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Abstract

We propose a method for approximating integrated likelihoods in finite mixture models. We for-
mulate the model in terms of the unobserved group memberships, z, and make them the variables
of integration. The integral is then evaluated using importance sampling over the z. We propose
an adaptive importance sampling function which is itself a mixture, with two types of component
distributions, one concentrated and one diffuse. The more concentrated type of component serves
the usual purpose of an importance sampling function, sampling mostly group assignments of high
posterior probability. The less concentrated type of component allows for the importance sampling
function to explore the space in a controlled way to find other, unvisited assignments with high
posterior probability. Components are added adaptively, one at a time, to cover areas of high
posterior probability not well covered by the current important sampling function. The method is
called Incremental Mixture Importance Sampling (IMIS).

IMIS is easy to implement and to monitor for convergence. It scales easily for higher dimensional
mixture distributions when a conjugate prior is specified for the mixture parameters. The simulated
values on which it is based are independent, which allows for straightforward estimation of standard
errors. The self-monitoring aspects of the method make it easier to adjust tuning parameters in
the course of estimation than standard Markov Chain Monte Carlo algorithms. With only small
modifications to the code, one can use the method for a wide variety of mixture distributions
of different dimensions. The method performed well in simulations and in mixture problems in
molecular biology, astronomy, and medical research.

Key Words: Allelotype; Bayes factor; Bayesian model averaging; Beta-binomial distribution; De-
fensive mixture importance sampling; Gibbs sampling; Label-switching; Markov chain Monte Carlo;
Multimodality.
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1 Introduction

The integrated likelihood plays an essential role in Bayesian inference and testing, as it is the
central component of the Bayes factor for comparing two models. It also plays a role in Bayesian
estimation, as the normalizing constant for the posterior distribution. The integrated likelihood of

a model is
I=pr(x) = [ fxnp(r)dr (1)

where x denotes the observed data, f(x|7) is the likelihood function for the parameter 7 under the
model, and p(7) is the density (or probability mass function) for the prior distribution of 7 given
the model.

Since the integrated likelihood often is not analytically tractable, a body of literature on the
use of numerical methods for its calculation has developed. Evans and Swartz (1995) and Chen,
et al. (2000) include methods based on quadrature rules, Laplace’s method, importance sampling
and Markov Chain Monte Carlo (MCMC). Combinations of MCMC with importance sampling and
the Laplace method are considered by Rozenkranz and Raftery (1994), Raftery (1996b) and Lewis
and Raftery (1997). The Bayesian Information Criterion (BIC) can be used as the basis for an
asymptotic approximation to the Bayes factor (Schwarz, 1978; Kass and Wasserman, 1995; Raftery
1995).

For finite mixture models, however, none of these methods is fully satisfactory. Two features
of mixture models make many current methods for approximating the integrated likelihood prob-
lematic. The first is that the model is not “regular” for testing and model selection purposes.
In regular models, the log-likelihood becomes approximately elliptically contoured when there are
enough data, even when the true parameter values correspond to a lower-dimensional submodel
that one is trying to test. In this standard situation, for example, the likelihood-ratio test statis-
tic has an approximate asymptotic chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters. This does not hold in finite mixture models whenever one
estimates a model with G components but the true number of components is smaller, so that the
true parameter values lie on the edge of the parameter space (Lindsay 1995).

A second feature is the “label-switching” problem, namely that the likelihood is invariant to
relabeling of the mixture components, and so has G! modes of the same height. Additional local
modes are often present (Lindsay, 1995; Titterington, Smith and Makov, 1985; Atwood et al, 1992).

The Laplace method (e.g. Tierney and Kadane 1986) provides an analytic approximation to
the integrated likelihood based on the assumption that the posterior distribution is approximately

elliptically contoured (e.g. Raftery 1996a), and when this assumption holds it can provide approx-



imations of remarkable quality (e.g. Tierney and Kadane 1986; Grunwald, Guttorp and Raftery
1993; Lewis and Raftery 1997). However, for mixture models this assumption fails when the model
being fit has G components and the actual number of components is smaller (Lindsay 1995), which
is a situation of great interest for model comparison and testing. Thus the Laplace method does
not work in this situation.

The original justification of the BIC was in terms of the Laplace method and the BIC provides
a good approximation to the integrated likelihood in regular models for a unit information prior
on the parameters (Kass and Wasserman 1995; Raftery 1995). This justification does not hold for
mixture models, although the BIC does provide a consistent estimate of the number of components
in the mixture (Leroux 1992; Keribin 2000), leads to density estimates that are consistent for the
true density (Roeder and Wasserman 1997), and has given good results in a range of applications
(e.g. Dasgupta and Raftery 1998; Fraley and Raftery 1998, 2002).

Quadrature methods can be used but they begin to break down for problems with more than
about four parameters (Evans and Swartz 1995), and the number of parameters in mixture models
quickly surpasses this as the number of groups and/or the dimension of the data increase. When
testing or comparing mixture models, one is typically considering at least some models that have
substantial numbers of parameters.

Markov chain Monte Carlo (MCMC) can be used to estimate mixture models, and associated
methods can be used to approximate integrated likelihoods (e.g. Chib 1995, Raftery 1996b). How-
ever, in addition to the usual problems with MCMC methods (dependent samples, convergence
issues, complexity of programming and implementation), in mixture models they can easily fall
foul of the label-switching problem (Celeux 1997; Celeux, Hurn and Robert 2000; Stephens 1997,
2000b). For example, Neal (1998) pointed out that Chib’s (1995) results for a mixture model were
in error for this reason. The problem could be solved correctly using the methods of Chib and
Jeliazkov (2001). However, assessing the accuracy of the estimated integrated likelihoods is not
trivial with MCMC because of the dependence between successive samples.

Reversible jump and marked point process MCMC methods can be used to estimate Bayes
factors and posterior model probabilities for mixture models (Richardson and Green 1997; Stephens
2000a), but they are also prone to label-switching problems, and convergence can be even more of
a problem than for regular MCMC. For example, in the rejoinder to the discussion of their paper,
Richardson and Green (1997) mentioned that diagnostics indicated that their method may not
have converged even after 500,000 iterations for the one-dimensional mixture model of the galaxy
data they analyzed. The difficulty of implementing reversible jump MCMC efficiently for mixture

models seems to increase with the dimension of the data.



Our goal in this paper is to propose adaptive importance sampling methods for integrated
likelihoods in mixture models that are easy to implement and that avoid the difficulties we have been
discussing. The method consists first of reformulating the model in terms of the unobserved group
memberships, z, as is done, for example, for estimation via the EM algorithm, and then estimating
the integrated likelihood using importance sampling on z. Analytic or quadrature methods are
used for integration over 7; this is a “complete-data” problem and is often straightforward.

The success of any importance sampling method depends critically on the importance sampling
function. Here we develop importance sampling functions that are themselves mixtures and are
specified adaptively. We propose two approaches to this. The first takes defensive mixture impor-
tance sampling (Hesterberg 1995, Raghavan and Cox 1998) as a starting point, and the second is
based on sampling via perturbation of an initial grouping that has high posterior probability.

Our goals for integrated likelihood estimators are reasonably accurate estimates of the integral,
realistic estimates of the accuracy with which the integral is estimated, straightforward monitoring
of convergence for estimates, practicality (in terms of programming time and computational time),
and conceptual simplicity. Simulation studies suggest that our strategy meets all these goals.

The resulting strategy is easy to implement, involving only two simple dependent multinomial
sampling schemes. The samples on which the estimate is based are independent, so there are
no problems of standard error estimation due to dependence between samples, as with MCMC.
Our approach includes a way of dealing with the label-switching problem that can plague other
approaches, and also is self-monitoring.

An advantage of our approach is that the algorithm does not become more complicated as the
complexity of the underlying mixture densities increases. Implementation for higher dimensional
mixtures is similar to that for one-dimensional mixtures, reducing the coding burden normally
associated with adapting Markov Chain Monte Carlo methods to various problems. It seems to
provide quite good approximations to the integrated likelihood, reliable estimates of the associated
standard error, and is easily monitored for convergence of the estimate.

In Section 2, we review mixture models, present our importance sampling based estimators,
and show how they are applied in the context of multimodality due to the label-switching prob-
lem. Section 3 contains simulation results motivated by an application in molecular biology and
applications to problems in astronomy and diabetes research. In Section 4, we discuss advantages,

limitations, other methods and directions for future research.



2 Integrated Likelihoods for Mixture Models via Importance Sam-
pling

2.1 Integrated Likelihoods for Finite Mixture Models

Let y = (y1,.-.,yn) be a realization of a random sample from a G—component mixture distribution.

The corresponding likelihood is

n

n G
11> 7ifiwily) = T[] p(wilo, =, G), (2)

where the 7;’s are mixing proportions that sum to 1, 7 = (71,...,7g), and the ;’s are component—
specific parameter vectors with 8 = (8],...,0;;)". Each observation, y;, arises from one of the G

component densities, f;,7 = 1,...,G, but the group memberships are unknown. The parameter 7;
is the unknown probability of an observation arising from f;.
To obtain the integrated likelihood, or marginal probability of the data, the joint distribution

of y and 7 = (0, ) is integrated with respect to the unknown parameters:

1) = [ TLpulo,n)p(6, m)ddir, ®)

where p(6, ) is the prior density for (6,7). Analytic integration of (3) is usually not feasible.

The component membership for y; may be thought of as an unobserved random variable. When
the component membership is known, the likelihood takes a simpler form. Let z; = (21, --,2ig)
be the vector that indicates component membership for the i** observation such that zij = 1if y;
is from component j and 0 otherwise. The n X G matrix z = {z1,...,2,} gives the component

membership for the entire sample. Then

1) = [ TIX plleis 0 mp(l6., mp(6, mar @

Ti=1 z

n G
= Z/.HH(ijj(yz'|9))z“p(9a7r)dr (5)

Ti=1j=1

In (4), the summation is over the G possible values of z;, and in (5) the summation is over all G"
possible values of z. Note that we have assumed that p(z;|0,7) = p(zi|7) = H]G:1 ﬂjz-” . In the rest
of this article, we also assume that § and 7 are independent a priori, so that p(0,7) = p(0)p(w)
(where it is understood that the p(-)’s refer to different functions, depending on the argument).
This formulation simplifies part of the problem, since the inner integral of (5) (an integration

with respect to 7 = (0, 7)) often can be evaluated analytically, or at least closely approximated via



the Laplace method or a similar approach, and may also be more amenable to numerical integration

via quadrature. The problem then takes the following general form:

I=7 p(ylz)p(z). (6)

Here, p(y|z) = [, [Ti=1 p(yilzi, 0)p(6)d6, and p(z) = [ [Tiv, p(zi|m)p(w)dn. For the purposes of this
article, we will assume that integration with respect to (6, ) can be done analytically. Desai (2000)
and Desai and Emond (2001) treat cases where numerical methods are needed for integration with

respect to (0, 7).

2.2 Defensive Mixture Importance Sampling

Because of the size of the space of possible allocations of observations to components, sampling
based methods are required to calculate the integral (6). A simple Monte Carlo approach to
integration would sample the z from their marginal distribution p(z|G). A Dirichlet prior on A
induces a Dirichlet-multinomial prior distribution on z. If a group assignment z is sampled from

that induced prior distribution, then one could calculate an empirical average
. 1 &
e = = >_p(yl#', G). (7)
t=1

where the 2!, = 1...T are sampled from p(z|G). However, the prior distribution on the component
labels will be far too diffuse for many problems because many group assignments will have low
posterior probability, yielding highly unstable Ivic estimates.

Hammersley and Handscomb (1964) first suggested sampling from an “importance sampling
distribution,” g(z), that samples more often from “important” parts of the space of integration,

yielding the importance sampling estimate

R 1 & " b1 T t p(zt|G)
Iis = 2904 G)u) = 7 3t 6P ®

There is an optimal g(z) from which to sample. If one could sample from p(z|y, G) and had access

to its analytic form, then

- 1 & p(z'|G)
frs = = o6 PEIE)

is a zero-variance estimator of I. However, knowledge of p(z|y, G) requires the unknown p(y|G),

=p(ylG), (9)

and so it is not available. Still, this gives hope that one could find an importance sampling function
close to the optimal p(z|y, G) that would give estimates with lower variance than the Monte Carlo

estimator.



Wei and Tanner (1990) suggest that p(z|7,y, G) would make a good substitute for p(z|y, G) in
an imputation context (where, in their case, z represented missing observations). However, in the
mixture problem, the likelihood is typically multimodal and this importance sampling function is
often concentrated around sets of labelings corresponding to just one likelihood mode, and so may
not be a good approximation to p(z|y, G). An overly concentrated importance sampling function
can also cause difficulties because it may increase the variance of estimates of I, due to the high
variability in the weights. For instance, if g(z) is small for a z that gives a large value of p(z|Q)
and p(y|z, ), then the importance sampling estimate may have a very large variance.

Hesterberg (1995) suggested a simple fix for this particular drawback of importance sampling.
Although mixtures of importance sampling functions had been proposed in the past (Oh and Berger
1993; West 1993; Givens and Raftery 1996), Hesterberg was the first to suggest using the Monte
Carlo sampling function, p(z|G), as a component of the mixture importance sampling function

dp(2|G) + (1 — 6)g(z), giving the following importance sampling estimator

p(#'|G)
p(2|G) + (1 - 0)g(»

. 1 & 1 &
Ipy = Zp(ylzt,G) =T Zp(ylzt, G w* (2" (10)

where g(z) is the usual sampling function that covers important parts of the space as before. One
of the appealing advantages of using this defensive mixture importance sampling function is that
the importance sampling weights w*(z) are bounded by 1/4. The choice § = 1 results in the Ine
estimator, while § = 0 gives the I;g estimator with importance sampling function g(z). Hesterberg

notes that a K-component mixture could also be used

K-1
h(z) = Y bkgr(z) + 0xp(2|G) (11)
k=1
which would allow one to sample from different parts of the space.

2.3 Choices of g(z)

One promising choice of g(z) is Wei and Tanner’s (1990) proposal, p(z|7,y,G). Sampling from
p(z|7,y, ) is simple to do, as one need only sample each component label from a multinomial
distribution with probabilities equal to the conditional probabilities of group membership for each
observation. An advantage of sampling on the component labels is that the sampling does not
depend on the dimensionality of the data or the underlying parameter space. Multinomial sampling
is fast and computationally inexpensive.

Still, using p(z|7,y, @) has drawbacks. One is that it uses only one of the G! possible speci-

fications of 7. The likelihood surface has G! modes corresponding to the G! different component



labelings. For a likelihood symmetric prior distribution on the parameters (the most common choice
in the literature), using a particular 7 for p(z|7,y, G) would result in either an underestimation of
p(y|G) (because certain parts of the space would rarely be visited) or estimates of p(y|G) with high
empirical variance (because of the larger importance sampling weights associated with sampling
rare component labelings under a particular 7). Another difficulty with sampling from p(z|7,y, G)
is that p(z|7,y,G) often contains many values close to 1, which does not allow the importance
sampling function to explore much of the space of component labels. In order to overcome the
difficulties associated with sampling from p(z|7,y,G), we suggest two other importance sampling

functions based on p(z|7,y, G) in the following subsections.

2.3.1 A Label-Switching Dependent Product of Multinomials

First, we introduce the following label-switching version of p(z|7,y,G). In most problems, there
will be observations that have values of p(z;|7,y,G) very close to 1. In fact, many of these values
will essentially be 1 to within rounding error. We will use these points as representative points to
set a particular labeling of the components, and then sample the rest of the observations according
to p(z|7s,y, @), where 75 has the maximum likelihood estimates labeled according to the labeling
of the representative points.

We now more formally describe the algorithm. Let 2; be the n x G matrix of p(z;;|71,y,G)
resulting from the EM algorithm, where each row sums to 1. Assume the observations are ordered
such that max; 2;; > max; Z(;11);, for all i. Now assign the observations to components in the

following way. For the first observation, let

1
PT(le = 1) = 5’ ] = 1,...,G.

In other words, observation 1 will be assigned to the components uniformly. Next, assign observation

2 to a group according to the following:

1—29; .
PT‘(ZQJ' = 1) = G_ll for J # kl
2A:2l1 for ] = ]{,'1,

where k; is the group to which observation 1 was assigned and [; = argmaxjélj, i.e. the z; matrix
column for which observation 1 has the highest conditional probability. Observation 2 has high
probability of being assigned to the same group as observation 1 if they have high conditional
probability for the same group label according to Z;,; otherwise observation 2 will be assigned

uniformly to the remaining groups.



Now, if observation 2 is assigned to a different group than observation 1, assign observation 3

in the following way:

If argmax;Zy; # k1:
2:’311 fOI‘ j = kl
Pr(zj=1) = 1_23&,1%223’2 for j # ki, ko
23l2 for ] = k‘g.

If argmax ;295 = ki:

1—

o _
Pr(z; =1) = o fo.r i7k
ﬁgll for ] = k‘1,

where l2 = argmax;zo; and k2 is the group to which observation 2 was assigned.
If observation 2 is assigned to group k1, then assign observation 3 according to the following:
1—

PT‘(Zgj = ]_) = G—3{1 for -7 ;é kl
2311 for ] = ]{:1.

Continue assigning observations in this way until G — 1 representatives have been assigned, which
then leads to assignment of observations according to a permuted version of the original z; matrix.

A specific example of this dependent sampling method makes the algorithm a bit more clear.

Example 1. Consider the following example 2 matrix, for n = 4 observations and G = 3 compo-

nents:

0.0 1.0 0.0

0.99 0.005 0.005
z1= | 0.60 0.30 0.10

0.25 0.40 0.35

The algorithm assigns the first observation to groups uniformly. Assume that observation 1 has
been assigned to component 3. That means that observation 2 will be assigned in the following

manner:

0.995
Pr(zzs =1) = Pr(as =1) = —5— = 0.4475

PI‘(ZQ?, = 1) = 0.005

Now say that observation 2 has been assigned to component 2. Then, assign observations 3 and 4



according to the following probabilities:

Pr(z3; =1) =0.10  Pr(z4q =1)=0.35
Pr(zs2 =1) =0.60  Pr(zs2 =1) =0.25
Pr(zs3 =1) =0.30  Pr(za3 =1) =0.40

Note how the sampling will be equivalent to sampling from a permuted Z matrix for observations
3 and 4.

Now consider a second case. Let observation 1 again be assigned to group 3, but now assume
that observation 2 is also assigned to group 3. Then the algorithm specifies the following sampling
probabilities for observation 3:

0.70
PI‘(Zgl = 1) = Pr(z32 == 1) = T =0.35

PI‘(Z33: 1) = 0.30.

And then, if observation 3 is assigned to group 1, then one uses the following probabilities for

observation 4:

PI‘(Z41 == 1) = 0.25
PI‘(Z42 = 1) = 0.35
Pr(z43 =1) = 0.40.

O
The optimal situation in which to use such a sampling method would be when the Z matrix has
G — 1 observations such that each observation has probability very close to 1, but all for different
groups. This way, one would be sampling from permuted versions of the 2 matrix, without incurring
the extra computational expense necessary to sample from a specific z and then randomly permute
the labels (as the importance sampling function g(z) in this case would have G! summands to be
calculated at each iteration). The joint probability of any simulated z value, z*, is easy to calculate,
since Pr(z = 2*) = Pr(z1 = 27)Pr(ze = 25|21 = 27) -+ - Pr(zn = 2}|2n—1 = 2} _1, ..., 21 = 2} ), where
each probability is determined by the algorithm and requires only recording the probability used
at the time of sampling. It may be viewed as a sequential importance sampling function (Liu et al.
1998; MacEachern et al. 1999).
This dependent sampling method addresses the multimodality of the likelihood due to label-
switching, but does not address a problem inherent in using a Z matrix that contains many values
very close to either zero or one. We propose a second potential candidate for importance sampling

that addresses this drawback of using such a Z matrix for multinomial sampling.



2.3.2 A Product of Dirichlet-Multinomials

One of the problems with sampling only from the prior on z, p(z|G), is that many observations
that “should” be in the same group will not be with high probability (or observations that “should
not” be in the same group together will be with high probability). We propose using the Z matrix
to determine preliminary groupings of observations, and then applying the Dirichlet-Multinomial
sampling function to each of these groups individually. By doing so, a weak dependency is built
amongst observations which have high posterior probability of belonging to the same group.

As before, let Z; be the matrix of p(z;;|71,y,G) for a specific permutation of the component
labels. Create G groups by assigning observations, initially, to group /;, where /; = argmax;Z;;.
Then, for each non-empty group r,(r = 1,..,G), sample 7, from a Dirichlet distribution with pa-
rameter vector , = (a1, ..., arg). Now, for each group, re-assign observations to groups according

to their group-specific 7,.

Example 2. The 2Z; matrix from the previous example yields the following initial groupings of

observations:
Group 1 : Observations 2,3
Group 2 : Observations 1,4
Group 3 : Empty

Draw 7, from a Dirichlet (a1, ..., @1¢) and 72 from a Dirichlet (agi, ..., @sg). Next assign observa-

tions according to the following:

Pr(zi; =1) = Pr(zg5=1) =my;
Pr(zg; =1) = Pr(zsj=1) =mn;

One could envision many different values of the parameters «,, but we found that taking
ar; = 1 for all ,j works reasonably well. The reason for this is that the sampling distribution
assigns observations symmetrically to groups (which obviates the difficulties due to label switching
encountered with use of p(z|7,y, G) directly) and also gives a fair number of samples of z such that

the G initial groupings remain roughly intact. The required probabilities go(z) are

ﬁ LX) II;T(nej + any)
= Z Nrj + rj) Hj I'(a;)

(12)
where n;; is the number of observations from the ™" group assigned to the j** group. A

Our two proposed sampling distributions accomplish different goals. The label-switching de-

pendent product of multinomials primarily samples label allocations that correspond to one specific

10



likelihood mode of the parameters. For well-separated mixtures, one would expect these allocations

to provide most of the mass in

I=> pylz,G)p(2|G).

However, due to the presence of local modes beyond those due to label-switching, sampling from
the Z matrix corresponding to just one mode will probably be inefficient. The product of Dirichlet-
multinomials will sample other parts of the space more often, which helps to guard against large

importance sampling weights.

2.4 Incremental Mixture Importance Sampling (IMIS)

The importance sampling functions we have just described can miss areas of high posterior prob-
ability. To avoid this, we propose adaptively specifying the mixture importance sampling function
by incrementally adding components to the mixture to capture parts of the space that have been
missed, We use a mixture importance sampling function (as in Geyer (1991)), based on several 7;’s,
where each 7; corresponds to a local posterior mode.

Implementation requires a method for choosing the 7;’s. A missed area of high posterior prob-
ability is indicated by a high importance sampling weight. At each iteration of our incremental
algorithm, a new importance sampling function is specified by adding a mixture component to the
importance sampling function at the previous iteration. The component added corresponds to the
2! with the highest weight at the previous iteration, denoted by z*, and has the form p(z|7*,y, G),
where 7* is the mode of p(7|y, z*, G).

The add-one methodology retains most of the simplicity of the original proposed importance
sampling method, but has the flexibility to sample from important parts of the space neglected by
other importance sampling functions based on only one initial 7. We call the resulting algorithm

Incremental Mixture Importance Sampling (IMIS). Here is a summary of it:

1. Sample a set of T label assignments z(°) from the mixture distribution
90(2) = 8191 (2) + 8292(2) + d3p(2|G), (13)

where p(z|G) is the induced prior distribution on z, g;(z) is the label-switching product of
multinomials described in Section 2.3.1, and go(z) is the product of Dirichlet-Multinomials
described in Section 2.3.2, where both of the non-prior functions are based on the origi-
nal 2 matrix of conditional probabilities p(z|#(?),y, G), obtained, for instance, via the EM

algorithm. For now, set §; = do = .25 and 3 = .5.
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2. Use the sampled z%’s to calculate an initial estimate of I:

T
f() — p(y Zt, G p(Z)
and store the 2’ that yields the largest value of p(y|z’, G)%(E)) (call this z3).

3. Find the posterior mode of p(7|y, 25, G), 71.
4. Create a new Z matrix (2;) based on 71, i.e. using p(z;;|71,v, G).

5. Add two new components to the previous importance sampling function to create a new

mixture importance sampling function:

9 (2) = 8191 (2) + 8292(2) + d393(2) + 6494 (2) + d5p(2)

where g1(z) and go(z) are the same as before and g3(z) and g4(z) are the label-switching
product multinomial and the product of Dirichlet multinomials based on 2;. Set ¢; = %

fori=1,..,4 and d5 = .5.

6. Return to step (1) and sample from the new mixture distribution g(!)(z), repeating steps
(1)-(6), adding two components at a time based on newly generated 2;’s, until I* becomes

relatively stable.

7. After obtaining a K component adaptive mixture by finding (K — 1)/2 7;’s, one can take a

larger sample from this final mixture importance sampling function (say with Tx = 107").

3 Examples

We now present three applications of the adaptive importance sampling method. The first set
of examples and simulations focuses on a simple binomial mixture problem from cancer research,
establishing that the method works in a situation where results can be compared to a known value
of I. The second example is a common one-dimensional Gaussian mixture example showing that
the method works well compared to a Markov Chain Monte Carlo method. Finally, we give a

higher-dimensional example.
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Table 1: Likelihood modes for Data Set 3

—log(p(y|7,G)) . fpe 7 ply,Z)
175.74 169 276 .155 2.48
175.78 220 151 .5 0.0013
175.91 185 NA 1.0 11.3

Note: p(y, Z) is the value of p(y, 2|G) evaluated at z values corresponding to the assignment of
each observation to the group for which it has maximum p(z|7,y, G).

3.1 Tumor Site Data

First, we examine the use of the method to calculate integrated likelihood values for a mixture
of binomial distributions where the data are in the form of g; successes in n; trials. We consider
two small tumor-site datasets (Shibagaki, Shimada, Wagata, Ikenaga, Imamura, and Ishizaki 1994;
Barrett, Galipeau, Sanchez, Emond, and Reid 1996) where the scientific goal is to determine if
there are one or two components in the mixture distribution (Newton, Gould, Reznikoff, and Haag
1998). Data sets 1 and 2 are subsets from the two allelotype data sets respectively. Data set 3
consists of simulated data from a single binomial component with mean 0.22 and n;’s the same as
the n;’s in Data set 2. We will use uniform prior distributions for the binomial parameters (u,)
and the mixing parameters, A.

The likelihood surfaces for the parameters 7 range from highly peaked (in Data Set 1) to
very flat, with multiple modes (Data Set 3). Table 1 shows three local modes of the likelihood
surface for Data Set 3, along with the values of p(y, z|G) evaluated at z values corresponding to
the assignment of each observation to the group for which it has maximum p(z|7,y, G). Note that
the 7 that corresponds to the largest value of the likelihood does not correspond to the z that gives
the largest value of p(y, z|G). This suggests that an adaptive method that searches for good 7’s to
use for several Z sampling matrices may be useful even for simple problems.

Table 2 shows the results using various § values for two-component importance sampling func-
tions. The first set of results corresponds to using the label-switching importance sampling function
in conjunction with the prior as part of a defensive mixture distribution. The choice of § affects the
quality of the I estimates. The second set of results corresponds to using the product of Dirichlet-
multinomials as the non-prior component of a defensive mixture. Note that using a § value between
0 and 1 does not greatly affect the accuracy of the results, but setting § = 0 or 1 results in estimates

with high observed and estimated variance.
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Table 2: Results for Data Sets 1-3 for Various § Values Using Two Component Defensive Mixtures
for the Two Choices for g(z).

Data set 1: markedly peaked likelihood: True log(I) = —43.59
Pro@uct of Multinomials Proii. of Dir.-Multinomials

6 | log@) | cv@) | cv@d) | log@) | cv(@) | cv()

0| -43.59 | 0.233 0.036 | -43.60 | 0.040 0.041
0.25 | -43.58 | 0.031 0.031 | -43.59 | 0.040 0.048
0.50 | -43.59 | 0.028 0.027 | -43.58 | 0.052 0.058
0.75 | -43.59 | 0.028 0.032 | -43.58 | 0.072 0.080
1.00 | -43.63 | 0.248 0.291 | -43.63 | 0.248 0.291

Data set 2: peaked likelihood : True log(I) = —44.55
Product of Multinomials | Prod. of Dir.-Multinomials

= =~

§ | log@) | cv@) | cv@d) | log@) | cv(@) | cv()

0.00 | -44.60 | 0.250 0.071 | -44.54 | 0.038 0.038
0.25 | -44.55 | 0.045 0.040 | -44.56 | 0.040 0.043
0.50 | -44.55 | 0.042 0.038 | -44.55 | 0.042 0.051
0.75 | -44.55 | 0.044 0.040 | -44.55 | 0.073 0.068
1.00 | -44.61 | 0.276 0.238 | -44.61 | 0.276 0.238

Data set 3: flat, multimodal likelihood : True log(I) = —38.39
Product of Multinomials | Prod. of Dir.Multinomials

5 | logd | cv@) | cvd) | logd@) | cv@) | cv()

0.00 | -38.51 | 0.437 0.130 | -38.39 | 0.025 0.025
0.25 | -38.39 | 0.032 0.035 | -38.39 | 0.023 0.022
0.50 | -38.39 | 0.021 0.024 | -38.39 | 0.022 0.021
0.75 | -38.38 | 0.019 0.020 | -38.39 | 0.018 0.020
1.00 | -38.39 | 0.022 0.022 | -38.39 | 0.022 0.022

Notes: Results based on 100 trials of 7' = 1,000 samples from each of the two importance sampling
functions. I is the average of the I estimates, CV(I) is the coefficient of variation (CV) of the 100
I values, CV (1) is the average of the 100 CV estimates.
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Table 3: IMIS Estimates of the Log Integrated Likelihood Values for the Two-Component Model.

Data Set || logI) | CV(@) | ¢v({@d) | Truth
1 -43.59 | 0.010 | 0.02 -43.59
2 -44.55 | 0.010 | 0.02 -44.55
3 -38.39 | 0.010 | 0.009 -38.39

EMC

Data Set || log(I) | ¢V() | ¢V() | Long run
4 -470.63 | 0.003 | 0.018 | -470.63
5 -486.80 | 0.034 | 0.030 | -486.77
6 -386.71 | 0.027 | 0.027 | -386.72

Notes: Results are based on 100 trials using the adaptive importance sampling method with K = 11
components and T' = 10,000 iterations at each step. The numbers are based on a final run of
100,000.

We then examined 3 artificial data sets based on the tumor site data. Data set 4 includes 12
replicates of data set 1 and data set 5 includes 12 replicates of data set 2. Data set 6 includes
the binomial proportion 8/40 repeated 204 times. Data set 6 serves as a benchmark standard that
any reasonable method should be able to calculate easily. Table 3 compares results using adaptive
methods to the truth (for Data sets 1, 2, and 3) and to results obtained using the EMC approach
(for Data sets 4, 5, and 6) described below. A fairly small number of adaptive components (11
components for the table) approximate the desired p(z|y, G) well, producing estimates with very

small mean-squared error for all of the data sets.

3.2 Galaxy Data

The next example extends the methodology beyond the realm of testing one component against two
component mixtures. We try to approximate the integrated likelihood for data involving velocities
of galaxies (Postman, Huchra, and Geller 1986), discussed in Roeder (1990). The number of possible
groups of galaxies is the question of interest for this data set. Although Stephens (2000a) used a
mixture of ¢-distributions, most other authors who have analyzed these data have used mixtures of
Gaussians, and we will fit do likewise in order to facilitate comparisons with other methods.
Liang and Wong (2001) suggested a simulated annealing MCMC approach for calculating nor-
malizing constants combined with bridge sampling (Meng and Wong 1996). Their method, called
Evolutionary Monte Carlo (EMC), requires running several (in their examples, 20) Markov chains,
each of which samples from f;(7) = (p(y|7, G))“p(7|G) where u; = 0,0.05,...,1.0 is different for

each chain. Their primary contribution was to suggest an evolutionary Monte Carlo approach for
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swapping parts of the sample vector 7 amongst chains. The annealed MCMC approach allowed
the chain to visit the multiple modes of the likelihood. Neal (1998) pointed out that Chib’s Gibbs
sampling approach (1995) for the same galaxy data set was inadequate because it did not visit all
the modes of the mixture likelihood surface.

We compare IMIS to the method of Liang and Wong, viewed as a a state of the art representative
of MCMC approaches to the problem. Note that their method will become more difficult to
implement as the dimensionality of the data (and therefore 7) increases.

For the galaxy data, we use a conjugate Normal-Inverse-x? prior for the mean and variance

parameters, i.e.

uj|aj2- ~ N (20, 012-)

JJZ- ~ 100 Inverse-x2

which is similar to the prior used by Chib and by Liang and Wong, with the difference that they
did not use a conjugate prior, but instead assumed prior independence of the mean and variance
parameters.

Table 4 shows the values of I estimated by IMIS, by Monte Carlo sampling from the prior on
T and, as a “gold” standard, by a much longer run of Liang and Wong’s EMC method. The gold
standard estimate consists of 25,000 sample points from a chain of length 1.25 million, taking every
50th value of 7. This was done in order to ensure high quality of the estimate and to avoid problems
with dependence amongst values of 7. Still, because it consists of only one run, the estimate of I
in Table 4 has no associated standard error. The Monte Carlo estimate based on sampling from
the prior on 7 is taken over 10 trials of one million Monte Carlo iterations. The IMIS estimate is
based on 10 trials of the method. The EMC “short” runs are 10 trials of 125,000 iterations each,
thinned to a sample size of 2500 to be used with the bridge sampling calculations. The short runs
are an attempt to match the amount of computational time required for a reasonable run of the
adaptive importance sampling method. The number in parentheses for all methods is the coefficient
of variation for these 10 runs, namely the standard deviation over 10 runs of I for each method
divided by the average I value for each method.

Table 4 shows that IMIS provides accurate estimates of log(f ). The coefficients of variation are
low and all runs produce I estimates within 0.5 of the “gold” standard long EMC estimate; this is
adequate for interpretation on the standard scale for interpreting Bayes factors (Jeffreys 1961; Kass
and Raftery 1995), which views a Bayes factor of 3 or less as weak evidence, or, in Jeffreys’s words,

“evidence not worth more than a bare mention.” Sampling from the prior gives a reasonably good
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Table 4: Comparison of Log Integrated Likelihood Estimates for the Galaxy Data

| Clusters || IMIS | EMC (short) | MC estimate using p(r) | EMC (long) |
2 ~2.96 (0.001) | -2.99 (0.08) ~2.89 (0.76) 2.02
3 22,14 (0.007) | -2.13 (0.07) 211 (0.62) .15
1 72.36 (0.038) | -2.32 (0.11) 72.39 (1.04) 72.36
5 ~2.81 (0.106) | -2.73 (0.07) ~2.82 (0.66) ~2.80
6 -3.28 (0.204) | -3.21 (0.12) -2.29 (0.81) -2.29
7 -3.76 (0.299) | -3.81 (0.10) 2,64 (1.04) 277

Notes: Values for IMIS were obtained using a 51-component mixture.

Values for EMC short runs were obtained using 10 runs of the method for 125,000 iterations, thinned by 50
to obtain nearly independent values.

Values for Monte Carlo estimates were obtained using 10 runs of one million iterations.

Values for EMC long runs were obtained using 1 run of length 1.25 million, thinned by 50.

To obtain actual integrated likelihood estimates, subtract 230 from each value in the table.

answer when averaged over the 10 trials, but the variability across those 10 trials is large. Also,
sampling from the prior works less well as the dimension of the problem increases.

Figure 1 shows how the estimates of I vary for a randomly selected run as components are added
to the mixture importance sampling function. IMIS allows one to continue adding components
until the estimates of I stabilize. Note that all the estimates are unbiased; the purpose of adding
components is to improve precision. The plot shows that for G = 2 and G = 3, 10 to 15 components
would be enough to get reasonably good estimates of I. For G = 4 or G = 5 components, 20 to 25
components might be needed, whereas for G = 6 and G = 7, it might be worth going beyond even
the 51 components components used here. Figure 2 shows trace plots for each of the 10 runs for
G = 2 to 7 components, and Figure 3 shows the 10 IMIS final estimates using a larger number of
simulations.

Table 5 shows the running times for each method. The table lists the time required for one
run of the adaptive importance sampling method, a short run of the EMC method, and a single
1.25 x 10° run of the standard Monte Carlo sampling algorithm. The adaptive importance sampling
method takes less time to run than a run of the EMC algorithm for every number of components.
The Monte Carlo approach is faster for G < 7, but then actually takes longer than the adaptive
importance sampling approach for G = 7. Of course, the high variability of Monte Carlo integration

for this example makes it undesirable and is included here only for comparison.
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Figure 1: IMIS log (/) Trace Plots for Each Number of Components for the Galaxy Data. All runs
used a maximum of 51 components based on 25 7;’
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maximum of 51 components based on 25 7;’s.
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Figure 3: IMIS log(I) Final Estimates for the Galaxy Data for 2 to 7 Components. All points are
based on 100,000 simulated values from a 51-component mixture importance sampling function.

Table 5: CPU Times for the Galaxy Data

# Clusters || IMIS | EMC | MC estimate using p(7)
2 299 388 180
3 370 498 260
4 464 567 340
) 492 625 410
6 550 684 500
7 570 740 590

Note: Table cells indicate seconds of CPU time required for running each method once to estimated the log
integratated likelihood. The methods were implemented as described in the note to Table 4, so that the
various runs estimates with relatively equal precision.
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Figure 4: Pairwise Plots of Glucose, Insulin, and SSPG for the Diabetes Dataset. Triangles A
denote diagnosed chemical diabetes patients, crosses + denote diagnosed normal patients, and
circles o denote diagnosed overt diabetes patients.

3.3 Diabetes Data

Finally we consider a higher-dimensional example from the medical literature (Reaven and Miller
1979). The data set consists of blood measures of insulin, glucose, and insulin resistance levels
(SSPG) for 145 diabetes patients; the pairs plot is shown in Figure 4. Fraley and Raftery (1998)
analyzed the data set using model-based clustering. Even with only three dimensions, the problem
becomes hard to analyze using the evolutionary Monte Carlo method. Proposing good covariance
matrices is hard to do and also expensive. The Monte Carlo and basic importance sampling methods
fail because the dimensionality of the problem is too high, even for a model with G = 2 components,
which has 6 + 12 + 1 = 19 parameters. IMIS requires no special adjustments or tuning, because
the sampling is done only on the component labels, and the only changes that need to be made to
go from one dimension to more are the likelihood and prior functions.

Table 6 shows the estimated log integrated likelihoods for G from 2 to 5 using K = 101 adaptive
components and 7' = 10,000 (with a final run of 100,000 to decrease the variability in the final

estimate). The coefficients of variation are acceptable and there is not reasonably strong evidence
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Table 6: IMIS Log-Integrated Likelihood Estimates for the Diabetes Dataset
‘ Clusters H IMIS Estimate ‘ Estimated CV ‘

2 -2425.78 0.007
3 -2403.93 0.058
4 -2404.25 0.155
5 -2403.99 0.208

Notes: Each estimate is based on a single importance sampling run of 100,000 with 101 components, where
the components were chosen using IMIS with smaller runs of 10,000 samples.

for more than three components.

4 Discussion

We have proposed a general approach for calculating integrated likelihoods for finite mixture models
via mixture importance sampling, called IMIS. This samples the labels after analytic (or approxi-
mate) integration of the parameters of the finite mixture rather than trying to integrate numerically
over the parameters using the observed data likelihood. We used two types of sampling function
in the adaptive mixture. The first type of function is a new label-switching product of dependent
multinomial distributions. The second type of function is a product of Dirichlet-multinomials that
builds a weak dependency amongst observations that are likely to be from the same component.
Both functions are based on the Z matrix of p(z;;|7,y,G). We build up the mixture importance
sampling function incrementally, adding components one at a time to cover areas of high posterior
density that have been largely missed.

The resulting algorithm is relatively easy to implement compared to competing MCMC meth-
ods and runs more quickly than a standard MCMC implementation. Because each iteration is
independent, one can obtain reasonable standard error estimates for the estimated integrated like-
lihood values, especially as the number of adaptive components increases. It is possible to monitor
the estimates of I (and their estimated variability) as components are added. As the importance
sampling function begins to stabilize, one can determine whether the variability across different
values of T is within the limits needed for interpreting Bayes factors. Monitoring I as the algorithm
adds components also gives the user the opportunity to adjust the settings of the algorithm in an
attempt to improve performance (for example, by adjusting dx, K, and T'). One can also stop and
restart the method at any point by outputting the stored Z matrices (a similar advantage enjoyed
by the MCMC methods). For further comparison of MCMC and importance sampling methods,
see Stephens and Donnelly (2000).
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Although implemented here only for mixture models, the method could be extended to the
calculation of Bayes factors for other types of latent or missing data models. We think that the
method could be useful for some other models for which the EM algorithm can be used to obtain
maximum likelihood or posterior mode parameter estimates. More generally, it seems that the
basic idea of IMIS, namely incrementally adding components to a mixture importance sampling
function to cover areas of substantial contribution to the integral not well covered by the current
function, could be applied to many importance sampling problems. Of course there are issues of
implementation to be addressed for each application.

Other approaches have been proposed for approximating the integrated likelihood for mixture
models by using EM algorithm output. One approach is the Cheeseman-Stutz (1995) estimator

p(2|G)
h(2)

Ics = p(y|2,G)

where h(2) = p(2|y, 7, G). This is related to a simple case of an importance sampling function on
the component labels. If one were to sample 7" times from h(z), the importance sampling estimator

would be . T
2 1 p(2|G) 1 t
Irs = ) p(yle!, G) " = = 3 u()
7 2P e s 6 - T
So the Cheeseman-Stutz estimator is equivalent to taking one summand of the importance sampling

estimator above at 2, i.e.
Ics = v(2).

This estimator will not be unbiased in general, as the expectation over z is being taken inside the
function v(z), rather than outside, and the latter is needed to ensure unbiasedness. Note that the
published derivation of the Cheeseman-Stutz estimator was based on a Laplace approximation that
is not valid in general for mixture models.

Biernacki et al. (2000) have proposed the Integrated Classification Likelihood (ICL), which is
similar to the Cheeseman-Stutz estimator in that it is based on a single value of z, but instead
replaces the z in v(z) with 27, the most likely labeling of the components given the data and 7,

and then integrates the resulting completed likelihood over 7. Thus Biernacki et al. report

plylaa, G) = [ plylear, p(rlzan)dr.

Biernacki et al. do not suggest that this is an approximation to the integrated likelihood, but
instead argue that it is useful in its own right. It is worth noting that p(y|2as, G) is a component of
v(Zp) with importance sampling function h(z) = p(2|G) (i.e. p(y|Zn) is one potential summand

of Iy where the 2! are sampled from p(z|@)).
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Wei and Tanner (1990) first suggested the use of p(z|7,y) as an importance sampling function
in the context of multiple imputation for missing data problems. They used it for posterior density
estimation rather than for integrated likelihoods as we do here. As an importance sampling function,
we found that p(z|7,y, @) does not work well by itself as it tends to be too concentrated and to
miss mass corresponding to local modes of the likelihood surface, and only can sample from one
mode corresponding to the original labeling of the components.

The methods proposed in this paper are closest in spirit to the adaptive importance sampling
methods of Raghavan and Cox (1998). They proposed a method for calculating the optimal §
for defensive mixture importance sampling in the context of estimating several integrands. They
used a complex minimization and reweighting scheme to match the asymptotic variances of several
importance sampling estimators based on the randomly sampled values. Our method also shares
similarities with the adaptive IS method of West (1993). We don’t collapse the mixture importance
sampling components as West advocates because we felt reduction in sampling complexity was not
worth the additional computational expense.

Our methods are also related to the nonparametric importance sampling estimator of Zhang
(1996), in that we choose an adaptive importance sampling function. Adaptive methods for esti-
mating an intractable p(z) are described by Escobar (1995), Givens and Raftery (1996), and Oh
and Berger (1993). Our approach here is to use a mixture to approximate p(z|y, G), rather than
p(2).

Owen and Zhou (2000) discussed the use of control variates to improve the performance of
defensive mixture importance sampling for integration. The control variate method provided im-
pressive gains in efficiency for their examples. It should be possible to improve results by using
their method at certain places in the IMIS algorithm. It might prove useful because of the large
number of adaptive components used, as their method uses the components of a mixture impor-
tance sampling function as control variates to reduce both the potential for underestimation of
integrands and to guard against high variance of estimates.

There are various other potential ways to improve our method, albeit at the cost of increased
complexity. Based on our experience to date, we have used § = 0.5 (i.e. taking half of the samples
from the prior at all stages) and d; = % for all other components. Hesterberg (1995) suggested
values of § between 0.1 and 0.5. An obvious improvement on the current method would be to
estimate ¢ from previous importance sampling runs (Raghavan and Cox, 1998).

Another parameter of the adaptive IS method that one needs to consider is T', the number of
samples drawn at each step of the algorithm. We take T to be 10,000 in the examples. There

is a tradeoff between choosing large values for K and 7. Increasing K for fixed T' gives accurate
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results in a reasonable amount of time. One could suggest, however, a schedule of Tk such that the
number of samples at each iteration varied for different numbers of adaptive components. We have
roughly implemented this by increasing T" to 10T for the final estimate of I in the implementation

for this paper.
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Appendix

The first binomial dataset consists of allelic loss data for the first 17 markers in Table 1 from Barret,
et al. (1996). The second binomial dataset consists of selected allelic loss data from markers in
Table 1 of Shibagaki, et al. (1994). The third dataset is a random sample of size 17 from binomial

distributions with p; = .22 and n;’s equal to those in dataset 2.

Data set 1 Data set 2 Data set 3

3 15 4 26 1 22
11 17 || 10 19 2 26
7 17 3 19 2 23
4 17 6 33 2 21
3 18 || 10 22 2 19
5 15 7 23 3 19
4 15 0 13 3 17
5 15 2 20 5 28
3 19 4 19 4 22
6 16 2 27 4 20
12 15 1 17 5 25
5 18 2 21 3 15
3 19 8 22 7 33
1 18 6 18 5 18
3 19 7 28 4 13
5 19 4 25 6 19
3 21 3 15 || 10 27
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