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Abstract

Motivated by the problem of minefield detection, we investigate the problem of classifying
mixtures of spatial point processes. In particular we are interested in testing the hypothe-
sis that a given dataset was generated by a Poisson process versus a mixture of a Poisson
process and a hard-core Strauss process. We propose testing this hypothesis by comparing
the evidence for each model by using partial Bayes factors. We use the term partial Bayes
factor to describe a Bayes factor, a ratio of integrated likelihoods, based on only part of the
available information, namely that information contained in a small number of functionals of
the data. We applied our method to both real and simulated data, and considering the dif-
ficulty of classifying these point patterns by eye, our approach overall produced good results.

KEY WORDS: Bayes Factors, Strauss Process.
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1 Introduction

We investigate the problem of comparing competing models for spatial point process data.
In particular we are interested in testing the hypothesis that the data were generated by a
Poisson process (i.e complete spatial randomness) versus a mixture of a Poisson process and
an inhibited process. The motivation behind this methodology is the problem of minefield
detection. An aerial view of a possible minefield has been imaged. This image is processed
into a set of object locations. Each object is either a mine or can be considered to be clutter
or noise. The mines are assumed to be laid out in such a way that two mines are unlikely
to be close together.A hard-core Strauss process is one way to model this inhibition. The
noise points are assumed to be located randomly throughout the study region. The inherent
difficulty of this problem can be seen in Figures 1(a), 1(b), and 1(c). This is a problem where
the human eye offers few visual cues, yet statistical techniques can produce surprisingly good
results.

The problem of comparing a simple model for inhibition or clustering versus complete
spatial randomness was considered by Diggle (1983) and Cressie (1993). The problem of
classifying mixtures of spatial point processes was tackled by Raghavan, Goel, and Ghosh
(1997, 1998) . Their approach was to develop a supervised pattern recognition scheme using
functionals based on nearest neighbor distances, second order statistics and spatial tessella-
tions. We propose comparing the evidence for each model directly by using partial Bayes
factors. We use the term partial Bayes factor to describe a Bayes factor, a ratio of inte-
grated likelihoods, based on only part of the available information, namely that information
contained in a small number of functionals of the data.

In the following sections we describe the spatial point process models we use and formulate
the minefield problem as a hypothesis testing problem. We briefly review Bayes factors and
define partial Bayes factors in Section 4. In Section 5 we discuss possible summary statistics
one could use. Results of applying our method to simulated and real data are presented in

Section 6 and are discussed in Section 7.

2 Point Process Models

First we give some notation. To avoid possible ambiguities associated with the word “point”,
we shall refer to locations of objects as events, and let the word point refer to any location

in the sample space. The sample space or study region will be denoted by A, and |A| will



(a) Uniform process. (b) Strauss process.

(c) Mixture process.

Figure 1: Examples of spatial point patterns.



denote the area of this region. We will consider each event to be one of two types, “noise
events” and “mines”. Let N be the total number of events, ny be the number of noise events,
and m be the number of mines. Let d;; be the distance between the i* and j™ events, and
let d; = min; d;;. We shall condition on the number of events, NV, and the study region, A,
throughout. Let Y = (y1,...,yn) be a random vector taking values in A", that represents

the locations of all events in A.

2.1 Noise process

As was mentioned in the introduction, the noise events are considered to be scattered ran-
domly throughout A. Under the hypothesis that no minefield is present, and given that we

are conditioning on the number of events in A, the distribution of Y is uniform over AV, i.e.:

1

PuY) = i

We call this a uniform process, and we denote it by ¥ ~ Uniform(N, A).

2.2 Minefield process

The mines are assumed to be spread evenly over A. This implies that the minefield process
displays inhibition. A simple model for an inhibited process is the Strauss process (Strauss
1975; Kelly and Ripley 1976). The likelihood for the Strauss process is:

P(Y | 0) = C ][ 90(diy),

i<j
where g(-) is the interaction function, given by:

v, 0<d< p, where v € [0, 1]
1, d>p,

90(d) = {

and where the parameters of the Strauss process are denoted by 6 = {p,y}. The extent of
the interactions between two events is controlled by p, while the nature of these interactions
is determined by ~. If v = 0 the process is known as a hard-core process. In this process,
two events are forbidden to be within distance p of each other. Alternatively, if v = 1, the
process is simply a uniform process on A. Values of v between 0 and 1 discourage but do
not forbid events to be within distance p of each other. Note that the normalizing constant,
C, of the Strauss process can be difficult to calculate, especially for processes demonstrating

strong inhibition (see Diggle, Fiksel, Grabarnik, Ogata, Stoyan, and Tanemura 1994).

3



2.3 Mixture process

Consider a superposition of a Strauss process upon a uniform process. Let Y =Y, UY,
where Y, are the events generated by the uniform process and Y; are the events generated by
the Strauss process. Let Z be a variable indicating to which group each observation belongs,

1.e.

ZZ-:{O’ ify; €Y,

17 if Yi € }/:S‘a
for i = 1,...,N. Note that Zfil Z; = m, the number of Strauss events (mines). If Z is
known, then the likelihood for the mixture process can be written as:

Pu(Y | 2,0) = P,(Y, | Z,0) x P,(Y, | Z,0).

If Z is unknown (as would be the case in practice) then we must sum over all the values of

7, multiplied by their respective probabilities, i.e.

Pu(Y [0) = Y Pu(Y|Z,0)m(Z]0)

z€EZ

=Y Y Pu(Y|Z0r(Z|m0)r(m]0).

m=0 zeZ|> z=m

Given the problem of obtaining the normalizing constant for a Strauss process, this sum is

extremely difficult to compute.

3 Formulation of the Minefield Problem as a Hypoth-
esis Testing Problem

We cast the minefield problem in terms of two competing hypotheses. Here we model the
minefield process as a hard-core Strauss model. Thus, for a given point pattern Y, the

competing hypotheses of interest are:

Hy : No minefield present
Y ~ Uniform(N, A);
H, : Minefield present

4



Y =Y, UY; where

Y, ~ Uniform(nog, A),

Y, ~ Strauss(m, A, p,y = 0),
and m +ng = N.

3.1 Prior Specification

Under H;, there are two unknown model parameters, p and m. In a Bayesian framework,
one must specify a prior distribution 7(p, m) on p and m. The prior could be decomposed

in the following ways:
1. w(p,m) =m(p) x m(m) (Assuming p and m are independent.)
2. w(p,m) =m(p|m)xm(m)
3. w(p,m) =m(m | p) x 7 (p).

If good prior information about the number of mines and inhibition distance is available,
then the independence assumption of the first prior may be reasonable. However, given that
we are conditioning on the study region, A, and the total number of events, there exists a
constraint on the maximum separation between two events and the total number of mines
in A. Diggle (1983) noted that the maximum proportion of a finite region, A, that can be
covered by non-overlapping discs, of radius p, is achieved when the discs are packed in an
equilateral triangular lattice. This suggests that the maximum value of p, given that there

are m points in A, (ignoring edge effects) is:

_ |24
Prmaz = \/g m

This bound will be useful in setting a prior for p conditional on m. For instance if one has
only a vague idea of the number of mines, but knows that they are closely packed together,

then one could use priors of the following form:

w(m) = Discrete Uniform(mq,ms)

w(p|m) = Uniform(opmaz, ®2Pmaz), Where 0 < ay < ap <1

This is the form of the prior distributions we used in our simulation study in Section 6.



4 Partial Bayes Factors

In this section we briefly introduce Bayes factors and define what we mean by partial Bayes
factors. Consider data Y that are assumed to have arisen under one of the two competing
hypotheses, Hy or H;. Let 6; be a d;-dimensional vector of parameters associated with
hypothesis H; (i = 1,2), and let m;(0; | H;) denote its prior distribution. Let the the
probability density of Y given the value of 6;, i.e. the likelihood function, be denoted by
P(Y | 0;, H;). The Bayes factor for H; against Hy is the ratio of the posterior to the prior
odds for H; against Hy, namely:

BFy =

(Hi|Y

(Ho | Y
Y | H

P(Y | Hy)

[ P(Y | 61, H)mi (6, | Hy) do,

[P(Y [ 6o, Ho)ma(0o | Ho) dby’

/o

T Ul

H,
Hy
Y

S— N [

In other words the Bayes factor is the ratio of integrated likelihoods. The Bayes factor
provides evidence for one hypothesis over another. Kass and Raftery (1995) review the
history, development, and use of Bayes factors. A guide for interpreting Bayes factors,

proposed by Kass and Raftery (based on Jeffreys 1961), is given in Table 1.

Table 1: Guide for interpreting Bayes factors.

2log,(B1y) Bio Evidence for H;
0 to 2 1to3 Weak

2t05 3to12 Positive

5 to 10 12 to 50 Strong

> 10 > 150 Decisive

In the mixture models we consider, it is possible to simulate realizations from each model,
but it is difficult to write down the likelihood explicitly since the normalizing constant and
the group memberships, Z, are unknown. Instead, we use the partial Bayes factor, defined as
the ratio of integrated likelihoods for a summary statistic, X (or a vector of several summary

statistics, X), rather than for the complete data:



P(X | Hy)
PBF,, = P(X | Ho)
This can be written as:
f ‘ Hl,Hl (9 ‘ Hl) d(gl
PBFy,, =
10 J P(x | 6o, Ho)ma(0o | Ho) dby
_ L=
Iy(z)

We can calculate these integrated likelihoods by quadrature methods or by Monte Carlo
integration. If 6, = {#, 1) Q(K)} is a random sample of size K from the prior under
hypothesis i, and P(X | 0(]) ,H;) is an estimate of P(X | 0§j),Hi), then the Monte Carlo

estimate of [; is:

K
() = %;ﬁu 69, )

To obtain the estimated density function ﬁ(X | ng ), H;), we simulate 100 point patterns
from H; with parameters 0(3 ) , and calculate their summary statistics. Let these 100 summary
statistics be denoted by Xz-(]). A standard density estimation procedure, such as kernel
density estimation (Silverman 1986), is then applied to X; to obtain P(X | 0§j ), H;).

Obviously the selection of X is important. We discuss choices of X below. Note that
nowhere do we assume that X is univariate. A bivariate or higher dimensional statistic
may give better discrimination between the hypotheses. However, this may lead to excessive

computation as density estimation in more than one dimension can be difficult.

5 Summary Statistics

The types of summary statistics considered by Raghavan, Goel and Ghosh (hereafter RGG)
for their supervised pattern recognition scheme fell into three main categories: nearest neigh-
bor distances, second order statistics, and spatial tessellations. We describe each category

below.



5.1 Nearest Neighbor Distances

The empirical cumulative distribution function (CDF) of the nearest neighbor distances

between all events is given by:

N
1
Gy (d) =5 D Hacay, d>0.
i=1

This function can highlight differences in small-scale interactions between different point
process models. A similar function to G(d) is F(d), the empty space function. This is the
CDF of the distance of an arbitrary fixed point in A to the nearest point of the spatial point
pattern. RGG recorded the minimum, the mean, the coefficient of variation, skewness and
kurtosis of G(-) y, and F(-) 5, as well as the ratio G(-) »/F(-) »-

5.2 Second Order Statistics

The K-function, (Bartlett 1964; Ripley 1976, 1977; Cressie 1993, Ch. 8) has been used
extensively as an exploratory tool for the analysis of point patterns, in particular their

second order statistics. For a spatial point process of intensity A, it is defined as:

K(d) = X 'E (# of events within distance d of an arbitrary event).

An estimator that corrects for edge effects was given by Ripley (1976):

K(d) = ﬁ Z Z w’ij]-{dij<d}7 d> 0,
i=1 j=1i

J

where w;; is the proportion of the circumference of a circle centered at event ¢ that passes
through event j, that is inside the study region A. The intensity of the spatial point process,
), is estimated by \ = N/|A|.

If the underlying process over a region with area |A| is uniform, then the distribution of
events within a ball of radius d around a given event, assuming the ball is contained in A,
is binomial with mean np = N7d?/|A|. Thus, K (h) = nh? and /K (d)/7 versus d is a line
of slope one through the origin. RGG proposed the following two statistics based on the

K-function:



1. The difference between the area under 1/ K (k) /7 and the 45° line over the initial part

(from min;(d;) to max;(d;)) of the curve: i.e.

max;(d;)
/ <\/I?(u)/7r—u> du
min; (d;)

2. The slope of /K (h)/m from min;(d;) to max;(d;).

We propose another statistic based on the K-function. Under strict inhibition, Isham
(1984) showed that in the plane the K-function for the Strauss process with v = 0 is approx-

imately:

0, 0<d<p
nd? —wp?, d > p.

K(d) = {

For this process, clearly there is a change in the K-function at the point p which defines
the inhibition process. Even for the K-function of a mixture process, we expect a change in
the behavior of the estimated K-function, since it is a mixture of the inhibited K-function

and the uniform K-function. We can estimate p by:

p = argmin |/ K(d)/m —d,

which we use as a summary statistic.

Figure 2 shows the K-functions for the spatial point patterns of Figure 1. The differences
between the plots are apparent: the K-functions of the Strauss process and the mixture
process both have sharp drops at h = p, while the K-function of the Poisson process is

stationary with mean zero.

5.3 Spatial Tessellations

RGG also investigated using spatial tessellations (e.g. see Okabe, Boots, and Sugihara 1992)
to distinguish between point process models. The simplest spatial tessellation is the Voronoi
tessellation. Here every point in A is associated with the nearest event in A. This results in
the study region, A, being partitioned into polygonal tiles (or Voronoi cells) (see Figure 3).
RGG found the second central moment of the areas of the Voronoi cells to be a good summary

statistic.
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Figure 2: K-function plots of each spatial point pattern of Figure 1.
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Figure 3:



6 Simulation Study & Data Analysis

We performed a simulation study to assess the performance of partial Bayes factors in the
minefield problem. The simulation study is a simple 22 factorial design. The two factors
we considered were: the number of noise events, ng, and the amount of prior information.
Various other factors could have been considered, including the number of mines, and the

inhibition distance. The parameters used in the simulation study are given in Table 2.

Table 2: Parameters of simulation study.

Variable Value

A (0,17
m 50

g 30, 50
p 5 Pmag

We shall refer to the different noise levels as being high (ng = 50) or low (ny = 30).
Typical realizations of each of these spatial point processes are shown in Figure 4. As one
can see, neither of these point patterns is easily distinguished by eye from a realization of a

uniform process.

6.1 Priors

We decomposed the prior distribution on p and m in the following way.

m(p,m) = w(p|m)xnm(m)
w(p | m) = Uniform(epmaz; ®2Pmaz)

w(m) = Discrete Uniform(|S8; N, f2N]),

where |.] is the floor function.
We selected three sets of values for aq, as, 1, and 3o, that would correspond to “diffuse”,
“compact”, and “tight” priors. These are shown in Table 3. We also created a prior corre-

sponding to “perfect” prior information, i.e. a prior with point mass on m = 50, p = %pmaw.

12



(a) Low noise. (b) High noise.
Figure 4: Typical minefields of simulation study.

Table 3: Parameters of prior distributions.

Prior (03] (65)] ﬁl ﬁz

Diffuse 03 0.7 0.10 0.90
Compact 04 0.6 0.30 0.70
Tight 0.45 0.55 0.40 0.60

6.2 Summary Statistics

Two different summary statistics were considered to calculate the partial Bayes factors. The
first summary statistic was based on the K-function, and the second (due to RGG) on the

Voronoi tessellation. We shall refer to them as Xx and Xy, respectively.

XK = aIg mind:mini(di)<d<mawi(di) V K(d)/ﬂ- —d

Xy = Second central moment of the areas of the Voronoi cells

13



6.3 Edge Effects

Both of the above statistics can suffer from edge effects. Edge effects occur because events
near the boundary have fewer neighbors than events in the central part of the study area.
We accounted for edge effects by generating all point patterns on a region with a 20% border.
Thus, instead of generating a point pattern with N events on the unit square, we generated
|1.96 x N | events on (—0.2,1.2)% The factor 1.96 is the ratio of the areas of the two regions.

6.4 Results

We simulated 100 point patterns on the unit square (accounting for edge effects as described
above) under each hypothesis, and for each value of ny (i.e. a total of 400 datasets). We
calculated the partial Bayes factors for each dataset using both summary statistics, Xx and
Xy, and the prior distributions given in Table 3. The partial Bayes factors are calculated
in terms of evidence for H; over Hy. The integration was performed using simple numerical
quadrature. The misclassification rates are given in Table 4. From this table we can see
that the total misclassification rate (assuming that each hypothesis is equally likely a priori)
was 22.5% for the partial Bayes factor based on the K-function, and 25.5% for the partial
Bayes factor based on the Voronoi tiling. While these total error rates are similar, the partial
Bayes factor based on Xx was more successful at correctly classifying minefields than noise
processes. The opposite was true of the partial Bayes factor based on Xy. As one would
expect, an increase in the amount of (correct) information contained in priors improves the
discrimination in both cases.

The histograms of these partial Bayes factors are shown in Figures 5, 6, 7, and 8. These
plots are summarized in Tables 5, 6, 7, and 8. The results for each statistic may be summa-
rized as follows:

XK :

e Under H,, the partial Bayes factors typically provide weak to positive evidence for the

(correct) minefield hypothesis.

e Under Hy, the partial Bayes factors typically range from positive evidence for Hy to
weak evidence for H;. The median partial Bayes factor is approximately 1.7 in favor

of the correct hypothesis.

e The increase in noise had a small negative effect on the performance of the partial

Bayes factors under both hypotheses.

14



© _|
-
<
-
N
-
o
—
© -
=
o
p=t
3]
©
LL ©
0
4] !
) —
v :
o J— J— J—
* _T -1
N ' — !
A Y e - :
E] : ' |+,
1
o g —_ ' 1
o ) . ;
8 ' - X | '
1
o 8 8 I g . . !
(I\l_ —_ o : : |
8 \ I ,
o o o é ! : 1
T— _b_ . —_
(0]
© _|
]

Diffuse Compact  Tight Perfect Diffuse Compact Tight Perfect
Low Low Low Low High High High High

Figure 5: Partial Bayes factors for Hy, based on Xg, under H;.

Table 5: Breakdown of partial Bayes factors for H;, based on X, under H;.

% Evidence For H, % Evidence For H,
. Noise Decisive Strong Positive Weak | Weak Positive Strong Decisive
Prior Level
(00r10]  (-10-5]  (-5-2] (2,0 | (0,21 (25  (5,10]  (10,00)

Diffuse Low 0 0 1 3 74 22 0 0
Compact Low 0 0 1 5 15 79 0 0
Tight Low 0 0 1 9 17 73 0 0
Perfect Low 0 1 0 10 16 47 26 0
Diffuse High 0 0 8 5 57 30 0 0
Compact High 0 0 8 15 15 62 0 0
Tight High 0 0 9 19 13 59 0 0
Perfect High 0 0 6 22 22 50 0 0
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2*log(Bayes Factor)
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Figure 6: Partial Bayes factors for Hy, based on Xg, under Hy.

Table 6: Breakdown of partial Bayes factors for H;, based on X, under H,.

% Evidence For H, % Evidence For H,
. Noise Decisive Strong Positive Weak | Weak Positive Strong Decisive
Prior Level
(00r10]  (-10-5]  (-5-2] (2,0 | (0,21 (25  (5,10]  (10,00)

Diffuse Low 0 0 30 30 31 9 0 0
Compact Low 0 0 29 39 16 16 0 0
Tight Low 0 1 36 32 16 15 0 0
Perfect Low 3 24 30 21 9 11 2 0
Diffuse High 0 0 40 21 34 5 0 0
Compact High 0 0 41 31 16 12 0 0
Tight High 0 0 45 30 14 11 0 0
Perfect High 2 9 28 36 19 6 0 0

16
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Figure 7: Partial Bayes factors for Hy, based on Xy, under H;.

Table 7: Breakdown of partial Bayes factors for H;, based on Xy, under H;.

% Evidence For H, % Evidence For H,
. Noise Decisive Strong Positive Weak | Weak Positive Strong Decisive
Prior Level
(00r10]  (-10-5]  (-5-2] (2,0 | (0,21 (25  (5,10]  (10,00)
Diffuse Low 0 0 5 35 22 24 13 1
Compact Low 0 0 7 26 24 29 14 0
Tight Low 0 0 7 26 21 33 13 0
Perfect Low 0 4 8 22 19 28 19 0
Diffuse High 0 0 2 42 27 21 5 0
Compact High 0 0 2 30 33 27 5 0
Tight High 0 0 6 28 31 30 5 0
Perfect High 0 0 6 27 29 33 5 0

17
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Figure 8: Partial Bayes factors for Hy, based on Xy, under Hy.

Table 8: Breakdown of partial Bayes factors for H;, based on Xy, under Hj.

% Evidence For H, % Evidence For H,
. Noise Decisive Strong Positive Weak | Weak Positive Strong Decisive
Prior Level
(—00,-10]  (-10-5]  (-5-2] (-2,0] | (0,2]  (25]  (5,10]  (10,00)

Diffuse Low 0 0 04 36 9 1 0 0
Compact Low 1 4 55 27 11 2 0 0
Tight Low 6 6 47 27 9 ) 0 0
Perfect Low ) 26 42 15 7 ) 0 0
Diffuse High 0 0 47 39 12 2 0 0
Compact High 0 0 47 37 12 4 0 0
Tight High 8 2 38 32 14 6 0 0
Perfect High 1 11 37 28 17 6 0 0
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Table 4: Simulation study: Percentage of misclassifications.

Prior EIé)xi/% K-function Voronoi

H, Hy, H; H,
Diffuse Low 4 40 40 10
Compact Low 6 32 33 13
Tight Low 10 31 33 14
Perfect Low 11 22 34 12

Diffuse High 13 39 47 14
Compact High 23 28 35 16
Tight High 28 25 34 20
Perfect High 28 25 33 23
Average Error Rate 15 30 36 15
Total Error Rate 22.5 25.5

XV:

e Under H,, the partial Bayes factors typically range from positive evidence for H; to
weak evidence for Hy. The median partial Bayes factor is again approximately 1.7 in

favor of the correct hypothesis.
e Under Hy, the evidence for Hj typically ranges from weak to positive.

e There is a negligible negative effect in the performance of the partial Bayes factors due

to the increase in noise.

6.5 Minefield Data

Figure 9 shows the locations of mines (o) and noise events (+) on a surf beach. The dataset,
which we shall refer to as the Surf Zone dataset, was described and analyzed in Lake and
Keenan (1995), Lake, Sadler, and Casey (1997) and Walsh and Raftery (2002). One should
note that the mines are approximately arranged evenly spaced in parallel rows. Since the
rows are further apart than consecutive mines within a row, the mines do not resemble a
typical Strauss process. However since the minefield does display inhibition, the Strauss
model is a useful first approximation to the minefield process.

In order to account for edge effects we analyzed the points lying in the central square

region shown in Figure 9. This region contains 40 events, 20 mines and 20 noise events. The
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Figure 9: Surf Zone Data.

intermine distance is approximately half of p,,;.., so we used the same priors to analyze this
dataset as were used in the simulation study.

The partial Bayes factors calculated based on X and X for each of the three priors
are shown in Table 9. We can see that the partial Bayes factors based on X provide weak
evidence for the minefield hypothesis. Since the mines are not actually laid as Strauss process

this result is reasonably good.

Table 9: Twice the Log Partial Bayes factors for H;, for the Minefield Dataset.

Prior K-function Voronoi
Diffuse 1.64 -1.47
Compact 1.87 -1.26
Tight 2.02 -1.31

However the partial Bayes factors based on Xy provide weak evidence against the mine-
field hypothesis. It is apparent from these results that the K-function was better than the

Voronoi tiling variance at capturing the regularities in this dataset.
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7 Discussion

In this paper we investigated the feasibility of using partial Bayes factors to classify mixtures
of spatial point processes. We limited our attention to two different summary statistics on
the basis of which to calculate the partial Bayes factors. One summary statistic was based on
the K-function, and the other on the Voronoi tessellation. We performed a simulation study,
and found that partial Bayes factors based on both statistics provided good discrimination
between the competing hypotheses we considered. We also applied our method to real
minefield data and found the the statistic based on the K-function was more successful at
detecting the minefield in our dataset.

A previous approach to this problem using a supervised pattern recognition scheme based
on summary statistics of the point pattern was developed by Raghavan, Goel, and Ghosh
(1997, 1998). Our approach has the advantage of providing a natural framework within
which to include prior information about each competing hypothesis, which can be very
useful in this kind of application when it is available.

Our approach is motivated by the problem of having a statistical model from which we
can simulate data, but which has a likelihood that is difficult to evaluate. The task of
parameter estimation in this setting was investigated by Diggle and Gratton (1984). Their
approach was to use simulated realizations from an ‘implicit’ statistical model, and kernel
estimation, to estimate the log-likelihood function and then to maximize this function via a
modified simplex algorithm.

More recently, Harshman and Clark (1998) used a simulation based maximum likelihood
method for estimation of parameters in a sperm competition model. As in our method, they
reduced the data to an approximately sufficient summary statistic. In this paper we have
limited our attention to the problem of classifying spatial point processes. However, the

partial Bayes factor methodology is clearly applicable in other situations.
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