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Abstract

We have designed a persistent supercurrent multi-Josephson junction (JJ) qubit whose circuit is based on a flattened

JJ triangular prism. The Schr€oodinger equation for the 1D constrained system is equivalent to the Whittaker Hill

equation, for which exact solutions have been found [1]. Symmetric or antisymmetric coupling of the qubit to an ex-

ternal magnetic field, will excite only the corresponding symmetric or antisymmetric terms in the Hamiltonian. This

specificity allows coupling to a system bus comprised of an LC resonant loop. We indicate how separate buses might be

coupled into a larger branching network. Published by Elsevier Science B.V.
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1. Introduction

The qubit circuit is based on a discretized and
flattened version of the triangular long Josephson
junction (JJ) prism discussed in Refs. [2–4] and is
shown in Fig. 1. The long JJ prism was shown to
support various pairings of permanently bound
U0=3 kinks (antikinks), that interpolate between
the two distinct vacuum states of the system at
x ¼ �1 (i.e. in the two JJ end triangles of the
prism). In a given JJ end triangle, the two vacuum
states correspond to plus or minus circulating
currents J ¼ JC sinð�p=3Þ around the triangle.
Translated to the flattened prism of Fig. 1, this
implies imposing an external flux of Uq;i ¼ U0=3,
where the flux quantum U0 ¼ h=2e. The two vac-
uum states of the system correspond to a clockwise

circulating current in the left (right) triangle and
no circulating current in the right (left) triangle. In
a suitably modified system, these two states can be
taken as the two basis states for a qubit, and can
be shown to correspond to the two lowest states
ðh0j � h1jÞ

ffiffiffi
2

p
of the Hamiltonian in Eq. (1).

As the qubit just described is close to the one
that has been investigated by Mooij and coworkers
[5,6], we can apply the results of their investigation
on coupling to the environment, coupling to
SQUID detectors, and the low inductance limit [7]
to the system proposed here. The main difference
between the current proposed system and that of
Mooij and coworkers is the spatial mapping of the
qubit states (which in turn can engender different
coupling terms), and the proposed coupling to a
Cirac Zoller type bus [8].

2. Qubit characteristics

The Hamiltonian for the four cell qubit of Fig.
1 is given by
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H ¼ 2Cð3ð _vvU0=2pÞ2 þ ð _hhU0=2pÞ2Þ

 2EJf2 cosðhÞ cosð/r=2Þ cosð/q=2Þ

� ðcosðv þ /a=2Þ 
 2 sinðhÞ sinð/r=2Þ
� sinð/q=2Þ sinðv þ /a=2Þ þ cosð2vÞ
� cosð/s þ /qÞÞg; ð1Þ

where we have defined h ¼ h1 
 /r=2 and v ¼
w1 þ ð/q 
 /aÞ=2 with /q;r ¼ ð/q1 � /q2Þ=2 and
/q1;2 ¼ 2pUq1;2=U0, along with the diagonalizing
plus or minus combinations; w1 ¼ ðf1 
 f2Þ=2,
w2 ¼ ðn1 
 n2Þ=2; h1 ¼ ðf1 þ f2Þ=2, h2 ¼ ðn1 þ n2Þ=
2, as well as /s;a ¼ ð/a1 � /a2Þ=2 and the zero in-
ductance limit constraint equations ff1 
 f2 
 f3 ¼
/a1, n1 
 n2 
 n3 ¼ /a2, 
f1 þ n2 ¼/q2, f2 
 n1 ¼
/q1g, where /q;s;a ¼ 2pUq;s;a=U0 and EJ ¼ ICU0=2p.
The junction capacitance C and critical current IC
have been taken to be equal for all junctions. We
require that /q ¼ 0, otherwise mixing of even and
odd v matrix elements can occur upon varying
/a. As a zeroth order Hartree approximation
we assume the dynamical variable to be in its
ground state, and make the replacement cosðhÞ !
h0j cosðhÞj0i � g for the v equation of motion,
which may then be solved exactly [1]. An harmonic
expansion of the h potential around h ¼ 0 is then
made with cosðvÞ ! ðh0j cosðvÞj0i þ h1j cosðvÞj1iÞ=
2 to simplify the current calculation. Within this
approximation, the Hamiltonian for the variable
v, may be written as

H ¼ M _vv2=2 
 2EJf2h0j cosðhÞj0i cosð/r=2Þ
� ðcosðv þ /a=2Þ þ cosð2vÞ cosð/sÞÞg; ð2Þ

where M ¼ 6ð2CÞðU0=2pÞ2. Replacing pv ¼ M _vv,
the momentum conjugate to v, with 
i�ho=ov then
yields the Hamiltonian operator (in units of 2EJ),

H=ð2EJÞ ¼ 
o2=ov2=2Mv 
 f2g cosð/r=2Þ
� ðcosðv þ /a=2Þ þ cosð2vÞ cosð/sÞÞg;

ð3Þ

where we have written Mv ¼ ð2EJÞM ¼ 3ð2EJÞ=
ð4ðEC=2ÞÞ, with EC ¼ e2=2C.

To model the inclusion of rf forcing and cou-
plings to other qubits, we expand the potential in a
power series around /0

a ¼ 0, /0
r 6¼ 0, and /0

s 6¼ 0,
keeping d/i terms up to second order. The /0

i and
d/i magnetic fields can be supplied by small loops
or by control lines: /0

a and d/a by a vertical line
bisecting the qubit, /0

r by a horizontal bisecting
line, and /0

s and d/s by the dashed line in Fig. 1,
which is designed to maintain /0

q1;2 ¼ 0 and
d/q1;2 ¼ 0. In the Hilbert subspace spanned by the
qubit states j0i and j1i, single qubit rotation op-
erators that are first order in the d/i are given in
terms of the Pauli spin matrices rx and rz by:

Zs ¼ 
g sinð/0
s Þðh0j cosð2vÞj0i


 h1j cosð2vÞj1iÞðd/s þ d/qÞrz; ð4aÞ

Xa ¼ 
g cosð/0
r=2Þh0j sinðvÞj1id/arx: ð4bÞ

The second-order interaction terms, needed for
two qubit gates, are given by

XB ¼ 
g sinð/0
r=2Þh0j sinðvÞj1iðd/a d/r=2Þrx;

ð5aÞ

X 0
B ¼ 
g sinð/0

r=2Þh1j sinðvÞj2iðd/a d/r=2Þr0
x;

ð5bÞ

where r0
x ¼ ðj2ih1j þ j1ih2jÞ. Terms proportional

to d/2
r will contribute to a small shift in the fre-

quency O(10
4xLC) of the bus oscillator defined
below.

3. The control Z gate

To couple the qubits, we use an LC resonant
oscillator as a system bus, based on the trapped

Fig. 1. Circuit diagram of the four cell flattened JJ triangular

prism. A three cell variant, with one central cell (corresponding

to the opposite prism face with twice the external flux), is also a

possible qubit circuit.
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ion bus scheme of Cirac and Zoller [8,9] (another
scheme based on an LC bus using a direct inter-
action has been described in Ref. [10]). The bus is
coupled to each qubit with a gradiometer type
coupling shown in Fig. 3, that nulls d/a or d/s

single qubit excitations, and any uniform external
perturbation into the bus. The operators for flux
and charge in the LC oscillator can be written in
terms of creation and annihilation operators
faþ; ag as [11].

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hLx=2

p
ðaþ aþÞ; Q ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2Lx

p
ða
 aþÞ:

ð6Þ
If there are N qubits coupled to the bus, and
a fraction fqU is available for coupling to the
qubits, the amount of flux coupled to each qubit
fqU=N will yield a Jaynes Cummings type [12] in-
teraction terms (5a) and (5b), with d/r ¼ 2pfq �
ð�hLx=2Þ1=2ðaþ aþÞ=ðNU0Þ. The bus frequency xLC

is chosen so that neither resonant pulse frequency
xa ¼ x10 
 xLC or xb ¼ x21 
 xLC, where �hxij is
the energy needed for a transition from level j to i,
is close to a qubit or bus transition. Solving the
Schr€oodinger eigenvalue equation (3), assuming
/0

a ¼ 0, /0
s ¼ /0

r , r ¼ 
 cosð/0
s Þ= cosð/0

r=2Þ ¼ 0:77,
and ð2EJÞ=h ¼ 200 GHz yields x10=2p ¼ 1:553
GHz, x21=2p ¼ 15:09 GHz, and one possible
choice of xLC=2p ¼ 11:5 GHz. If the area of the
bus coupled to each qubit cell is taken to be
A ¼ 1 l2, the bus inductance for fq � 1 can be
approximated by L � 2N1:25l0

ffiffiffi
A

p
¼ Np pH. The

amplitude of the bus oscillator is then
UB � 1:67 � 10
3U0

ffiffiffiffi
N

p
. For r ¼ 0:77, the prod-

uct sinð/0
r Þh1j sinðvÞj2i=2 ¼ 0:13. Assuming d/a ¼

2pð0:02U0Þ=U0, and fq ¼ 1, yields a total X 0
B am-

plitude of 1:7 � 10
4=
ffiffiffiffi
N

p
and a Rabi frequency of

mR ¼ 34:3 MHz/N 1=2 for the slowest (X 0
B) transition.

4. Sources of decoherence

We defer a detailed discussion of decoherence,
but mention that in addition to sources discussed
in Refs. [5,6], the bus presents a new source. It
can act as a linear array of 2N small 1 l2 loop
antennas with an RF current amplitude of
iRF � UB=L � 1:1 � 10
7 A for N ¼ 100, yielding a
decoherence time from radiation losses of �50 s.

For a substrate refractive index of n � 3, the
maximum size of a bus path is �ks=10 � 870 l,
where ks ¼ k=n. A ks=20 square branching struc-
ture with 100 qubits would allow the qubits to be
�48 l apart. While the large RF d/a excitation
needed for two qubit gates should not enter the
bus due to geometric cancellation, its mutual in-
ductance effect on a neighboring (48 l away) qubit
is to excite a Zs gate with a Rabi frequency of
�500 Hz. Reducing N to 50 and orienting alter-
nate qubits to be mutually perpendicular could
improve this by a factor of �10
2.

5. Rabi resonant pulse sequence for two qubit gates

The complete sequence of Rabi resonant pulses
for a CZ gate, following the presentation in Ref.
[9], is shown in Fig. 2. The notation Xp

B;mðxaÞ
signifies an XB gate pulse of p frequency xa (de-
fined above) acting concomitantly on the bus and
the mth qubit. The sequence of XB and X 0

B gates in
Fig. 2 has been successfully modeled using the
subset of 24 basis states jm; n; jbusi with m ¼
f0; 1; 2g, n ¼ f0; 1; 2; 3g, jbus ¼ f0; 1g and the sys-
tem parameters discussed above.

As the number of qubits on a given bus is lim-
ited, we consider connecting a group of buses in an
open branching network. This may be accom-
plished, as shown in Fig. 3, by distinguishing the
qubit that connects two buses, and assigning it
the sole task of transferring the excitation from the
first bus to the second and vice versa. To carry out
a CZ gate connecting the mth qubit on bus #1 with
the nth qubit on bus #2, the first two gates of Fig.
2 are carried out as indicated. The next gate
Xp

B;tðx10 
 xLC1Þ transfers the excitation on bus #1
to the j1i state of the transfer qubit. A second Xp

B;t
transfers the excitation from the j1i state of the
transfer qubit to bus #2 with excitation frequency
x10 
 xLC2. The third gate in Fig. 2 is carried out
but with bus #2 excitations and the nth qubit on
bus #2. The final step transfers the bus #2 exci-
tation back to the original bus by reversing the two
original Xp

B;t gates. The sign change from the
round trip due to the transfer qubit is ð
iÞ4 ¼ 1.
Since it has been proved [9] that the combination
of one qubit gates and the CZ gate is sufficient for
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producing an arbitrary unitary transform, we have
demonstrated that the coupled bus system gates
are sufficient for a branched network quantum
computer.
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Fig. 3. Circuit detail for the coupling of two resonant LC buses

showing a transfer qubit (b1) and computational qubits (a1) on
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Fig. 2. Gate sequence for the two qubit CZ gate.
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