability of IGFBP-3 to inhibit tumor growth has been demonstrated in many cancers including prostate cancer (PCa). High concentrations of androgens, which inhibit the growth of the LNCaP human PCa cell line, have been shown to have both positive and negative effects on IGFBP-3 expression by different laboratories. To further explore the relationship between IGFBP-3 and androgens, we examined IGFBP-3 expression in LNCaP cells. We demonstrate that IGFBP-3 expression can be induced by 10 nM of the synthetic androgen R1881 or dihydrotestosterone. Transactivation assays show that the 6-kb IGFBP-3 promoter sequence directly responds to androgen treatment. In silico analysis identified a putative androgen response element (ARE) at −2979/−2865 in the IGFBP-3 promoter. A single-point mutation in this ARE disrupted transactivation by R1881. Combining the data obtained from EMSA, chromatin immunoprecipitation and mutational analysis, we conclude that a novel functional ARE is present in the IGFBP-3 promoter that directly mediates androgen induction of IGFBP-3 expression. Furthermore, we found that the combination of androgens and calcitriol significantly potentiated the IGFBP-3 promoter activity, suggesting that enhanced induction of the expression of the endogenous IGFBP-3 gene may contribute to the greater inhibition of LNCaP cell growth by combined calcitriol and androgens. Because androgens are well known to stimulate PCa growth and androgen deprivation therapy causes PCa to regress, the stimulation by androgens of this antiproliferative and proapoptotic protein is paradoxical and raises interesting questions about the role of androgen-stimulated IGFBP-3 in PCa. (Endocrinology 147: 4599–4607, 2006).

First Published Online July 6, 2006

Abbreviations: AR, Androgen receptor; ARE, androgen response element; CDK, cyclin-dependent kinase; CHIP, chromatin immunoprecipitation assay; FACS, flow cytometric analysis; FBS, fetal bovine serum; GR, glucocorticoid receptor; IGFBP, IGF binding protein; LUC, luciferase; PCa, prostate cancer; qRT-PCR, quantitative real-time RT-PCR; TK, thymidine kinase; VDRE, vitamin D response element.

Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.
of androgens on IGFBP-3. The reason for these conflicting results remains unclear.

Androgens are essential for the development of the normal prostate and the maintenance of prostate function (28). In addition to the well-known ability of androgens to stimulate prostate growth and androgen deprivation therapy to cause prostate cancer regression (29–31), a number of studies have demonstrated that androgens can exert antiproliferative and prodifferentiative actions on PCA cells (32–37). Other studies in LNCaP cells demonstrate that low doses of androgen stimulate cell growth, whereas high concentrations result in inhibition of cell growth (33, 38–40). The mechanism for these divergent or biphasic actions remains unknown. Androgen actions are mediated by the androgen receptor (AR), a member of the steroid, thyroid, retinoid receptor superfamily of nuclear transcription factors (28). AR binds as a homodimer to androgen response elements (AREs) containing an inverted repeat of the core sequence (5’-TGTTCT-3’) separated by a three-nucleotide spacer (41).

In the present study, we used the androgen-responsive LNCaP cells as a model to study the regulation of IGFBP-3 by growth inhibitory concentrations of androgens and determine the molecular mechanism involved. We provide the first evidence that the induction of IGFBP-3 by androgens is mediated through a novel functional ARE site in the distal portion of the IGFBP-3 promoter and is possibly involved in the growth-inhibitory action of androgens. Furthermore, we demonstrate that the interaction of calcitriol and androgens leads to a substantial increase in IGFBP-3 promoter activity that is mediated through their respective response elements in the IGFBP-3 promoter.

Materials and Methods

Cell culture

The LNCaP cells (American Type Culture Collection, Manassas, VA) were maintained in RPMI 1640 medium containing 5% fetal bovine serum (FBS) at 37 C in a humidified atmosphere with 5% CO2. During all treatments, the serum concentration was reduced to 2% FBS.

Cell growth assay

LNCaP cells were plated at low density (5 × 10^4) in six-well plates and grown in 5% FBS-RPMI 1640 medium. After 24 h incubation, the cells were treated with vehicle or androgens in triplicate for 6 d. Fresh medium with androgen was replenished 72 h later in all experiments. At d 6, the cells were processed for DNA quantitation using the Burton preparation technique (46). EMSAs were performed with modifications reported previously (21, 47). A 1.85-kb fragment from the IGFBP-3 promoter reporter constructs containing −3992/+55, −3590/+55, and −1901/+55 fragment in pGL3-Basic (Promega, Madison, WI) were previously reported (21). A 1.85-kb fragment from −3590 to −1785 was cloned into the heterologous thymidine kinase (TK) promoter-driven luciferase reporter (LUC) (48). Synthetic oligonucleotides for IGFBP-3 ARE (−2879/−2866) were annealed and cloned into MluI/Xhol sites in TK-LUC. Annealed BP3-VDRE oligonucleotides (21) were ligated to the BP3-ARE/TK construct to generate the BP3-ARE/VDRE construct. A single-point mutation (G to T) in the IGFBP-3 ARE site was introduced into the −3590/+55 pGL3-LUC reporter construct using the GeneEditor in situ site-directed mutagenesis system (Promega) following the manufacturer’s instructions. Oligonucleotides containing point mutations in the BP3-ARE or BP3-VDRE sequence with MluI/Xhol site overhangs were synthesized and directly cloned into the TK-LUC vector. Positive clones were confirmed by sequencing.

Transfection analysis

LNCaP cells were plated at a density of 3–5 × 10^4 cells in six-well plates the day before transfection. At approximately 75% confluency, the cells were transfected with 1 µg DNA using 2 µl of TransIT-Insecta transfection reagent per well (Mirus, Madison, WI). Ten nanograms of the Renilla luciferase plasmid pRL-null (Promega) were included in each transfection to control for the transfection efficiency. After 20 h the cells were treated with ethanol or 10 nm RI881, a synthetic androgen, in the absence or presence of calcitriol and incubated for an additional 18 h. The cells were lysed using passive lysis buffer (Promega). Luciferase activity was determined using the dual-luciferase assay system (Promega) that was normalized to the Renilla luciferase activity. Activity of each construct was expressed as fold induction over control.

Isolation of nuclear extracts and EMSA

Nuclear extracts from LNCaP cells were isolated using the 1-h mini-preparation technique (46). EMSAs were performed with modifications as described previously (21, 47). Annealed BP3-ARE oligonucleotides (5’-CCAAAGGCTCTTTCAGTTCTAGGA-3’ antisense), IGFBP-3 ARE sites overhangs were synthesized and directly cloned into the TK-LUC vector. Positive clones were confirmed by sequencing.

Preparation of RNA and quantitative real-time RT-PCR (qRT-PCR)

Total RNA was isolated using RNeasy minikit (QIAGEN, Valencia, CA). cDNA was synthesized from 2.5 µg of total RNA with random hexamer primers and SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA). Real-time PCR analysis was performed using DNA Engine Opticon fluorescence detection system (MJ Research, Foster City, CA). The PCR was set up in 20 µl with 0.25 µM of each primer; 2 µl of 1:3 diluted cDNA template; and 10 µl of 2X Master Mix containing modified DNA polymerase, PCR buffer, SYBR Green I, 5 mM MgCl2, and 4 mM deoxynucleotide triphosphate mix including deoxyuridine triphosphate supplied from the DynaNo SYBR Green qPT-PCR kit (MJ Research). The cycling was performed using the following program: 95 C 5 min, 40 cycles of 94 C 30 sec, 58 C 30 sec, and 72 C 30 sec. Comparative cycle threshold method (2-A^DDCt) was used to semiquantitate the target signal change in treatment vs. control (44). The TATA-binding protein gene was used as an internal control to normalize the amount of cDNA added to the PCR. The following primers were used: IGFBP-3, 5’-AGATTCACCCTCCTTCATCT-3’ (sense), 5’-TCCTCAATTTCCTACCGCAG-3’ (antisense); TATA-binding protein, 5’-TGCGTGAAGACTGTGCTGGAG-3’ (sense), 5’-TCGAATTAGGGTTTGGGGGC-3’ (antisense).

Determination of IGFBP-3 secretion by LNCaP cells

IGFBP-3 levels in conditioned medium secreted by LNCaP cells were measured using an ELISA kit according to the manufacturer’s instructions (Diagnostic Systems Laboratories, Webster, TX).

Plasmid constructions

The IGFBP-3 promoter reporter constructs containing −3992/+55, −3590/+55, and −1901/+55 fragment in pGL3-Basic (Promega, Madison, WI) were previously reported (21). A 1.85-kb fragment from −3590 to −1785 was cloned into the heterologous thymidine kinase (TK) promoter-driven luciferase reporter (LUC) (48). Synthetic oligonucleotides for IGFBP-3 ARE (−2879/−2866) were annealed and cloned into MluI/Xhol sites in TK-LUC. Annealed BP3-VDRE oligonucleotides (21) were ligated to the BP3-ARE/TK construct to generate the BP3-ARE/VDRE construct. A single-point mutation (G to T) in the IGFBP-3 ARE site was introduced into the −3590/+55 pGL3-ARE/LUC reporter construct using the GeneEditor in situ site-directed mutagenesis system (Promega) following the manufacturer's instructions. Oligonucleotides containing point mutations in the BP3-ARE or BP3-VDRE sequence with MluI/Xhol site overhangs were synthesized and directly cloned into the TK-LUC vector. Positive clones were confirmed by sequencing.

Preparation of RNA and quantitative real-time RT-PCR (qRT-PCR)

Total RNA was isolated using RNeasy minikit (QIAGEN, Valencia, CA). cDNA was synthesized from 2.5 µg of total RNA with random hexamer primers and SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA). Real-time PCR analysis was performed using DNA Engine Opticon fluorescence detection system (MJ Research, Foster City, CA). The PCR was set up in 20 µl with 0.25 µM of each primer; 2 µl of 1:3 diluted cDNA template; and 10 µl of 2X Master Mix containing modified DNA polymerase, PCR buffer, SYBR Green I, 5 mM MgCl2, and 4 mM deoxynucleotide triphosphate mix including deoxyuridine triphosphate supplied from the DynaNo SYBR Green qPT-PCR kit (MJ Research). The cycling was performed using the following program: 95 C 5 min, 40 cycles of 94 C 30 sec, 58 C 30 sec, and 72 C 30 sec. Comparative cycle threshold method (2-A^DDCt) was used to semiquantitate the target signal change in treatment vs. control (44). The TATA-binding protein gene was used as an internal control to normalize the amount of cDNA added to the PCR. The following primers were used: IGFBP-3, 5’-AGATTCACCCTCCTTCATCT-3’ (sense), 5’-TCCTCAATTTCCTACCGCAG-3’ (antisense); TATA-binding protein, 5’-TGCGTGAAGACTGTGCTGGAG-3’ (sense), 5’-TCGAATTAGGGTTTGGGGGC-3’ (antisense).
The DNA-protein complexes were separated on 4% nondenaturing polyacrylamide gels (29:1) and processed as described previously (21).

Chromatin immunoprecipitation assay (ChIP)

Confluent LNCaP cells were treated with ethanol or 10 nM R1881 for 20 min and subjected to ChIP assay using AR antibody (Santa Cruz Biotechnology, Santa Cruz, CA) as described previously (21). The purified DNA fragments were subjected to PCR using primers (sense: 5'-AGATTTCCTGTCTCACAAATAGC-3'; antisense: 5'-TGCTTT-TCTTCTGCCTACGCC-3'), which amplify a 259-bp fragment spanning the BP3-ARE in the IGFBP-3 promoter. The PCR was carried out at 95°C for 5 min and then 30 cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 30 sec with a final extension for 8 min at 72°C.

Western blot analysis

LNCaP cells were treated with vehicle or R1881 for 40 h. Extracts were prepared in radioligand immunoprecipitation assay buffer [50 mM Tris-HCl (pH 7.4), 1% Nonidet P-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA] containing a protease inhibitor tablet (Roche Molecular Biochemicals, Indianapolis, IN). Supernatants were subjected to SDSPAGE and Western blot analysis using p21, p27, and β-actin mouse monoclonal antibodies (Santa Cruz Biotechnology) as described previously (45).

Results

Induction of growth arrest and stimulation of cyclin-dependent kinase (CDK) inhibitors by androgens in LNCaP cells

Previous studies from different groups have demonstrated that LNCaP cells exhibit a biphasic growth pattern in response to androgens with low concentrations stimulating cell proliferation and high concentrations inducing growth arrest (33, 38–40, 48). In our hands, LNCaP cells have always shown this biphasic effect (40). As shown in Fig. 1A, 0.1 nM R1881 almost doubled the amount of DNA, whereas 1 and 10 nM R1881 caused an approximate 50% reduction in DNA content, compared with the vehicle control, reflecting a typical biphasic growth response of LNCaP cells to androgens, either R1881 or dihydrotestosterone. In concurrent experiments, we examined the effect of the growth-inhibitory dose of R1881 on the level of the CDK inhibitors p21 and p27 by our laboratory (21). As shown in Fig. 3, the R1881 treatment, relative to control, elicited a significant 2.5-fold increase in IGFBP-3 gene transcription after 6 h. The IGFBP-3 mRNA levels continued to increase with longer incubation times. IGFBP-3 protein levels were unchanged at 6 h but increased after 12 h and remained elevated after 24 and 48 h (Fig. 2B). Addition of cycloheximide, a protein synthesis inhibitor, failed to block IGFBP-3 induction by androgens (data not shown). These results suggest that R1881 may directly regulate the expression of IGFBP-3 in LNCaP cells. Similar findings were obtained with dihydrotestosterone (data not shown).

A growth-inhibitory dose of androgen up-regulates IGFBP-3

To determine whether high concentrations of androgens affect the expression of IGFBP-3, an important growth regulator, we treated LNCaP cells with 10 nM of androgens and analyzed IGFBP-3 gene expression over time. As shown in Fig. 2A, R1881 treatment, relative to control, elicited a significant 2.5-fold increase in IGFBP-3 gene transcription after 6 h. The IGFBP-3 mRNA levels continued to increase with longer incubation times. IGFBP-3 protein levels were unchanged at 6 h but increased after 12 h and remained elevated after 24 and 48 h (Fig. 2B). Addition of cycloheximide, a protein synthesis inhibitor, failed to block IGFBP-3 induction by androgens (data not shown). These results suggest that R1881 may directly regulate the expression of IGFBP-3 in LNCaP cells. Similar findings were obtained with dihydrotestosterone (data not shown).

Transactivation of the IGFBP-3 promoter by androgens

To determine whether androgens directly regulate the transcription of IGFBP-3, we transfected LNCaP cells with IGFBP-3 promoter reporter constructs previously described by our laboratory (21). As shown in Fig. 3, the significant decrease in the proportion of cells in G1, with an increase in G2/M/S phase. Our observations confirm previous reports that G1 arrest contributes to growth inhibition induced by high concentrations of androgens (48).

TABLE 1. Effects of R1881 treatment on cell cycle in LNCaP cells

<table>
<thead>
<tr>
<th>Treatment</th>
<th>G1 (%)</th>
<th>G2/M/S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>70.4 ± 0.9</td>
<td>21.9 ± 0.8</td>
</tr>
<tr>
<td>R1881, 0.1 nM</td>
<td>65.6 ± 0.7a</td>
<td>26.3 ± 0.6a</td>
</tr>
<tr>
<td>R1881, 10 nM</td>
<td>81.3 ± 1.4b</td>
<td>10.6 ± 1.1b</td>
</tr>
</tbody>
</table>

LNCaP cells were treated with different doses of R1881 for 48 h. Cell cycle was analyzed by flow cytometry as described in Materials and Methods. Results showing the percentage of the cells in each phase are the mean ± SE of triplicate sample. The data represent one of two independent experiments.

a *P* ≤ 0.05, compared with ethanol.

b *P* ≤ 0.01, compared with ethanol.
construct was unresponsive to R1881 treatment, whereas the −3595/+55 construct exhibited approximately 1.9-fold induction by R1881. No further increase in transactivation was observed when fragments up to −5992 were tested. The results show that the region from −3595 to −1901 in the IGFBP-3 promoter contains a potential ARE.

Identification of a functional ARE in the IGFBP-3 promoter

To determine whether the sequence between −3590 and −1901 can act as an enhancer element, we cloned a 1.85-kb fragment from −3590 to −1753 into a luciferase reporter driven by the TK-LUC promoter (45). As shown in Fig. 4A, in transactivation assays in LNCaP cells, the 1.85 kb sequence exhibited approximately 2-fold increase in luciferase activity after R1881 treatment. Addition of casodex blocked the induction by R1881 (Fig. 4A). The empty TK-LUC vector was unresponsive to R1881 (data not shown).

In silico analysis of this 1.85-kb fragment identified a potential ARE located between −2879 and −2865. As shown in Fig. 4B, the putative BP3-ARE (5′-GGCTCT TTC TGTTC3′) contains two partial direct repeats separated by a three-nucleotide spacer. (The bold letters indicate the consensus sequence.) The BP3-ARE is 92% identical with the ARE of the secretory component promoter (SC ARE1.2) and 87% identical with the ARE consensus sequence (41, 51, 52). The SC ARE1.2 has been characterized as a high-affinity AR-specific ARE (51).

To determine whether the BP3-ARE sequence functions as an ARE, we subcloned the BP3-ARE sequence directly into the TK-LUC vector (BP3-ARE/TK). LNCaP cells were transfected with the BP3-ARE/TK heterologous reporter. Treatment with R1881 resulted in an approximately 2-fold induction of luciferase activity (Fig. 4C). To further confirm the BP3-ARE acts as an enhancer element, we created a G to T mutation (TGTTC3 to TTTCT3) (Fig. 5A) in the BP3-ARE sequence in the −3590/+55 native promoter reporter con-
struct as well as the BP3-ARE/TK heterologous construct. As shown in Fig. 5B, the mutation resulted in a loss of androgen inducibility for both constructs.

Confirmation of a novel ARE in the IGFBP-3 promoter

EMSAs were used to determine whether AR binds to the putative IGFBP-3 ARE sequence. [32P]-labeled BP3-AREs were incubated with LNCaP nuclear extracts in the presence or absence of R1881. A strong specific DNA-protein complex was observed with the androgen-treated cell extract (Fig. 6A, lane 1). When a 100-fold molar excess of unlabeled BP3-ARE or SC ARE1.2 oligonucleotide was added, the shifted band signal was diminished (Fig. 6A, lanes 2–3). In contrast, the DNA binding was not competed when unlabeled mutant BP3-AREmt oligonucleotides were added (Fig. 6A, lane 4).

ChIP assays were performed to determine whether R1881 recruits AR to the chromatinized BP3-ARE in vivo. LNCaP cells were treated with or without 10 nM R1881 and then subjected to ChIP assay. PCR was performed with the purified immunoprecipitated DNA using primers designed to amplify the IGFBP-3 promoter sequence spanning the BP3-ARE. As shown in Fig. 6B, in the AR antibody (lanes 5–6) immunoprecipitation reactions, a 259-bp DNA fragment was amplified only in the androgen-treated cells (lane 6), indicating that the AR interacts with the BP3-ARE in vivo in a ligand-dependent manner. The results further confirm the presence of a functional ARE in the natural chromatin structure in intact cells.

Taken together, our data strongly demonstrate the presence of a functional BP3-ARE in the human IGFBP-3 promoter that is activated by the AR in response to the androgens.

Androgens and calcitriol synergistically activate the IGFBP-3 promoter through their respective response elements

We previously demonstrated that calcitriol up-regulates IGFBP-3 through a VDRE in the IGFBP-3 promoter (21). The VDRE site is approximately 400 bp upstream of the ARE site in the IGFBP-3 promoter. The physical position of each response element in the native promoter is shown in Fig. 7A. To examine the combined effects of androgens and calcitriol on the IGFBP-3 promoter, a DNA fragment containing BP3-ARE and BP3-VDRE sequences in the IGFBP-3 promoter was cloned into the TK-LUC vector. Mutant constructs containing either a mutated ARE site or mutated VDRE site or both mutated sites were also examined. As shown in Fig. 7B, the intact sequence responded to each hormone individually and exhibited a greater activation in the presence of both ligands. Mutations in either the ARE or VDRE sites resulted in the loss of response to the corresponding hormone. Mutation of both response elements eliminated the response to both ligands.

Discussion

In this study we first verified that our LNCaP cell system displayed a biphasic growth response to androgens (Fig. 1A) as previously reported (33, 38–40). A growth-inhibitory dose of R1881 induced the levels of the CDK inhibitors p21 and p27 (Fig. 1B), thus causing accumulation of cells in G1 (Table 1). In contrast, the growth-stimulatory dose of R1881 triggered an increase in cells in the S/G2/M phase (Table 1). In our LNCaP cells, we found that growth-inhibitory doses of androgens up-regulated IGFBP-3 gene expression by a direct interaction of the AR with an ARE in the IGFBP-3 promoter. Based on the ability of casodex to block the induction, the androgen action on IGFBP-3 is ligand and AR dependent (Figs. 2C and 4A). The presence of a functional ARE motif is
strongly supported by the fact that the BP3-ARE sequence confers androgen responsiveness in both its natural promoter setting and a heterologous promoter (Figs. 3 and 4). Mutations in the BP3-ARE eliminate androgen induction by either heterologous or natural promoters (Fig. 5). EMSAs and ChIP assays demonstrate specific recognition and binding of AR to the ARE sequence \textit{in vitro} and \textit{in vivo} (Fig. 6). Furthermore, we find that the combination of calcitriol and androgens results in a greater induction in IGFBP-3 promoter activity than is individually mediated through the interaction of their receptors with their respective hormone response elements (Fig. 7).

The BP3-ARE sequence exhibits a high degree of similarity with the SC ARE1.2 (5'\texttt{GGCTCT}TTC\texttt{AGTTCT}-3') located in the secretory component (sc) gene and the PB-ARE-2 (5'\texttt{GGTTCT}TGG\texttt{AGTACT}-3') found in the probasin promoter. Each of these AREs has been demonstrated to be specifically recognized by the AR with high binding affinity (51, 53). There are high homologies among steroid nuclear receptors, the glucocorticoid receptor (GR), progesterone receptor, and AR so that they sometimes are capable of overlapping into the same response element. The ability of some response elements to be highly selective for the AR probably acts in concert with other mechanisms to generate androgen-specific regulation of transcription \textit{in vivo} (41).

It is known that within the steroid nuclear receptor core binding site (5'\texttt{TGTTCT}-3') guanine and cytosine at position 2 and 5, respectively, are essential for high-affinity binding of this family including GR and progesterone receptor as well as AR (28, 54). On the other hand, the residues at position 3 and 4 determine specific binding of the family members.

Fig. 4. Characterization of an ARE in the IGFBP-3 promoter. A, The TK-LUC heterologous construct containing the 1.85-kb fragment from \texttt{−3590} to \texttt{−1753} of the IGFBP-3 promoter was transfected into LNCaP cells and then treated with 10 nM R1881 or 10 \textmu M casodex (Cdx) or 10 nM R1881 plus 10 \textmu M casodex (Cdx + R). The activity of the construct was expressed as fold increase over control. B, Comparison of a potential ARE site at \texttt{−2879/−2865} in the IGFBP-3 promoter (BP3-ARE) to the ARE consensus and the well-characterized ARE in the secretory component promoter (SC ARE1.2). The consensus nucleotides for AR binding are illustrated in \textbf{bold}, and \textit{lower-case letters} represent variations from the consensus. C, The potential ARE was cloned into the TK-LUC vector. The construct was transfected into LNCaP cells and treated with vehicle or 10 nM R1881. The activity of the construct is displayed as fold induction by R1881 over the control. All transfections were carried out in triplicate, and the data represent the mean ± se of three experiments. *

Fig. 5. The BP3-ARE is a functional ARE. A, Sequences of wild-type BP3-ARE or mutated BP3-ARE (BP3-AREmt). The \textit{lower-case letter} represents the mutated base. B, The BP3-AREmt mutation (A) was introduced into the BP3-3590/+55 promoter construct and the BP3-ARE heterologous construct. These constructs were transfected into LNCaP cells and treated with vehicle or 10 nM R1881 for 18 h. The activity of each construct is expressed as fold induction over control. Data represent three independent experiments (mean ± se), each performed in triplicate. wt, Wild type; mt, BP3-AREmt. *

Mutations in the BP3-ARE eliminate androgen induction by either heterologous or natural promoters (Fig. 5). EMSAs and ChIP assays demonstrate specific recognition and binding of AR to the ARE sequence \textit{in vitro} and \textit{in vivo} (Fig. 6). Furthermore, we find that the combination of calcitriol and androgens results in a greater induction in IGFBP-3 promoter activity than is individually mediated through the interaction of their receptors with their respective hormone response elements (Fig. 7).
Verrijdt et al. (51) demonstrated that in the SC ARE1.2 (5’-GGCT/ TTC AGT TTCT-3’), the thymidine residue at position 4 in the 5’ half-site is responsible for specific AR binding as opposed to GR binding. Therefore, the striking resemblance of the BP3-ARE and SC ARE1.2 and the presence of a thymidine at position 4 in the 5’ half-site of the BP3-ARE (5’-GGCT/ TTC AGT TTCT-3’) suggest that the BP3-ARE may be an AR-selective element.

IGFBP-3 expression has been shown to be regulated by a variety of specific growth stimulators and inhibitors including TGFβ (55, 56), retinoic acid (56), calcitriol (20, 21, 57), TNF (58), the histone deacetylase inhibitors trichostatin A and sodium butyrate (59), and androgens (23–27) as well as p53 (22, 56–58). Calcitriol exerts its antiproliferative actions by promoting G0/G1 cell cycle arrest, inducing IGFBP-3 production and stimulating apoptosis (60). In the androgen-dependent LNCaP cell line, calcitriol up-regulates the expression of the IGFBP-3 gene through a VDRE located at −3296/−3282 in the distal region of the IGFBP-3 promoter (21). Calcitriol-induced IGFBP-3 expression leads to increased expression of p21, causing cell cycle arrest (20). Evidence has shown that up-regulation of IGFBP-3 expression plays an important role in the *in vivo* growth-inhibitory effects initiated by calcitriol and its analogs (60, 61). On the other hand, the effect of androgens on the regulation of the IGFBP-3 gene remains controversial (23–27). Here we show a direct stimulatory effect of androgens on IGFBP-3 expression via AR-dependent action on the IGFBP-3 promoter. This stimulatory effect is similar to data from Martin and Pattison (24). On the contrary, Goossens et al. (23), Arnold et al. (25),...
and Kojima et al. (27) reported a down-regulation of IGFBP-3 by androgens in LNCaP cells. The different observations between these groups may be a result of cell passage or differences in cell culture conditions or cell densities that can alter steroid responsiveness, even within the same cell line (62). However, our studies convincingly demonstrate that high concentrations of androgens directly up-regulate the expression of the IGFBP-3 gene through a functional ARE site in the IGFBP-3 promoter. These findings also reveal a cross-talk between the two cell growth regulators, IGFBP-3 and androgens, at the molecular level. The findings also raise an interesting possibility that induction of IGFBP-3 expression may be involved in the androgen mediated anti proliferative actions that have been reported in LNCaP cells (33–35, 40).

In addition, our observation of enhanced IGFBP-3 promoter activity by the interaction of androgens and calcitriol in transactivation assays suggests enhanced induction of the expression of the endogenous IGFBP-3 gene by these two hormone classes. The two regulatory elements, VDRE and ARE, are separated by approximately 400 bp and appear to interact or cooperate to regulate the level of IGFBP-3 expression. In a separate study we found that the two hormones in combination resulted in a more than 40-fold increase in IGFBP-3 mRNA and protein levels. Further detailed studies of the cross-talk between androgens and calcitriol on IGFBP-3 expression and the role of IGFBP-3 in regulating cell growth are described in that paper (Peng, L., J. Wang, P. J. Malloy, and D. Feldman, submitted for publication). This action may reflect the enhanced inhibition of LNCaP cell growth by combined calcitriol and androgens (63). These studies provide new insights into potential interactions between calcitriol and androgens, two regulators of IGFBP-3 expression.

The paradox raised by these studies is that androgens are well-known stimulators of prostate cancer growth (29, 64), yet they directly induce expression of IGFBP-3, an anti proliferative and proapoptotic protein (1–3). We speculate that some of the growth-inhibitory actions of androgens noted in some conditions (33–35, 37) may be related in part to IGFBP-3 action. The paradox may reflect the enhanced inhibition of LNCaP cell growth by combined calcitriol and androgens (63). These studies provide new insights into potential interactions between calcitriol and androgens, two regulators of IGFBP-3 expression.

We thank Dr. Larisa Nonn (Stanford University Medical Center, Stanford, CA) for her advice on setting up FACS experiments. We greatly appreciate Gu Zhang (Genentech, South San Francisco, CA) for her help on FACS data analysis.

Received April 27, 2006. Accepted June 28, 2006.

Address all correspondence and requests for reprints to: Dr. David Feldman, Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5103. E-mail: feldman@cmgm.stanford.edu.

This work was supported by the Department of the Army Grant DAMD17-02-1-0142 and National Institutes of Health Grant DK 42482. Disclosure summary: the authors have nothing to disclose.

References

Endocrinology, October 2006, 147(10):4599–4607

Peng et al. • Identification of an ARE in the IGFBP-3 Promoter

32. Bruchovsky N, Lesser B, Van Doorn E, Craven S 1993 Analysis of relative gene expression data using and the homeodomain protein distal-less 3 are endocrine community.

...