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Abstract

A new approach to the problem of computing dense optical flow fields in an image
sequence is presented. Standard formulations of this problem require the computation-
ally intensive solution of an elliptic partial differential equation which arises from the
often used “smoothness constraint” type regularization. We utilize the interpretation
of the smoothness constraint as a “fractal prior” to motivate regularization based on
a recently introduced class of multiscale stochastic models. The solution of the new
problem formulation is computed with an efficient multiscale algorithm. Experiments
on several image sequences demonstrate the substantial computational savings that can
be achieved due to the fact that the algorithm is non-iterative and in fact has a per
pixel computational complexity which is independent of image size. The new approach
also has a number of other important advantages. Specifically, multiresolution flow field
estimates are available, allowing great flexibility in dealing with the tradeoff between
resolution and accuracy. Error covariance information is also available, which is of con-
siderable use in assessing the accuracy of the estimates. Finally, the algorithm is an
excellent “pre-conditioner” for the iterative algorithms associated with the smoothness
constraint problem formulation. Indeed, its usefulness should extend to a wide vari-
ety of estimation problems including many involving Gauss Markov random fields and
spatial processes defined as the solution of noise driven partial differential equations.
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1 Introduction

The apparent motion of brightness patterns in an image is referred to as the optical flow
[14]. In computational vision, optical flow is an important input into higher level vision al-
gorithms performing tasks such as segmentation, tracking, object detection, robot guidance
and recovery of shape information {1, 19, 22, 25, 29]. In addition, methods for computing
optical flow are an essential part of motion compensated coding schemes [3, 33].

In this paper, we present a new approach to the problem of computing optical flow.
Standard formulations of this problem require the computationally intensive solution of an
elliptic partial differential equation which arises from the often used “smoothness constraint”
regularization term. We utilize the interpretation of the smoothness constraint as a “fractal
prior” to motivate regularization based on a recently introduced class of multiscale stochastic
models. These models are associated with efficient multiscale smoothing algorithms, and
experiments on several image sequences demonstrate the substantial computational savings
that can be achieved through their use.

Our approach is most easily understood by comparing it to the optical flow problem
formulation originally proposed by Horn and Schunck [14]. As they discuss, information
about the optical flow field can be obtained from the image sequence by making the as-

sumption that changes in image brightness are due only to motion. This leads to the so
called brightness constraint equation [14]:

d i}
0= a—tE(Zl, 22, t) = BEE(ZI, 22, t) + V.E(Zl, Z2, t) . 93(11, z;,t) (1)

where E(z;, 23,t) is the image intensity as a function of time ¢ and space (21, 22), 2(21, 22,1)
is the optical flow vector field, and:

_ 621 6z2 T
z = [‘5? ‘a‘t‘] (2)
OE OF
VE = |5 5 ®)

The brightness constraint equation (1) does not completely specify the flow field since
it provides only one linear constraint for the two unknowns at each point. This is usually
referred to as the aperture problem [14]. One way to obtain a unique solution is to regularize
the problem by imposing an additional smoothness constraint. Specifically, one formulates
the following optimization problem [14]:

#gc =argmin // R™1 (;;—liE)2 + ||V2||? dz1dz; (4)

The smoothness constraint is captured by the second term which penalizes large gradients
in the optical flow. The constant R allows one to tradeoff between the relative importance
in the cost function of the brightness and smoothness constraint terms. We refer to the
optical flow estimate obtained from (4) as the smoothness constraint (SC) solution to the
problem of computing optical flow.

One of the major problems associated with the formulation in (4) is that it leads to
computationally intensive algorithms. Specifically, one can show that the solution of (4)
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Figure 1: Depiction of three fields which are equally favored by the smoothness constraint,
illustrating how this penalty provides a fractal prior model for the optical flow.

satisfies an elliptic partial differential equation (PDE) [14]. Discretization of this PDE leads
to a sparse but extremely large set of linear equations. The equations are typically solved
using iterative approaches, which require increasing numbers of iterations as the image size
grows. One of the first iterative approaches used was the Gauss-Seidel relaxation algorithm
[14, 27] which is extremely simple, but converges very slowly. Terzopoulos [31] proposed
the use of multigrid approaches and reported a factor of 7 reduction in computation over
the Gauss-Seidel approach. Successive over-relaxation (SOR) algorithms [16] also provide
significant computational improvement over GS approaches and have been successfully used
in [21, 23, 24].

The main purpose of this paper is to address the computational issue discussed above.
To do this, we need to analyze the smoothness constraint in more detail. Note that the
penalty associated with the smoothness constraint term in (4) is equal to the integral
of the squared norm of the field gradient over the image plane. In a one-dimensional
context, such a constraint would penalize each of the (one-dimensional) fields in Figure 1
equally. Intuitively, the smoothness constraint has a fractal nature, and in fact this can
be demonstrated in a much more precise sense. As discussed in Rougee et. al. [23, 24],
the optical flow problem formulation in (4) has an equivalent formulation in an estimation-
theoretic context. Specifically, let us make the assumption that the two components of the
optical flow field are independent, two-dimensional Brownian motions2. Next, suppose that

?More precisely, since we do not want to bias the optical flow estimates towards zero, we only assmne
that the gradients of the optical flow field components are equal to the gradients of the Brownian motion
processes. This avoids placing a constraint on the DC (i.e. average) value of the optical flow and focuses
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we interpret the brightness constraint as a noisy measurement of flow field:

a
- E-t-E(Zl, 22,4 t) = V.E(Zl, 22,4 t) . 23(21, 22, t) + ’0(21, 22, t) (5)

where v(2y, 22, t) is zero mean white Gaussian noise with intensity R. Then, the statistically
optimal estimate of the flow field, given the measurements (5) and the Brownian motion
prior model, is the same as the optical flow estimate given by (4). Thus, the smoothness con-
straint and the estimation-theoretic formulations are equivalent. The estimation-theoretic
interpretation simply allows us to interpret the smoothness constraint as a Brownian mo-
tion model. In one-dimension, Brownian motion is a statistically self-similar, fractal process
with a 1/ f2 generalized spectrum [18], and for this reason the smoothness constraint is often
referred to as a “fractal prior” [30]. ‘

Given that the smoothness constraint prior model has been introduced solely for regu-
larization purposes, we are led to the idea of replacing it with another prior model which is
similar in its fractal nature, but which leads to a computationally more attractive problem
formulation. Replacing the prior model simply means that we want to change the regu-
larization term in (4). The interpretation of the smoothness constraint as a fractal prior
suggests that other prior models which also have self-similar characteristics would provide
comparable flow estimates. In this paper, we demonstrate an approach which substitutes
a fractal-like class of prior models recently introduced in [7, 8, 9, 11] for the smoothness
constraint term. The structure of the new penalty term leads to an extremely efficient
algorithm for the computation of optical flow estimates. The algorithm is not iterative
and in fact requires a fixed number of floating point operations per pixel independent of
tmage size. Thus, since all of the known methods for solving the smoothness constraint
problem formulation have per pixel computational complexities that grow with image size,
the computational savings associated with the new approach increases as the image size
grows.

In addition to the computational savings, there are several other advantages that the
new approach has. First, the models provide a representation of the optical flow field at
multiple resolutions. For this reason, we say that they provide a multiscale regularization
(MR) of the optical flow problem, and we refer below to the MR algorithm and solution.
The multiscale representation of the flow field should provide great flexibility in dealing
with the tradeoff between accuracy and resolution. Specifically, one can expect to obtain
higher accuracy at lower resolutions, and one should be able to use the flow estimates at one
resolution to decide if computational resources should be used to compute representations
at finer resolutions.

Second, because we develop the approach in an estimation-theoretic context, the flow
estimates have associated error covariance matrices which provide information about their
quality. This information would be essential to addressing the tradeoff between resolution
and accuracy as discussed above, and may also be useful to higher level vision algorithms
which need to combine information in a rational way from a variety of sources [26]

A third advantage of the approach is that it is an excellent pre-conditioner for algorithms
which compute the smoothness constraint solution. We stress that the optical flow estimates
obtained with the new problem formulation will not exactly equal those given by (4), since

only on imposing a preference for smoothness in the flow.



the prior model is not exactly the same. Experimental evidence in Section 3 shows that the
difference between the SC and MR flow estimates consists of mostly high spatial frequency
components. These are precisely the components which can be quickly removed by the
iterative algorithms computing a smoothness constraint solution. Thus, if one requires the
estimate based on the smoothness constraint, it can be obtained by using, for instance, a
“pre-conditioned SOR” algorithm, which utilizes the MR, solution as an initial estimmate of
the optical flow, and we present results that demonstrate the efficiency of this approach.

Finally, our approach should be applicable in a substantially more general setting. In
particular, it may provide a computationally attractive alternative to standard approaches
to the broad class of estimation problems in which the underlying process to be estimated
is modeled as a Gaussian Markov random field or is obtained as the solution of noise driven
partial differential equations, or in which a “smoothness constraint” type regularization is
employed.

This paper is organized as follows. In Section 2 we discuss in more detail an estimation-
theoretic interpretation of the optical flow formulation in (4) and develop our new approach
to the computation of optical flow. Section 3 presents experimental results on several real
and synthetic image sequences. Section 4 provides further discussion and conclusions.

2 Multiscale Regularization

In the first part of this section we develop a discrete formulation of the optical flow problem,
and discuss in more detail the estimation-theoretic interpretation of it. We then illustrate
precisely how the smoothness constraint can be interpreted as a prior model for the flow field,
and how it can be replaced by another, similar prior model which leads to a computationally
more attractive problem formulation. The general class of prior models we use is then
introduced along with an algorithm for finding the solution of the new optical flow problem
formulation.

2.1 An Estimation-Theoretic Interpretation of the Optical Flow Problem
We start by introducing the following notation. Define:

y(ZI,Zz) —%E(Zl, 22, t) (6)
C(Zl, 22) = VE(Z1, ZZ,t) (7)

The brightness constraint equation (1) can then be written:

Y(z1,22) = C(Zi,zz)'z(zl,zz) (8)

where the time dependence of the equations has been suppressed. In practice, brightness
measurements are only available over a discrete set of points in space and time. Thus, the
temporal and spatial derivative terms in the brightness constraint equation (8) must be
approximated with finite differences, and the optical flow is only estimated on a discrete
space-time grid. There are a number of important issues which arise due to the discretiza-
tion; we refer the reader to [6] for a detailed discussion. We will assume here that the optical



flow is to be estimated on the set {(z1,2;)|z; = th, 2o = jh;i,j € {1,---,2M}} where h is
the grid spacing and M is an integer. The assumption that the lattice is square and that
the number of rows is equal to a power of two makes the subsequent development easier, but
this is not essential as we discuss in Appendix A. Abusing notation, we write the brightness
constraint (8) at the point (¢h, jh) as:

y(i’j) = C(i,j)-t(i,j) (9)

where y(%, j) is the measured temporal brightness derivative, (%, j) is the optical flow, and
C(3,7) is the spatial gradient of the image brightness at grid point (zh, jh).

The brightness constraints (9) at all grid points can be grouped into one large set of
linear equations to capture the optical flow information contained in the image sequence.
Defining x as the vector of optical flow vectors at all grid points (using, say, a lexicographic
ordering), C as the matrix containing the corresponding spatial gradient terms C(i, j), and
y as the vector of temporal gradients, we can write:

y=Cx (10)
Then, the discrete counterpart of (4) is:
kso = argmin |ly — Cx||_ + [|Lx|]
= arg;nin (y-Cx)TR}(y - Cx) + xTLTLx (11)

where the matrix L is a discrete approximation of the gradient operator in (4) and R = RI.
The regularization term xTLTLx makes the optimization problem (11) well-posed. In
particular, the solution of (15) satisfies the so called normal equations [28]:

(CTR!C+ LTL)ks¢ = CTR 'y (12)

and the invertibility of (CTR-!C + LTL) guarantees that xsc is unique. The normal
equations (12) are the discrete counterpart of the partial differential equation that arises
from (4).

An estimation-theoretic formulation of the optimization problem in (11) can now be
developed, and we will use it to show that the statistically optimal estimate of the optical
flow, given a particular set of measurements, is identical to the smoothness constraint
solution given in (11). Specifically, given the measurements:

y = Cx+v (13)
0 = Lx+w (14)

and the assumptions that® v ~ M(0,R) and w ~ N/(0,I), the measurement vector § =
[¥T|0]T is conditionally Gaussian, and the maximum likelihood estimate [32] of x is:

XML = m‘ggwxp(?lx)

3The notation z ~ A(m, A) means that z has a Gaussian distribution, with mean m and variance A.



= argmin — log p(#|x)
x

ot (2][5] [* . (3]-519

= argmin(y — Cx)TR}(y - Cx) + xTLTLx (15)
X .
= Xsc
Thus, the maximum likelihood problem formulation results in the same solution as the
smoothness constraint formulation when L is used to define an additional set of noisy
measurements. The main point here is that by formulating the problem in this estimation-

theoretic framework, we can use (14) to interpret the smoothness constraint as a prior
probabilistic model for the flow field. Specifically, we can rewrite (14) as:

Lx = —-W (16)

Recalling that L is an approximation to the gradient operator, we see that (16) is nothing
more than a spatial difference equation model for x driven by the spatial white noise field
w. ‘

To some extent the precise form of this prior model is arbitrary, and thus we are led to
the idea of introducing a new prior model which is similar in nature, but which leads to
a computationally more attractive problem formulation. That is, we want to change the
smoothness constraint term xTLTLx in (15) to something similar, say, xTSx ~ xTLTLx
(where S is a symmetric positive semi-definite matrix) such that the resulting optimization
problem is easy to solve. If we factor S as S = LTL then we can interpret the new constraint
as a prior probabilistic model just as we did with the smoothness constraint. In addition,
there is a precise interpretation of what we have done as a Bayesian estimation problem.
Specifically, if S is invertible and we let A—! = S, then the use of this new constraint in
place of the smoothness constraint is equivalent to modeling the flow field probabilistically
as x ~ N(0, A), since in this case the Bayes’ least squares estimate of the flow field x, given
the measurements in (13) is given by:

kprsg = argmin(y — Cx)TR™}(y - Cx) +xFA'x (17)
X

which corresponds to (15) with a different prior model term. The normal equations corre-
sponding to (17) are given by:

(CTR'C+ A Y)xprsg = CTR7'y (18)

Comparison of the problem formulations (11) and (17), or of the normal equations (12)
and (18), makes it apparent how the two problem formulations are related. Note that an
analogous Bayesian interpretation can apparently be given to the smoothness constraint
formulation (11), (12), with the corresponding prior model for optical flow given by x ~
N(0,(LTL)"1). Recall, however, that L is an approximation to the spatial gradient operator
and thus is not invertible since operating on constants with this operator yields zero. The
probabilistic interpretation of this is that the model (16) places probabilistic constraints on
the spatial differences of the optical flow, but not on its DC value. Indeed, it is not difficult



to check that if we model optical flow instead as x ~ A(0, (LTL + eI)~!), where € is any
arbitrarily small positive number, then LTL + €I is indeed invertible and the DC value of x
has a prior covariance Py on the order of 1/¢, so that P, — oo as € — 0. Thus, the original
smoothness constraint formulation in essence assumes an infinite prior covariance on the
DC value of optical flow. The alternate model developed in the next section has a similar
parameter, Py, representing the DC variance, which can similarly be set to oo.

The choice of the new prior model is now clearly at the heart of the problem. Recalling
that the smoothness constraint has the interpretation as a “fractal prior”, we would like to
choose a prior model which also has fractal-like characteristics. A natural way to specify
such models is to explicitly represent the optical flow field at multiple scales. A stochastic
modeling framework which allows us to do this, and which also leads to efficient algorithms
for solving (17), (18), is described in the next section.

2.2 A Class of Multiscale Models

The models we utilize to replace the smoothness constraint prior model were recently in-
troduced in (7, 8, 9, 11]. The models represent the flow field at multiple scales, i.e. for a
set of scales m = 0,..., M, with m = 0 being the coarsest scale and m = M the finest
scale, we define a set of optical flow fields indexed by scale and space, namely 2,,(%,7). At
the mt* scale, the field consists of 4™ flow vectors, as illustrated in Figure 2, capturing
features of the optical flow field discernible at that scale (i.e. finer resolution features of the
field appear only in finer scale representations). Thus, the coarsest version of the flow field
consists of just a single vector corresponding to the average value of the optical flow over the
entire spatial domain of interest, and successively finer versions consist of a geometrically
increasing number of vectors. At the finest level, the flow field is represented on a grid with
the same resolution as the image brightness data. In particular, zps(%, j) corresponds to the
optical flow vector z(i, j) in (9).

Abstractly, we are representing the flow field on the quadtree structure illustrated in
Figure 3. Pyramidal data structures such as the quadtree naturally arise in image process-
ing algorithms which have a multiresolution component. For instance, successive filtering
and decimation operations lead to images defined on such a hierarchy of grids in the Lapla-
cian pyramid coding algorithm of Burt and Adelson [5] and in the closely related wavelet
transform decomposition of images [17]. Also, the multigrid approaches to low level vision
problems discussed by Terzopoulos [31] involve relaxation on a similar sequence of grids.

The model we introduce in this section describes in a probabilistic manner how the
optical flow field 2(%, j) = zum(%, 7) is constructed by adding detail from one scale to the next.
Just as the smoothness constraint prior model (16) describes probabilistic constraints among
values of the optical flow at different spatial locations, our multiscale model describes such
constraints among values at different scales. That is, our model describes the probabilistic
evolution of z,,(%, j) as the scale m evolves from coarse to fine. For notational convenience
in describing such models, we denote nodes on the quadtree with a single abstract index
s which is associated with the 3-tuple (m,,j) where, again, m is the scale and (%,7) is
a spatial location in the grid at the m®* scale. It is also useful to define an upward shift
operator 7. In particular, the parent of node s is denoted s7 (see Figure 3). We note that
the operator 7 is not one-to-one; it is in fact four-to-one since each node will have four



Figure 2: The structure of a multiscale optical flow field is depicted. The components of the
field are denoted 2, (%, j) where m refers to the scale and the pair (7, j) denotes a particular
grid location at a given scale. At the coarsest scale, there is a single flow vector and, more
generally, at the mt” scale there are 4™ vectors.



Root node
Te—

Figure 3: Quadtree structure on which the multiscale processes are defined. The abstract
index s refers to a node in the quadtree; s refers to the parent of node s.

“offspring” at the next scale. For instance, if s corresponds to any of the nodes in the upper
left quadrant of the second level grid (see Figure 2), i.e. nodes (2,1,1),(2,2,1),(2,1,2) or
(2,2,2), then s¥ corresponds to their parent on the first level, namely node (1,1,1).

We are now in a position to describe the class of multiscale models which describe the
evolution of multiscale stochastic processes indexed by nodes on the quadtree. Specifically,
a stochastic quadtree process z(s) is described recursively by:

2(s) = A(s)2(s7)+ B(s)u(s) (19)

under the following assumptions:

zo ~ N(0,P) (20)
w(s) ~ N(0,I) (21)

The vectors £ and w are referred to as the state and driving noise terms. The state vari-
able zo at the root node of the tree provides an initial condition for the recursion. The
driving noise is white in both space and scale, and is uncorrelated with the initial con-
dition. Interpreting each level as a representation of a two-dimensional field, we see that
(19) describes the evolution of the process from coarse to fine scales. The term A(s)z(s¥)
represents interpolation down to the next level, and B(s)w(s) represents higher resolution
detail added as the process evolves from one scale to the next. In the application of interest
here, 2(8) = (i, ), where s = (m,i,j), and thus A, B € #2%2, Such a model corresponds
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in essence to a first-order recursion in scale for optical flow.4

Measurements of the finest level optical flow field are available from the brightness
constraint. In particular, at a particular point (i,7) at the finest level M, we have a
measurement equation corresponding to that in (9):

y(4,5) = C(i,5)zm(i,5) + v(3,5) (22)
v(i,j) ~ N(0,R) (23)

where C(%, j) € #!*? and the white Gaussian observation noise is assumed to be independent
of the initial condition zo and the driving noise w in (19) — (21). Of course, we can group
the state variables z(s) at the finest level into a vector xps as well as the corresponding
measurements y(s) and spatial gradient terms C(s) in the same way as we did to get (10):

y = Cxpy+v (24)
v ~ N(O,R) (25)

We now have exactly the framework which led to the statement of (17) as an alternative
to the smoothness constraint formulation (15). In particular, the modeling equations (19)
- (21) indicate that at the finest level of the quadtree, the flow field vectors will be a set
of jointly Gaussian random variables xpr ~ A(0,A), where A is implicitly given by the
parameters in (19) — (21), and a set of noisy measurements given by (24). The Bayes’ least
squares estimate of xps given the measurements in (24) and the prior model is:

%y = argmin(y — Cxpy)TRY(y — Cxpr) + x A txy (26)
XM

The multiscale modeling framework thus provides an alternative to the smoothness con-
straint formulation of (11) or (15). ‘
What remains to be done are (1) to specify a model within this class that has charac-
teristics similar to those of the smoothness constraint prior model, and (2) to demonstrate
why the use of this alternate multiresolution formulation is of any interest. We defer the
latter of these to the next section and focus here on the former. In particular, for our
multiscale model based on (19) — (21) to approximate the smoothness constraint prior we
would like to choose our model parameters so that we have LTL ~ A-1. The observation
that the prior model implied by the operator L in (15) corresponds to a Brownian motion
“fractal prior” suggests one approach to choosing the model parameters. In particular,
the one-dimensional Brownian motion has a 1/f? generalized spectrum [18]). It has been
demonstrated that such processes are well approximated by multiscale models such as ours
in one dimension if geometrically decreasing powers of noise are added at each level m of the

process [9, 34]. In particular, this motivates the choice of B(s) = b4~ I in (19), where I
is the 2 x 2 identity matrix, and where b and p are scalar constants. The constant b directly
controls the overall noise power in the process. Also, as discussed in [34], the choice of u

*More generally, higher-order recursions in scale can be captured, just as in standard state space models,
by increasing the order of the model, i.e. the dimension of z(s). In this case the actual optical flow at node
s would correspond to a subset of the components of z(s), with the remainder of z(s) devoted to capturing
the memory in the multiscale recursion. In this paper, however, we restrict ourselves to the simple first order
recursion.
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controls the power law dependence of the generalized spectrum of the process at the finest
resolution as well as the fractal dimension of its sample paths. Specifically, this spectrum
has a 1/f# dependence. Thus, the choice of 4 = 2 would correspond to a Brownian-like
fractal process. To achieve greater flexibility in both the modeling and estimation, we allow
i to be a parameter that can be varied. In addition, recall that in the smoothness con-
straint formulation, LTL was not invertible because of the implicit assumption of infinite
prior variance on the DC value of the optical flow field. In our multiscale regularization
context, this would correspond to setting Pp equal to infinity in (20). This can be done
without difficulty in the estimation algorithms described next, but we have found that it is
generally sufficient to simply choose P, to be a large multiple of the identity.

In closing this section let us illustrate some of the types of sample paths that result from
scalar versions of multiresolution models of this type (i.e. where z(s) is a scalar). Sample
paths of the finest level of () from several scalar processes for different parameter choices
of such a model are illustrated in Figures 4 to 6. The processes are shown as mesh plots
to better illustrate the changes induced by choosing different model parameters. As noted
above, the parameter A(s) reflects interpolation from coarse to fine scales. As A(s) goes
to zero, the scale-to-scale “memory” of the process decreases, and in fact if A(s) = 0, the
process will be white noise at each level. The effect of changing A(s) is illustrated in Figures
4 and 5. The parameter p in the driving noise term also effects the correlation structure
of the process. As u is increased, the driving noise variance is reduced from scale-to-scale
at a faster rate. Thus, there is greater interscale correlation, and we expect the process to
appear more structured. The effect of changing u is illustrated in comparing Figures 4 and
6. As these figures indicate, the choice of A(s) = 1 leads to the fine scale process having
obvious memory of coarse scale features, while the larger value of u in Figure 6 leads to
sample paths with smaller fine scale fluctuations than Figure 4. .

2.3 The Multiscale Regularization Algorithm

We have now specified a class of models which will allow us to approximate the smooth-
ness constraint prior model. The simple multiscale structure of these models leads to very
efficient algorithms for computing the optimal estimate of the state given a set of measure-
ments. One of these algorithms, which we refer to as the Multiscale Regularization (MR)
algorithm, was developed in {7, 8, 9, 10] for one-dimensional signals, and its extension to
images is described here.

The MR algorithm computes the Bayes least squares estimate of the state vectors (19)
given the measurements (22) in two steps. The first step is an upward or fine-to-coarse
sweep on the quadtree, which propagates the measurement information in parallel, level
by level, from the fine scale nodes up to the root node. The second step is a downward
or coarse-to-fine sweep which propagates the measurement information back down, and
throughout the tree. The result is the least squares estimate of the state z(s) at each node
based on all of the data. The details of the upward and downward sweeps are given below
and are discussed in much greater detail in [9, 10].

To begin, note first that the measurement model (22), allowing for the possibility of
spatially varying noise intensity, can be written in the form:

ys) = C(s)(s)+v(s) (27)
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v(s) ~ N(0,R(s)) (28)

In the context of the optical flow estimation problem, measurements are taken only on the
finest level, corresponding to C(s) = 0 unless s is a node at the finest level (i.e. unless
s = (M;1i,j)). However, in the more general modeling framework discussed in [9, 10], the
measurements may be available at any node, and the noise variance may vary with node as
in (28). We present here this more general algorithm in which, in addition, z,y and w may
be of arbitrary dimension. ’

The model given by (19) - (21), (27) - (28) is a downward model in the sense that the
recursion starts from the root node and propagates down the quadtree from coarse-to-fine
scales. In order to describe the upward sweep of the MR algorithm, we need a corresponding
upward model. This upward model is equivalent to the downward model in the sense that
the joint second order statistics of the states z(s) and measurements y(s) are the same. The
upward model is given by® [8, 9]:

2(s7) = F(s)a(s) - A~1(s)B(s)is(s) (29)
¥s) = C(s)(s) +v(s) (30)

where:
F(s) = PunAT(s)P;? (31)

5We use E[z] to denote the expected value of the random variable z and E[z|y] to denote the expected
value of z given y.
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w(s) = w(s)— E[w(s)|z(s)] (32)
E(w(s)wT(s)] = I- BTP[1B(s) (33)
= Q(s) : (34)

and where P, = E[z(s)zT(s)] is the variance of the state at node s and evolves according
to the Lyapanov equation:

P, = A(s)P,5AT(s)+ B(s)BT(s) (35)

To proceed further we need to define some new notation.

Y, = {y(s')|s' =sor s is a descendant of s} (36)

Yb = Y.\ {s} (37)
2(s'ls) = E[z(s)|Y,] (38)
2(s'|s+) = E[z(s)|Y,}] (39)
P(s'ls) = E[(2(s') - #(s'|s))(z(s") — £(s']s))T] (40)
P(s'|s+) = E[(2(s') - &(s'|s+))((s') — 2(s'|s+))T] (41)

where the notation Y, \ {s} means the node s is not included in the set Y,t. The upward
sweep of the MR algorithm begins with the initialization of #(s|s+) and the corresponding
error covariance P(s|s+) at the finest level. Then, the estimate update is computed via:

2(sls) = &(sls+) + K(s)[y(s) — C(s)&(s|s+)] (42)
P(s|s) = [I - K(s)C(s)]P(s|s+) (43)
K(s) = P(s|s+)CT(s)V~*(s) (44)
V(s) = C(s)P(s|s+)CT(s)+ R(s) (45)

Denote the offspring of z(s) as 2(sa;),i = 1,---,q. For the quadtree model, ¢ = 4. The
updated estimates are predicted back up to the next level:

#(s|sc;) = F(sa;)#(sa;|se;) (46)
P(s|sc;) = F(s0;)P(s0y]sos)FT(se;) + Q(sa) (47)
Q(sa;) = A"l(sa;)B(sa;)Q(sa,-)BT(sa,')A'l(sa,-) (48)

The predicted estimates are then merged:

&(s|s+) = P(a|s+)EP"I(.slsa,-)i(slsa,-) (49)
P(sls+) = [(1-@)P7' + ) P (sfscs)] ™ (50)
i=1

The upward sweep given by the update, predict and merge equations proceeds recursively
up the quadtree. At the top of the tree, one obtains the smoothed estimate of the root
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node, that is, an estimate based on all of the data. The estimate and its error covariance
are given by:

£°(0) = #(0l0) (51)
P*0) = P(0/0) (52)
where the superscript s denotes the fact that these are smoothed estimates, that is, they are

based on all of the available data. The smoothed estimate and associated error covariance
at the root node provide initialization for the downward sweep, which is given by:

#(s) = #(sls) +J(s)[2°(s7) - (s7ls)] (53)
P*(s) = P(sls)+ J(s)[P*(s7) - P(s7l8)lJ%(s) (54)
J(s) = P(sls)FT(s)P~(s3ls) (55)

The estimates &*(s) at the finest level of the quadtree provide the solution to (26). The form
of the algorithm we have specified here, which generalizes standard Kalman filtering and
smoothing algorithms to the multiscale context, obviously assumes that the state covariance
P, is well defined and finite, and it is not difficult to see from (35) that this will be the case
if Py is finite. There is, however, an alternate form of this algorithm presented in [9, 10]
which generalizes so-called information form algorithms for standard state space models
and which propagates inverses of covariances. In this alternate form it is straightforward
to accommodate the setting of Py to infinity (which corresponds to P;! = 0), and we refer
the reader to [9, 10} for details. As mentioned previously, we have found that setting Pp

to a large but finite multiple of the identity, and then using (42) - (50), (53) — (55), yields
excellent results.

3 Experimental Results

3.1 Specification of the Multiscale Model

To specify the MR algorithm completely we need to choose the parameters in (19) - (21),
(27) - (28). We utilize the following parameterization of the model:

2(s) = (s7) + (47T Yu(s) (56)
y(s) = C(s)z(s)+ v(s) (57)
w(s) ~ WN(0,I) (58)
v(s) ~ WN(0,R(s)) (59)
zo ~ N(0,pl) (60)

where I is a 2 X 2 identity matrix. From (56) and (58) we see that the two components of
the optical flow field are modeled as independent sets of random variables, and that each
will have a fractal-like characteristic due to the choice of the driving noise gain B(s) (as
discussed in the previous section). We view p and b as free model parameters which can
be varied to control the degree and type of regularization in much the same way that the
parameter R in the smoothness constraint formulation (4) is used to tradeoff between the
data dependent and regularization terms in the optimization functional.
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As discussed previously, the measurements y(s) and measurement matrix C(s) come
directly from the image temporal and spatial gradients, which are available at the finest level
of the quadtree. In the experiments described below, we use a simple two-image difference
to approximate the temporal gradient. The spatial gradient is computed by smoothing the
image with a 3 x 3 Gaussian kernel followed by a central difference approximation. The
additive noise variance is given by R(s). We have found empirically that the choice R(s) =
maz(]|C(s)||?,10) worked well. This choice effectively penalizes large spatial gradients,
which are likely points of occlusion where the brightness constraint equation will not hold
[26]. The parameter p in the prior covariance of the root node was set to p = 100. The
distribution (60) on the root node effectively says that we are modeling the optical flow field
components as zero mean random processes. The prior covariance reflects our confidence
in this assumption. Since we do not believe that any prior assumption on the mean of
optical flow field components can be justified, we set the parameter p such that the implied
standard deviation is much larger than the sizes of the flow fields we expect to see.

We compare our approach computationally and visually to the the Gauss-Seidel (GS)
and successive over-relaxation (SOR) algorithms, which can be used to compute the solu-
tion of the smoothness constraint formulation given by (11) or (15). The details of these
algorithms can be found in Appendix B. Straightforward analysis shows that the GS and
SOR algorithms require 14 and 18 floating point operations (flops) per pixel per iteration
respectively. The number of iterations required for convergence of the iterative algorithms
grows with image size [16]. For reasonable size images (say, 512 x 512), SOR may require
on the order of hundreds of iterations to converge, so that the total computation per pixel
can be on the order of 10° — 10* flops. On the other hand, the MR algorithm requires 76
flops per pixel (see Appendix C). Note that the MR algorithm is not iterative. Thus, the
computational gain associated with the MR algorithm can be on the order of one to two
orders of magnitude.

3.2 Rotation Sequence

The first example is a sequence of Gaussian images modulated by a spatial sinewave. Specif-
ically, the first frame intensity pattern is given by:

E(z1,25,t1) = sin(atan(z; — 23, z; — 28)) exp(—-%z’Z’lz) (61)
_ 2] — 23
z = [ 2 — 28 ] (62)
1000 0O
Z = [ 0 500 ] (63)

where atan(zy, 23) is a 27 arctangent (atan(0,1) = 0, atan(1,0) = —7), h=1and M =6
(i.e. the image lattice is 64 X 64, cf. the discussion about discretization at the beginning of
Section 2.1). The second frame is equal to the first, rotated by 1 degree about pixel (23,28).
The first frame and actual optical flow are illustrated in Figures 7 and 8.

Figure 9 illustrates the flow computed using the MR algorithm. The computed flow
reflects the rotational nature of actual flow field, with error at the boundaries induced by
the quadtree structure of the prior model. The degree of “blockiness” is determined by the
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parameters b and u. Increasing the parameter b raises the level of uncertainty in the prior
model, which implies that the MR algorithm will tend to provide less regularization (and
hence less blockiness). A larger value of u increases the prior model correlation between
any two given states, thereby inducing more blockiness in the flow estimates.

Figure 10 illustrates the smoothness constraint (SC) flow estimates computed using the
SOR algorithm (the SOR algorithm was initialized with identically zero flow estimates).
The estimates required 50 SOR iterations to obtain, representing a factor of 50/4.2 = 11.9
more computation than the MR algorithm. Figure 11 illustrates the root mean square®
(rms) error in the flow estimates as a function of iteration for the SOR and GS algorithms.
As expected, the SOR algorithm is significantly faster than the GS algorithm (they will
converge to the same result since they are solving the same partial differential equation).
The rms error in the MR flow estimates is depicted as a straight line, since the algorithm
is not iterative.

The MR and SC flow estimates are not identical due to differences in the prior models.
If there is particular interest in obtaining the SC solution, the question arises of using the
MR solution as an initial guess for the iterative algorithms which compute the SC solution.
Note that the difference between the SC and MR flow estimates is associated with the non-
smooth, high frequency aspects of the MR flow at block edges. It is precisely these high
frequency components that are quickly removed by SOR or GS algorithms computing the
the smoothness constraint solution and suggests that the MR algorithm would provide an
excellent pre-conditioner for the iterative algorithms. Figure 12 illustrates the optical flow
estimates computed using a pre-conditioned SOR algorithm. The estimates correspond to
5 iterations of the SOR algorithm initialized with the MR flow estimates in Figure 9. In
this example, the total computation required by the pre-conditioned SOR approach is a
factor of 50/(4.2 + 5) = 5.4 less than that required by the standard SOR algorithm (i.e. the
algorithm initialized with identically zero flow estimates).

Figure 13 illustrates the rms difference between the smoothness constraint solution and
the intermediate values of the GS, SOR and pre-conditioned SOR estimates as a function
of iteration”. The error plot for the pre-conditioned SOR algorithm begins at 4.2 iterations
to take into account the initial computation associated with the MR algorithm (which
equals 4.2 SOR iterations). The figure demonstrates that the pre-conditioned SOR approach
provides a substantially less computationally intensive approach to finding the SC flow
estimates even for this small size problem.

3.3 Yosemite Sequence

The second example is a synthetic 256 x 256 image sequence which simulates the view from
a small plane flying through the Yosemite Valley®. The first image in the sequence is shown
in Figure 14 along with the actual flow field in Figure 15. The flow computed via the
MR algorithm is shown in Figure 16 and the smoothness constraint solution is shown in
Figure 17. The smoothness constraint flow estimates required 250 SOR iterations in this

%The rms error is only one measure of flow field quality and will not be appropriate for all applications
(e.g. segmentation or coding).

"The smoothness constraint solution is approximated as the SOR algorithm optical flow estimates after
500 iterations.

8This sequence was synthesized by Lyn Quam of SRI International.
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Figure 7: First frame of the “rotation” sequence.
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Figure 8: Rotation sequence true optical flow.
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Figure 9: Multiscale Regularization (MR) algorithm flow estimates: b= 10,p = 0.7.
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Figure 10: Successive over relaxation (SOR) algorithm flow estimates: R = 102, 50 it-
erations. The SOR algorithm required a factor of 11.9 more computation than the MR

algorithm in this example.
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Figure 11: Rms Error Comparison of MR, SOR and Gauss-Seidel (GS) algorithm flow

estimates for the rotation sequence.
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Figure 12: Pre-conditioned SOR algorithm flow estimates: R = 10%, 5 iterations. The

pre-conditioned SOR algorithm is initialized with the MR flow estimates.
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Figure 13: Rms Difference Comparison illustrates how the pre-conditioned SOR, SOR and

GS algorithms converge to the smoothness constraint solution. The plots show the rms
difference between the smoothness constraint solution and the estimates as a function of
iteration. All will eventually converge, but the pre-conditioned SOR algorithm converges
much faster than SOR or GS.

example, representing a factor of 60 more computation than the MR estimates. Note the
substantial increase over the previous example in the number of iterations required for the
SOR algorithm to converge. The number of iterations required for convergence depends on
several things, including the parameter R, the image gradient characteristics and the image
size. Theoretical analysis in [16] shows that the SOR algorithm requires on the order of N
iterations for an N x N image. Thus, we expect substantially more computational savings
as the image size increases.

An rms error comparison of the algorithms is shown in Figure 18. Neither of the es-
timates coincides with the actual optical flow, but they do have comparable rms error as
in the previous example. In addition, the figure illustrates the computational advantage of
the MR algorithm. In particular, the SOR algorithm is still reducing the rms error in its
flow estimates after 300 iterations, at which point the MR algorithm requires a factor of
300/4.2 = 71.4 less computation.

Again, there may be interest in obtaining the solution to the smoothness constraint
problem formulation. Figure 19 depicts the pre-conditioned SOR results (based on initial-
ization with the MR flow estimates in Figure 16) after 20 iterations. Visually, there is
almost no difference between the pre-conditioned SOR estimates and the estimates shown
in Figure 17. The computational gain associated with the pre-conditioned algorithm is 10.3.
Figure 20 illustrates how the GS, SOR and pre-conditioned SOR algorithms converge to
the smoothness constraint solution. For any given number of iterations, the pre-conditioned
SOR estimates are substantially closer to the final solution than the GS or SOR estimates.

This image sequence contains a problem often encountered in real images: regions of
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Figure 14: First frame of “Yosemite” sequence.

constant intensity. The problem is that the lack of gradient information in that region
implies that the optical flow is not well defined. The smoothness constraint and multiscale
prior models provide a means of interpolating out into these regions. The result of this is ap-
parent in the top portion of Figures 16 and 17. An advantage of the MR formulation is that
it accomplishes this extrapolation at an appropriately coarser, and hence computationally
simpler, scale.

3.4 Moving Vehicle Sequence

The third example is a real® 512 x 512 image sequence and depicts the view from a car
driving down a road. The first image in the sequence is illustrated in Figure 21. The MR
and SOR flow estimates are shown in Figures 22 — 23. In this example, the MR solution
required a factor of 800/4.2 = 190 less computation.

Since the true optical flow is not available (as it was in the previous simulated examples),
an alternate performance metric is needed. In particular, we will use a reconstruction error
metric, which is often used in contexts in which one is interested in using optical flow for
motion compensated coding. This metric measures the mean square difference between
the current image in a sequence and an estimate of it based on the computed optical flow,
the previous image, and a bilinear interpolation scheme [20]. The optical flow used is that
associated with the current image. Essentially, one estimates the brightness at any given
point by using the optical flow to project that point back to the previous image. In general,
that point will not be on the image plane, and the bilinear interpolation is required.

®The sequence was provided by Saab-Scania.
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Figure 17: SOR algorithm flow estimates:

R = 5002, 250 iterations.

required a factor of 60 more computation in this example.
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Figure 18: Rms Error Comparison of MR, SOR and Gauss-Seidel (GS) algorithm flow
estimates for the Yosemite sequence.
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Figure 20: Rms Difference Comparison illustrates how the pre-conditioned SOR, SOR and
GS algorithms converge to the smoothness constraint solution. The plots show the rms
difference between the smoothness constraint solution and the estimates as a function of
iteration. The pre-conditioned SOR algorithm is substantially closer to the final smoothness
constraint result after any given number of iterations.
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Figure 21: First frame of “Moving Vehicle” sequence.

Figure 24 depicts the rms reconstruction error based on the MR, SOR and GS ap-
proaches as a function of iteration and illustrates that two approaches provide comparable
reconstruction error results, just as they provided comparable rms error results in the previ-
ous examples. In addition, it illustrates the computational advantage of the MR algorithm.
Indeed, the SOR algorithm is still improving its optical flow estimates (with respect to this
metric) after 200 iterations, at which point the MR algorithm requires a factor of 200/4.2
= 47.6 less computation.

Again, we illustrate how the MR algorithm can be used as a pre-conditioner. Figure 25
depicts pre-conditioned SOR optical flow estimates after 30 iterations. The pre-conditioned
SOR results are nearly indistinguishable from the standard SOR estimates in Figure 23 and
represent a factor of 23 reduction in computational cost. Figure 26 provides a view of how
the GS, SOR and pre-conditioned SOR algorithms converge to the smoothness constraint
estimates and illustrates that the pre-conditioned SOR algorithm converges significantly
faster than the other algorithms.

Note finally that the number of iterations required for convergence in this example is
greater than that in the previous two, again supporting the theoretical results in [16]. Thus,
one can expect to achieve greater computational savings through the MR algorithm as the
image size grows.

4 Conclusions

We have presented a new approach to the computation of optical low. A new problem
formulation is developed which utilizes the “fractal prior” interpretation of the smoothness
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Figure 26: Rms Difference Comparison demonstrates how the MR solution may be used as

an initial condition for the iterative algorithms computing a smoothness constraint solution.

constraint to motivate regularization based on a recently introduced class of multiscale
stochastic models. The approach has the advantage that the solution of the new problem
formulation can be computed very fast, in comparison to the solution of formulations based
on a smoothness constraint. In fact, the computational savings realized are on the order
of a factor of 10 to 100. Larger gains are associated with larger images since the iterative
approaches associated with the smoothness constraint solution take longer to converge as
the image grows, whereas the per pixel computation associated with the MR algorithm is
independent of image size.

The approach has a number of advantages in addition to the reduction in computational
cost. First, multiresolution representations of the flow field are available and, although we
have not taken advantage of it in this paper, the MR algorithm also allows for multireso-
lution measurements of the optical flow. Second, error covariance information is available,
allowing one to assess the quality of the estimated optical low. Finally, the MR algorithm
is an excellent pre-conditioner for algorithms computing a solution based on a smoothness
constraint formulation. In addition, while we have not pursued it here, the multiresolution
philosophy introduced here may offer a promising approach to motion-compensated image
sequence coding. In particular, although we used the coding metric of reconstruction error
as the basis for the comparison of the SC and MR approaches in Section 3.4, the methods
presented here would not be the method of choice for that problem. In particular, motion-
compensated coding algorithms designed specifically to minimize this criterion [3, 20, 33]
will generally outperform the SC and MR approaches (which are not). However, the com-
putationally efficient MR algorithm can be used as an initial preconditioning step for such
coding algorithms. In addition, one can also imagine a second way in which MR ideas
could be used in this context. In particular, one of the problems with the SC and MR based
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methods is the differential form of the brightness constraint which, given the discrete nature
of spatial and temporal sampling, is only valid for relatively small interframe displacements:
In contrast, methods such as [3, 20, 33] use a direct displaced frame matching metric, which
is nothing but the integrated version of the brightness constraint. A common approach to
dealing with larger displacements with the differential brightness constraint is to spatially
blur the image sequences — i.e. to consider lower resolution versions of the image to estimate
larger displacements [12, 13]. What this suggests is an MR approach in which we not only
have a multiresolution model for optical flow but also multiresolution measurements — i.e.
measurements as in (27) but for triples s = (m,,j) at several scales. The development of
such an approach remains for the future.

Finally, in this paper we have focused on a particular image processing problem, the
computation of optical low. However, we believe that the multiscale stochastic modeling
approach can be more generally useful. In particular, it may provide a computationally
attractive alternative to standard approaches to the broad class of estimation problems in
which the underlying field to be estimated is modeled as a Gaussian Markov random field
or as the solution of noise driven partial differential equations, or in which a “smoothness
constraint” type regularization is employed. Viewing the multiscale models as an alternative
underlying model should lead to significant computational savings for such problems.

Acknowledgment: The authors gratefully acknowledge the contributions of Dr. Albert
Benveniste who, among other things, first suggested that the problem of computing optical
flow would be well suited to this approach.
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A Non-homogeneous Tree Structures

We made the assumption at the beginning of Section 2.1 that the image lattice is square,
and that the number of rows is equal to a power of two. The reason we have done this
is because of the fact that the multiscale model described above is defined on a quadtree
structure. There are at least two ways to relax the assumption. First, we could simply zero
pad the image lattice to make it fit the quadtree structure. In some sense, we are changing
the image lattice to fit the modeling structure. A second, slightly more elegant approach,
would be to change the modeling structure to accommodate the lattice. In particular, we
would like to have a structure which gives us the proper number of nodes on the finest level.
The quadtree structure is homogeneous in the sense that each parent has four offspring;
what we are proposing are non-homogeneous tree structures in which different parents may
have different numbers of offspring. For example, suppose one had a 6 x 9 lattice. Figure 27
illustrates a sequence of grids that one might use to model accommodate this lattice. In the
first level, the root node has six offspring, two in the row direction and three in the column
direction. At the second level, each node has nine offspring, three in the row direction and
three in the column direction. Thus, at the finest level there is a 6 X 9 lattice. This example
illustrates only one simple suggestion, More complicated tree structures could be derived,
and certainly the idea could be combined with zero padding.

B The Gauss-Seidel and Successive Over-Relaxation Algo-
rithms

One can show using the calculus of variations that the solution to (4) satisfies the following
set of coupled partial differential equations [14]:

vizy, = RE, (E;+ VE.z) (64)
v2w2 = REzz(Et+VE-13) (65)
where:
B, = -2E(z,21) (66)
z1 = le 1y 42y
0
E;z = b—;-z-E(Zl, 22, t) (67)
a
Et = &E(Zl,th) (68)
[0z 82T
> = 5 (69)

and where (7?2 is the Laplacian operator, #; and z, are the first and second components
of the vector z, and R is the parameter controlling the tradeoff between the smoothness
and data dependent terms in (4). Denote 2(i,j) = 2(¢h, jh,t) where h is the grid spacing.
Discretizing (64), (65) on a uniform grid {(%,7)|i € {1,...,Z1},j € {1,..., Z2}} leads to the
following equations at each point:

%y —4z1;; = R RE, (E.=1;+ E.,22,; + Et) (70)
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Figure 27: Non-homogeneous tree structure for lattices which are not square. The grid
structure is a simple extension of the quadtree structure in that it allows for varying numbers
of “offspring” from each parent. The figure illustrates a hierarchy of grids for a 6 x 9 lattice.
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52 - 42’2,;”]' = th‘EzZ(Ezl zl,ivj + Ezzwzyi,j + 'Et) (71)

where:

zz’i)j

{ oy } = 2(iyJ) (72)

]
-

21,1, T 21,i+1,5 + 14,1 + 1,541 (73)
2 = @341, + T2i41,; + L24,5-1 + L2541 (74)

8t

The GS and SOR algorithms separate the image grid into two sets of points. These are
generally referred to as the Red points (i + j is even) and the Black points (i + j is odd).
The Gauss-Seidel iterations can be derived by solving (70) and (71) for z;;; and 5 ;:

GS Red Points

eits = (87 — R*RE, (E,23,; + Et))/dy; (75)
wg,z“j = (5121 - thEzz (Ezl w;‘i} + Et))/dzai,j (76)

GS Black Points
efty = (871 - K’RE, (E,23]} + B))/d (77)
e3tt = (83% - W’RE,(E,27}; + Bt))/da,i; (78)

where:

dii; = 4+ h*RE,, (79)
dri;j = 4+h’RE,, (80)

The SOR algorithm is very similar to the GS algorithm, except that certain relazation
parameters are introduced to increase the convergence rate. The SOR iterations are given
by:

SOR Red Points

it = (1- w52t ; + 01,,i(87 — RPRE,, (E,25;; + Ei))/d1:;  (81)

ety (1 — wa,;)25; ; + w2,i,(25 — K2 RE,, (B, 2715 + Ey))/di;  (82)

SOR Black Points

eptl = (L— w52t ; +w1:(E7T — B2RE,, (B, 2515 + Ei))/dy;  (83)

23t = (1- waj)es,; + we,:j(B5T — RPRE,,(E, 2715 + Eb))/d2s;  (84)
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where:

2
R ATt e
2
e 1+ (1-p3,,)7 (%)
P1,i,j dlii’j(cos Z:{- T + cos -Z;:—_T) (87)
P2, Fay (cos Z1:- T + cos Zzi 1) (88)

From (75), we see that each GS iteration requires 10 adds and 4 multiplies per pixel
per iteration. From (81), we see that each SOR iteration requires 12 adds and 6 multiplies
per pixel per iteration'®. Thus, GS and SOR require 14 and 18 flops per pixel per iteration
respectively.

C MR Algorithm Complexity Analysis

In this section we analyze the computational complexity of the MR algorithm. The anal-
ysis applies to the specific model given by (56) — (60). The model is repeated here for
convenience:

2(s) = a(s7)+ (5475 Yu(s) (89)
y(s) = C(s)z(s)+ v(s) (90)
w(s) ~ N(0,I) (91)
v(s) ~ WN(0,R(s)) (92)
zo ~ N(0,pl) (93)

where R(s) = max(||C(s)||,10). The analysis below takes into account all floating point
adds, multiplies and divides.

Consider first the update step given by (42) — (45). P(s|s+) is initialized with pI. Com-
putation of V—1(s) requires 6 floating point operations (the inverse requires 1 divide since
V(s) is a scalar and the comparison required to compute R(s) is not counted). Computation
of K(s) requires 3 flops. Computation of P(s|s) requires 7 flops (Perform the C(s)P(s|s+)
first, and use the fact that P(s|s) must be symmetric). Initialize £(s|s+) with zero. Com-
putation of £(s|s) then requires 2 flops. The update step is required only at the finest level,
since this is the only place we have data for in the optical flow problem. Thus, the total
computation associated with this step is 18 x 4’ flops (I is defined to be the number of levels
in the quadtree. There are 4! points at the finest level.)

Next, consider the prediction step, (46) — (48). Computation of Q(sc;) is negligible
because this parameter varies only as a function of scale (level). Computation of P(s|sa;)

10 A]] additions and multiplications which are redundant from iteration to iteration have been ignored. For
instance, 1 — wy ¢,; does not count as an add in (81) since one could compute this once at the start instead
of every iteration.
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requires 5 flops (note that F(s) and Q(sca;) are diagonal multiples of the identity). Compu-
tation of the predicted estimate £(s|sc;) requires 2 flops. These computations must be done
at levels 1 through I. Thus, the total computation associated with this step is approximately
7 x 4/3 x 4' flops.

Next, consider the merge step, (49) — (50). Computation of P(s|s+) requires 44 flops
(there are five 2 X 2 inverses requiring 6 flops apiece, and the computation of (1 — q)P;i)
is negligible since it only varies with scale. The inverses require only 6 flops because the
matrices involved are 2 X 2 and symmetric.) Computation of £(s|s+) requires 36 flops. The
merge step must be done at levels 0 through ! — 1. Thus, the total computation associated
with this step is 80 x 1/3 x 4! flops.

Finally, consider the steps in the downward sweep, (53) — (55). Computation of J(s)
requires 12 flops (the matrix P(s7|s) has already been inverted in (50), F(s) is a multiple
of the identity and J(s) is symmetric.) Computation of P,(s) is not required, unless one
is explicitly interested in the error covariance of the smoothed estimate. Computation of
#,(8) requires 10 flops. The smoothing step must be done at levels 1 through /. Thus, the
total computation associated with this step is 22 x 4' flops.

We can now add up all of the computations associated with the MR algorithm. There
are 4! pixels in the problem domain, and thus the algorithm requires 18 + 28/3 + 80/3 +
22 = 76 flops per pixel. We note that this is a lower bound on the number of flops per
pixel in any implementation of the algorithm and that the implementation with the lowest
number of flops per pixel may not be the best. The reason is simply that there may not be
enough memory available to keep all intermediate calculations around (such as the inverses
computed in (50) and reused in (55)). We compute the complexity of the GS and SOR
algorithms in the same way (i.e. all intermediate results are assumed to be available), and
thus the computational comparison we make between these algorithms is based on optimal
(in terms of the number of flops) implementations. Suboptimal implementation of the MR
algorithm will lower its computational advantage, but any reasonable implementation (for
instance one which saves just &(s|s), P(s|s) and the measurement data) will still provide a
significant savings over the SOR and GS algorithms.
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