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1 Preface 
 
At AFRL, a heterogeneous cluster is available with Field Programmable Gate Array 
(FPGA) boards attached on the I/O board.  For parallel applications, especially fine-
grained ones, the performance of the application is often defined by the performance of 
the communication subsystem.  The communication between the host processor and 
the FPGA on the same node requires an I/O operation that is expensive.  Further, 
FPGA to FPGA communication across different nodes must go through the host 
processor.  As a result, the use of this model for parallel applications is severely limited: 
the communication cost is prohibitive for most applications.  In an attempt to alleviate 
this bottleneck, a previous effort at AFRL designed a direct FPGA to FPGA 
communication channel (all-to-all board) that attaches to the FPGA boards directly via 
their I/O interface.  Pin and board limitations suggested a design which connects all the 
FPGA boards to each other via a dedicated serial line: each board has 2 lines to each 
other board, one for incoming and one for outgoing data.  The all-to-all support provides 
a low latency, but low-bandwidth, communication channel for the FPGAs that can 
considerably extend the range of parallel applications that can benefit from this 
infrastructure. 
 
2 Abstract/Summary 
 
The goal of this project was to investigate this new infrastructure and develop support 
for basic communication through it that can be reused by other application developers.  
In addition, our goal was to demonstrate the capabilities of the new infrastructure using 
Parallel Discrete Event Simulation as an application.  This work builds on an initial 
design the PI created during prior summer faculty research visits to AFRL Rome.  The 
all-to-all board was being fabricated as the project started, and became available a few 
months into the project.  The grant supported a Research Assistant (David Curren) 
effort for 20 hours a week for the duration of the grant, with the exception of 12 weeks in 
summer where he was supported as a summer graduate student working on the same 
project.   
 
The first 3 months of the performance period were spent in training the student in 
various technologies and other background needed for the project.  This includes: 
VHDL, the physical design process and the tools, the PDES simulator, the preliminary 
design for the communication unit and relevant parallel architecture support.   
 
The first task was to develop a methodology and test scripts to test the all-to-all board.  
The board is very large physically and has a large number of wires.  Thus, cross-talk is 
an issue that was anticipated and the board was designed to tolerate cross-talk up to 
200MHz.  However, in testing the board, we discovered that cross-talk arises for some 
patterns at data rates above 51MHz.  Some sparse data rates work up to 80 MHz, but in 
the worst case, with continuous communication of randomly generated patterns across 
all wires, only 51MHz or lower could be sustained. 
 
The second task was to take the preliminary design for the communication support and 
test it and debug it if necessary.  The preliminary communication support was  
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developed without the all-to-all board, and therefore was only partially tested.  The 
design supported variable size messages in chunks of 48-bits.  In practice, this task 
proved to considerably more difficult than we anticipated for a number of reasons, 
including: (1) race conditions that arose due to asynchronous clocks (with the clock 
coming off the all-to-all board, and the clock on the FPGA.  These were extremely time-
consuming and difficult to isolate and resolve; (2) excessive critical path delays that 
arose primarily due to the large distances between the on FPGA buffer messages 
before they are dispatched to the I/O board or collected by the FPGA; (3) Delays in the 
scheduler used to arbitrate a bus used to pull messages from the FIFO buffers to the 
FPGA.  Initially, the design was based on a round-robin scheduler with a propagating 
dependency (similar to that of carry propagate adders).  We worked on a design for a 
pipelined version (similar to carry look-ahead adders), and eventually determined that a 
priority encoder design can do the same function; (4) Synchronization issues across the 
different boards.  As the boards start, they will generally not be synchronized to the 
same 48-bit chunk boundary required by the design.  We resolved this problem through 
a simple distributed protocol where each node signifies it is awake by transmitting a 
special bit pattern.  When all nodes are awake, a designated node sends a pattern that 
resets the 48-bit clock on all nodes concurrently. 
 
Finally, the major obstacle that severely hampered our ability with task two is the fact 
that the design tools were unusable across the network.  All the tools had to be run on 
the AFRL machines where the licenses were.  However, exporting X across the network 
was extremely slow to the point where the tools that had graphical interfaces could not 
be used at all.  Thus, we were reduced to testing the design by extracting portions of the 
design, and running on the FPGA to analyze the behavior via the observed output—an 
extremely time-consuming and error-prone process.   
 
The third proposed task was to demonstrate that the infrastructure can be used to 
accelerate Parallel Discrete Event Simulation.   We debugged and improved an initial 
design for Global Virtual Time (GVT) computation that was developed by the PI over the 
2004 and 2005 summers as a visiting researcher to AFRL/IF.  We also debugged the 
interface with the I/O support developed in the second task, and with the simulator via 
the PCI bus.  Full integration with the simulator was not accomplished due to the 
unexpected and time-consuming challenges in the second task. 
 
 
3  Introduction and Overview 
 
Fine grained and dynamic applications such as Parallel Discrete Event Simulation 
[Fujimoto 1990, Metron] present a challenge to parallel processing environments in 
general, and clusters in particular for the following reasons: (1) The fine grained nature 
makes the execution communication bound; since the cost of communication is 
significantly higher than computation, frequent communication limits the performance 
and scalability of fine-grained applications; and (2) Their dynamic nature means that 
effective partitioning and system configuration are difficult to develop.  The simulation 
engine typically has several configurable parameters that can have a dramatic 
influence on performance, including parameters governing the degree of optimism, the 



 3

frequency of state saving, rollback implementation and others.  Finding an appropriate 
configuration is difficult; moreover, a good initial configuration may not be effective as 
the simulation behavior changes.  Similarly, it is difficult to achieve effective initial 
model partitioning configurations, and to evolve these as the simulation behavior 
changes.  As a result, it is difficult to achieve large speedups in cluster environments  
 
Computer Modeling and simulation have grown to become a powerful approach for 
complex system design and analysis.  Parallel Discrete Event Simulation (PDES) is an 
approach to parallelizing simulation to increase its performance and capacity, allowing 
the simulation of bigger more detailed models and more interesting scenarios in a 
given time budget.  PDES underlies several areas of interest for the DoD including war-
gaming, planning and decision making, and complex system design and analysis, 
including both hardware and software systems. 

 
In PDES, a simulation model is partitioned across several logical simulator processes 
(or LPs).  Each LP processes its events in time-stamped order.  Synchronization 
among different LPs may be achieved using one of two major approaches: (1) 
conservatively: an event at an LP is processed only if all other LPs guarantee that it 
can be processed safely (no events earlier than it will be generated to that LP); (2) 
Optimistically: LPs process events without concern for causality.  Events received from 
other LPs with a time stamp earlier than the current simulation time signal a causality 
error.  Such errors are recovered from by rolling back the local simulation state to a 
time earlier than the received straggler event, and sending out messages canceling 
any messages that were sent out erroneously.  To be able to achieve this 
synchronization, each LP must periodically checkpoint its state and event information.  
Checkpoints are garbage collected when they are no longer needed (when the global 
simulation time has passed them).  This requires computing the Global Virtual Time 
(GVT) of the simulation to determine which history information may be garbage 
collected.  Fujimoto [Fujimoto 90] wrote an excellent survey on PDES and PDES 
optimization approaches. 

 
In previous efforts to accelerate the performance of PDES [AbuGhazaleh04], we 
identified that the communication subsystem is a major bottleneck in PDES 
performance.  In addition, initial efforts in exploiting the FPGAs on a Heterogeneous 
High Performance Cluster (HHPC) to accelerate the performance of a PDES simulation 
were reported.  Using FPGA boards to accelerate the performance of some critical 
simulation subsystems was the goal of the study.  Since PDES is a fine grained 
operation, and the communication with the FPGA board expensive, it is almost 
impossible to use the FPGAs to optimize the simulation kernel, which requires 
message exchanges potentially with every event.  We conjecture that other parallel 
applications would face the same problem in trying to use this infrastructure. 
 
In response to this limitation, we needed to create an alternative channel for the 
FPGAs to communicate without having to interrupt the primary host processor.  To 
achieve this, a serial all-to-all connector board that provides direct, low bandwidth, low 
latency, connectivity among the FPGA boards, was designed.  This board provided a 
channel for the FPGAs to communicate directly, potentially greatly improving the 
performance of fine-grained applications with components of the computation residing 
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on the FPGAs.  To demonstrate such an application, we identified the Global Virtual 
Time computation as a target for FPGA implementation.  We use an algorithm for GVT 
computation based on Mattern's two-phase algorithm.  Each node provides local time 
and message counts when it enters GVT computation phase and whenever transit 
message count changes to the FPGA board.  The boards communicate among each 
other to detect the global messages in transit count.  When that reaches 0, they 
compute the minimum of the local times and broadcast it to all the host processors.  
We considered several other ideas using the same infrastrucutre.  For example, the 
low-latency direct connectivity between the FPGAs is ideally suited for 
monitoring/exchange of control messages.  Such capability will allow us to carry out 
adaptive control of the simulation configuration.   

 
Before such implementations can be undertaken, the all-to-all board must be tested for 
functionality and performance to set the baseline physical rate it can communicate on.  
Further, support for communication using the all-to-all board must be developed; the 
equivalent for the link layer for this communication channel.  To this end, the goals of 
this project were: 
 

1. Functionality and performance testing of the all-to-all board.  The board is 
physically large, and contains a large number of wires; crosstalk is a major 
concern.  The design accounted for cross-talk to be able to run, theoretically, at 
200MHz.  The testing should verify the actual connectivity as well as the 
effective maximum transmission rate before cross-talk arises for a number of 
communication patterns. 

2. Design of the communication support to allow message exchange over the all-
to-all board.  The all-to-all board essentially is a physical medium that provides 
serial all-to-all connectivity across the FPGA boards.  To allow message 
exchange, support must be built for exchanging messages over the medium.   
This includes defining the API and message formats for the communication, and 
implementing support for allowing the exchange of messages.  In conventional 
networks, this includes: (1) Framing: defining where messages begin and end; 
(2) Reliability: was not considered; (3) encoding; and (4) medium access.  It also 
includes buffering messages and exchange of messages with the application.   

3. Integration with the PDES simulator: this includes verifying the GVT 
implementation on the FPGA.   

 
We were able to accomplish the first goal.  In addition, we developed a nearly functional 
communication support.  We greatly underestimated the complexity of the design for 
goal 2.  Primarily, the presence of multiple clocks (PCI bus clock, internal FPGA clock 
and I/O clock) controlling logic at the boundary between these three components, lead 
to very difficult to resolve race conditions.  Other difficulties arose that were not caught 
by the simulator.  Finally, tool issues greatly complicated the development and 
debugging efforts.  As a result, the second goal was accomplished, with minor issues 
remaining to be resolved, but the third goal was not completed. 
 
The remainder of this report is organized as follows.  Section 4 presents some 
background material related to PDES, and HHPC.  Section 5 describes the testing 
activity. Section 6 overviews the design. Section 7 describes SPEEDES and GVT 
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calculation.   Finally, Section 8 presents some concluding remarks. 
 
4 Background 
 
In this section we first overview PDES, and motivate the need for more effective fine-
grained communication and self-monitoring and adaptation.  We then describe the 
HHPC environment in more detail. 
 
4.1 Parallel Discrete Event Simulation 
 
In Discrete Event Simulation (DES), a model starts with an initial state and an initial 
number of scheduled events.  Events are ordered by simulation time in an event queue.  
Simulation proceeds by processing the earliest event, which can cause changes in the 
simulation state and schedule one or more future events.  The simulation time advances 
to the time of the earliest unprocessed event.  Simulation terminates when there are no 
more events to process or when a predetermined simulation time is reached. 
 
 Parallel Discrete Event Simulation (PDES) leverages parallel processing to attempt to 
accelerate the performance and capacity of DES.  The simulation model is partitioned 
across multiple simulation processes (called Logical Processes, or LPs).  Each LP 
maintains a local event queue and carries out simulation as described above 
(repeatedly processing the earliest time stamp event).  A locally processed event may 
generate events to remote LPs (that is, affecting changes to state managed by the 
remote LP).  Thus, LPs communicate by exchanging time-stamped event messages 
[Jefferson-85]. Correct simulation requires that all events are processed in time-stamp 
order.  Therefore, a synchronization model is needed to ensure that remote events are 
processed in time-stamp order. 
 
Conservative PDES simulators carry out synchronization as follows: an LP, LPi, does 
not process an event until it is guaranteed that no other LP will generate a remote event 
destined to LPi with a time stamp earlier than the current earliest event.   Thus, explicit 
time step synchronization of the LPs is needed, severely limiting the potential event 
processing concurrency.  Alternatively, optimistic PDES simulation (the so-called Time-
Warp model [Fujimoto-90]) does not require explicit synchronization among LPs.  Each 
LP enforces causal ordering on local events (by processing them in time-stamp order).  
Causality is preserved on remote events by detecting causality errors (when a straggler 
event with a time-stamp in the past is received) and recovering from them by rolling-
back the simulation to a state prior to the time of the straggler event.  Thus, each 
simulator must maintain state and event histories in order to enable recovery from 
straggler events.  This state information must be garbage collected to control memory 
usage and enhance the simulator locality; a Global Virtual Time (GVT) algorithm is used 
to detect the global progress time of the simulation, allowing the garbage collection of 
histories earlier than this time.   
 
We use the SPEEDES simulation environment [Metron] in our studies; SPEEDES is a 
state of the art PDES simulator that uses Breathing Time Warp (an optimistic simulator 
that bounds optimist to attempt to control excessive rollbacks) [Steinman 1993].  More 
specifically, in order to prevent uncontrolled and erroneous optimism and its resultant 
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local loss of efficiency (and the pollution of the simulation at remote nodes via wrong 
events) each LP stops simulation after a configurable number of events Nopt is 
reached.  Furthermore, before the Nopt limit is reached, another configurable (lower) 
limit Nrisk determines how many events are processed but with sending remote events.  
Thus, the first Nrisk events after GVT are processed optimistically, then the remaining 
Nopt-Ngvt are processed optimistically but without sending remote messages.  Events 
after Nopt are not processed.  Another configurable constant Ngvt determines how often 
GVT computation is initiated.  SPEEDES is used in several projects in the Air Force and 
DoD. 
 
The performance of PDES is heavily influenced by the message exchange latency: 
PDES is fine-grained, with event messages generated frequently (depending on the 
model) to remote LPs.  Delays in receiving these messages can cause the simulation to 
be erroneous at remote LPs (since the event message will be received after the 
simulator has moved past it).   It has been shown that improving the performance of the 
communication subsystem results in significant improvement in the simulation 
performance (e.g., [Chetlur98,Sharma99,AbuGhazaleh04]). Furthermore, slow message 
exchange causes GVT estimates to be slow, limiting the available concurrency in 
Breathing Time Warp and reducing the efficiency of garbage collection (increasing the 
simulator memory footprint and worsening the average memory access time). 
 
 
In addition, the simulation behavior is dynamic and unpredictable.  There are several 
parameters that configure the simulation and the sub-algorithms used in it (for example, 
several parameters are used in Breathing Time Warp to control the degree of tolerated 
optimism); a suitable configuration depends on the current model behavior and can 
have a large effect on the simulation performance.  Moreover, the model partitioning 
affects the resulting remote dependencies and can also significantly influence 
performance.  Furthermore, the dependencies in the model can evolve dynamically (for 
example, as objects move away from initial close objects and closer to other objects).  
Thus, effective configuration and partitioning is necessary both initially and dynamically 
during run time.  This polymorphic capability of the simulator is a long term goal of our 
research.  There is some prior work in adaptive control of PDES simulators 
[Radhakrishnan98] and on dynamic partitioning of the simulation [Avril96], some have 
been model-specific and none have been in the context of a Breathing Time Warp 
model or utilized the specialized hardware that is available to us.  Moreover, we know of 
no prior work on morphing the underlying communication subsystem to match 
application behavior. 
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4.2  Heterogeneous High Performance Computing (HHPC) Cluster 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Figure 1: Architecture of the individual Node 

 
HHPC is a Beowulf cluster made of COTS PCs (featuring dual processor Xeon’s) 
interconnected via a Gigabit Ethernet Network and a Myrinet network [Boden 1995].  In 
addition, each node has an Annapolis Micro Devices (AMD) Wildstar II FPGA board on 
the PCI bus.  The Wildstar has a Xilinx Virtex II FPGA, some DRAM and SRAM banks 
and an LVDS I/O card.  We use the I/O card to interconnect the FPGAs directly to each 
other using a custom built all-to-all serial board.  This board provides connectivity from 
every node to every other node concurrently using a dedicated serial line.  This results 
in a low-latency but low-bandwidth communication channel among the FPGAs.   
Without this connectivity, all communication must go through the communication fabric 
at a latency ranging of around 10 microseconds (for the expensive Myrinet) to several 
10s of microseconds for the commodity Gigabit Ethernet.  We note that for this project 
we do not exploit the FPGA component of the cluster. 
 
Typically, FPGA boards are used to accelerate sequential or high-granularity parallel 
applications that have high data parallelism or unusual data-paths (e.g., Image 
processing or Cryptographic applications).  PDES does not fit this profile: it is fine-
grained and does not, in general, require high data parallelism.     
 
 
The FPGA boards reside on the I/O bus for the cluster and are not able to master this 
bus (see Figure 2).  This forces all FPGA communication to go through the primary 
host, making interaction with the FPGA or across FPGA boards expensive and limiting 
the utility of the FPGAs for fine-grained applications.  To remove this limitation we 
designed and all-to-all serial communication board that connects the FPGA boards on 
the different cluster nodes to each other directly through the I/O connector for the 

 

CPUCPU

System 

I/O 

Memory banks

FPGA 

Network Interface Card 

To/From other nodes 

Bus adapter 



 8

boards.  This connectivity provides direct conduit for communication between the 
FPGAs that does not require host interference.  While this channel allows low latency 
communication, it is bit-serial and unsuitable for exchanging large messages. 
 
5 All-to-All Board Testing 
 
Because the all-to-all board had not been used before, it first needed to be tested.  The 
all-to-all board is designed to be used with up to 24 computers, where one of the 
computers is designated to act as a clock for the rest of the nodes.  Because there are a 
large number of connections handling fast signals, cross talk between the wires is a 
potential problem.  The designers hoped to make the all-to-all board reliable up to 
approximately 200 MHz. 
 
5.1 Preliminaries 
 
There were some problems to overcome before even beginning testing.  First, because 
the all-to-all board had not been used before, and no one at the site had experience 
with it, we had to first figure out how to communicate a signal over the board.  Each 
FPGA card connects to the all-to-all board through an LVDS card.  The software suite 
used by the FPGA card was supposed to include templates for communicating with the 
LVDS card; however, we did not have a copy of the software.  At first, we were not 
aware of this and tried to write a template that would work with the LVDS card, but 
without the hardware schematics, we did not have much success.  Meanwhile, we 
contacted Annapolis to obtain a copy of the template to use the LVDS card.  We did 
receive the template before we were able to write our own version, and decided to use 
that.  The provided template turned out to work well with our LVDS card, and we were 
able to detect that there were some signals crossing the board. 
 
The next problem was figuring out how to control the signals being sent.  At first, we 
only had four nodes connected to the all-to-all board.  Because one of these nodes had 
to act as a clock for the other nodes, we had one node send its clock signal over the all-
to-all board to every other node.  We had the three other nodes available listening, one 
all-to-all input at a time, for this clock pulse.  Eventually, we were able to locate the 
clock signal on all three nodes.  Next, using this clock signal, we tried to send very small 
messages from one node to another.  We did not know at the time which node was 
connected to which slot on the all-to-all board, so this, again, took a good amount of 
guesswork, and testing.  We were eventually able to control the signals being sent and 
received. Infrequently, there were random numbers that would be received 
unpredictably.   After some testing, we discovered that any time a node deprograms the 
FPGA card it is using, undefined signals are received.  This was only a problem if nodes 
were deprogramming their FPGA cards while tests were still running and could easily be 
worked around. 
 
5.2   Pin Mapping 
 
The final major problem in getting the all-to-all board working was to connect all nodes 
to the all-to-all board, and figure out which LVDS connection corresponded with sending 



 9

and receiving port for each of the  nodes.  While it was time-consuming setting up all of 
the connections and checking that they worked, the process turned out to be fairly easy.  
Each connection to the all-to-all board is numbered from 0 to 22, with a 24th slot 
denoted as the clock.  Node x sent to the node at all-to-all board position 0 through 
LVDS connection 0, position 1 through LVDS connection 2, and position n through 
LVDS connection 2n.  Node x listened to the node at all-to-all board position 0 through 
LVDS connection 48, position 1 through LVDS connection 50, and position n through 
LVDS connection 48+2n.  The reason that the LVDS connection numbers are all even is 
because the LVDS card uses the differential between two of its pins to send a message, 
meaning that two of its input pins are designated for use with every one of its output 
pins.  Because a node does not send to itself over the all-to-all board, if the all-to-all 
board position n is greater that x, then you have to subtract two from the LVDS 
connection number.  For example, if the node at all-to-all slot 0 wants to send to the 
node at position 1, it sends through LVDS pin 0. 
 
5.3 Testing 
 
With the all-to-all board successfully sending signals, we were able to start performing 
workload testing.  A number of issues had to be considered when testing the all-to-all 
board.  Each node had to be sending a different bit sequence to every other node.  Not 
only would node 1 be sending a different pattern than node 2, but also the bit pattern 
being sent by node 1 to node 2 had to be different than the bit pattern being sent from 
node 1 to node 3.  If two wires that would otherwise be experiencing cross talk are 
sending the same bit, both remain unchanged.  Additionally, rather than having each 
node handle 23 incoming streams at once, which would have involved a complicated 
receiving mechanism, every test run involved all nodes listening to one predetermined 
connection.  The tests were cycled so that every node eventually listened to every other 
node.  In order to reduce the threat of cross talk, all nodes sent their bit pattern to all 
other nodes, even if the receiving node was not expected to be listening.  Testing a 
number of different randomly generated bit patterns left little room for doubt of the 
results.  This set of testing was called the worst scenario tests and were the most 
interesting performed.  Other tests established that the all-to-all board did work for the, 
and tested low-traffic test conditions. 
 
Some early, low traffic tests did in fact work up to speeds of near 200 MHz, some even 
exceeding this speed.  However, the worst-case scenario tests were not as successful.  
In general, tests were successful up to 72 MHz, however, for 100% reliability, which is 
necessary for the simulator, the clock had to be slowed to 51 MHz.  A second test was 
performed where node n sent the same message to every other node.  This test was 
more reflective of what would happen in the GVT calculator for SPEEDES (although not 
necessarily for any application to be run over the all-to-all board).  The results were 
similar.  Most tests succeeded up until 81 MHz, but again, to provide 100% reliability, 
the clock needed to be set to 51 MHz or slower. 
 
It is unclear why the design goal of 200MHz operation without crosstalk was not 
achieved.  The testing scripts that were configurable in terms of parameters such as 
duration and test patterns were completed and delivered.  The tests also compare the 
observed output against the sent messages and detect errors in message transmission. 
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5.4 Bootstrap and Synchronization 
 
The design of the communication support (or I/O unit) requires that all the nodes should 
be all synchronized on 48-bit boundary.  Since the nodes start asynchronously, the 
synchronization is not present by default.  We developed a simple handshake algorithm 
where all nodes that wake up repeatedly announce their presence to a designated 
master node.  Once all the nodes participating in the current application are awake, a 
synch start signal is broadcast to all to achieve synchronization.  This implementation 
was designed and tested. 
 
6 Overall Design and I/O unit activities 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           Figure 2:  High Level Representation of GVT Implementation on FPGA 
 
 
Figure 2 shows the complete overall design of the I/O Unit.  An initial design was 
conducted and simulated by the PI.  For these reasons, we felt comfortable with the 
aggressive goals set for this one-year project.  Unfortunately, we show that we 
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underestimated the effort required in making the I/O unit operate correctly, which 
required significant debugging effort, leading to significant redesign relative to the 
original design. 
 
The physical layer provides the ability to send 
bit streams over the serial links.  In order to 
exchange meaningful data, a framing standard 
must be designed and supported.  We decided 
to allow variable length messages in units of 48-
bits.  While initially this was driven by the PDES 
application, it makes sense for the most 
common 32-bit integer data; with 16-bit 
headers, which can be sent in a single unit. 
 
The I/O unit is designed to work with any 
application that complies with the packet 
structure.  It is composed of a number of state 
machines (Figure 3).  The first state machine is 
a 255 entry asynchronous FIFO with a width of 
48 bits.  It has two purposes.  The first is to 
store multiple packets while the I/O unit is in the 
act of sending to the all-to-all board.  The second purpose is to separate the clock being 
used by the rest of the FPGA from the I/O clock coming from the all-to-all board.  The 
second state machine is a parallel to serial (P2S) converter.  It takes a 48-bit packet, 
and sends it one bit at a time to every other node via the all-to-all board.  The third state 
machine is actually a set of state machines.  An array of serial to parallel (S2P) 
converters accepts the incoming packets from the all-to-all board.  When a packet has 
been completely received, it is sent to the next state machine, an array of FIFOs.  Like 
the first FIFO in the I/O unit, these FIFOs serve the dual purpose of storage and 
synchronization.  A round robin scheduler selects a message from the FIFOs upon 
request from outside of the I/O unit.   
 
A message is passed through the I/O unit as follows: 
1. The packet is sent from another location on the FPGA card to the I/O unit, where it is 

stored in the first FIFO. 
2.  The P2S converter takes the packet when it is empty and sends it one bit at a time to 

all other nodes via the all-to-all board.  If there is no packet available in the FIFO, a 
blank message (consisting of all 1 bits) is sent instead.  All 1s are used because if no 
node is present at a given connection on the all-to-all board, the node receives 
floating 1s. 

3. The packet is received at all other nodes.  The I/O unit receives the message using 
an S2P converter.   

4. Upon receipt, the I/O unit checks to make sure the message is not blank (containing 
all 1s).  If not, the message is stored in a FIFO corresponding to the node that it was 
received from.   

5. The round robin scheduler is used to select what message will be output to the FPGA 
card.  

 

 
Figure 3—FIFOs and P2S/S2P converters 
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In all phases, the problem is complicated by the variable length nature of the message.  
The length of the message is automatically detected as it is received.  The derived 
length drives counters that process the message chunk-wise to support variable length 
messages. 
 
There is more to sending a message than just how it travels through the I/O unit.  As 
was mentioned previously, a clock mechanism has to be in place not only to define 
each bit, but also to synchronize each of the nodes with one another.  In order to do 
this, every node sends its FPGA clock pulse to the clock node.  When the clock node 
detects the presence of a clock pulse from a node, it registers it to begin receiving its 
own “I/O clock” pulse.  For the sake of synchronization, this clock pulse is not first sent 
until the internal counter of the I/O clock node resets, which occurs every 48 clock ticks.  
Because each node keeps its own mod-48 counter and performs its I/O functions based 
on that counter, each node is synchronized with the others. 
 
The design supports a single message format of variable size that can be thought of as 
the link layer frame for the design.  Each message is made up of units of 48 bits units 
(packets), as well as a single bit used for framing (if 1, this is the first packet of a 
message, if 0, it is not).  The message description in VHDL is as follows for the first 
packet of a message: 
 
alias frame_bit : std_logic is s2p_reg(48); 
 
alias src       : std_logic_vector is s2p_reg(47 downto 43); 
alias dest      : std_logic_vector is s2p_reg(42 downto 36); 
alias length    : std_logic_vector is s2p_reg(35 downto 32); 
alias data_32 : std_logic_vector is s2p_reg(31 downto 0); 
 
Note that we include the src, even though it is derivable from the port of the incoming 
message; the thought was to keep the src for upper layers to help in handling the 
message.  However, this is a field that can be optimized away to free up some header 
bits for additional purposes (for example, to increase the maximum length of a 
message).  Also, please note that the destination field is larger than the src field to allow 
for special messages in the future (e.g., broadcast, or grouping).  Please check the 
source for the latest headers. 
 
The rest of the packets making up the message, if any, consists only of data: 
 
alias data_48     : std_logic_vector is s2p_reg (47 downto 0);  
 
Thus, the design provides this basic message type, allowing users to send/receive 
variable size messages.  The API is defined at the level of the I/O unit (internally) rather 
than at the level of the host processor since we envision most communication to be 
needed directly between the FPGAs (otherwise the I/O overheads come into play).  This 
also frees up the application developers to build their own message types and send and 
receive semantics on top of it.  For example, in our application, the host processor 
provides a message count and LVT time update. For our application, we require that 
this be broadcast to all nodes; so the message is replicated to all outgoing FIFOs 
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concurrently (correct headers are constructed concurrently).  Similarly, the I/O unit API 
allows sends to a single host, which we did not exercise in our design.  On the receive 
side, currently an outside state machine pulls data from the I/O unit to check for 
updates. The I/O unit signals the presence of data (in any of the FIFOs).  Since for this 
application we do not care who the update comes in –all need to be processed—we 
simply pull data when there is room for it for internal consumption in the GVT 
component.  A version of the design (for example using generics) that requests a 
receive from a specific destination can be built.  In addition, the current round robin 
scheduler can be moved outside the I/O unit, which then exposes a bit vector of which 
FIFOs have messages, decoupling the receive semantics from the I/O unit 
implementation.  Also, the pulled messages can be sent to the host processor by setting 
an interrupt (which we do for the final result of the GVT computation). Finally, additional 
functionality like ARQ, flow control, etc… can be built by higher layers if desired using 
standard layering approaches. 
 
The FIFO is currently defined with that static width.  The parallel to serial and serial to 
parallel state machines are size customizable, and improvements to the FIFO could 
change the current state.  However, headers will be static, and application designers will 
have to keep this in mind.  A set of related packets is called a message.  Each message 
can be made up of up to sixteen packets in the current design.  Each message has a 
16-bit header contained in the first packet.  Every other packet in the message contains 
only data. The header must include the number of packets in the message, but from 
there, can include application specific information like the type of message being sent, 
what nodes are to receive the message, and similar data. 
 
The original plan for developing the FIFO was fairly straightforward.  The original code 
supporting this aspect of operation had been tested using the Modelsim simulator and 
was shown to be working.  Unfortunately, when we attempted to integrate this 
implementation with the new LVDS and all-to-all board code, very little synthesized 
correctly.  Through testing, we determined that some of the state machines worked 
correctly within the design while others did not due to the asynchronous clocking from 
multiple unsynchronized clock sources.  This difficult pitfall of logic design created 
unpredictable race conditions and was not accounted for in the original design.  Further, 
it is very hard to account for these effects in simulation; for example, the original design 
simulated the I/O card using a clock synchronized with the internal clock and did not 
catch any of the race conditions for this reason.  We were able to keep the basic layout 
for the I/O unit, and a number of the state machines, but had to debug and rewrite 
significant amounts of code in other places.  We had not planned for such an extensive 
revision of the initial code, and this aspect of the effort put us significantly behind 
schedule. 
 
After completing the code for each state machine, it was synthesized and loaded onto 
the FPGA card to test it to ensure that it worked.  While each of the state machines 
worked individually, when everything was brought together, they did not integrate 
smoothly.  After spending much time in debugging these problems, it became apparent 
that race conditions across state machines also existed.  Essentially, while no sections 
of code were using two clocks at the same time, some state machines using two 
different clocks were more coupled than they should have been, resulting in some of the 
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errors.  This led to the third and current design. 
 
Unfortunately, the design is not fully correctly operational yet.  Below we discuss the 
remaining problems.  Despite spending very large amounts of time, well beyond the 
lifetime of the project, we were not able to completely debug them.  A main limitation 
was the unusability of the x-based tools hosted on the AFRL machines remotely.  As a 
result, we had to rely on trial and error with synthesized code, which is not cleanly 
observable or controllable.  In the end, we ran out of time. 
 
First, the round robin scheduler has not been tested after synthesis.  This is because, 
without being able to successfully send packets, we would have been unable to use the 
scheduler to check how many packets were in any given message.  The round robin 
scheduler was tested successfully in simulation, but is currently a bottleneck in that it 
cannot be clocked faster than 50MHz.  However, it can be easily replaced by an off the 
shelf priority decoder design. 
 
There were a few other problems in the code.  First, somewhere in the I/O unit, the 
message being read from the host was being dropped.  All of the individual state 
machines worked when tested alone, so we have not figured out why this was 
happening.  Through testing though, it appears that the message is dropped in the P2S 
converter, but I could not determine a reason or a solution.  It did appear that the 
synthesizer being used for the VHDL code was optimizing the message away, but for no 
reason that could be determined.  It was also difficult to figure out if this was actually the 
case.  Because I was having problems running applications using the x-server remotely, 
I was not able to test this in the VHDL simulator.  For the sake of testing, we generated 
a message to send over the board from within the P2S state machine. 
 
Another unsolved problem is the clock synchronization.  While the code is in place, the 
nodes do not seem to be synchronizing with one another.  The result is that while 
messages are being sent and received, the nodes are receiving the messages with the 
bits shifted.  That is to say, if the following binary byte was sent: “10011000”, it could 
have been received as “00100110”, or any other shift.  The shifting was based on at 
what given times the nodes were started and were different for every run.  Again, I was 
unable to determine the cause or a solution.  All other parts of the I/O unit have 
successfully been tested.  This includes the template to interact with the host. 
 
One final unsolved problem had to do with the number of nodes that we could use.  
When working with all 24 nodes, the percentage of the FPGA card being used at any 
one node was high.  This was caused by the FIFOs that stored the incoming data, of 
which there were 23, each with 255 entries with a width of 48 bits.  As a result, the 
FPGA cards were being overused and outputting messages incorrectly.  More 
specifically, there is a limited number of memory elements on the FPGA suitable for use 
as FIFOs; the large size of the FIFOs combined with the number of ports led to high 
utilization of these distributed resources, causing the design the span the whole FPGA 
chip and increasing wiring delays.  We note that this is just a conjecture, as the 
simulation models did not exhibit this problem, which is only observed in the 
synthesized model. For testing purposes, we reduced the number of nodes being used 
to 8.  The solution was successful in the short run, but for long-term purposes, the 
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FIFOs would need to be replaced with smaller versions.  Having 255 entries per FIFO is 
certainly not necessary, and that number could easily be reduced to 50 without fear of 
overflow.  However, despite spending a significant amount of time working with the 
problem, I was unable to either find or design a FIFO that was suitable for the task.  
 
7 SPEEDES and GVT Calculation 
 
The initial plan called for using the developed all-to-all communication support in 
accelerating PDES.  From the perspective of the FPGA, the design of the GVT 
calculator is fairly simple and straightforward.  Twenty-three arrays are kept in the 
calculator, each representing one of the remote nodes.  The newest LVT [local virtual 
time] and the difference between the number of sent and received messages is kept 
here.  As LVT is updated or message counts change, the host updates its local values.  
When the total number of messages in transit reaches 0, GVT is computed by taking 
the minimum LVT.  The building blocks for the GVT have been tested in simulation and 
work correctly.   
 
The state machines that connect the I/O unit to the GVT calculator were not completely 
tested after synthesis because finishing the I/O unit was a higher priority, but these 
machines should be fairly simple in nature.  The I/O unit will notify the GVT calculator 
when it has a message.  The GVT calculator will request that message, which will 
include the node that it was received from.  The headers will be stripped away and the 
LVT will be stored within the calculator.  Another state machine is responsible for 
requesting the calculated GVT and returning it to the local host.  It notifies the GVT 
calculator that a request has been received from the local host and requests the GVT.  
When the calculator is ready to return the result, it notifies the state machine, which 
takes the result and returns it to the host. 
 
Upon completion of the GVT calculator-supporting state machines, the design would 
have to be incorporated into the SPEEDES simulator, which is a difficult, though 
achievable objective.  The first step is to locate all places where SPEEDES uses 
breathing time warp and requests the LVT of other nodes so that it can calculate the 
GVT.  Because of the size of the SPEEDES code, this is a difficult challenge.  Once this 
has been done, the code used to request that the FPGA return a GVT calculation can 
replace the old code.  When a request has been made, simulation can continue, but 
only locally.  Until a new GVT has been returned, we do not want to commit any of the 
actions in the simulator.  We could not be more specific than that until the GVT 
calculator itself was more complete. 
 
 
8   Conclusion 
 
Unfortunately, we were not able to finish the project as planned.  This was the result of 
a number of unexpected problems that continually put us further behind schedule.  The 
first of these problems, as described earlier, was the difficulty in locating software that 
would enable me to work with the LVDS cards so that we could send messages over 
the all-to-all board, and the associated learning curve in using the template, once 
provided.  In addition, there were problems with the FPGA cards at a few nodes, which 
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meant that we had to change the connections between the board and the FPGA card a 
number of times. This led to a number of tests being interrupted mid-run, a problem 
because of the length of the tests being run.  However, we were eventually successful 
in obtaining test results. 
 
The next major delay occurred when we realized that we would not be able to use 
nearly as much of the successfully simulated I/O unit code in the synthesized design for 
the FPGA card.  This led to the first rewrite of the code that kept the basic design for the 
I/O unit but replaced a number of the state machines.  The three-clock synchronization 
problem that we encountered led to a second rewrite of the design.  While neither 
rewrite included a significant amount of coding, both decisions were arrived at through 
significant amounts of testing and involved a great deal more testing during the rewrite 
to ensure that each piece was working correctly. 
 
The final set of problems encountered was on the second rewrite and is also mentioned 
above.  These problems include clock synchronization, expansion to 24 nodes, and the 
dropping of packets within the I/O unit.  While we are confident that the design for the 
I/O board could successfully work, we were unable to solve these problems within the 
given amount of time and without having access to tools.  A combination of factors led 
to this.  First, we had fallen significantly behind schedule because of earlier problems.  
Second, we had to work remotely, which slowed down development significantly.  The 
HHPC x-server runs slowly remotely to the point where they are not usable interactively 
(the simulator).  This necessitated trial-and-error debugging by synthesizing code and 
seeing what happens. This is extremely inefficient as the code synthesis is very slow 
and the hardware is difficult to observe and control. 
 
Many of the problems we faced were post-synthesis, making debugging extremely 
difficult.  In addition, absent access to debugging tools (which we did not have, due to 
the un-usable remote X-interface), it became almost impossible to debug the design.  
We believe that the whole design cycle would have been accelerated with access to a 
modern tool-chain.  We believe that with access to such tools, and more time, the 
design can be made to work—we have specific examples that isolate the problems that 
can be used to debug them that can serve as a starting point to address these 
shortcomings. 
 
Getting the PDES study “working” after the I/O unit design is operation is fairly 
straightforward: it requires: 

1. Replacing the logic for GVT computation, which is based on a fuzzy barrier, with 
a check of the status of the on-going GVT computation. 

2. Sending an update of LVT and message counts any time a message is received 
3. Converting Time objects from the simulator to 64 bit representation used on the 

FPGA.  This entails loss in resolution, but 64 bits are sufficient for most 
applications. 

 
However, in order to get the implementation working efficiently requires structural 
changes to the simulator to allow pipelined computation of GVT, to allow event 
processing to continue while GVT is being computed.  This requires adding a color flag 
to all messages and keeping track of message counts for each color, LVT for each 
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color and manage color transitions triggered by GVT computation.  We have the 
algorithm developed with a partial implementation (approximately 75% of the 
implementation – integrating with the simulation loop remains). 
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