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SCENE MODELING: A STRUCTURAL BASIS FCOR IMAGE DESCRIPTION
Jay M. Tenenbaum, Martin A. Fischler, and Harry G. Barrow

Artificial Intelligence Center, SHI Internationsal,

Menlo Park, California 94025

Conventional statistical approaches to image modeling are
fundamentally 1limited because they take no account of the underlying
physical structure of the scene nor of the image formation process. The
image features being modeled are frequently artifacts of viewpoint and
illumination that have mno intrinsic significence for higher-level
interpretation. In this paper a structural approach to modeling is
argued for +that explicitly relates image appearance to the scene
characteristics from which it arose. After establishing the necessity
for structural modeling in image analysis, a specific representation for
gcene structure is proposed and then a possible computational paradigm

for recovering this description from an image is described.

I INTRCDUCTION

Current research on image modeling appears dominated by attempts to
characterize, mathematically and statisticelly, spatial variations of
brightness in gray-level imagery. The basic premise underlying much of
this work is that one can extract invariant pictorial features {(such as
regions of homogeneous brightness) that correspond to semantically

meaningful entities (such as surfaces of objects).

It is our position +that this abstract mathematical approach to
image modeling has fundamental limitations because it takes no account
of the underlying physical structure of the scene nor of the image
formation process. The image features being modeled are thus frequently

artifacts of viewpoint and illumination  that have no intrinsic



significance for higher-level interpretation. To avoid artifacts, image
appearance must be explicitly related to the scene structure from which
it arose, primarily physical surface characteristics such as

orientation, reflectance, color, and distance.

Models that represent image appearance in terms of physical scene
structure will be called "structural models” to distinguish them from
"statistical models" that restrict themselves +to describing immediate

image appearance.

The historical emphasis on statistical modeling, reflected in these
proceedings, arose from two sources: +the hope of finding simple
solutions to image analysis problems which avoid the need to get
involved with scene structure; and the fear that imsge formation is too
complex a process to model deterministically. In this paper we will
demonstrate that both the hope and fear are unfounded. We will first
examine in detail the 1limitations of statistical models and build a
strong case for structural models. We will then propose a specific
representation for scene structure, called "intrinsic imagery,"” and
describe &a computational paradigm for " recovering this description from

an input image.

I1 STATISTICAL VERSUS STRUCTURAL COMPLEXITY

As a point of departure, it is important to reiterate that there
are two distinct sources of image complexity: statistical and
structural. Statistical complexity involves brightness variations that
arise from truly random phenomena, such as noise or random dot textures
[1]. Also included in +this category are variations due to physical.
phenomena, such as atmospheric scatter, that are too complex to model in
detail. Structural complexity, Dby contrast, refers to brightness
variations +that arise in a deterministic way from physical scene
structure, such as surface albedo and orientation. While all real

images contain some degree of statistical complexity, structural



complexity 1is often dominent, particularly for images of three-

dimensional scenes.

Statistical image models are clearly appropriate for describing
gtatistical complexity, but structural complexity requires structural

‘models.

IITI NECESSITY FOR STRUCTURAL MODELS

The need for structural models derives from three fundamental
flaws in current statistical approaches: they make invalid statistical
assumptions, they use ad hoc tests of statistical significance, and they

produce impoverished descriptions having limited utility.

First, statistical models generally assume that an image is
composed of regions of homogeneous brightness (or some statistic
thereof), superimposed with random noise. Implicit is the assumption
that such regions correspond to homogeneous surfaces in a scene. Real
surfaces do, in“fact, generally have uniform reflectance. Image
brightness, however, depehds on many factors besides surface
reflectance, notably incident illumination and surface orientation.
Consequently, homogeneous surfaces frequently appear in images as
regions with high brightness gradient and even discontinuities, due to
cast shadows. The geometry of imaging imposes similar artifacts on
spatial properties of surfaces, such as the shape, size, and density of
texture elements. Figure 1 contains striking examples of bo*h

phenomena.

The second limitation is perhaps more fundamental. Even if
statistical homogeneity were a valid model (as is approximately the case
for large areas of sky in Figure 1a), the problem of deciding what

constitutes a statistically significant variation remains.

The +traditional solution has been +to attempt to remove known
artifacts through a normalization  process  and then detect

discontinuities using a threshold. While +this philosophy is basically



{a) Varying incidant illumination on different faces of the mountain trans-
forms uniformly white snow into imega regions with significantly
varying hue and reflectanca,

{b) Tha significant shading gradients on the
background hills ere again due to varia—
tions in angle of incident ilumination
rathar then any intrinsic change in sur-
faca color, The sharp two-dimensional
toxture gradient (foreground} is an
artifact of perspective, not m character-
istic of flowars,

Despite tha variations in imege sppear-
anca, viewers correctly parceive thae
uniform raflectivity of snow and hills
snd the regulsr size and density of
flowars.

FIGURE 1 EXAMPLES REFUTING THE ASSUMPTION THAT HOMOGENEOUS SURFACE
CHARACTERISTICS APPEAR AS HOMOGENEQOUS IMAGE FEATURES



sound, implementations have failed 1in practice because they rely on
ad hoc normalization schemes (such as histogram equalization).
Normalization cannot be meaningfully accomplished without taking account
of the causes of wvariation, which in turn depend on how the image is
formed. Intensity wvariations and discontinuities resulting from
illumination gradients, shadows, or a surface turning smoothly away from
the illumination source are artifacts, no matter how large. Conversely,
variations resulting from small step changes in surface reflectance cor
orientation can be very significant. Clearly, no purelj statistical
process can distinguish which image features correspond to significant
scene events (i.e., surfaces and surface boundaries) and which do not

(i.e., shadows and highlights).

The third limitation of statistical modeling is the inadequacy of
the resulting description for subsequent levels of interpretation. Even
if an image could be 7reliably partitioned into homogeneous regions
corresponding to surfaces of objects, the two-dimensional shape features
used for region descriptions would still 1limit recognition to known
objects observed f;om standard _Qiewpoints; a three-dimensional
characterization of surface shape 1s needed to recognize unfamiliar
views of known objects and to assimilate multiple views of previously

unseen objects.-

We find it significant that when a human looks at images of scenes
like those in Figure 1, what he sees, primarily, are the actual physical
characteristics of three-dimensional surfaces, independent of artifacts
of illumination and viewpeint. He tends +to perceive color independent
of illuminant, size independent of distance, and shape independent of
orientation. Such constancies have been extensively validated in the
psychological literature, and it 1s known that they do not depend on
familiarity with scene content {see Figure 2). There is considerable
evidence, in fact, that these physical normalizations are performed by
"hardwired” neural circuitry, attesting to their fundamental importance;
as Figure 3 1llustrates, it is only with great_ effort that they can be

overridden to expose the raw image content.



(b} Drimys (x 3200)

{c} Flax (x 10‘00) (dy Wallflower (x

Figure 2 DPhotomicrographs of Pollen Grains (Macleod [2])
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3a - Low-contrast interior boundary 3b - Masked cross sections
of the interior boundary in Figure 3a 3¢ - A subjective contour

In Figure 3a, an intersection boundary 1is clearly perceived. Yet
when that area of the image is viewed through a mask that exposes only
local cross sections, no local contrast is visible {Figure 3b). The
boundary perceived 1in Figure 3a is demanded by the integrity of the
surfaces it joins. Subjective contour illusions, like the so-called sun
illusion (Figure 3c}, appear to be an extreme example of this same
phenomenon where an edge is clearly perceived despite the complete
absence of local evidence. A plausible explanation is that the edge
corresponds to the boundary of an occluding disk-shaped surface, whose
presence is implied by the abrupt line endings [3].

Figure 3. Demonstration that Human Perception of Surface
Boundaries is Not Critically Dependent on Image Contrast



In summary, we believe +that the obfuscation of 3-D scene structure
by 2-D image features is a fundamental 1limitation of current image
analysis systems and an important reason why their performance is so

inferior to that of the human visual system.
IV 4 PARADIGM FOR STRUCTURAL MODELING
Having argued for the necessity for structural modeling, we must
now establish what scene characteristics to model, how to represent them
in a computer, and how to recover a structural description from an

image.

A. Intrinsic Characteristics and their Representation

When an image is formed, whether by eye or camera, the 1light
intensity at each point in the image is determined by three main factors
at the corresponding point in the scene: the incident illumination, the
-surface reflectance, and the surface orientation. 1In the simple case of
an ideally diffusing surface, for example, the imageklight intensity‘L
is given by Lamberf's law:

L=I*R*COS i [1]

where I is incident illumination, R is surface reflectance (albedo), and

i is angle of incidence with respect to the local surface normal.

In more complicated scenes, additional factors such as specularity,
transparency, luminosity, distance, and so forth must be considered. We
call these properties intrinsic characteristics to distinguish them from

image features which have no physical significance.

A suitable representation for intrinsic characteristics, consistent
with their acquisition and subsequent use, is a set of iconic arrays in
registration with the original image array. FEach array contains values
for a particular characteristic of the surface element visible at the

corresponding point im +the sensed image. Each array also contains



explicit indications of boundaries due to discontinuities in value or
gradient. We call such arrays "intrinsic images." Figure 4 gives an
"example of one possible set of intrinsic images corresponding to =a

monochrome image of 8 simple scene.

A concrete example of intrinsic images and their usefulness 1in
computer vision can be seen in Figure 5, which summarizes experiments by
Nitzan, Brain, and Duda with a scanning laser range findef‘[4]. This
instrument directly measures the intrinsic properties of distance and
apparent reflectance, based on the phase and amplitude of the signal

received as a modulated laser heam is scanned over the scene.

The left side of Figure 5b is a range image of the scene in
Figure 5a, with brightness inversely related to rangel Note the absence
of surface markings on the top of the cart and on the gray-level test
chart. The right side of Figure 5b is a reflectance image, obtained by
measuring returned amplitude and using the range to compensate for
varying angles of incidence.  Note the absence of shadows and shading

gradients present in the original intensity image (Figure 5a).

Because thé‘range data are uncorrupted by refleqtance.variations
and the amplitude data are unaffected by embient lighting and shadows,l
it is easy to extract surfaces of uniform height (Figure 5¢) or
reflectivity (Figure 5e) and surface boundaries where range is
discontinuous (Figure 5d). Such tasks are difficult to perform reliably
in gray-level imagery; but with pure range and amplitude data, even
simple-minded techniques such as thresholding and region-growing work
well. In intrinsic images, the assumptions underlying statistical image

modeling are valid!

Instrumentation such as a laser range finder +trivializes the
problem of extracting intrinsic surface characteristics from sensory
data. A key question is whether such information can be recovered from
a single gray-level image, which is all that is available in many image
analysis applications. While no definitive answer can yet be given,
human performance and recent computer vision research both give cause

for optimism. In following sections we discuss the computational



ls} ORIGINAL SCENE

{b) DISTANCE

(d)

ORIENTATIDN (VECTOR)

The images are depicted as line drawings, but, in fact, would con-
tain values at evary point. The solid lines in the intrinsic irmages
represent discontinuities in the scena characteric; the dashed lines
represent discontinuities in its derivative. In the input image, in-
tensities correspond to the reflectad light flux received from the
visible points in the scene. Tha distance image gives the renpe
along the line of sight from the center of projection to each vis-
ible point in the scena. The oriantation image gives 8 vector rep—
resanting the direction of tha surface normel at each point. The
reflectance image gives tha albedo {(the ratio of totel reflected to
total incident illumination} et each point,

D

{c] REFLECTANCE

{e} ILLUMINATION

Figure 4 A Set of Intrinsic Images Derived
from a Single Monochrome Intensity Image
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[s) A CONVENTIONAL PHOTO OF A SCENE {b) DISTANCE AND REFLECTANCE IMAGES

{e) EXTRACTED PLAMAR SURFACES {d} DISCONTINUITIES '\N RANGE

la} THRESHOLDING REFLECTANCE {fi CORRECTED VIEW OF CART TOP

Figure 5 Experiments with a Laser Range Finder
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problems involved in recovering intrinsic characteristics and briefly
review promising solutions that have been proposed and demonstrated for
the case of 8 single gray-level imsge. Research 1is also proceeding at
SRI International and elsewhere for less deprived cases, such as where
stereopsis [5], motion parallax [6], or & priori object models are

available [7].

B. Recovery of Intrinsic Characteristics

The central problem in recovering intrinsic characteristics is that
the desired information is confounded in the sensory data.
Photometrically, the light intensity observed at each point in an image
can result from any of an infinitude of illumination, reflectance, and
orientation combinations &t the corresponding scene point (see, for
example, Equation 1). Geometrically, each point in the image c¢an
correspond to any point along a ray in space (see Figure 6). Recovery
is thus an underconstrained problem that requires additional constraints

—for solution.

The necessary const}aints follow from aséumptions'about the nature
of the scene being viewed and the physics of the imaging process. In
images of three-diménsional scenes, the brightness values are not
independent but sre c¢onstrained by various physical phenomena. Since
surfaces are continuous in space, their characteristics (reflectance,
orientation, range) are generally continuous across an image, except at
surface boundaries. Incident illumination also usually varies smoothly
over & scene, except at shadow boundaries. Elementary photometry tells
us that where all iﬁtrinsic characteristiecs &are continuous, image
brightness 1is continuous; conversely, where one or more intrinsic
characteristics are discontinuous, a brightness edge will usually
result. The pattern of brightness variation in an image can provide
important c¢lues as to the local behavior of the intrinsic

characteristics.

12
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Figure 6 Three-Dimensional Conformation of Lines Depicted in a
Line Drawing is Inherently Ambiguous
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1. Shape from Shading

Horn showed that shading varistions could be used to determine
the three-dimensional shape of &a Lambertian surface with uniform
reflectance, viewed under distant point-source illumination [8 and 9].
The ©basic approach can be grasped from Equation 2, which was obtained

from Equation 1 by taking logs and differentisting.

dL/L = dI/I + dR/R + d{Cos i}/Cos i [2]
Under Horn's assumptions, illumination and reflectance are
both wuniform, so that percentage changes in image brightness are

directly proportional to percentage changes in {the cosine of)

orientation, as shown in Equation 3.

dL/L = d(Cos i)/Cos i (3]

Horn showed that given suitable boundary conditions,

Equation 3 can be integrated to recover shape.

2. Lightness from Shading

A second example of exploiting photometry, also due to Horn
[10], involves the recovery of surface lightness (a psychological term
representing relative reflectance). This study assumed a planar
surface, viewed under smoothly varying illumination. The surface was
painted with a patchwork of contrasting regions, each of uniform
reflectance. Within regions, since orientation and reflectance are boxh
constant, wvariations in image brightness are directly proportional to
variations in illuminstion, as given by Equation 4a. Moreover, since
illumination was assumed to vary smoothly, the brightness gradient
within regions is small. At region boundaries, however, reflectance
Jumps discontinuously and dominates the small illumination gradient, as
expressed in Equation 4b. To recover surface lightness, Horn first
spatially differentiated the input (log brightness)} image to obtain a

gradient image and then +thresholded it to eliminate slow illumination

14



variations. The remaining discontinuities, assumed to be reflectance
jumps at the edges of regions {(as in Equation 4b) were then reintegrated

to recover the relative lightnesses of the various regions.

dL/L = dI/I  (within regions) [4a]

dL/L = dR/R  (at boundaries) [4b]

Surface color independent of illuminant can be estimated from
lightness wvalues recovered independently in three spectral bands,

analogous to Land's retinex theory [11].

3. Shape From Contour

Horn's work emphasized photometric cues, but geometric cues to

3-D surface structure are at least as valuable (see Figure 7).

The ability to perceive surface structure from line drawings
is truly remarkable éince, as Figure 6 showed, each two-dimensionsal
image curve -can, in principle, correspond toc an infinitude of possible
three-dimensional space curves. ﬁowever, people are not aware of this
massive ambiguity. For example, when kdsked to provide a three-
dimensional interpretation of an ellipse, the overwhelming response is a
tilted ecircle, not some bizarrely twisting (or even discontinuous) curve
that has the same image. As in Horn's work, some a priori assumptions
about the scene must again be invoked. Recent research at SRI [12] and
MIT [13 and 14] suggests that humens resolve the projective ambiguity by
perceiving the smoothest possible space curve corresponding to a given
image curve. Mathematically, they seek the space curve having the most
uniform curvature and the least torsion, as expressed by minimizing the

terms in Equation 5.

f(d_;@)z ds =f(122 + k2t%)ds [5]
5

(Here k is +the local differential curvature, k' is its spatial

derivative along the curve, B is the binormal, and t is the torsion.)

15






The smoothness assumption expressed by Equation 5 has both an
ecological and a statistical rationale. Ecologically, assumptions on
smoothness of curves follow from the earlier assumptions on smoothness
of surfaces, which, in turn, are rooted in assumptions that physical
surfaces assume minimum energy configurations. Statistically, it is
reasonable to assume that a scene 1is being viewed from a general
position so that perceived smoothness is not an accident of viewpoint.
In Figure 6, for example, the discontinuous curve projects intc an
ellipse from only one viewpoint. Thus such a curve would be a highly

improbable three-dimensional interpretation of an ellipse.

A computer program has been written, based on Equation 5, that
can successfully determine three-dimensional space curves corresponding
to simple image curves. Referring to Figure 8, points along an image
curve define rays in space along which the corresponding space curve
points are constrained to 1lie. The program can adjust the distance
associated with each space curve point by sliding it along the ray like
a bead on a wire. An iterative opfimizatioﬁ procedure determines the
configuration of points +that minimize the integral in ‘Equation 5.
Optimization proceeds by independently ad justing each space curve point
and observing the incremental change in local curvature and torsion.
(Note that local perturbations have only local effects.) Witkin [13]
used a similar approach +to model the perception of planar orientation

agsociated with simple closed curves.

The program produces correct 3-D interpretations for simple

open and closed curves, such as interpreting an ellipse as a tilted
circle and a trapezoid as a tilted rectangle. However, cbnvergence is

slow and somewhat dependent on the initial choice of z-values.

4. Shape from Texture

Texture gradient is a well-known gecmetric clue for inferring
three-dimensional surface structure. The variations of size, density,
eccentricity, and orientation of +the texture elements in Figure 9 are

hardly random; they are predicable consequences of the foreshortening

17



Figure 8 An Iterative Procedure for Determining the Optimmel Space
Curve Corresponding to a Given Line Drawing
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that occurs when a tilted surface is imaged under perspective
projection. A recent thesis by Stevens [14] provides mathematical
formulations for a number of texture depth cues, which previously have
been described only qualitatively by psychologists. Another recent
thesis by Kender establishes the principle that textured surfaces are
perceived at orientations that maximize the regularity, homogeneity, and

symmetry of the texture [15].

Underlying Kender's work on texture and our own work on line
drawings is a fundamental assumption that +the world is generally
isotropic. This assumption, which we call "generalized isotropy,” is
reminiscent of the Gestalt notions of Praegnanz, but mathematically more

precise.

5. The Role of Edges

The previous sections described various ways in which surface
characteristics could be inferred from image features, such as shading,
contour, and texture. However, in each case the physical nature of the
image feature being interpreted' was known. For example, in determining
shape from shading, Horn assumed +that only surfacé orientation was
changing; in determining lightness, he assumedrthat only reflectance was
discontinuous; in determining shape from contour, we implicitly assumed
that image curves corresponded +to surface boundaries and were not
shadows or lines painted on a flat surface. When a scene contains many
occluding objects that may be varicolored or cast shadows, such simple
assumptions are invalid. One is then faced with the problem of deciding
what physical characteristic (or characteristics) is, din fact,
responsible for an observed intensity variation and  which

characteristics are discontinuous across intensity edges.

The pattern of brightness variation on either side of an
intensity edge can sometimes provide strong clues as to the type of
scene event responsible (shadow or surface boundary), and thus to which
intrinsic characteristics are actually discontinuous at that point. A

2imple example is the continuity of texture and high contrast at shadow

13
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Figure 9 Texture Gradients on a Tilted Planar Surface (Stevens [14])
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edges, indicating a discontinuity in illumination. The interpretation
of brightness edges as scene events is also important because knowing
the +type of scene event sometimes allows explicit wvalues to be
determined for some of the intrinsic characteristics. For example, at
an extremal coccluding boundary, where an object curves smoothly away
from the viewer, the surface orientation c¢an be inferred exactly at
every point along the Dboundary. (The local surface normal is
constrained to be normal to the edge element in the image and normal to
the line of sight.) A test for extremal boundaries can be made by
determining whether the observed brightness variation along an edge is

consistent with assumed extremal orientations [3].

Having identified a number of edge and surface constraints, it
was necessary to establish whether they were sufficient to permit the
simultaneous recovery of surface reflectance and orientation from a
single image. We defined the simplest domain in which confounding
problems arcse in a general way and proceeded +to exhaustively catalog
the physical interpretations corresponding to all possible image
intensity patterns [3]. 'The domain consisted of smooth (no creases,
folds), uniformly refiecting Lambertian surfaces, illuminated by a
distant point source, and uniform, diffuse background light
(approximating sun and sky). The resulting catalog is reproduced in
Table 1. With but two exceptions, brightness discontinuities could be
unambiguously interpreted as physical events. Furthermore, in most
cases, values for one or more intrinsic characteristics were either

determined or strongly constrained.

We concluded that the recovery problem was mathematically well
posed, at least for the simple domain. The clues and constraints
obtained by interpreting image discontinuities according to the cataleg
define a system of equations and inequalities, relating the intensity
values to the intrinsic characteristics and boundary conditions at the
discontinuities. In principle, +this system can be solved, yielding
feasible values for the dintrinsic characteristics. In practice,

however, the eguations are highly nonlinear and boundary conditions may

21



Table 1

The Nature of Edges

LA and LB refer to variatlons of intensity along sides A and B of
an edge. Intensities are elther constant, varylng, or varying in
accordance with the assumed orientations along an extremal boundary,
the so-called tangency condition,

Region Intrinaic Edges
Intensities Edge Type Region Types Intrinsic Values
LA LB D N . R I
Constant | Constant | Occluding A B shadowed EDGE EDGE EDGE
sensa unknown RA RB IA IB
Constant | Varying | 1 Shadow A shadowved ) - . EDGE
B illuminated NB.3 RA RB | IA IB
2 A occludes B | A shadowed EDGE .| EDGE EDGE EDGE
B illuminated DA<DB | NA RA IA
Varving | Yarying Inconsistent
with domain
Constant | Tangency B occludes A A shadowed EDGE EDGE EDGE EDGE
B illuminated DAZ-DB NB RA RB Iz IB
Yarying | Tangency | B occludes A A B illuminated | EDGE EDGE EDGE EDGE
DA>DB | NB RB IB IA
Tangency | Tangency Not seen from
general position

22




not always be determined reliably. This suggested an iterative

numerical sclution process, such as relaxation.

6. A Computational Model

A parallel computational model was proposed to illustrate how
recovery might be performed. The basic model, reproduced in Figure 10,
can be regarded as a generalization of Horn's 1lightness model [10] and
Marr and Poggio's cooperative stereopsis model [5], that simultaneously
recovers bhoth geometric and photometric attributes. In essence, it
consisted of & stack of registered arrays representing the original
intensity image (top) and the primary intrinsic image arrays.
Processing was initialized by detecting intensity edges in the original
image, interpreting them according +to¢ the catalog of appearances, and
then creating the appropriate edges in the intrinsic images (as implied

by the descending arrows).

Parallel local operations {(shown as circles) modified the
values in -each intrinsic image to_make them consistent with intraimage
continuity and limit constraints {for example, reflectance must be
"between O and 13. iSimultaneously, a second set of processes (shown as
vertical 1lines) operated +to make the values at each point consistent
with +the corresponding intensity value, as required by the interimage
photometric constraint. A third set of processes {shown as Xs) operated
to insert and delete edge elements, which inhibit continuity constraints
locally. The constraint and edge modification processes operatsd
continucusly and interacted +to recover accurate intrinsic scene

characteristics and to perfect the initial edge interpretation.

The action was envisaged to resemble an analog computer: as
the value 1n one image increased, corresponding values in other images
increased or decreased to maintain consistency with the observed
intensity at that point. Within each image, values tended to propagate
in from %boundary conditions established along edges. This resembles
relaxation processes wused in physics for determining temperature or

potential over a region from boundary conditions.

23



INTENSITY IMAGE
gdL< IO + I‘l
L CONTINUDUS
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ILLUMINATION
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0< N< 80"
N CONTINUOUS

DISTANCE
o0
O CONTINUDUS

Figure 10 A Parallel Computational Model
for Recovering Intrinsic Images

24



How well does the proposed model work in the simplified
domain? In theory exact recovery is generally possible for nonshadowed
regions; where it is not possible, because of inadequate informatidn in
the original image, plausible estimates can usually be obtained. These
results were significant, despite +the simplicity of the domain, because
they demonstrated for the first time the theoretical possibility of
simultaneously recovering orientation, reflectance, and illumination
from a single monochrome image, without recourse either to object
prototypes or to primary depth cues, such as stereopsis, motion
parallax, or texture gradient. (Such additional cues can, of course, be

added to aid initialization in shadowed areas.)

We are currently implementing a version of the model and will
soon test it on synthesized images of scenes from the simple domain. We
are simultaneously studying the extensibility of the approach to more
complex domains. We are convinced that the model can be extended to
handle objects with creases, folds, painted-surface markings (texture),
“and other complicating . features. Coping . with more complex

illumingtions, however, appears difficult.

The theory of recovery outlined above depends heavily on
analytic photometry and a precise 1lighting model, both for edge
classification and for inferring shape from =shading. Unfortunately,
surfaces in real scenes have complex reflectance functions that are
often strongly directional. I1lumination patterns are equally complex,
encompassing such phenomena as shading gradients from nearby or extended
sources &nd secondary illumination by 1light reflected from nearby
specular surfaces. The use of analytic photometry appears very
questionable under these conditions. We are therefore working on an
alternative theory of recovery that relies primarily on geometric cues,
such as contour and texture gradient for gross shape determination, and
uses photometry, only in a qualitative way, to¢ indicate subtle

refinements (e.g., bumps and dents).

25



b DISCUSSION

In +this paper we have argued that the explicit modeling of scene
atructure 1is a critical first step in the interpretation of images of
three-dimensional  scenes and provided a demonstration  that,
theoretically, such information can be obtained even from a single gray-
level image. More generally, in almost any image analysis task, an
understanding of the relationship between scene content and image
appearance ia neceasary for meaningful interpretation. Such

relationships invariably have an underlying physical basis.

We are mnot attempting to denigrate the role played by statistical
techniques in image analysis. Clearly some images are inherently
statistical and contain little structure. More generally, because
images are noisy and ambiguous, their interpretation requires fitting
a priori models to the observed data; interpretation is thus a proper
subset of etatistical decision theory. The problem with conventional
statistical approaches igs that in ignoring the physical. nature of the
scene and the Iimaging process, they are forced to base interpretétion.oﬁ
8d hoc and often invalid assumptions. In the oparadigm we are
suggesting, structursl scene models provide a rational basis for

decision-making.

In conclusion, while both statistical and structurasl models play
important roles in image analysis, whenever image varistion can be
accounted for in structursl terms, there are compelling reassons for

doing so.
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