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Abstract

We study the convergence of a class of discrete-time continuous-state stimulated

annealing type algorithms for multivariate optimization. The general algorithm that we

consider is of the form Xk+l = Xk - ak(VU(Xk) + 4k) + bkWk. Here U(.) is a smooth

function on a compact subset of IRr, {4k} is a sequence of IRr - valued random variables,

{Wk} is a sequence of independent standard r-dimensional Gaussian random variables, and

{ak}, {bk} are sequences of positive numbers which tend to zero. These algorithms arise

by adding slowly decreasing white Gaussian noise to gradient descent, random search, and

stochastic approximation algorithms. We show that under suitable conditions on U(.),

f{k}, {ak} and {bk} that Xk converges in probability to the set of global minima of U(-).
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1. INTRODUCTION

It is desired to select a parameter value x* which minimizes a smooth function U(x)

over xED, where D is compact subset of IRr. The stochastic descent algorithm

Zk+l = Zk - ak(VU(Zk) + Ok) , (1.1)

is often used where {(k} is a sequence of IRr - valued random variables and {ak} is a

sequence of positive numbers with ak--+O and Zak = oo. An algorithm of this type

might arise in several ways. The sequence {Zk} could correspond to a stochastic

approximation [1], where the sequence {~k} arises from noisy measurements of VU(.) or

U(.). The sequence {Zk} could also correspond to a random search [2], where the

sequence {k } arises from randomly selected search directions. Now since D is compact

it is necessary to insure the trajectories of {Zk} are bounded; this may be done either by

projecting Zk back into D if it ever leaves D, or by fixing the dynamics in (1.1) so that

Zk never leaves D or only leaves D finitely many times w.p.1. Let S be the set of local

minima of U(.) and S* the set of global minima of U(.). Under suitable conditions on

U('), {fk} and {ak}, and assuming that {Zk} is bounded, it is well-known that Zk-+S as

k--+oo w.p.1. In particular, if U(-) is well-behaved, ak = A/k for k large, and {~k} are

independent random variables such that E{ Ik 12} < cake and IE{(k}j -< cak where

c > -1, g > 0, and c is a positive constant, then Zk-+S as k-+oo w.p.1. However, if

U(.) has strictly local minima, then in general Zk-/ S* as k-+oo w.p.1.

The analysis of the convergence w.p.1 of {Zk} is usually based on the convergence

of an associated ordinary differential equation (ODE)

i(t) = - VU(z(t)).

This approach was pioneered by Ljung [3] and further developed by Kushner and Clark

[4], Metivier and Priouret [5], and others. Kushner and Clark also analyzed the conver-

gence in probability of {Zk} by this method. However, although their theory yields

much useful information about the asymptotic behavior of {Zk} under very weak

assumptions, it fails to obtain Zk---S* as k-aoo in probability unless S is a singleton; see

[4, p. 125].

Consider a modified stochastic descent algorithm
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Xk+l = Xk - ak(VU(Xk) + Sk) + bkWk (1.2)

where {Wk} is a sequence of independent Gaussian random variables with zero-mean

and identity covariance matrix, and {bk} is a sequence of positive numbers with bk-*O.

The bkWk term is added in artificially by Monte Carlo simulation so that {Xk} can

avoid getting trapped in a strictly local minimum of U(-). In general Xk--S* as k--oo

w.p.1 (for the same reasons that Zk- 4 S* as k-+oo w.p.1). However, under suitable con-

ditions on U(.), f{k }, {ak } and {bk }, and assuming that {Xk } is bounded, we shall show

that Xk -- S* as k--oo in probability. In particular, if U(.) is well-behaved, ak = A/k

and b2 = B/k log log k for k large where B/A > Co (a positive constant which depends

only on U(.)), and {fk} are independent random variables such that Et{ Ik 12} < cakj

and IE{(k} I < ca- where c > -1, / > 0, and c is a positive constant, then Xk--S*

as k-+oo in probability.

Our analysis of the convergence in probability of {Xk} is based on the convergence

of what we will call the associated stochastic differential equation (SDE)

dx(t) = - VU(x(t))dt + c(t)dw(t) (1.3)

where w(.) is a standard r-dimensional Wiener process and c(.) is a positive function

with c(t)-0O as t--oo (take tk = Sn:0 an and bk = '\/ c(tk) to see the relationship

between (1.2) and (1.3)). The simulation of the Markov diffusion x(-) for the purpose of

global optimization has been called continuous simulated annealing. In this context,

U(x) is called the energy of state x and T(t) = c 2 (t)/2 is called the temperature at time

t. This method was first suggested by Grenender [6] and Geman and Hwang [7] for

image processing applications with continuous grey levels. We remark that the discrete

simulated annealing algorithm for combinatorial optimization based on simulating a

Metropolis-type Markov chain [8], and the continuous simulated annealing algorithm for

multivariate optimization based on simulating the Langevin-type Markov diffusion dis-

cussed above both have a (Gibbs) invariant distribution ocexp(-U(x)/T) when the tem-

perature is fixed at T. The invariant distributions concentrate on the global minima of

U(.) as T--+O. The discrete and continuous algorithms are further related in that a cer-

tain parametric family of continuous state Metropolis-type Markov chains interpolated

into continuous time Markov processes converge to a Langevin-type Markov diffusion

[9]. Now the asymptotic behavior of x(-) has been studied intensively by a number of
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researchers [7], [10]-[12]. Our work is based on the analysis of x(.) developed by Chiang,

Hwang and Sheu [11] who prove the following result: if U(.) is well-behaved and

c 2 (t) = C/log t for t large where C > Co (a positive constant which depends only on

U(.) and the same Co as above) then x(t)--S* as t--oo in probability.

The actual implementation of (1.3) on a digital computer requires some type of

discretization or numerical integration, such as (1.2). Aluffi-Pentini, Parisi, and Zirilli

[13] describe some numerical experiments performed with (1.2) for a variety of test

problems. Kushner [12] was the first to analyze (1.2) but for the case of

ak = bk = A/log k, k large. Although Kushner obtains a detailed asymptotic descrip-

tion of {Xk} for this case, in general Xk-S* as k--oo in probability unless Sk = 0.

The reason for this is intuitively clear: even if {(k} is bounded, ak k and akWk can be

of the same order and hence can interfere with each other. On the other hand by con-

sidering (1.2) for the case of ak = A/k, bK = B/k log log k, k large, we get Xk -S* as

k--oo in probability for {(k} with unbounded variance, in particular for

E{ kk } = O(k-) and y < 1. Our method of analysis is different from Kushner's in

that we obtain the asymptotic behavior of {Xk } from x(-).



2. MAIN RESULTS AND DISCUSSION

We will use the following notation. If FC]Rr then F is the interior of F and oF is

the boundary of F. 1G(') is the indicator function for the set G. I. I and <.,-> are

the Euclidean norm and inner product, respectively.

Our analysis, like Kushner's [12], requires that we bound the trajectories of {Xk}.

We proceed as follows. Take D to be a closed ball in 1Rr centered at the origin. Let D 1

be another closed ball in IRr centered at the origin with D ICD (strictly). D\D 1 will be a

thin annulus where we modify (1.2), (1.3) to insure that {Xk} and x(.) are bounded.

The actual algorithm is

Xk+1 = Xk - ak(VU(Xk) + ~k) + bku(Xk)Wk

Xk+l = Xk+l 1 D (Xk+l) + Xk 1IR.\D (Xk+l), (2.1)

and the associated SDE is

dx(t) = - VU(x(t))dt + c(t)u(x(t))dw(t) . (2.2)

We will make assumptions on U(-) and a(.) to force {Xk } and x(.) to eventually stay in

D when they start in D.

In the sequel we make the following assumptions:

(Al) U(.) is a twice continuously differentiable function from D to [0, oo) with
0

rain U(x) = 0 and <VU(x),x> > 0 for all xED\D1 .
xED

(A2) oa() is a Lipshitz continuous function from D to [0,1] with a(x) > 0 for all
0

xED, o(x) = 1 for all xED 1, and a(x) = 0 for all xEdD.

(A3) {(k} is a sequence of IRr-valued random variables; {Wk} is a sequence of

independent r-dimensional Gaussian random variables with zero-mean and

identity covariance matrix.

A bB = >
(A4) k = k log log kk large, where A, B > 0.

(A5) c2(t) = C t large, where C > 0.
log t
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For every k=0,1,... let Tk be the a-field generated by f{X0o,o0,,-k-1,W, ... Wk-1}.

(A6) E{ lkr k} = O(aa), E{ k k} = O(af) and l[k I1D\D(Xk)--O as k--oo

uniformly w.p.1; Wk is independent of 9ok for all k.

For every e > 0 let

tE(x)- =Z exp 2 U(x) 1D(x); ' =f exp [ 2 U(x) dx
V 62 D 2e

(A7) 7fe has a unique weak limit 7r as ew-0.

A few remarks about these assumptions are in order. First it is clear that 7r con-

centrates on S*, the global minima of U('). The existence of 7r and a simple characteri-

zation in terms of the Hessian of U(.) is discussed in [14]. Also, it is clear that the

P nt_ o{x(t)ED} = 1 when x(O)ED and it can be shown that P Un nk> n{XkED} = 1
when X, ED and ca> -1 (see the Remark following Proposition 1 in Section 3). Finally,

we point out that a penalty function can be added to U(') so that VU(.) points outward

in the annulus D\D1 as in (Al). However, the condition that (k tends to zero in the
o

annulus D\D1 as in (A6) can be a significant restriction.

For a process u(.) and function f(-), let Et1,ul{f(u(t))} denote conditional expecta-

tion with respect to u(tl) = ul and let Et,,ul;t 2,u 2 {f(u(t))} denote conditional expectation

with respect to u(tl) = ul and u(t2 ) = u2. Also for a measure /(.) and a function f(.)

let A,(f) = f fdt.

By a modification of the main result of [11] we have that there exists a constant Co

such that for C > Co and any bounded and continuous function f(.) on IRr

lim Eo,x(f(x(t))} = 7r(f) (2.3)
t -oo

uniformly for xED. In [11] the constant Co is denoted by co and has an interpretation

in terms of the action functional for the dynamical system i(t) = -VU(z(t)). Here is

our theorem on the convergence of {Xk}.

Theorem: Let c > -1, f > 0, and B/A > Co. Then for any bounded continuous

function f(-) on IRr
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lim Eo,x{f(Xk)} = 7T(f) (2.4)
k-+oo

uniformly for xED.

Since ir concentrates on S, (2.3) and (2.4) imply x(t)-+S* and Xk-S* in probabil-

ity, respectively.

The proof of the theorem requires the following three Lemmas. Let {tk} and /(.)

be defined by

k-1
tk = an, k = 0,1,...

n=O

C(s) logs du=s2/3, s>1.

s log u

Lemma 1: Let c > -1, / > 0, and B/A = C. Then there exists ,y > 1 such that

for any bounded continuous function f(.) on IRr

lim sup E, x;n,y {f(Xk)} - Etn,y{f(X(tk))} = 0
n-+oo k: tn_ tk -< tn

uniformly for x,yED.

Lemma 2: For any bounded continuous function f(-) on IRr

lim sup Etn,y{f(x(I(s)))} - Es,y{f(x(Pl(s)))} = 0
n--oo s: tn-<S-<tn+ 1l

uniformly for yED.

Lemma 3: Let C > Co. Then for any bounded continuous function f(.) on IRr

lim Es, y{f(x(P(s)))} - r(s))(f) = 0
S-b+OO

uniformly for yED.

The proofs of Lemmas 1 and 2 are in Section 3. Lemma 3 is a modification of

results in [11, Lemmas 2, 3]. Note how the Lemmas are concerned with nonuniform

approximation on intervals of increasing length, as opposed to uniform approximation

on intervals of fixed length.

We now show how the Lemmas may be combined to prove the Theorem.
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Proof of Theorem: Note that /,(s) is a' strictly increasing function and

s + s2/3 P3(s) < s + 2s2/3 for s large enough. Hence for k large enough one can

choose s such that tk = a(s). Clearly s < tk and s--oo as k-+oo. Furthermore for k

and hence s large enough one can choose n such that tn < tk • 'ytn and

t n - s < tn+l Clearly n < k and n--oo as k--oo. Let

p(O,x;n,A) = P{XnEAIXo = x}. We can write

Eo,x{f(Xk)} - 7r(f) = f p(0,x;n,dy) (E0,x;n,y{f(Xk)} - 7r(f)). (2.5)
D

Now

Eo,x;n,y{f(Xk)} - r(f) = EO,x;n,y{f(Xk))} - Etn,y{f(x(tk))}

+ Etn,y{f(x((s)))} - E,,Yf(x((s)))

+ Es,y{f(x(I(s))) - 7rC(s)(f)

+ irc(s)(f) - ir(f) - as k -oo (2.6)

uniformly for x,yED by Lemmas 1-3 and (A7). Combining (2.5) and (2.6) completes the

proof.

As an illustration of our Theorem, we examine the random directions version of

(1.2) that was implemented in [13]. If we could make noiseless measurements of

VU(Xk) then we could use the algorithm

Xk+1 = Xk - ak7U(Xk) + bkWk (2.7)

(modified as in (2.1)). Suppose that VU(Xk) is not available but we can make noiseless

measurements of U(-). Suppose we replace VU(Xk) in (2.7) by a forward finite

difference approximation of VU(Xk), which would require r + 1 evaluations of U(-). It

can be shown that such an algorithm can be written in the form of (1.2) with

ok = O(ck) where {ck} are the finite difference intervals (ck--+0). As an alternative, sup-

pose that at each iteration a direction dk is chosen at random and we replace VU(Xk) in

(2.7) by a finite difference approximation of the directional derivative <VU(Xk),dk > dk

in the direction dk, which only requires 2 evaluations of U(.). Conceivably, fewer

evaluations of U(.) would be required by such a random directions algorithm to
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converge. Now assume that the {dk} are random vectors each distributed uniformly

over the surface of the r- 1 dimensional sphere and that dk is independent of

Xo,Wo0,...Wk-l,do0,...,dk-l. By analysis similar to [4, p. 58-60] it can be shown that

such a random directions algorithm can be written in the form of (1.2) with

E({k Ik} = O(Ck) and k = 0O(1). Hence the conditions of the Theorem will be

satisfied and convergence will be obtained provided that the finite difference approxima-

tion of VU(Xk) is used in the thin annulus D\D1 and ck = O(k- f ) for some f > 0.

Our Theorem, like Kushner's [12], requires that the trajectories of {Xk} be

bounded. However, there is a version of Lemma 3 in [11] which applies with D = IRr

assuming certain growth conditions on U(.). We are currently trying to obtain versions

of Lemmas 1 and 2 which also hold for D = IRE. On the other hand, we have found

that bounding the trajectories of {Xk} seems useful and even necessary in practice. The

reason is that even with the specified growth conditions IXk I tends occasionally to very

large values which leads to numerical problems in the simulation.

There are many hard multivariate optimization problems where the simulated

annealing type algorithms discussed in this paper might be applied. Recently there has

been alot of interest in learning algorithms for artificial neural networks. In particular

the so-called backpropagation algorithm has emerged as a popular method for training

multilayer perceptron networks [15]. Backpropagation is a stochastic descent algorithm

and as such is subject to getting trapped in local minima. It would be interesting to

determine whether a simulated annealing type backpropagation algorithm where slowly

decreasing noise has been added in artificially can alleviate this problem.
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3. PROOFS OF LEMMAS 1 and 2

Throughout this section it will be convenient to make the following assumption in

place of (A5):

(A5') c2 (tk) = k log log k k large, where C > 0, and c2 (.) is a piecewise linear

interpolation of {c2 (tk)}

Note that under (A5') c 2 (t) _ C/logt as t --* oo, and if B/A = C then bk = c'k c(tk)

for k large enough. The results are unchanged whether we assume (A5) or (A5'). We

shall also assume that ak,bk and c(t) are all bounded above by 1. In the sequel

cl, c 2,..., will denote positive constants whose value may change from proof to proof.

We start with several Propositions.

Proposition 1:

P{Xk+l D k) = O(a2+ ) as k -+oo,

uniformly w.p.1.

Proof: Let rk = V/k, k = 0,1,.... We can then write

P{Xk+l1D IDk} = P{k+1 D, IWk I 2 rk rIk}

+P{Xk+lD, IWk I-< rk I9k}lDl(Xk)

+P{Xk+l D, IWk -- rk Ik}ID\DyI(Xk) (3.1)

We bound each term on the r.h.s. of (3.1) as follows.

First, we have

P{Xk+lD, IWkl >- rk I k}

< P{ IWk I > - rk} exp- = o(a + ) as k- oo. (3.2)

Here we have adapted the standard estimate Pr{7? > x} < -exp(--x2 /2) for x > 0,

where 7r is a scalar zero-mean unit variance Gaussian random variable.



Next, we show that

P{Xk+l~ D, IWk I S rk I9k}lD,(Xk) = O(ak+ ~ ) as k o 00. (3.3)

Let XkEDl. Let el = infxED1,EaD Ix-y I > 0 and 0 < E2 < E1. Then

P(Xk+ll D, IWk I < rk [1k

< P{ I-ak(VU(Xk) + ~k) + bkWk I>61, lWk I - rk I0k}

a2E( Ik 12 [k}
-< Pjak kk I > 'E [a < = 2- O(a2+') ask--+ o.

62

The second inequality follows from the fact that bkrk-+O as k--+oo, and the third ine-

quality is Chebyshev's. This proves (3.3).

Finally, we show that

P{Xk+l D, IWk I -< rk Ik}l1D\D(Xk) =0 (3.4)

o

for k large enough. Let XkED\D1. Let Xk = Xk + bka(Xk)Wkl{ IWk I<rk} Since u(-) is
o

Lipshitz, a(x) > 0 for all xED, and c(x) = 0 for all xEdD, we have

a(x) < clinfyEaD Ix-y I for all xED. Hence IXk - Xk I < bkrkclinfyeaD IXk-y 1, and

since bkrk-+O as k-+oo we get Xk - Xk -- + 0 as k-+oo and Xk E D for k large enough.

Now since Xk ED\D1 we have <VU(Xk),Xk> > c2 and Ek--*O as k--oo. Hence

< VU(Xk) + (k,Xk >-< VU(Xk) + (k,Xk > :- as k-+oo and

< VU(Xk) + Sk,Xk> > C2 > 0 for k large enough, and so

< VU(Xk) + 5k,Xk> > c2 > 0 for k large enough, and consequently

<ak(VU(Xk) + 0k),Xk> > > 0

I ak(VU(Xk) + Wk) I IXk I

for k large enough. But Xk+l = Xk -ak(VU(Xk) + -k)ED whenever XkED and

lak(VU(Xk) + k) I < C3 * diam D, and these hold for k large enough. This proves

(3.4). Combining (3.1)-(3.4) to completes the proof.

n
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Remark: By Proposition 1 and the Borel-Cantelli Lemma

P U nk2> n{Xk E D} = 1 when XO E D and a > -1.

Proposition 2: For each n let {Un,k}k> n be a sequence of nonnegative numbers

such that

Un ,k+l < (1 + cak)un,k + ca, k >- n,

Unn = O(a') as n -- oo,

where 6 > 1, E > 0, and c > 0. Then there exists a y > 1 such that

lim sup Un,k = 0.
n-+oo k:tn- 'tk- 'tn

Proof : We may set c= 1 since ak = A/k for k large and A > 0 is arbitrary. Now

k-1 k-1 k-1

Un,k < un,n II(1+ae) + am II (1+ae)
-=n m=n e=m+l

k-1 k-1
(un,n + Z a'm)' exp( am),

m=n m=n

since 1 +x < ex for all x. Also n-lam < A(log(k/n)+l/n) and

,kn-la < A(1/(6-1)n6-l + 1/n6), and if tk •< ytn then k < cl nd. Choose 'y such

that 1 < y < 1 + min{--1, e}/A. It follows that

ktsup tk•(n -1k C2 0 as n --* oo.
k:tn _ tk-- tn n n

Define ((.,-) by

x(t) = x(s) - (t-s)(VU(x(s)) + ~(s,t)) + c(s)O(x(s))(w(t) - w(s))

fort > s > 0.

Proposition 3:

E{((t,t+h) Ix(t)} = O(hl/2),

E{ 1k(t,t+h) 12 Ix(t)} = 0(1),

as h-+O, uniformly for a.e. x(t)ED and all t_ 0.
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Proof: We use some elementary facts about stochastic integrals and martingales

(c.f. [16]). First write

t+h

h~(t,t+h) = f (7U(x(r)) - VU(x(t))dT
t

t+h

- f (c(T)a(x(T)) - c(t)u(x(t)))dw(r) (3.5)
t

Now a standard result is that

E( Ix(t+h) - x(t) 12 Ix(t)} = O(h)

as h -- 0, uniformly for a.e. x(t) E D and t in a finite interval. In fact, under our

assumptions the estimate is uniform here for a.e. x(t) E D and all t 2 0. Let K 1 ,K 2 be

Lipshitz constants for VU(-), a(-), respectively. Also note that c(.) is piecewise continu-

ously differentiable with bounded derivative (where it exists) and hence is also Lipshitz

continuous, say with constant K 3 . Hence

t+h

E{ I f (VU(X(T)) - VU(x(t)))dT 12 Ix(t)}
t

t+h

< K2E(( f Ix() - x(t) IdT)2 Ix(t)}
t

t+h

< K2h f E{ Ix(T) - x(t) 12 Ix(t)}dr = 0(h3) (3.6)
t

and

t+h

E I f (c(T)C(x(T)) - c(t)o(x(t)))dw(T) 12 Ix(t)}
t

t+h

= f E{ c(T)o(x(T)) - (t)o(x(t)) 2 Ix(t)}dr
t

t+h t+h

< 2K2 f E( Ix(T) - x(t) 12 Ix(t)}dT + 2KS2 (T-t)2 dr = O(h 2 ) (3.7)
t t

as h--O, uniformly for a.e. x(t)ED and all t2 0. The Proposition follows easily from
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(3.5)-(3.7) and the fact that the second (stochastic) integral in (3.5) defines a martingale

as h varies.

Now in Lemma 1 we compare the distributions of Xk and x(tk). This is done most

easily by comparing Xk and x(tk) to Yk and Yk (defined below), respectively, which are

equal in distribution.

Let

Yk+l = Yk - akVU(Yk) + bko(Yk)Wk

Yk+1 = Yk+l 1D (Yk+1) +- Yk 1IR\D (Yk+1)

Lemma 1.1: - There exists -y>1 such that for any bounded and continuous func-

tion f(.) on IRr

lim sup E0,x;n,y{f(Xk)} - En,y{f(Yk)} = 0,
n-+oo k:tn- ctk qrtn

uniformly for x,yED

Proof: Let x,yED, n a positive integer, Xo = x, and X = Yn =y. Let

Ak = Xk - Yk for k n. We suppress the dependence of Ak on x, y and n. Write

E{ IAk+l 12} = E{ IAk+1 121{Xk+lj D} U {Yk+lD)}}

+ E{ IAk+ 1 1 l{ik+iED} n {Yk+lED}} (3.8)

We estimate the first term in (3.8) as follows. We have by Proposition 1 that

E{ lak+1 lIl{ik+l D} U {Yk+l D} 

< cl(P{Xk+1l4D} + P{Yk+l D}) = O(a{+a) as k -+oo, (3.9)

uniformly for x,yED.

We estimate the second term in (3.8) as follows. If Xk+l ED and Yk+l ED then

Ak+1 = Ak - ak(VU(Yk+Ak) - VU(Yk))

+ bk(O(Yk +Ak) - oYk))Wk - ak k 

Hence
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E{ lAk+1 12l{Xk+lED})n {Yk+lED}}

<E{ lAk - ak(VU(Yk+Ak) - VU(Yk))

+ bk(o(Yk+Ak) - o(Yk))Wk - akrk 12}

E{ l/\k 12} + aE{ IVU'(Yk+Ak) - VU(Yk) 12}

+ akE{ I(o(Yk+Ak) - o'Yk))Wk 12)

+ a2E{ JVk 12}

+ 2 ak IE{<Ak,tVU(Yk+Ak) - VU(Yk)>} I

+ 2ak/2 IE{< Ak,(OYk+Ak) - c(Yk))Wk > } 

+ 2 ak IE{< Ak,k>} I

+ 2a3/ 2 IE{<VU(Yk+/Ak) - VU(Yk),(r(Yk+Ak) - c(Yk))Wk >} 

+ 2a I|E{< VU(Yk+Ak) - VU(Yk), k >} I

+ 2a /2 IE{< ((Yk+Ak) - (Yk))Wk, k >} 1, (3.10)

for all x,yED, k > n, and n large enough. Let K 1 ,K 2 be Lipshitz constants for

VU(-), u(-), respectively. Using the facts that Xk,Yk and hence Ak are rk measurable,

Wk is independent of 'Sk, and

IE{ [Ik 12 Ijk} - C2ak, IE{fk Ik} I C c2a4,

w.p.1 for all x,yED, k> n, and n large enough, we have

E{ IVU(Yk+Ak) - VU(Yk) 12} _ K2E{ IAk 12}

E{ I((Yk+Ak) - a(Yk))Wk 12} _ rK2E{ AIk 12}

E{ JIk 12} -< c 2ak

IE{<a k,VU(Yk+Ak) - VU(Yk)>} I - K 1 E{ lAk 12}
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IE{< Ak,((Yk+Ak) - C(Yk))Wk} I

= IE{<Ak,(O(Yk+Ak) -- (Yk))E{Wk}>} I = 0

IE{<Ak,k>} II = IE{<Ak,E{kk Ik}> I

_ E{ Ak I IE{(fk IJk} } < c 2 aeE{ IAk 1}

IE{<<VU(Yk +Ak) - VU(Yk), (O(Yk-+Ak) - O(Yk))Wk >} I

< IE{<VU(Yk+Ak) - VU(Yk),((Ykt-Ak) - a(Yk))E{Wk}>} I = 

IE{<VU(Yk+Ak)-UYk)-V Yk,k >} I = E{<VU(Yk+Ak)-VU(Yk),E{(k I k}>} I

= E{ IVU(Yk+Ak) - VU(Yk) I IE{(k I9k )} -- c2KlaE{ lAk I}

IE{<(a(Yk+Ak) - o(Yk))Wk,Jk>} I = IE{(a(Yk+Ak) - O(Yk))E{<Wk,k > I k} I

S E{ I(Yk+Ak)--(Yk) IE{ IWk 12 }1/ 2 E{ Jlk 12 Ik}'/ ! } CX K 2 ak/2E{ AIk I}
for all x,yED, k> n, and n large enough. Substituting these expressions into (3.10)

gives (after some simplification)

E{ IAk+1 I l{ik+lED}f) {k+lED}} - (1+c 3 ak)E{ I k |I } + c3 akE{ lAk I} + c2 ak

(1+c 3 ak)E{ IAk 12} + c3a4E{f Ak 12}1/2 + C2a2 +a

< (1+c 4ak)E{ IAk I } + c4ak, (3.11)

for all x,yED, k > n, and n large enough, where S1 =min{1+O,(3+cl)/2}>1 and

62 = min{6S,2+c}> 1 since ac>-1 and />0.

Now combine (3.8), (3.9) and (3.11) to get

E{ lAk+l 2} < (1 + c 5ak)E{ Ak 12} + a2, k > n,

E{ A1 n 12} = 0,

for all x,yED and n large enough. Applying Proposition 2 there exists y> 1 such that
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lim sup E{ IAk 12} = 0, (3.12)
n-oo k:t_ '<tk-c- tn

uniformly for all x,yED.

Finally, let f(-) be a bounded continuous function on IRr . Since D is compact f(.) is

uniformly continuous on D. So given e>0 let 6>0 be such that If(u)-f(v) I<e when-

ever lu-v I< 6 and u,vED. Then

IEo,x;n,y{f(Xk)} - En,y{f(Yk)} I _< EPP IAk I < 6} + 211fllP{ IAk I>}

< E + 211f E{lAk 12},

and by (3.12)

lim sup IEo,x;n,y{f(Xk)} - En,y{f(Yk)} I _ c,
n--oo k:tn< tk_ c tn

uniformly for x,yED, and letting --*O completes the proof.

Let Wk = (w(tk+l)-w(tk))/\/ak and

Y k+1 = Yk - akVU(Yk) + bk (Yk)Wk

Yk+l = Yk+11D(Yk+l) +YkIRr\D(Yk+1)

Lemma 1.2: There exists y>1 such that for any bounded continuous function f(-)

on JRr

lim sup En,y{f(x(tk))} - En,y{f(Yk)} = 0
n--+oo k:t- <tk- ftn

uniformly for yED.

Proof: Let yED, n be a positive integer, and x(tn) = Yn = y. Define {(k} by

X(tk+l) = X(tk) - ak(VU(X(tk)) + Zk) + bk(x(tk))Wk, k2 n.

Let Yk be the r-field generated by {x(tn),)n,...,,kl,Wn,...,Wk_l} for k2 n. It can be

shown that Zk is conditionally independent of sk given X(tk). Hence by Proposition 3
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E( Ikk 12 Ik} - < cl, IE{ l/2} I < ca/2,

w.p.1 for all yED, k> n, and n large enough. Let Ak =x(tk)--Yk for k> n. We

suppress the dependence of Ak on y and n. Similiarly to the proof of Lemma 1.1 we

can show with 6 = 3/2 that

E( lAk+l 12} < (1+c 2 ak)E( lk 12} + c2ak, k> n,

E{( IA 12}= 0,

for all yED and n large enough. Applying Proposition 2 there exists a 'y> 1 such that

lim sup E{ lAk 12} = 0,
n-+oo k:tnc k< ytn

uniformly for yED. The Lemma now follows as in the proof of Lemma 1.1.

Proof of Lemma 1: Follow immediately from Lemmas 1.1 and 1.2.

Proof of Lemma 2: Let yED, n a positive integer, and sE[tn,t1 +l]. Let x(-;s,y)

denote the process x(.) emitted from y at time s. Let v(-) be a standard r-dimensional

Wiener process starting at time tn and independent of x(s;tn,y). Define xi(-), i = 1,2,

by

dxi (t) = -VU(xi(t))dt + c(t)u(xi(t))dv(t), t > s,

x1 (s) = x(s;tX,y),

X2 (s) = y.

Let Vk = (v(tk+1)-v(tk))/\/k for k>n, and V = (v(t,,+l)-v(s))/\/tn+l- - Define

{i,k}, i= 1,2, by

xi(tk+1) = Xi(tk) - ak (VU(xi(tk)) + (i,k) + bkCr(xi(tk))Vk, k>n,

Xi(tn+l) = Xi(S) - (tn+l- s)(VU(xi(s)) + i,n) + Vtn+ s c(s) (xi(s))Vn

Let 9i,k be the u-field generated by {xi(s),i,n, . . .,i,k_1,Vn, . . ,Vk- 1 } for k> n. It

can be shown that i, k is conditionally independent of 91,k V ;2,k given xi(tk). Hence

by Proposition 3



E{ ]1l,k + J2,k 1 Ig1,k V 92,k}l < cl, IE{(l,k + S2,k Il1,kV 92,k)} - Clak/2

w.p.1 for all yED, sE[tn,tn+l], k>- n, and n large enough.

Now observe that

E( Ix(t+h) - x(t) 12 Ix(t)} = O(h) as h +0,

uniformly for a.e. x(t)ED and all t- 0 (this is a standard result expect for the unifor-

mity for all t which was remarked on in Proposition 3). Hence

E( Ix,(s) - x 2(s) 12} = E( Ix(s;t.,y) - 12} < c2 a.n,

for all yED, sE[tn,tn+l], and n large enough. Let Ak = Xl(tk+l) - x2(tk+l) for k> n.

We suppress the dependence of Ak on y, s and n. Similiarly to the proof of Lemma 1.1

we can show with S = 3/2 that

E( IAk+1 12} < (l1c3ak)E{ IA k 2) + c3al, k - n,

E( IAn 12} < (l+c3a))E( Ix1(s)-X2(S) 12} + c3 an -< 4an,

for all yED, sE[tn,t+l1 ], and n large enough. Hence

sup E{ IAk+l 12 _ (1+c3ak) sup E{ lAk 12} + c3 a, k> n,
S:tn < S < t,,+l S:t n -- S-< tn+ 1

for all yED and n large enough, and

sup E{ IA1n J2 = o(an) as n-+oo,

uniformly for yED. Applying Proposition 2 there exists y> 1 such that

lim sup sup E{ IAk 12} = 0, (3.13)
n-+oo k:tn--k<f tn S:tn- <S<tn+l

uniformly for yED.

Note that ,C(s) is a strictly increasing function of s and s+s2 /3 _< (s) _ s+-2s2/ 3 for

s large enough. Hence for n large enough one can choose s such that tn < s < tn+1 and

m such that tm -< f(s) -< tm+l and tn < tm -< -Ytn. As above we can show

E { Ixl(d(s))-x2(,(S)) 12 _< (1+c3 am)E( I|Am 12) + C3am
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< c5 sup E ILAk 2} + c3an, (3.14)
k:tn c tk - -tn

for all yED, sE[tn,tn+1], and n large enough. Combining (3.13), (3.14) gives

lim sup E{ Ix1 (:(s)) -x2 (:(s)) 12) = 0,
n-+oo s:tn < s <tn+l

uniformly for yED. Finally since x l(/(s)), x2(/(s)) are equal in distribution to

x(f(s);tn,y), x(fl(s);s,y), respectively, the Lemma now follows as in the proof of Lemma

1.1.

0]
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