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Abstract

Recently, a framework for multiscale stochastic modeling was introduced based on
coarse-to-fine scale-recursive dynamics defined on trees. This model class has some at-
tractive characteristics which lead to extremely efficient, statistically optimal signal and
image processing algorithms. In this paper, we show that this model class is also quite
rich. In particular, we describe how 1-D Markov processes and 2-D Markov random
fields (MRF's) can be represented within this framework. The recursive structure of
1-D Markov processes makes them simple to analyze, and generally leads to compu-
tationally efficient algorithms for statistical inference. On the other hand, 2-D MRF's
are well known to be very difficult to analyze due to their non-causal structure, and
thus their use typically leads to computationally intensive algorithms for smoothing and
parameter identification. In contrast, our multiscale representations are based on scale-
recursive models and thus lead naturally to scale-recursive algorithms, which can be
substantially more efficient computationally than those associated with MRF models.
In 1-D, the multiscale representation is a generalization of the mid-point deflection con-
struction of Brownian motion. The representation of 2-D MRF's is based on a further
generalization to a "mid-line" deflection construction. The exact representations of 2-D
MRF's are used to motivate a class of multiscale approximate MRF models based on
one-dimensional wavelet transforms. We demonstrate the use of these latter models in
the context of texture representation and, in particular, we show how they can be used
as approximations for or alternatives to well-known MRF texture models.
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1 Introduction

In this paper, we describe how to use a class of multiscale stochastic models to represent 1-D
Markov and reciprocal processes and 2-D Markov random fields (MRF's). Markov models in
one dimension provide a rich framework for modeling a wide variety of biological, chemical,
electrical, mechanical and economic phenomena [7]. Moreover, the Markov structure makes
the models very simple to analyze, so that they often can be easily applied to statistical
inference problems (such as detection, parameter identification and state estimation) as well
as problems in system design (e.g. control and queuing systems).

In two dimensions, MRF's also have been widely used as models for physical systems
[3, 4, 39, 23], and more recently for images. For example, Gaussian fields [45] have been
used as image texture models [17, 29, 10, 37], and the more general Gibbs fields have
been used as prior models in image segmentation, edge detection and smoothing problems
[5, 25, 40, 38]. Causal sub-classes of MRF's, such as Markov Mesh Random Fields [1, 21] and
Non-Symmetric Half-Plane Markov chains [28] lead to two-dimensional versions of Kalman
filtering algorithms when the fields are Gaussian [46]. In addition, efficient fast Fourier
transform algorithms are available for stationary Gaussian fields defined on toroidal lattices
[18, 29, 11]. In general, however, Markov random field models lead to computationally
intensive algorithms (e.g. stochastic relaxation [25]) for estimation problems. In addition,
parameter identification is difficult for MRF models due to the problem of computing the
partition function [4, 41]. Thus, while Markov random fields provide a rich structure for
multidimensional modeling, they do not generally lead to the simple analysis and compu-
tationally efficient algorithms that 1-D Markov processes do.

These computational issues are the most important obstacle to the application of MRF
models to a broader range of problems, and are the principal motivations for the in-
vestigation in this paper of the richness of the class of multiscale stochastic processes
[15, 13, 14, 8, 9], and in particular of how such multiscale processes can be used to exactly
and approximately represent Markov random fields. Our multiscale stochastic processes
are described by scale-recursive models, which lead naturally to computationally efficient
scale-recursive algorithms for a variety of estimation problems. For instance, fast smoothing
algorithms are developed for a class of Gaussian processes in [15, 13, 14]. Also, Bouman
and Shapiro demonstrate how a related multiscale discrete random field leads to an efficient
sequential MAP estimator [8, 9]. In this paper, we demonstrate how a simple generalization
of the models in [15, 13, 14] leads to classes of models which can be used to represent all
1-D Markov processes and 2-D Markov random fields. The significance of this result is that
it suggests that this multiscale modeling framework may be a decidedly superior basis for
image and random field modeling and analysis than the MRF framework both because of
the efficient algorithms it admits and because of the rich class of phenomena it can be used
to describe.

The efficient algorithms to which the multiscale framework leads and which motivate
our work here have already led to interesting and substantial new developments in a num-
ber of areas. In addition to the work on image segmentation described in [8, 9], in [35]
we exploit the multiscale framework to develop new and efficient algorithms for estimating
optical flow in image sequences. Standard formulations of this problem require the compu-
tationally intensive solution of an elliptic partial differential equation which arises from the
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often used "smoothness constraint" type regularization, corresponding to regularizing the
problem with an MRF prior. We utilize the interpretation of the smoothness constraint as a
"fractal prior" to motivate regularization based on one of our multiscale models. The result
is a slightly different prior model, which yields comparable root-mean-square (rms) error
performance to that achieved using the standard MRF prior model, but with drastically
reduced computational load, In particular, in contrast to the iterative algorithms needed
to solve the elliptic equations corresponding to the MRF prior, our multiscale algorithm
is scale-recursive, yielding the optimal estimate in a finite number of steps with constant
per pixel computational load. Figure 1, taken from [35], is representative of the results.
Here, the rms error is plotted for our multiscale regularization (MR) algorithm and versus
iteration for two iterative methods for solving the MRF-based estimation problem. Since
the multiscale method is not iterative, its rms performance is plotted as a horizontal line.
The entire multiscale algorithm has a computational load roughly equal to 4.2 iterations
of the iterative successive over-relaxation (SOR) algorithm, indicating a considerable com-
putational savings. Moreover, not only does this computational savings grow with image
size (because of the constant per pixel complexity of our approach) but also this algorithm
yields error covariance information as part of its computation, something that is not feasible
in the smoothness constraint formulation and that can be used to determine the optimal
resolution for flow estimation at each point in the image frame (see [35]). Based on this
evidence of its promise in practice, it is natural, then, to ask the question of how rich a class
of phenomena can this multiscale formalism capture? The answer provided in this paper is
that this class is extremely rich indeed.

The multiscale representations developed here rely on a generalization of the mid-point
deflection technique for constructing a Brownian motion in one dimension [20, 24, 33]. To
construct a Brownian motion sample path over an interval by mid-point deflection, we start
by randomly choosing values for the process at the mid-point and the two boundary points of
the interval according to the joint probability distribution implied by the Brownian motion
model. We then use these three values to compute the expected values of the Brownian
motion at the one-fourth and three-fourths points of the interval. The expected value at
the one-fourth (three-fourths) point corresponds to the average of the initial and mid-point
values (mid-point and final values) as shown in the upper left of Figure 2. Random values,
with appropriate error variances, are then added to the predictions at each of these new
points. The critical observation to be made here is that, since the Brownian motion process
is a Markov process, its value at the one-fourth point, given the values at the initial point
and mid-point is independent of the process values beyond the mid-point, in particular the
values at the three-fourths and end-points of the interval. Obviously, it is also the case
that the value at the three-fourths point is independent of the values at the initial and
one-fourth points, given the values at the mid-point and final point. Consequently, the
random deflection terms used to generate the values of the Brownian motion at the one-
fourth and three-fourths points can be chosen independently. In addition, we see that the
Markov property of Brownian motion allows us to iterate this process, generating values at
increasingly dense sets of dyadic points in the interval.

There are several important observations to be made about the preceding development.
The first is that, by linearly interpolating at each level in this procedure, as illustrated in
Figure 2, a sequence of continuous approximations of a Brownian motion is constructed, and
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the statistics of these approximations converge to those of a Brownian motion [20]. Indeed,

this sequence of linear spline approximations can be interpreted exactly as a non-orthogonal

multiscale approximation using as the scaling function the triangular "hat" function [42]

which is the integral of the Haar wavelet [24]. Second, as we will see, the structure of

this mid-point deflection construction fits precisely into the multiscale modeling framework

developed in [15, 13, 14], and corresponds simply to a particular choice of the parameters

in the multiscale model. Moreover, this concept generalizes, allowing us to show that all

1-D reciprocal and Markov processes can be represented by multiscale stochastic models in

a similar way. Thus, in one dimension we will show that the class of processes realizable via

multiscale, scale-recursive models is at least as rich as the class of all Markov and reciprocal

processes. In fact, as we will illustrate, it is significantly richer than this.

Furthermore, these ideas can be extended to multidimensional processes. In particular,

we show how a generalization of the mid-point deflection concept to a "mid-line" deflection

construction can be used to represent all 2-D MRF's with multiscale models. In particular,

the key to our multiscale representations in one or two dimensions is a partitioning of the

domain over which the process is defined so that the coarse-to-fine construction of the

process can proceed independently in each subdomain. Markovianity plus knowledge of the

process on the boundaries of the subdomain partition make this possible. The fundamental
difference, however, between the 1-D and 2-D cases is due to the fact that boundaries in

72 correspond to curves or in Z2 to sets of connected lattice sites, as opposed to pairs

of points in one dimension. Because of this difference, exact multiscale representations of

MRF's defined over a subset of Z2 have a dimension which varies from scale to scale, and

which depends on the size of the domain over which the MRF is defined.

In addition to the exact representations, we will introduce a family of approximate

representations for Gaussian MRF's (GMRF's) based on wavelet transforms. As we have

indicated, maintaining complete knowledge of a process on 2-D boundaries leads to models

of scale-varying dimension, which can become prohibitively large for domains of substantial

size. On the other hand, at coarser scales, it would seem reasonable to keep only coarse

approximations to these boundary values, and this leads naturally to the use of a multiscale

change of basis for the representation of the values of a 2-D process along each 1-D boundary.

That is, through our mid-line deflection based models, we are led to the idea of using one-

dimensional wavelet transforms in the representation of the values of a two-dimensional

GMRF. The result is a family of models, ranging from those which keep only the coarsest

wavelet coefficients along each 1-D boundary to the exact model which keeps them all. This

family of approximate representations allows one to tradeoff the complexity and accuracy

of the representations, while also providing a framework for the development of extremely

efficient estimation and likelihood calculation algorithms. We demonstrate our framework
for wavelet-based approximate representation of Gaussian MRF's in the context of natural

texture representation [10, 17, 16, 29, 37].

This paper is organized as follows. Section 2 describes the class of multiscale stochastic

models that we use. Section 3 develops the details of the representation of Brownian motion

discussed above, and generalizes this idea to allow the representation of all 1-D Markov and

reciprocal processes. Section 4 then describes how these ideas can be further generalized

to provide exact and approximate representations of MRF's. Section 5 illustrates how

the approximate models can be used to represent GMRF texture models. In our opinion,
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one of the conclusions that can be drawn from these results is that this multiscale modeling
framework holds substantial promise as an alternative to the MRF framework as it possesses
advantages both in terms of the efficient optimal algorithms it leads to and in the expressive
power it holds. Although a number of interesting and substantive problems remain to be
investigated, practical applications of the framework are already emerging and several of
these, as well as the conclusions of this paper, are discussed in Section 6.

2 Multiscale Stochastic Models

In this section we describe the classes of multiscale stochastic models to be used in this
paper. A class of models for Gaussian processes is described first, followed by a general-
ization allowing for more general (non-Gaussian) processes. For simplicity, in this section
we introduce the basic structure and form of our models in the context of representing 1-D
signals and processes. The extension of the models to 2-D is conceptually straightforward,
adding only notational and graphical complexity, and thus we defer the introduction of this
extension until Section 4, where it is needed.

2.1 Gaussian Multiscale Models

The models presented here and introduced in [15, 13, 14] describe multiscale Gaussian
stochastic processes indexed by nodes on the dyadic tree in Figure 3. Different levels of the
tree correspond to different scales of the process. In particular, the 2

m -1 values at the mth
level of the tree are interpreted as information about the mth scale of the process, where the
notion of "information" at this point is abstract. For instance, values of the process at level
m may correspond to averages of pairs of values at level mn+ 1. In this case, one can interpret
the values of the multiscale process as scaling coefficients in a Haar wavelet representation of
the process at the finest scale [42]. However, there are many other possible interpretations of

the information represented at each level in the tree. For example, values of the multiscale
process at a certain level could also correspond to new details of the process not present
at coarser resolutions. In this case, the process values would be interpreted as the wavelet
coefficients in a wavelet representation of a 1-D function or sequence. Alternatively, the
values at different levels may correspond to decimated versions of the process at the finest
scale. As we will see, this latter interpretation applies to our multiscale representations
of reciprocal processes and MRF's, although the representations can also be interpreted in
terms of scaling coefficients corresponding to particular non-orthogonal expansions.

We denote nodes on the tree with an abstract index s, and define an upward shift
operator I such that sj is the parent of node s, as illustrated in Figure 3. Also, we define
the scale of node s, i.e. the level of the node, as m(s). The stochastic tree process x, C 7Z n

is then described via the following scale-recursive dynamic model:

s = Axs + Bw, (1)

under the assumptions6 xo - A/(O, Po) and w, - Af(O, I), where w, E C 7
m and A, and B8

are matrices of appropriate size. The state variable x 0 at the root node of the tree provides

6 The notation z a J\f(m, P) means the random vector z is normally distributed with mean vector m and
covariance matrix P.
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an initial condition for the recursion. The driving noise w, is white and is independent of
the initial condition. Interpreting each level as a representation of one scale of the process,
we see that (1) describes the evolution of the process from coarse to fine scales. The term
A,xZ, represents interpolation or prediction down to the next level, and Bw, represents
new information added as the process evolves from one scale to the next. The choice of
the parameters As and Bs and their dependence (if any) on the node s, depends upon the
particular application and process being modeled [15, 13, 14, 35]. In the context of this
paper, as we will see, the parameters of the model (1) are determined in a constructive
fashion in order to represent the reciprocal process or MRF of interest.

Note that any given node on the dyadic tree can be viewed as a boundary between three
subsets of nodes (two corresponding to paths leading towards offspring and one correspond-
ing to the path leading to a parent). An extremely important property of the scale-recursive
model (1) is that not only is it Markov from scale-to-scale, but, conditioned on the value of
the state at any node, the values of the states defined at the corresponding three subsets
of nodes are independent. This fact implies that there are extremely efficient and highly
parallelizable algorithms for optimal estimation and likelihood calculation based on noisy
measurements ys E RP of the process of the form:

s = Css + vs (2)

where v, - A(O, Rs) and the matrix C, can specify, in a very general way, measurements
taken at different times or spatial locations and at different scales [2, 15, 13, 14, 34]. For
example, as mentioned in the Introduction, the extension of one of the optimal estimation
algorithms to 2-D and quadtrees is applied in [35] to develop a new scale-recursive approach
to dense motion-field estimation in image sequences that is considerably faster than previ-
ously developed algorithms. In addition, the likelihood calculation algorithm can be used,
together with the results presented here, for texture identification [34, 36]. An important
point about these algorithms, which is of particular significance for 2-D processing, is that
they are recursive and not iterative, and in fact have constant complexity per data point
or pixel. This is in sharp contrast to the usual iterative algorithms associated with the
processing of MRF's [25].

2.2 General Multiscale Models

As we indicated in the preceding section, a basic property of the model (1) is the Marko-
vianity of the state with respect to the ordering structure defined by the dyadic tree. More
precisely, let T, i = 1, 2, 3 denote the three subsets of states which correspond to viewing
node s as a boundary between the three subsets of nodes corresponding to paths leading
towards the parent and two offspring nodes7. Then,

PVl,V2,V3 J (T1, T2 , T3X) = P.V1IX(T}IX")P.~,.(T2 I X,)P.3I.,(3jX,) (3)

By requiring only this property to hold, we obtain a much wider class of processes than
that given by (1), but still retain the essential properties leading to the efficient algorithms

7We stress the difference here between subsets of nodes (e.g. (sl, s2, .}) subsets of states (e.g.
{ x, X,8 ))2,.
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mentioned above. In particular, the property (3) not only implies that the tree processes

are Markov in scale, from coarse-to-fine, but also that the conditional pdf of the state at

node s, given the states at all previous scales, depends only on the state at the parent node

so:

PxJla,,m(,.)<m(s)(XslXr,m(Co ) < m(s)) = PxJl.,(XsIXsy) (4)

Such tree processes are naturally defined by specifying the parent-offspring conditional
pdf's, along with a pdf for the state at the root node of the tree. A simple example of

a stochastic process in this general class is the following discrete-state stochastic process

X8 E {0, 1, , L} with parent-offspring conditional probability mass functions given by:

fm(s) if X 8 = X (5)
(1 - Om(,))/L if X, f X(s

where p,,(Xo) = 1/(L + 1) for Xo E {0, 1, , L} and 0m(,) is a number between 0 and 1

which may vary with scale m(s). A class of processes with this structure and defined on a

quadtree has been proposed by Bouman for segmentation applications [8, 9].

Finally, we stress that while (3) implies that a tree process is Markov in scale, the set

of states z m at scale m, viewed as a sequence of length 2 m-1 is not Markov for an arbi-

trarily chosen set of parent-offspring pdf's. This point can be appreciated by, for example,

computing the joint pdf for the four values at the third level of the multiscale process given

by (5), and directly checking the conditions required for Markovianity of the single level

sequence'. However, as we show in the next section, the parent-offspring conditional pdf's
can be chosen such that the finest level of the tree process can be used to represent any 1-D

Markov or reciprocal process, with higher levels in the tree corresponding to representations

of the process at coarser resolutions.

3 Representation of 1-D Reciprocal and Markov Processes

In this section we describe the basic properties of reciprocal processes in one dimension, in-

troduce and develop representations of reciprocal processes in terms of multiscale stochastic

models, and present several examples.

3.1 1-D Reciprocal Processes

A reciprocal process is a first-order MRF on the real line. More precisely, a stochastic process

zt, t E 7Z is reciprocal9 if it has the property that the conditional probability distribution

of a state in any open interval (T 1,T 2 ), conditioned on the states outside of this interval,

depends only on the boundary states ZT1,ZT 2 [22, 32]. That is, for t C (T 1 ,T 2 ):

Pztzr,,TE(Tl,T2)c(ZtIlZr,r C (Ti,T 2) ) = PZtIZTl,ZT2 (ZtIZT, ZT 2 ) (6)

8The process is Markov only if 0m(,) = 1/(L + 1). In this case, the values of the process at any level in
the tree are independent of one another.

9 The discussion here refers only to first-order reciprocal processes. Extension to higher-order processes
is straightforward [22].
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where (T 1, T2)c denotes the complement of the open interval (T 1, T2 ). Reciprocal processes
defined on the integers Z satisfy the same property with the continuous interval (T 1, T2 )
replaced by the discrete interval {T1 + 1, T1 + 2, .., T2 - 1}

Reciprocal processes are closely related to the class of Markov processes. A process zt on
1R or Z is Markov if past and future values of the state are independent given the present.
This means that for t 2 < t3 :

pzt 3 Jztjtl_ t 2 (Zt3 1Zt,tl <_ t 2 ) = PZt3 1t (Zt3 Zt2) (7)

As discussed in [1, 22], if a process is Markov then it is also reciprocal, whereas reciprocal
processes are not necessarily Markov.

3.2 Exact Multiscale Representations of 1-D Reciprocal Processes

In the introduction we described a construction of a Brownian motion bt over the unit
interval via mid-point deflection. As we noted, this corresponds precisely to one of the
Gaussian multiscale stochastic models described in Section 2. To see this, consider the
following process. At the coarsest level, the initial state x0 is a three-dimensional vector
whose pdf is given by the joint pdf for the values of a Brownian motion at the initial, middle
and final points of the interval:

bo
O- bo0.5 s A (O, Po) (8)

bl

00 0 
P0 = 0 0.5 0.5 (9)

0 0.5 1

where we have used the facts that bo = 0, be is an independent increments process, and for
t 1 < t 2, bt2 - bt, A;(0,t 2 - t1 ).

Choosing a value for xo as a sample from this distribution corresponds to the first step
in the mid-point deflection construction of Brownian motion. The second step in the mid-
point deflection construction is the specification of values for the Brownian motion at the
one-fourth and three-fourths points. In the context of our multiscale modeling framework,
we define two state vectors at the second level of the dyadic tree in Figure 3, each again a
3-tuple. The state on the left represents the values of the Brownian motion at the initial,
one-fourth and middle points of the interval, [bo, bo .25, bo.5], and the state on the right
represents the corresponding values in the right half-interval, [bo.5, b0.75, bl]. The sample at
the quarter point is given by linear interpolation of bo and b0 .5 , plus a Gaussian random
variable with variance equal to the variance of the error in this prediction:

1
bo.25 = -(bo + bo.5) + e0. 25 , eo.25 f(0, 0.125) (10)

Likewise, b0 .75 is chosen by averaging the end points of the right half-interval, bo.5 and bl,
and adding in a random value, independent of, and identically distributed to, the deflection
term used to create the sample at the one-fourth point.

8



The construction of bo.25 and bo0.75 in the multiscale model is precisely the same as the
mid-point deflection construction of these values. Values of the process at successively
finer sets of dyadic points are generated in the same way. At the mth scale, the values of
the process at t = k/2m, k = 0, 1,...,2m are represented with 2m-1 state vectors, each
containing the values of the process at three points, as shown in Figure 4. At any level,
each state is a linear function of its parent, plus an independent noise term. Thus, this
construction fits precisely into the multiscale modeling framework given by (1) (see Section
3.3 for the precise formulae for A8 and Bs).

Representation of more general 1-D reciprocal processes via multiscale models is a simple
extension of the above idea. To construct a multiscale model for a particular reciprocal pro-
cess zt, t E [0, 1], start by choosing the state at the coarsest level as a sample from the joint
distribution p,,zo,zo.,Z(Zo, Z0.5, Z 1). This generalizes the choice in the construction above
in which the state at the top level is chosen using the Gaussian distribution corresponding
to a Brownian motion. The two state vectors at the second level are again the three-
dimensional vectors [zo, Z0. 25, z0.5] and [z0. 5, Z0.75, zl], where values for the half-interval mid-
points are chosen as samples from the conditional distributions Pzo,2 5 1z0.o,z (Z0 . 25 IZO, Z0.5)
and PzO.7 5 Izo,, ,z (Zo.75 Zo.5, Z1 ), respectively. Since the process is reciprocal, z0. 2 5 and z0.7 5

are conditionally independent given the state at the first level, and thus the modeling struc-
ture fits precisely into the more general non-linear model class described in Section 2.2.

The construction above assumes that the process is defined over a continuous interval. In
practice, we are typically concerned with processes zt on a discrete interval, t E {0, 1, . , T}.
If T = 2 N for some integer N, then we can use essentially the same construction as for the
continuous case above. Specifically, xo - [o, zT/2, ZT] is a random vector chosen from
the appropriate distribution for the process of interest. The states at the second level are
[Zo, ZT/4, zT/21 and [ZT/2, Z3T/4, ZT], with the half-interval mid-points again chosen using the
appropriate distribution. Since there are only a finite number of points in the discrete
process, only a finite number of levels are needed to exactly represent it. In particular, with
T = 2 N, N levels are required.

There are several observations to be made about the continuous and discrete-time con-
struction we have just described. The first is that there is no fundamental difficulty in
choosing a point other than the mid-point at each level in these constructions. For example,
in the construction of Brownian motion, starting from the initial set of points represented
in the root node state, we could next generate any pair of points on either side of 0.5, e.g.
bo.1 and b0.7. However, the regular structure implied by the choice of mid-points may be
of some value for processes such as Brownian motion which have stationary increments, as
they lead to models in which the model parameters, such As and Bs in (1), have very simple
and regular characterizations as a function of node s and scale m(s). This regularity in turn
leads to simplifications in the structure of algorithms for estimation and signal processing,
requiring fewer distinct gains to be calculated and, if parallel implementation is considered,
allowing SIMD (single instruction, multiple data) rather than MIMD (multiple instruction,
multiple data) implementations.

Secondly, in discrete-time, there will always be at least some degree of irregularity in
the multiscale model if the process is defined over t C {0, 1, . . , T} and T is not a power of
two. In particular, in such a case the structure of the tree and/or the state needed in the
multiscale representation of this process will need to be modified. For example, consider
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a process defined over t E {0, 1,..., 10). In this case, we can develop a model of the type
we have described in which the tree is of non-uniform depth and in which we do not have
mid-point deflection at some nodes, as indicated in Figure 5a (e.g. in the generation of the
value at t = 3 given values at 0 and 5). Alternatively, as shown in Figure 5b, we may be
able to achieve some level of (and perhaps complete) symmetry by generating more than
one new point at some nodes (e.g. in Figure 5b we generate values at both t = 2 and t = 3
given values at 0 and 5).

Furthermore, as we have indicated previously, while our development has focused on
first-order reciprocal processes, the extension to higher-order models is straightforward.
Indeed, a Kth-order model defined on t C {1, 2,. ., K(T + 1)}, where T is a power of 2, can
be accommodated by grouping states at adjacent points into sets of size K. Higher-order
models can equivalently be represented by simply redefining the state of the process zt to
be a vector of appropriate dimension.

The representations we have introduced to this point have obvious and substantial levels
of redundancy. For example, the value of ZT/2 appears in the state vector at both nodes
at the second level of the multiscale model we have described for discrete-time reciprocal
processes. More generally, at the mth level of the model for such a process there are 2m -1

state vectors containing a total of 3 x 2
m - 1 values, only 2m + 1 of which are distinct. This

redundancy is actually of minimal consequence for estimation and likelihood calculation
algorithms based on these models. However, it is also easy to eliminate the redundancy
using a simple modification of the construction we have described. In particular, we may
generate two internal points between each pair of points at each stage in the level-to-level
recursion, yielding a four-dimensional state vector. For example, if the reciprocal process
is defined over t C (1, 2,., 16}, then we can choose the non-redundant set of state vectors
illustrated in Figure 6. In this case, a first-order reciprocal process is represented by a
process with a four-dimensional state. In general, at the mth level of such a representation,
there are 2

m- 1 state vectors representing 2m+ l distinct values of the process. Again, in
the situation where T is not a power of two, some irregularity in the structure will be
introduced.

Once we allow ourselves to consider such variants on the original mid-point deflection
construction in which more than one new point is generated between each pair of previously
constructed points, we see immediately that it is possible to generate multiscale represen-
tations on trees that are not dyadic. For example, consider a reciprocal process defined on
t C {0, 1,..., 3 N). This process is most conveniently represented on the regular structure
of a third-order tree, as shown in Figure 7. This flexibility of the modeling framework al-
lows the possibility of considering different tradeoffs in terms of level of parallelization and
computational power of individual processors when implementing estimation and likelihood
calculation algorithms such as those in [2, 15, 13, 14, 35, 34, 36].

Finally, it is of interest to note that the construction we have described, and its several
variants, can be interpreted as a non-iterative Gibbs sampler. The Gibbs sampler intro-
duced in [25] is an iterative algorithm for the generation of sample paths of MRF's on a
discrete lattice. For 1-D discrete-time reciprocal processes this procedure reduces to using
the nearest neighbor conditional probability functions to construct a Markov chain which
has an asymptotic distribution equal to the correct distribution of the process. Specifically,
at each step of the procedure we modify the current sample path by replacing the value at
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some point in time, say to with a random value chosen according to the conditional distri-
bution for the process at that point given the current values of the sample path at to - 1 and
to + 1. By cycling repeatedly through all of the points, the sample path is guaranteed to
converge to one with the correct statistics. The procedure is conceptually simple but com-
putationally intensive, since the Markov chain requires many transitions for the probability
function to converge. In contrast, in our construction, we successively generate samples at
new points (e.g. mid-points) conditioned on values at previously generated points, which
are not nearest neighbors but rather boundary points that partition the time interval of
interest. For this reason, and since we begin at the root node with a decimated set of values
with the correct distribution, we are guaranteed that at each stage the decimated process
that is constructed has exactly the correct distribution. Thus, with this structure we visit
each time point only once and construct a sample path non-iteratively.

In fairness, an important point to note here is that if a reciprocal process is specified
directly in terms of a Gibbs distribution then the calculation of the nearest neighbor pdf's
required in the Gibbs sampler is simple [25]. The question then is whether it is also simple
to determine the conditional pdf's - e.g. the pdf for ZT/2 given z0 and ZT - needed to
implement the non-iterative, multiscale procedures we have described. As we have seen for
Brownian motion and as we illustrate further in the examples below, in many cases, includ-
ing all vector Gauss-Markov processes and L-state Markov chains, closed form expressions
can be derived for the multiscale representations. Further 1-D examples corresponding to
the Ising model are discussed in [34].

3.3 Examples

In this section we discuss several examples of reciprocal processes and their multiscale rep-
resentations. The first examples describe multiresolution models for general vector Gauss-
Markov processes specified in state-space form and allow us to illustrate the interpretation of
these multiresolution models as providing approximations based on non-orthogonal expan-
sions. In particular, our model for Brownian motion corresponds to the use of the so-called
"hat" function [42] in this expansion, leading to linear interpolation between dyadic points,
while a model for the integral of Brownian motion leads naturally to a multiresolution
approximation using cubic interpolation.

The second part of this section presents several discrete-state examples, the first of
which investigates general L-state Markov chains and allows us to make contact with the
models used in [8, 9] for segmentation applications. The second example is a general two-
state process, which is used to demonstrate that the class of multiscale models is in fact far
richer than the class of Markov processes.

3.3.1 Gauss-Markov Processes

Consider a vector Gauss-Markov process defined on the interval [0, 1] and given byl°:

it = Ftzt + Gtu t (11)

l°While we focus here on the construction of multiscale models for continuous-time Gauss-Markov pro-
cesses, an exactly analogous set of calculations can be performed for the discrete-time process zt+l =
Ftzt + Gtgt



where zo ", (O,II 0),E{ttT} = ISt_,. and E{/utz T} = 0. Define the state transition
matrix as 4(t, T) and state covariance matrix as lit = E{ztzT} [20]. Also, let it2lt1,t3 denote
the conditional expectation zt2 given the states ztl and Zt3 , and Pt2 ltl,t3 the corresponding
covariance. It is easy to show that for t1 < t 2 < t3 :

L t = (t3, t2)IIet ( (t3, tl)IIt~ IIt3 Zt3 1
p - IIl _ (tz, l)T l' [ (t2, 1 t ltl ]lit, 4(t3)tl)T -1 , (t2, tl)T1

[ t2[ts , t = )It- t2t 2 ( (tatl)Iit, l it3 J l(t3, t2)it2
(13)

Using (12) and (13), we can obtain explicit formulae for the parameters A,, BJ and Po
in the multiscale model (1) as follows. Let us identify the abstract index s with a pair of
numbers (m, Sp) which denote the scale and horizontal shift of the node s, respectively. The
horizontal shift Sp, running from 0 to 2m-1 - 1, indexes the nodes at scale m. For instance,
the root node is associated with the pair (1,0), and the left and right nodes at the first level
are associated with (2,0) and (2,1), respectively. With this notation, the state at node s on
the tree contains the values of the process Zt at the particular three points:

Z2o/2m

8 E m(m,X() = Z(2o+1)/2m (14)

Z(2W+2)/2m

From the description of the general construction, the form of the matrix As in (1) is clear:

I 0 0
K 1 K 2 0 if Sp is even

0 I 0A, - A(m,,p) (15)

0 K1 K 2 if So is odd
0 0 I

In particular, if T is even, then the first and third components of the state x, in (14)
correspond to the first and second components of x,8 . Thus, the identity matrices in (15) for

cp even simply map the first and second components of x,; to the first and third components
of x,. In addition, the mid-point prediction of Z( 2e,+l)/ 2m is just a linear function of the

first two components of the parent x,~, which is expressed via the matrices K 1 and K2 in
the second row of (15). The matrix A, for cp odd is similar, and in fact is just a "shifted"
version of A, for cp even (reflecting the fact that the interpolation down to the state on the
right depends on the last two components of x,8 ).

The gain matrices in (15) can be computed directly from (12). Using standard formulae
for the inversion of a block 2 x 2 matrix, we compute:

K1 = (t2, tl) + 4(t2, tl)IIt, 4(t3, tl)T(IIt3 -_ .(t3, tl)IIt (t3, tl)T)- 1(t3, tl)
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K2 = -4(t2, tl)Itl ((t3,tl (It3 - (t3, tl)IItlj (t3, tl)T)-

+IIt2 (t 3 , t2 )T(IIt3 - f(t 3 , t l )IItH (t 3 , tl)T)-l1 (17)

where tl = 2po/2 m , t 2 = (2Wp + 1)/2m and t3 - (22 + 2)/2m.
Likewise, the matrix B, in (1) has the following block structure:

B, = B(m,)= K3] (18)

where K 3 is any matrix such that K3 K T = Pt2ltl,t3 and, again, tl = 2/2 m , t2 = (2(,o+1)/2m
and t3 = (2y + 2)/2 m . The matrix B, in (18) reflects the fact that no noise is added to
the first and third components of the state x,, (which are simply copied from the preceding
level), while noise corresponding to the estimation error (13) is added to the second.

Finally, the initial covariance matrix Po associated with the root node state is given by:

Po - -[E Zo.5 j z.5 (19)

nIo lofl(0. 5, O)T Io0 (l, O)T
= (0.5, O)IIo o0.5 o0.5 (1, 0 .5 )T (20)

O(1, 0)o .(1, 0-5)n1o.5 1

For instance, if zt is a Brownian motion, then Ft = 0, f(t, r) = 1, HIt t and:

t 3 - t2 t 2 - tl
zt2{tlt3 t,- t -tZ

t
+ Zt2 (21)t3 - tl t 3 - tl

3 (t 2 - tl)(t3 - t2 ) (22)
tEvaluating these at t = = ( + and t3 = ( + or using (16t

Evaluating these at tl = 2W/2m,t2 = (2To + 1)/2 m and ta = (2W + 2)/2 m , or using (16)
- (17), we have K1 = K 2 = 1/2. Similarly, from (22) and (18), K 3 = 1/2(m+ l)/2. The
conditional expectation zt 2 t1 ,t3, which specifies A, as just described, also provides us with

the required formula for interpolating between dyadic sample points at any level in our
multiscale representation and hence we can interpret this representation as providing a se-
quence of multiresolution approximations. For example, Brownian motion provides us with
the linear interpolation formula given in (21) and illustrated in Figure 2. This corresponds
to a multiresolution linear spline approximation or, as also illustrated in Figure 2, as a
non-orthogonal multiresolution decomposition using the so-called "hat" function [42].

As a second example, consider the movement of a particle whose velocity is given by a
Brownian motion. This motion can be described using the following Gauss-Markov process:

zt 0 zt + I[t (23)
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In (23), the first component of Zt is the particle position and the second component is its
velocity. The state transition matrix QP(t, r) and the state covariance matrix IIt follow by
straightforward calculations. Using these, one can show that the terms IItt/1 }(t2, tl)T and
· (t3 , t2 )IIt, in the leftmost block matrix on the right side of (12) contain only cubic powers
of t 2. Note also that the block matrix in the middle of the right side does not depend on
t 2. Thus, the interpolation of zt2 between tl and t3 is a cubic polynomial in t2:

Zt2 tl,t3 - - c2 + 2c3 t2 + 3C4t2 (24)

where from (23), the second component of zt2, lt,t 3 is just the derivative of the first. It is clear
from the definition of :t2 tl,t3 that Ztlltl,t3 = Ztl and Zt3 ltl,t 3 = Zt 3. These two constraints
provide four linear equations in the four unknown coefficients in (24), and thus uniquely
determine the interpolating function (24). Note that the interpolating polynomial for the
first component of the state has a continuous derivative at the knot locations t = k/2", k =
0, 1, ·.. , 2m . The interpolation of the first component of the state is shown in Figure 8 for
the first two levels of a sample path of the multiscale realization.

3.3.2 Discrete-State Processes

Next consider a general finite-state Markov process zt E {1, 2,... L} defined over a discrete
interval t {01, 1, . . , T}. The probability structure of the process is completely determined
by the initial condition Pr[zo = k] for k E {1,2,... L and by the one-step transition
probabilities Pij - Pr[zt = ilzt-_ = j]. We define the one-step transition matrix:

Pl,1 P1,2 ... P1,L
P P2,1 P2,2 ... P2,L (25)

PL,1 PL,2 ... PL,L

Note that the multistep transition probabilities are given by powers of the matrix1 1 P:

Pr[zt+ = ilzt = j] = [P ]i,j (26)

Using (26) and Bayes' rule it is straightforward to calculate that for tl < t 2 < t3 :

Pr[zt2 = jlztI = i, zt3 - k] = [Pt3 t2]k'J[Pt2-t]i (27)
[Pt3 -tl]k,i

These conditional probabilities, in addition to the probability function required for the state
at the root node of the tree, namely

Pr[zo = i, ZT/2 = j, ZT = k] = [PT/2]kj[pT/2]jiPr[zo = i] (28)

allow us to construct the multiscale representation of the process. Note that (27) is the
counterpart of the conditional probability equations for Gauss-Markov processes given in

"[A]i,j stands for the (i,j) element of the matrix A.
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(12) and (13), and that the pdf for the state at the root node (28) is the counterpart of the
initial covariance matrix (20).

One special case of this process is the following:

Pi,i, = (29)

Pii ,j L- 1 j (30)

with Pr[zo = i] = 1/L, i = 1, 2, .. , L. Neighboring states of this process tend to be the
same, and when the process does change state, no particular change is preferred. Thus, this
model would seem to be a natural one to use in segmentation applications and can in fact
be viewed as an alternative to the 1-D multiscale model (5) introduced in [8, 9]. As noted
in Section 2.2, (5) does not in general produce a Markov chain or reciprocal process at the
finest level. On the other hand (29) - (30) is a Markov model, with:

(I (L 1)t9k)/L ifi=j (31)

where O = (Lpu - 1)/(L - 1).
Using (27), for this example we can write down the transition probabilities for the mid-

point deflection model. In particular, assuming that T is a power of two, we can associate
the state at node s with the following values of the process:

Z2(pT/2m

Xs - X(m,-,) = Z(2,T+T)/2m (32)
Z(2,pT+2T)/2m

where, as in (14), the pair of numbers (m, TA) denote the scale and horizontal shift of the
node s, respectively. Thus, to generate the state at node s, given the state at the parent
node s~, we require the following conditional pdf:

(1C1/(2 ifi=j= k
1)1/62 if i j = k

Pr[Z2yT+T jlZ2,pT = i, Z29 T+2T = k] = (11/62 if i j ~ k (33)

2m 2 1x1/62 ifi=k j
611/62 if i,j,k distinct

where for I = 1,2, (l = (1 + (L - 1)9T/2m"-'+)/L and &1 = (1- t9T/22-'+ )/L.

To gain additional insight concerning the structure of our multiscale models, consider
the particular example of a stationary two-state binary process with one-step transition
matrix and initial state probabilities equal to:

P = I 1-7 q (34)
p 1-7/

For this process one can show that:

pk_ 1 [ + P(1-- _- )k r - ~(1- l - _) k1
P + 8 L -(1- _ 8)k + (1-V_ 8 )k (35)
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and thus using (35) one can build multiscale representations for the class of stationary
binary Markov processes.

Moreover, the mid-point deflection structure can also be used to generate non-Markov
processes on the tree. For instance, consider the following binary mid-point "selection"
process defined over t E {0, 1, 2N } [43]:

t~1 , if i = j = k
Pr[zt2 = izt = j, zt3 =k] = 1- if i j andj= k (36)

0.5 if j / k

with Pr[zo =i, z2 N-1 = j, Z2N = k]= 1/8 for all i, j, k and where i, j, k E {1, 2} and where
t1 , t2, t3 comprise any 3-tuple of dyadic points corresponding to one of the state vectors in the
multiscale representation. At the coarsest scale of this process, the three components of the
state vector xo are independent and identically distributed random variables, each equally
likely to be 1 or 2. It is easy to show that the process resulting from this construction is
not Markov in general, and thus we can conclude that the set of binary stochastic processes
which can be constructed within the mid-point deflection framework is strictly larger than
the class of binary Markov processes over intervals.

In fact, a bit of thought shows that the class of processes realizable by multiscale mod-
els is quite a bit larger than the class of Markov chains. Indeed, any binary stochas-
tic process defined over t e {0, 1,... , 2N} when represented via mid-point deflection has
a probability structure which is determined by 4 (2N - 1) parameters, corresponding to
the required conditional probability functions. In particular, the conditional probabilities
Pr[ztZ = ilzt, = j, Zt3 = k] for specific choices of tl < t 2 < t3 are uniquely determined by
the four parameters Aij, (i,j) E {(1, 1), (1,2), (2, 1), (2, 2)}, where:

Pr[zt2 = Iztl = i, zt 3 = j] = Aij (37)

Since the process is represented using an N level tree, there are 2N - 2 of these conditional
densities which must be specified, corresponding to each of the nodes except the root node.
The probability function for the state at the root node requires seven parameters, and
thus the total number of parameters to be specified is 4 (2N - 2) + 7. In contrast, a non-
stationary binary Markov process defined over the time interval t C {0, 1, ... , 2N} requires
at most 1 + 2 x 2N parameters (one corresponding to the initial probability, and 2 for each
transition from t to t + 1, for t = 0, 1, ... 2N _- 1). Since each of the parameters in each case
is a probability, i.e. a number in the interval [0,1], we see that the set of processes arising
from N-level multiscale models is in one-to-one correspondence with the (4(2N - 2) + 7)-
dimensional unit cube, while the set of non-stationary Markov chains over the same length
interval corresponds to the (1 + 2 x 2N)-dimensional unit cube. Thus, for N > 1, Markov
processes constitute only a "thin" subset of the entire class of binary processes constructed
on the tree.

4 Representation of 2-D Markov Random Fields

In this section we first review a few of the properties of MRF's and then describe how they
can be represented exactly using multiscale models. We then use these exact representations
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to motivate a family of approximate representations for Gaussian MRF's employing 1-D
wavelet transforms.

4.1 2-D Markov Random Fields

Markov random fields are a multidimensional generalization of 1-D reciprocal processes
[4, 45, 29, 25, 22]. A continuous space stochastic process zt, t E 7 n is said to be a Markov
random field if the conditional probability distribution of the process at a point in the
interiorl2 F2 \ r of a closed set Q with boundary r, conditioned on the values of the process
outside of Q \ r, depends only on the values of the process on the boundary set r. That is,
for t E \ Fr:

Pzt z,,TE(\r)c(ZtIZrT Z (Q \ r)C) = PZtZTi,Tr(Zt Z-,) C e) (38)

The definition for MRF's on discrete lattices requires the specification of the notion of the
"boundary" of a set in Z ' [45, 22]. Typically, this is accomplished through the specification
of a neighborhood system. The idea is that the probability distribution of Zt, conditioned
on the values of the process on the rest of the lattice, depends only on the values of the
process in the neighborhood of t:

Pzt lz,,rEZ\{t}(ZtlZ ,rT E Z n \ {t}) = Pztiz,rEDt(ZtIZr, E Dt) (39)

In this paper, we focus on 2-D MRF's, i.e. where t E Z 2 , and in this context there is
a hierarchical sequence of neighborhoods frequently used in image processing applications
[10]. The first order neighborhood of a lattice point consists of its four nearest neighbors
(in the Manhattan metric), and the second-order neighborhood consists of its eight nearest
neighbors. A given neighborhood system implicitly determines the boundary set of any
particular region. In particular, given the neighborhood system Dt, t E Z2 , the boundary
r of a subset Q of Z2 is given by the set of points which are neighbors of elements in Q,
but not elements of lQ.

4.2 Exact Multiscale Representations of 2-D Markov Random Fields

The representations of 1-D reciprocal and Markov processes in Section 3 relied on the
conditional independence of regions inside and outside a boundary set, and we use the same
idea here to represent MRF's. The multiscale model is identical to that used in the 1-D
case, except that it is defined on a quadtree instead of a dyadic tree. That is, we consider
multiscale models in which s denotes a node on the quadtree depicted in Figure 9 and 9
is a four-to-one operator, i.e. each node is the parent of four descendant nodes at the next
level.

Consider now a 2-D MRF zt defined on a (2N + 1) x (2 N + 1) lattice. The construction
of reciprocal processes in one-dimension started with the values of the process at the initial,
middle and end points of an interval. In two dimensions, the analogous top level description
consists of the values of the MRF around the outer boundary of the lattice and along the
vertical and horizontal "mid-lines" which divide the lattice into four quadrants of equal size.

12The notation Q2 \ r denotes the set of elements in £2 which are not in r (in this case, the interior of Q).
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For instance, on a 17 x 17 lattice, the state vector xo at the root node of the quadtree contains

the values of the MRF at the shaded boundary and mid-line points shown in Figure 10. The
boundary and mid-line points are denoted with O and o symbols, respectively. In general,
the state at the root node is a (6 x 2N - 3)-dimensional vector (given some ordering of the
boundary and mid-line lattice points). To construct a sample path of the MRF, we begin by
choosing a sample from the joint pdf of the MRF values defined on the boundary and mid-

line set. This is the 2-D counterpart to choosing a sample from the pdfpz 0,z 0.s,z, (Zo, Zo.5, Z1)

when constructing a 1-D reciprocal process.
In the 1-D case, transitions from the first to second level consisted of obtaining a sample

from the conditional distribution of the state at the mid-points of the left and right half-
intervals. In two dimensions, we predict the set of values at the mid-lines in each of the

four quadrants. The components of the four state vectors at the second level are illustrated
in Figure 11 for the 17 x 17 MRF. The points corresponding to the state in the north-west
corner are shaded, and correspond to a scaled and shifted version of the points at the top

level. The boundary points of the north-west state are denoted with open and blackened
diamond symbols and the new mid-line points are denoted with open circles. Note that the
four states at the second level share the black diamond mid-line points of the state at the

first level. This is analogous to the 1-D construction in which the mid-point at the first level
corresponds to an end point in both states at the second level (cf. Figure 4). Each of the

states at the second level consists of points carried down from the root node (namely the
diamond boundaries of each of the quadrants in Figure 11 as well as new mid-line points

within each quadrant (the open circles in Figure 11). These mid-line values are chosen as
samples from their joint conditional distribution, given the state at the root node. The

key point here is that given the values of the field around the boundary of each quadrant,
the values of the field along the mid-lines of that quadrant are independent of the values

outside this quadrant. Said another way, the four states at the second level of the tree are

conditionally independent given the values of the MRF on their respective boundaries, i.e.

given precisely that information captured in the state at the first level. Thus, the values

along the new mid-lines at the second level can be chosen independently and in parallel, in

analogy to the way the two mid-points in the 1-D representations are chosen.

Now, we can iterate the construction by defining the states at successive levels to be
the values of the MRF at boundary and mid-line points of successively smaller subregions.
Indeed, by subdividing each quadrant in the same way as we did in going from the first level
to the second, at the mth level the 4 m- 1 state vectors each contain the values of the MRF at

6 x 2
N - +1l - 3 boundary and mid-line points. Note that the dimension of the state varies

from level to level, reflecting the obvious fact that the number of points in the boundary of

a 2-D region depends on the size of the region. The multiscale representation has N levels,
and each of the 4

N - 1 states at level N represent 9 values in a 3 x 3 square. Because of the

Markov property, at each level the states are conditionally independent, given their parent
state at the next higher level. Thus, the MRF can be thought of precisely as a multiscale

stochastic process, and, in the Gaussian case, this leads to models exactly as in (1).
As in the 1-D case, there are several comments to make. First, we have described a

construction in which the lattice is square. If the MRF is defined over a non-square lattice,
then the same basic approach will work. In particular, all we require is some sequence of
subregions whose boundaries eventually become dense in the set of lattice points. Likewise,

18



while our construction applies to first or second order MRF's, higher-order models can be
represented by taking as state the values of the process along boundaries and mid-lines
of "width" greater than one. Second, just as our 1-D multiscale model has a natural
interpretation in terms of decimation - e.g. if the points on the finest scale correspond to
integers, i.e. to Z, then at the next most fine scale they correspond to even integers, i.e.
2Z - so does our 2-D model, although it differs from the usual notion of decimation in
2-D. Specifically, if the points on the finest scale correspond to Z 2 = Z x Z, then the usual
notion of decimation would be 2Z x 2Z. In contrast, the notion of decimation associated
with our multiscale models yields the set (2Z x Z) U(Z x 2Z) at the next scale.

Indeed, the obvious difference between our multiscale MRF representations and those of
[27, 26, 30] is that these latter representations do correspond to multiscale representations
using the usual notion of decimation. That is, the usual decimation leads to representa-
tions of the field at coarser levels which correspond roughly to 2-D lowpass filtered and
subsampled versions of that at the finest level. Hence, the interpolating functions which
generate a process at the finest level from a coarse scale sample naturally correspond to 2-D
Haar scaling functions or more generally to localized interpolation operators such as those
commonly used for coarse-to-fine grid transfer in multigrid applications. In contrast, the
interpolation functions in our representation naturally correspond, in the case of Gaussian
MRF's, to the solutions of specific differential (or partial differential) equations determined
by the covariance structure of the process. To see this more clearly, note that the linear
spline interpolation formula for Brownian motion given values at two points z0o = Zo and
ZT = ZT is simply the solution to the second-order differential equation:

d2

dt2 ZtlO,T - 0 (40)

Similarly the interpolation of the first component of the second-order process (23) corre-
sponds to the solution of:

d4

-dt4 Zto,T = 0 (41)

given z0 , 0o, ZT and iT. The 2-D example analogous to the linear spline model for Brownian
motion is Laplace's equation V 2 i = 0 given values of z on the boundary of a square
region, while the counterpart to (41), corresponding to a second-order model, would be the
solution of a homogeneous biharmonic equation V4 i = 0 given boundary values and normal
derivatives along the boundary (see, for example [44, 31], for related discussions).

Finally, note that it may not be possible to explicitly calculate the scale-to-scale con-
ditional pdf's required to represent an MRF which is specified in terms of local (in space)
conditional pdf's. Indeed, even if this were possible in general, it is unlikely that the exact
representations of MRF's would lead to radically more efficient algorithms for signal process-
ing, since in this case the scale-recursive structure comes at the price of a high dimensional
state. Nevertheless, these exact MRF representations provide substantial evidence that
the multiscale model class is much richer than its simple structure suggests. Moreover,
as we show in the next section in the context of Gaussian MRF's, they can be used as a
guide towards other far more parsimonious multiscale models which not only can be used
to represent physical processes of interest, but which also lead to efficient algorithms.
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4.3 Approximate Multiscale Representations of 2-D Gaussian Markov
Random Fields

In this section we propose a family of approximate representations for Gaussian MRF's
that provide low-dimensional alternatives to exact multiscale models. The idea behind the
approximate representations is to take as the state not boundaries of regions, but rather
some reduced-order representation of them. Conceptually, we would like to retain only those
components of the boundary that are required to maintain nearly complete conditional
independence of regions. In general, exact conditional independence will be lost unless the
entire boundary is kept, but as we discuss and illustrate here and in the next section, in
many cases only a small amount of information needs to be retained in order to obtain

adequate representations of the important statistical and qualitative features of an MRF.

The basis for our approximation methodology is a change of coordinates in representing

the values of MRF's along 1-D boundaries. A family of models can then be generated by
making different choices for the set of coordinates to be retained and those to be discarded
at each level of the multiscale representation. These models range from being exact (if all
coordinates are retained) to increasingly approximate and simple as fewer and fewer coef-
ficients are retained. While one can also imagine using a number of different coordinate
transformations, such as 1-D Fourier series or Karhunen-Loeve expansions, we have chosen
here to make a choice consistent with the self-similar structure of our multiscale represen-
tations. That is, we will use the 1-D wavelet transform to represent the values of our field
along 1-D boundaries.

The approximate models are derived from a class of non-redundant exact representations
for MRF's which are the counterpart of those illustrated in Figure 6 for 1-D Markov and
reciprocal processes. In particular, the states at the first and second levels of this exact
representation for an MRF defined on a 16 x 16 lattice are shown in Figures 12 and 13. In

a multiscale representation of an MRF defined on a 2N x 2 N lattice, a state at the mth level
represents the values of the MRF at 16 (2 N - m - 1) points. We denote this set of points as
r,, and we view it as the union of four mutually exclusive subsets. In particular, consider
the 112 points associated with the root node state in Figure 12. TWe can view these as four
sets of 28 points, each of which corresponds to the boundary of one 8 x 8 quadrant. In

general, we can divide r, into four sets of 4 (2
N -

,m(8) - 1) points in a similar fashion, and

we denote these subsets as rs,i, i E {NW, NE, SE, SW}, where the subscripts refer to the

spatial location of the subset. With s = 0 corresponding to the root node, the four subsets

ro,i, i E {NW, NE, SE, SW) are illustrated in Figure 12 with the symbols:

ro,NW V, A, A>,, and combinations of these. (42)

rO,NE ° © (43)

rO,SE °f (44)

ro,sw ~ o (45)

Next, we interpret the set of values {zt, t E rs,i) for each of these quadrant boundaries,
as four 1-D sequences of length 2 N-m(S), corresponding to each of the sides of the quadrant

boundary. Thus, there are a total of sixteen 1-D boundary sequences associated with the set

rs, and we denote these as: ,,i,;j, i E {NW, NE, SE, SW},j cE hu, hi, vl, vr}, where the
latter four subscripts refer to the "horizontal, upper", "horizontal, lower", "vertical, left"
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and "vertical, right", respectively. For instance, for the 16 x 16 lattice, the sequences P/o,,j

are shown in Figure 12. Note there is overlap in the sequences 3s,,i,j. For instance, / 3 0,NTWhu,

and Po,NW,,l both contain the value of the process at (0,0), and this fact is reflected in
Figure 12 by the presence of both v and tD at this lattice point.

Let us now consider the simplest of our approximate models. Specifically, we take as
the state of the approximate representation just the averages of the sequences ,Is,i,j. The
state at any node then has sixteen components:

Xs,NW

X,NEx~ = tsN2SE (46)
Xs,SE

XS,SW

where:

WoPs,i,h,Wo/8 ,,i,hu

Wo0 s,i,vr (47)

for i c {NW, NE, SE, SW} and where WoPs,,i,j denotes the average of the sequence /s,ij(k).
Given the definition of the state (46),(47) (which will be generalized shortly to allow general
wavelet transform approximations to the sequence P,/3 ,ij), the conditional parent-offspring
pdf's need to be obtained from the MRF being approximated. Instead of using these

directly, we make an additional approximation. Let us define the downshift operators
cti,i e {NW, NE, SE, SW}, which are the counterparts of the upshift operator 7 de-

fined previously (see Figure 9). In particular, we denote the four offspring of node s as
sai, i E {NW, NE, SE, SW}, where the subscript refers to the relative spatial location of

the offspring. In the exact, non-redundant representations, the following relationship holds:

Pzt,tcrv lzr,rerE(Zt),t E rsailZ.,T rs) =

Pzt,tErsi(zr,'rEr,i(Zt, t E ra z Z, e C rsT,i) (48)

for i C {NW, NE, SE, SW}. What (48) says is that the conditional pdf for the state at

node sai depends only on a subset of the values making up the state at the parent node s.

For example, in the case of the NW offspring of node s, the state in the exact representation
at node saNW (that is, zt,t cE rsaN) depends only on the NW component of the state at

node s (that is, on the values zt, t C rs,NW). Thus, in the exact representation the state at

node SaNW is independent of the values of the MRF at the points in rs,NE, rs,SE and r,Jsw,
given the values at r,,NW. In contrast, it is not true in general in the simple approximate

representations just described that the state XszNw is independent of zX,NE, Xs,SE and

x 8,sw, given Xs,NW. That is, simply knowing the average value of a process along each side

of a square region does not completely decorrelate the values of the field inside and outside
the region. Nevertheless, in our approximate modeling framework we will make exactly this

assumption. More generally and precisely, our approximate modeling methodology yields

a sequence of models corresponding to differing resolution approximations to the boundary

processes Pf,i,j(k), where (46) - (47) corresponds to the coarsest of these. Using the same
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symbols zs,i and xs to denote the state components and state of any of these models, we

construct our model by making the approximation corresponding to assuming that the
conditional independence property holds, i.e. that:

pe-,,i..(XsCoi XS) = P-JXa |,l,(XJtiXs,i) (49)

Since the field being approximated is assumed to be jointly Gaussian, the conditional

density function (49) is parameterized by conditional means and covariances as in (12) and

(13):

PX.cils,,i(XsailXs,i) = A(Xsai; s,,i, Psai) (50)

where:

saxi = E{Xsai zs,i} (51)

Pe, 1 = E{(x8 , - saj)(Xsa , - :s,) } (52)

One can then derive the matrices AS, Bs and Po in the multiscale representation of the

random field:

AsaNW = [KNw, O,O], (53)

AsaE = [0, KNE, 0,O] (54)

ASS,E = [0, 0, KsE, 0] (55)

ASS W = [0, , o, ,Ksw] (56)

where:

Ki= E{x,,aixi}(E{xsiXi ,}) (57)

Likewise, BsiB~ ', = P,,s and Po = E{zoz T } The assumption (49) is directly reflected

in (53) - (56). In particular, the state xzsi is a function only of the i th component of

the parent (cf. (46)). Thus, the assumption in (49) leads to relatively simple level-to-level

interpolations. Indeed, if the MRF is stationary, from symmetry we see that not only

do the parameters As, B, depend only on the scale of node s, but also, KNW = KNE =

KSE = KSW. Thus, in this case, the representations are quite parsimonious, and more
importantly, this simple structure, in addition to the substantially reduced dimensionality

of the approximate representations, leads to considerable efficiencies for smoothing [13, 14]

and likelihood calculation algorithms [34, 36].

As we have indicated, the generalization of the coarsest approximate model, with state

given by (46), (47) corresponds to using wavelet transforms to obtain different resolution

representations of the sequences P,,ij(k). We utilize the wavelet transform for discrete

sequences as described in [6]. The wavelet transform of P,,ij(k), k c {1, 2, .. ., 2 N - m( 4)} is

a set consisting of a single "scaling" coefficient and 2
N -m(s) - 1 "wavelet" coefficients13 .

13To be concrete, we assume that the wavelet transform filter/downsample operations are iterated until
the sequence of scaling coefficients, i.e. the downsampled output of the lowpass component of the wavelet

filter bank, is of length one. More generally, one could stop at any point in the decomposition.
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These are computed recursively according to14 :

n=2M

j~3-1 = E hn f +2k 2 (58)
n=l

n=2M

d'k- = Egnfn+2k-2 (59)
n=l

where the scaling coefficients and wavelet coefficients are fk and dk respectively, hn, gn are

impulse responses of quadrature mirror filters [19] of length 2M, and where fN-m(a)+1 -

Pi3,ij(k). We say that a pth-order representation of the sequence , 8 ,ij(k) is a set consisting
of the scaling coefficient and the wavelet coefficients up to order p in the wavelet expansion,

and that a zeroth-order representation is a set consisting of just the scaling coefficient. We

denote the operator which maps the sequence P3s,ij(k) to its pth-order representation as

Wp. Note that if p = N - m(s) the representation is complete, since it contains the scaling

coefficient and all of the wavelet coefficients. For p > N - m(s) we take Wp = TWVN-m(s)

(i.e. if there are fewer than p scales of wavelet coefficients, we keep all of them).

The generalization of the approximate representation based on averages of the 1-D

sequences P3,i,j(k) discussed previously now just involves a new definition for the state

variables z,. In particular, we simply replace (47) with:

WpPS,i,h.L
Wp/3s,i,vr (60)

WpPs,i,vl

where Wpis,i,j denotes the pth-order representation of the sequence /3,i,j(k) (a vector of

length 2p if p < N - m(s) and of length 2 N-m(s) if p > N - m(s)). Thus, the state at any

given node consists of sixteen components, each a pth-order representation of one of the 1-D

boundary sequences ,l,i,j(k) associated with the state x,. Using this generalized definition

for the state, and making the assumption in (49), the parameters As, Bs and Po can be

again computed in the essentially same way as we did for the simpler approximate models.

Several comments are in order. First, note that a simple generalization of the above rep-

resentation would be to allow different levels of approximation for different components of

the boundary sequences (e.g. one might use a p th-order approximation for "vertical" bound-

ary sequences s,ij, j C {vr, vl} and a pthh-order approximation for "horizontal" boundary

sequences 0/,i,j, j C {hu, hl}). Examples of such a generalization will be given in the next

section in the context of approximate representations for MRF texture models.

Second, note that even if all of the wavelet coefficients are retained at all levels (i.e.

if the boundary representations are complete), the representation we have just described

will be exact only if the GMRF is Markov with respect to either a first or second-order

neighborhood. As we have discussed, higher-order neighborhoods lead to thicker boundaries,

and this leads naturally to the idea of taking wavelet expansions of boundaries of width

14Our notation is slightly different from that in [6]. In particular, in [6], increasing superscript j cor-

responds to lower levels in the decomposition (i.e., fewer wavelet and scaling coefficients), while here it

corresponds to higher levels.
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two or more, and utilizing these as the state. With this expanded family, the approximate
representations can be made exact for any GMRF by keeping complete wavelet expansions
of all boundary sequences /3,i,j(k) at all scales.

Third, not only has dimensionality been reduced in going from the exact to the ap-
proximate representations, but it has, in fact, been made constant at the first N - p levels
of the quadtree, where p is the order of the approximation and the MRF is defined on a
2N x 2 N lattice. In particular, the dimension of the state at node s is equal to 16 x 2P, for
m(s) < N - p. When m = N - p, the boundary sequence representations are complete and
the dimension of the state drops by a factor of 2 at each level thereafter.

Finally, the order of the approximations required to achieve a desired level of fidelity in
the approximate model depends, of course, on the statistical structure of the specific GMRF
under study. In the next section we present examples which illustrate this for a particular

GMRF and a number of different approximate representations.

5 Examples of Approximate 2-D Gaussian MRF Represen-
tations

In this section we present examples of multiscale approximate representations of a particular
Gaussian MRF. GMRF's have been widely used in the context of texture representation
[10, 12, 17, 16, 37] and correspond to the following 2-D autoregressive model [11, 29]:

Zii -= hk,ljz-k,j-I + eij (61)

(k,l)ED

where hk,l = h-k,-l, D is the neighborhood [22] around the origin (0, 0), the Gaussian driv-
ing noise ei,j is a locally correlated sequence of random variables, and (i, j) E {0, 1,..., T -
1} x {0, 1, .. ,T 2 - 1}. In addition, as in [11, 10], we interpret the lattice as a toroid, i.e.
the independent variables (i,j) in (61) are interpreted modulo (T1,T2). For instance, the
first-order neighborhood of lattice site (0, 0) is given by the set {(1, 0), (0, 1), (0, T2 - 1), (T 1-
1, O)}. Finally, the correlation structure of the driving noise is given by:

r 2 if k = 1 0
Eeijei-k,j-l}= -- r2hkl, if (k,l) E D (62)

0 if (k, I) f D

and has the property that E{ei,jzk,l} -= o26i,k6j,l- Using this latter property, along with the
fact that the random field is Gaussian, one can prove that the autoregressive model above
does imply that zi,j is an MRF [45]. We refer to (61) as an nth-order MRF model if the set
D corresponds to the nth-order neighborhood.

The specific statistics and correlations (as in (53) - (56)) required to construct our
multiscale models can be computed efficiently using 2-D FFT's because of the fact that
correlation matrices for these random fields, assuming lexicographic ordering, are block
circulant with circulant blocks and hence these random fields are whitened by the 2-D Fourier
transform [29]. Indeed, as described in [34], the structure of the approximate representations
and the stationarity of the GMRF allow us to compute the required correlations with only
2P 1-D Fourier transform operations per level of the representation, where p is the order
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of the approximation. Furthermore, these calculations need only be performed once, since
they are used simply to determine the parameters in the multiscale approximate model.

Figure 14a illustrates a sample path of a fourth order GMRF corresponding to a "wood"
texture [12], and three approximations of this MRF based on the Haar wavelet are shown in
Figures 14b - 14d. This texture clearly has a very asymmetric correlation structure, and thus
we represent the vertical and horizontal boundary with different levels of approximation. In
Figure 14b, the horizontal and vertical boundaries are represented with second and zeroth-
order approximations respectively. The boundary effects apparent in Figure 14b are a direct
result of the fact that (48) does not hold for the approximate representations, i.e. values
of the MRF in distinct quadrants are not independent given incomplete information about
the boundary and mid-line values. In Figures 14c and 14d, the horizontal boundaries are
represented with fourth and sixth-order approximations, respectively, whereas the vertical
boundary is again represented with a zeroth-order approximation. As the complexity of
the representation increases, the sample paths of the approximate random fields have fewer
boundary effects. The approximate representations used to generate Figures 14c and 14d
appear to accurately represent the qualitative and statistical features of the MRF. An
interesting point here is that the level of representation only needs to be increased in one
direction to obtain an excellent representation of the field. Also, the neighborhood of
this MRF is fourth-order and thus double width boundaries would be needed in an exact
representation. The fields shown in Figures 14b to 14d, however, use only the thinner
boundaries in forming states. Several experiments were done in which we used the double
width boundaries in forming states for models analogous to those in Figures 14b to 14d.
It was found, however, that there were no visual differences between the single and double
width approximate representations. Likewise, approximations of the "wood" texture based
on the Daubechies 8 wavelet [19] were also visually identical to their Haar-representation
counterparts. That is, at least for this example, and for the others we have examined, the
critical issue in model fidelity appears to be model order rather than the particular choice
of the wavelet used. Furthermore, as these examples indicate, we can achieve quite high
quality results with low-order models, which in turn lead to extremely efficient algorithms
as in [15, 13, 14, 35, 34, 36].

6 Discussion and Conclusions

In this paper, we have shown how to represent reciprocal and Markov processes in one
dimension and Markov random fields in two dimensions with a class of multiscale stochastic
models. This modeling structure provides a framework for the development of efficient,
scale-recursive algorithms for a variety of statistical signal processing problems. The rep-
resentations in 1-D rely on a generalization of the mid-point deflection construction of
Brownian motion. In 2-D, we introduced a "mid-line" construction which leads to a class of
models with scale-varying dimension. In addition, we also introduced a class of multiscale
approximate MRF representations based on 1-D wavelet transforms. This family allows
one to tradeoff complexity and accuracy of the models, and provides a framework for the
development of extremely efficient estimation and likelihood calculation algorithms. An
example demonstrated that for relatively low-order models, an approximate model which
retains most of the qualitative and statistical features of the original MRF can be obtained.
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We feel that the results presented in the preceding section, together with the substantial
flexibility of the multiscale modeling framework, demonstrate the promise of this framework
for image and multidimensional signal processing. Indeed practical applications of this
framework are already emerging, as in the segmentation and image sequence processing
applications described in [8, 9, 35]. In addition, in [34, 36] we demonstrate the superior
performance of likelihood-based texture identification methods using low-order versions of
the models introduced in Section 4 - where by "superior" we mean that the algorithm
based on our multiscale models has significantly better probability of error characteristics
than well-known methods such as those in [10], and achieves virtually the same performance
as the truly optimal GMRF-based likelihood ratio test, which, except in special cases, is
prohibitively complex computationally in problems of even moderate size.
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Figure 1: This graph, taken from [35], shows for one example that the multiscale regular-
ization (MR) approach and two smoothness constraint based iterative approaches to the
problem of computing optical flow in an image sequence yield comparable rms errors (the
rms error corresponding to the non-iterative MR algorithm is shown as a straight line).
This result is typical of experiments on several real and synthetic image sequences in [35].
The multiscale approach requires total computation equivalent to 4.2 SOR iterations and
hence provides a substantial computational gain.
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Figure 2: The first two levels of a "mid-point deflection" construction of a Brownian motion
sample path are shown on the left. The construction generates a sequence of approximations
based on linear interpolations of samples of the Brownian motion at the dyadic points. On
the right, the basis functions, integrals of the Haar wavelet, in this construction are shown.
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Figure 3: The state vectors in multiscale stochastic models are indexed by the nodes of a
dyadic tree. The tree is a set of connected nodes, in which each node has two offspring. The
parent of node s is denoted sl and the scale, or level, of node s is denoted by m(s).
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Figure 4: The state vectors for the first three levels of a multiscale model representing
Brownian motion, bt, are illustrated. At the first level, the state is the vector [bo, bo. 5, bl],
which is indicated by the three points at m = 1 surrounded by an ellipse. The points are
placed directly below the points t = 0, 0.5 and t = 1 on the graph above to indicate that the
state of the multiscale process at the first level consists of the values of the Brownian motion
at those three points. Likewise, at lower levels, the states are indicated by sets of three
points surrounded by ellipses, with the horizontal location of the points in correspondence
with time indices in the graph at the top. At the mth level, there are 2 m-1 state vectors, each
of which consists of the values of bt at three consecutive dyadic points, and which together
represent the values of the Brownian motion at 2m + 1 distinct points on the interval [0, 1].
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Figure 5: The state vectors are shown for two possible multiscale representations for a
reciprocal process defined on a discrete interval of the form {0, 1, ., 10}. In (a), a dyadic
tree with uniform state dimension, but non-uniform depth is used, whereas in (b) a dyadic
tree of uniform depth but non-uniform state size is used.
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Figure 6: The state vectors are shown for a non-redundant multiscale representation of
a 1-D reciprocal process. These non-redundant representations, appropriately generalized
for the 2-D case, are useful in the context of wavelet-based approximate representations of
Gaussian MRF's.
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Figure 7: The state vectors are shown for a multiscale representation on a third-order tree.
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Figure 8: The first two scales in a multiscale representation of a process which is equal to
the second integral of white noise are shown. The representation consists of samples of the
process at dyadic points along with a piecewise-cubic interpolation. Compare these curves
with the graphs of Figure 2, which depict the piecewise linear interpolation of the first
integral of white noise.
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Figure 9: The quadtree structure shown is used for the multiscale representations of
Markov random fields (MRF's). Each node of the quadtree has four offspring, denoted

SaNW, SaNE, stSaE, sasw. Again, the parent of node s is denoted sy, and in this case f is
a four-to-one shift operator.
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Figure 10: The state vector at the root node in the MRF multiscale representation consists
of the MRF values at the boundary and "mid-line" points, shown in the shaded region here
for a 17 x 17 lattice. To construct a sample path of the MRF using the "mid-line" deflection
construction, we start by choosing a sample from the joint distribution of the values in the
root node state.
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Figure 11: The components of the four state vectors at the second level of the tree are scaled
and shifted versions of the components of the state at the root node. For instance, the state
corresponding to the north-west corner at the second level of a representation for an MRF
defined on a 17 x 17 lattice consists of the values of the process at the shaded points. The
values of the MRF at the boundary points in these second level states are mapped down
from the root node state, and the values at the new mid-lines in each of the four quadrants
are chosen independently. In particular, the new mid-line values in any given quadrant are
independent of values of the MRF outside that quadrant, given the boundary. Thus, in
the construction of a sample path, we can choose values along each of the four sets of new
mid-lines independently and in parallel. This process can then be iterated, by defining the
states of the multiscale process at lower levels in the quadtree with respect to successively
smaller subdomains, and constructing the process (along boundary and mid-line points)
independently within each subdomain.

36
~~ --- - -- °l'' °i



O 0 5 0 * 0 4B. 5 S S 5 0

* *0 0 * * 0
* O O* S * S 0 S 0 S 0 *

OI ( 0 ° ,NW,hu

F ''
O,SE O,NWN,P D O,NW,vl

OSW [ O0,NW,vr

Figure 12: The state at the root node in a non-redundant exact multiscale representation
of an MRF defined on a 16 x 16 lattice consists of the values of the process at the shaded
points. The redundancy in the exact representation is eliminated by generating the values
of the process along two mid-lines instead of one. The figure also illustrates the sets r,,i,
and the sequences P38,i,j(k) defined in the context of approximate representations in Section
4.3. The p,,i,j(k) are 1-D sequences corresponding to values of the MRF along boundaries
of square subdomains (which, at the first level, are the white areas in the figure). These
sequences overlap at the corner points of boundaries. In the figure, this is represented by
putting two symbols at the same lattice point, e.g. V and > in the upper left corner.
The approximate representations take as the state subsets of the coefficients in 1-D wavelet
expansions of the P,,i,j(k) sequences.
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Figure 13: The four states at the second level of the tree in a non-redundant exact multiscale
representation are scaled and shifted versions of the state at the root node, and are shown
here for an MRF defined on a 16 x 16 lattice. The state in the north-west corner contains
the values of the process at the shaded points in the north-west 8 x 8 quadrant. With the
node s corresponding to this north-west corner state, the sets r',,i and sequences 1,,NW,j

are illustrated. Note again that the sequences /,,ij overlap.
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Figure 14: A sample path of a Gaussian MRF representing the "wood" texture of [12] is
shown in (a). Parts () - (d) illustrate sample paths of approximate representations of the
MRF based on the Haar wavelet. The structure of the MRF suggests using approximations
which use relatively low order representations of vertical boundaries. The approximate rep-
resentations used to generate (b) - (d) used zeroth-order representations of the vertical
boundaries, and second, fourth and sixth-order representations for the horizontal bound-
aries, respectively.


