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Abstract

Constructing maps of pollution levels is vital for air quality management, and presents
statistical problems typical of many environmental and spatial applications. Ideally, such
maps would be based on a dense network of monitoring stations, but this does not exist.
Instead, there are two main sources of information in the U.S.: one is pollution measurements
at a sparse set of about 50 monitoring stations called CASTNet, and the other is pollution
emissions data. The pollution emissions data do not give direct information about pollution
levels, but instead are combined with numerical models of weather and the emissions process
and information about land use and cover (collectively called Models-3), to produce maps.

Here we develop a formal method for combining these two sources of information. We
specify a simple model for both the Models-3 output and the CASTNet observations in terms
of the unobserved ground truth, and estimate the model in a Bayesian way. This yields solu-
tions to the spatial prediction, model validation and bias removal problems simultaneously.
It provides improved spatial prediction via the posterior distribution of the ground truth,
allows us to validate Models-3 via the posterior predictive distribution of the CASTNet ob-
servations, and enables us to remove the bias in the Models-3 output by estimating additive
and multiplicative bias parameters in the model. We apply our methods to data on SO,
concentrations.

Key words: air pollution, Bayesian inference, change of support, likelihood approaches,
Matérn covariance, nonstationary process, spatial-temporal statistics.
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1 Introduction

Emission reductions were mandated in the Clean Air Act Amendments of 1990 with the ex-
pectation that they would result in major reductions in the concentrations of atmospherically
transported pollutants. Maps of loadings of pollutants to aquatic and terrestrial ecosystems
are useful over different geo-political boundaries, to discover when, where, and to what extent
the pollution load is improving or declining. Ideally, such maps would be based on a dense
network of monitoring stations, covering most of the U.S., at which fluxes and concentra-
tions of air pollutants would be measured on a regular basis. Unfortunately, such a network
does not exist. Instead, there are two main sources of information about pollution levels
in the U.S., and two resulting ways of constructing pollution maps. The first is a sparse
set of about 50 irregularly spaced sites in the Eastern U.S., the Clean Air Status Trend
Network (CASTNet), at which the EPA regularly measures concentrations and fluxes of
different atmospheric pollutants (see Figure 1). It would be possible to use an interpolation
method to produce a pollution map. However, the air pollutants fluxes and concentrations
are functions of terrain, atmospheric turbulence, vegetation, the rate of growth of the vege-
tation, and other soil and surface conditions. Because these factors vary abruptly in space
and time and because the monitoring stations are too far from each other, interpolation of
the CASTNet monitoring data is recognized to be inadequate for the problem (Clarke and
Edgerton, 1997).

The second source of information is pollution emissions data. The point and area sources
emissions are available from known sources of pollution such as chemical plants, generally
in the form of annual totals. If the emissions data were accurate and available at a fine
time resolution, and if we had precise information about local weather, land use and cover,
and pollution transport dynamics, we could in principle work out pollution levels at each
point in time and space quite accurately. This ideal is far from being attained. However,
the available emissions data have been combined with numerical models of local weather
(the Mesoscale Model version 5 (MM5)), the emissions process (the Sparse Matrix Operator
Kernel Emissions (SMOKE) model), as well as information about land use and cover, to
estimate pollution levels in space and time (the Community Multiscale Air Quality (CMAQ)
output) and to produce maps (Dennis et al, 1996). These are not statistical models but rather
numerical deterministic simulation models based on systems of differential equations that
attempt to represent the underlying physics; they take the form of huge blocks of computer

code. The combination of these models is referred to as “Models-3” (models generation 3).
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Figure 1: Weekly average of SOy concentrations (parts per billion, ppb) at the Clean Air
Status and Trends Network (CASTNet) sites, for the week of July 11, 1995.



The models are run by the EPA and individual U.S. states, and they provide estimates of
pollutant concentrations and fluxes on regular grids in parts of the U.S. (see Figure 2).

The output of Models-3 generates averaged concentrations/fluxes over regions of dimen-
sions 36km x 36km. This approach also may be unsatisfactory for two main reasons. First,
the underlying emissions data are often not of high quality (Dolwick et al., 2001). Second,
the underlying models may be inadequate in various ways. It seems clear that combining the
two main approaches and sources of information, the model estimates and the point mea-
surements, could lead to a better solution. So far, efforts to do this have focused on model
validation, in which model predictions are compared with measurements, and the models
are revised and the outputs adjusted if discrepancies are found (Dennis et al., 1990). The
final maps are still based on the model output alone.

Model validation is tricky in this case, because the model predictions and the observations
do not refer to the same spatial locations, and indeed are on different spatial scales. The
fact that they are on different spatial scales is called the “change of support” problem. The
model predictions are averages over large 36km x 36km grid squares, while the observations
are at points in space; the two are thus not directly comparable. One approach to making
them comparable is to apply interpolation and extrapolation methods to the CASTNet point
measurements so as to produce empirical estimates of grid square averages, and then compare
those to the model predictions (Sampson and Guttorp, 1998). One difficulty with this is that
the interpolated grid square averages can be poor because of the sparseness of the CASTNet
network, and so treating them as grand truth for model validation may be questionable.

A related problem is that the comparison does not take into account the uncertainty in
the interpolated values. In this paper, we develop a new approach to the model validation
problem, and show how it can also be used to remove the bias in model output, and to
produce improved maps that combine model predictions with observations in a coherent
way. We specify a simple model for both Models-3 predictions and CASTNet observations
in terms of the unobserved ground truth, and estimate it in a Bayesian way. Solutions to all
the problems considered here follow directly. Model validation then consists of comparing
the CASTNet observations with their predictive distributions given the Models-3 output.
Bias removal follows from estimation of the bias parameters in the model. Maps of pollution
levels and of the uncertainty about them taking into account all the available information are
based directly on the posterior distribution of the (unobserved) ground truth. The resulting
approach takes account of and estimates the bias in the atmospheric models, the lack of

stationarity in the data, the ways in which spatial structure and dependence change with
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Figure 2: Output of Models-3, weekly average of SOy concentrations (ppb), for the week of
July 11, 1995. The resolution is 36 km?.
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locations, the change of support problem, and the uncertainty about these factors. It is
an instance of the Bayesian melding framework for inference about deterministic simulation
models (Poole and Raftery, 2000), and its implementation is quite straightforward.

In Section 2 we describe the statistical model, in Section 3 we show how to estimate it,
and in Section 4 we show some of our results for model validation and map construction

using the combined data for the air pollution problem.

2 The Statistical Model

2.1 General Framework

We do not treat CASTNet measurements as the “ground truth”. Instead, we assume that
there is some smooth underlying (but unobserved) field that measures the “true” concen-
tration/flux of the pollutant at each location. CASTNet data are these “true values” plus
some measurement error. The Models-3 output can also be written in terms of this true un-
derlying (unobservable) process, with some parameters that explain the bias and microscale
noise in Models-3. The truth is assumed to be a smooth underlying spatial process with
some parameters that explain the large scale and short scale dependency structure of the air
pollutants.

Our objectives are model validation and bias removal for Models-3, and construction of
reliable maps of air pollution combining Models-3 and CASTNet. We validate Models-3
by obtaining the posterior predictive distribution of CASTNet given Models-3 output. We
remove the bias in Models-3 by obtaining the posterior distribution of the bias parameters
given CASTNet data and Models-3 output. We construct reliable maps of air pollutants
simulating values from the posterior predictive distribution of the true values (underlying
process) given CASTNet data and Models-3 output.

2.2 Statistical Models for CASTNet and Models-3 Output

Our general modeling framework is shown in Figure 3. We do not consider CASTNet
measurements to be the “ground truth”, because there is measurement error. Thus, we
assume there is an underlying (unobserved) field Z(s), where Z(s) measures the “true”
concentration/flux of the pollutant at location s. At station s we make an observation Z(s),

corresponding to the CASTNet observation at this station, and we assume that

Z(s) = Z(s) + e(s), (1)
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Figure 3: General Modeling Framework.

where e(s) ~ N (0, 0?) represents the measurement error (nugget) at location s. The process
e(s) is independent of Z(s).

The true underlying process Z is a spatial process with a nonstationary covariance,

Z(s) = pu(s) + €(s), (2)

where Z(s) has a spatial trend, yu(s), that is a polynomial function of s with coefficients 8. We
assume that Z(s) has zero-mean correlated errors €(s). The process €(s) has a nonstationary
covariance with parameter vector 8 that might change with location.

We could model the output of the EPA physical models as follows:

Z(s) = a(s) + b(s)Z(s) + &(s). (3)
Here, the parameter function a(s) measures the additive bias of the air quality models at
location s, and the parameter function b(s) accounts for the multiplicative bias in the air

quality models. The process 6(s) ~ N(0,03) explains the random deviation at location s



with respect to the underlying true process Z(s). The process d(s) is independent of Z(s)
and e(s), which is the error term for CASTNet. Since the outputs of Models-3 are not point
measurements but areal estimations in subregions B, ..., B,, that cover the domain, D, we

have
Z(B,) = /B afs)ds +b /B Z(s)is+ /B als)ds (@)

fori=1,...,m. We model the function a(s) as a polynomial in s with a vector of coefficients,
ag, and b is a unknown constant term.

For spatial prediction we simulate values of Z from the posterior predictive distribution:
P(2|2, 7). (5)

For model validation we simulate values of CASTNet given models-3, from the following

posterior predictive distribution:
P(Z|Z,a=0,b=1). (6)

For bias removal we simulate values of the parameters a and b from the posterior distri-

bution:

P(a,b|Z, 7). (7)

2.3 Change of Support

The change-of-support problem occurs when we combine data sources with different sup-
ports, or when the supports of predictand and data are not the same. Here, we have point
measurements at the CASTNet sites, and then we observe the output of Models-3 averaged
over regions, By, ..., By, of dimensions 36km x 36km.

In this section we discuss algorithms to calculate the covariance for areal measurements
and the posterior predictive distribution of a random process at a point location Z(xq) given
data on block averages, Z(By),...,Z(B,,), where some of the blocks might be just a point.

The covariance for the block averages is
cor(2(B), 2(85)) = | [ Cluvydudv/|Bi|B)| ®
B; J B;

where

C(u,v) = cov(Z(u), Z(v)),
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C being a possibly nonstationary spatial function. If B; = s; (a point) the covariance is
defined by

COV(Z(Si), Z(B])) = /B C(SZ,V)dV/‘B]‘ (9)

In practice, for each pixel B; we draw an independent set of locations u;,, r =1,2,..., L,

uniformly over B;, and we approximate the integral in (9) with the following expression:
cov(Z(Bi), Z(B;)) = L7'L7' Y ) C g, uy). (10)

We use (9), approximated by (10), to derive the covariances of the block averages Z(B;),
i =1,...,N, in terms of the pointwise covariance C'(u,v). This is then used to define a
likelihood function for the parameters of the covariance function for the process Z in terms
of the observed block averages Z(B), Z(Bs), .., Z(By).

2.4 Methods for Combining Data with Different Spatial Resolu-
tions

The spatial processes Z and Z are measuring/estimating the same quantity of interest but

they have different spatial resolution. The process 7 is observed at n locations si,...,sn,

N T ~
so we have n point measurements Z = (Z (s1),...,Z (sn)> . The process Z is averaged over

~ ~ ~ T ~
the subgrids By, ..., By, so that we observe Z = (Z(Bl), . .,Z(Bm)) . We model Z and

Z in terms of an underlying unobservable process Z, which is the true value of the quantity
of interest. We take into account the measurement error and potential bias of Z and Z as
approximations to Z. Here we consider model (1) for Z and model (4) for the process Z.
We now deduce the joint distribution of Zand Z conditioning on the value of the param-
eters in models (1) and (4). We could write this distribution as a function of the parameters
to calculate the MLE for the parameters in models (1) and (4). Since in practice this cal-

culation will be hard, we also present a Bayesian approach to estimate the parameters. We

have
7 i S s
<Z>NN{(d+bﬂ>’(§ z)} -
where



a

(/B a(s)ds,...,/m a(s)ds)T,
fi = (/Bl/L(s)ds,...,/Bm/L(s)ds)T.

In (11) 3 is the covariance of Z which is the covariance of Z plus a nugget effect, 3 is the

and

covariance of Z, and X is the cross-covariance between the point measurements Z and the

block averages Z. We write ¥ to denote the covariance of the multivariate normal distribution

~ \T
of (Z, Z) , o that ¥ is a (n +m) X (n + m) matrix given by
Ei1,i2 = COV <Z(SZ’1), Z(Sh)> = C(SiU Si2) -+ 1{1'1:1'2}0'3 fOI‘ 7;1, ig S n,
Snsii = Sinj = COV (Z(si),Z(Bj)) - b2/ C(si,v,0)dv/|B;|, fori=1,...,nandj=1,...,m,
B

fB fB (u, v, 8)dudv
IB ||Bj, |

where C(u, v, 0) is the covariance between Z(u) and Z(v), and 0 is the parameter associated

Yintjintje = COV (Z (By), Z (sz))

+1{j1=j2}0-§‘Bj1|a for jl,jQ = 1,...,m,

with the covariance of the true underlying process Z, the function 14(x) is an indicator for
the set A, i.e. takes the value 1 when x € A and 0 otherwise.

The goal is to predict the value of Z at location x; given the data. Thus we need the
conditional distribution of Z(x¢) given the observations, assuming all the parameters are
known. We use the following classical result of multivariate analysis (see, e.g., Mardia, Kent

and Bibby (1979), p. 63). If we consider a partitioned multivariate normal vector

X H Y1 Yo
~N , , 12
() =40 ) ()} az
then the conditional distribution of X; given X, is normal with mean
1+ Do X5y (Xo — pio)

and variance

S — S1285 Sar.
Applying this result with X; = Z(xp), and Xy =Z = (Z Z)T then in our previous notation
Y1 =cov(Z(x0), Z(x0)) = 02, Yoo = %, and 319 = cov(Z(x

dimensional vector with components,

0),Z) =7, where 7 is a (n + m)

7; = cov{Z(xq),Z;} = cov {Z(xo),Z(si)} = C(xo,s;,0), fori=1,...,n,

9



Tntj = €0V {Z(X0), Zn4} = cOv {Z(XO),Z(B]-)} = b2/ C(xo,v,0)dv/|Bj|, forj=1,...,m,

B;
and Z; denotes the i** component of Z. We deduce then that the conditional distribution of

Z(x) given {Z,Z} is normal with mean
plxo) + 7 87HZ - )"

where
- \T
p= (i1, @+ bit)
and variance

ag — Ty

When the goal is to predict Z at a location x,, the Bayesian solution is the predictive

distribution of Z(x,) given the observations Z,

P(Z(x0)|Z) o / D(Z(x0)\Z, ) p(H|Z)dp. (13)

A Gibbs sampling approach is used to simulate m values from the posterior of the vector pa-
rameter ¢, where ¢ = (02, ag,b, 07,3, 0). Thus, the predictive distribution is approximated
by the Rao-Blackwellized estimator:

m

P(Z(x0)|2) = > p(Z(x0)|Z, 87, (14)
i=1

where ¢(i) is the th draw from the posterior distribution. We propose a Gibbs sampling
approach, with three stages. In stage 1 we sample from the conditional posterior of the
parameters (3, @), the parameters that represent the lack of stationary of Z. In the second
stage we sample from the conditional posterior of the parameters that explain the bias of Z
and the measurement error of Z and Z, namely (02, ag,b,02). In stage three, we simulate
values of Z (the unobserved true values) at the locations where we have measurements from

the process Z and Z. We cycle through the three stages.

2.5 Modeling a Nonstationary Covariance

The spatial patterns shown by the air pollutant fluxes and concentrations change with loca-
tion, so that the underlying process Z in (2) is nonstationary and the standard methods of
spatial modeling and interpolation are inadequate. In this section we give a new method-

ology for spatial modeling of nonstationary covariance. More specifically, we represent the

10



process locally as a stationary isotropic random field with some parameters that describe
the local spatial structure (Fuentes, 2001a,b). These parameters are allowed to vary across
space and reflect the lack of stationarity of the process.

Consider a Gaussian spatial process Z(x), where x varies over a domain D contained in
a d-dimensional Euclidean space R? for some d > 1. Typically, d = 2. We represent Z as a

convolution of local stationary processes (Fuentes and Smith, 2001):

/ K(x — ) Zogs) (x)ds, (15)

where K is a kernel function and Zg(x), x € D is a family of (independent) stationary
Gaussian processes indexed by 8. The parameter @ is allowed to vary across space to reflect
the lack of stationary of the process. The stochastic integral (15) is defined as a limit (in
mean square) of approximating sums (e.g., Cressie, 1993, p. 107, Yaglom, 1962, p. 23).
Each stationary process Zg(s) (x) has a mean function ps that is constant, i.e. us does not

depend on x. We propose a parametric model for the mean of 7,

E{Z(x)} = p(x; B),

where p could be a polynomial function of x with coefficients 3.

The covariance of Zg(s) is stationary with parameter 6(s),

COV{Za(s) (s1), Zo(s) (s2)} = Ce(s)(S1 — S2).

The process Zg(s) could have a Matérn stationary covariance (Matérn, 1960):

Cos)(x) = (20,2 |x|/ ps)"* Ko, (20, 1/ ps), (16)

O’S
2vs 1T (v ) au2vs

where /C,, is a modified Bessel function and @(s) = (vs, 05, ps). The parameter p; measures
how the correlation decays with distance; generally this parameter is called the range. The
parameter o, is the variance of the random field, i.e. o, = var(Zg()(x)), where the covariance
parameter o is usually refereed to as the sill. The parameter v; measures the degree of
smoothness of the process Zg(s). The higher the value of v; the smoother Zg) would be;
e.g. when vy = 5, we get the exponential covariance function. In the limit as v; — oo we

get the Gaussian covariance
CB(S)(X) — 0'56_|X‘2/p§.

The covariance C(sy,s2;6) of Z is a convolution of the local covariances Cys)(s1 — s2),

C(s1,s2;0) = /DK(S1 —8)K (52 — 8)Cg(s)(s1 — s2)ds. (17)

11



In (17) every entry requires an integration. Since each such integration is actually an
expectation with respect to a uniform distribution, we propose Monte Carlo integration. We
propose to draw a systematic sample of locations s,,, m = 1,2,..., M over D. Hence, we
replace C(sy, s2; 0) with

M
Cu(s1,s2;0) = M~! Z K(s1 —sp)K(sy — 81,)Cos,.)(S1 — S2). (18)

m=1

This is a Monte Carlo integration which can be made arbitrarily accurate and has nothing to
do with the data Z. The sampling points s,,, m = 1,2, ..., M, determine subregions of local

stationarity for the process Z. We increase the value of M until convergence is achieved.

3 Estimation

In this section we explain how to efficiently implement our algorithm for spatial prediction

combining observations with the output from numerical models.

3.1 Algorithm

1. Posterior predictive values for Z

For spatial prediction the quantity of interest is the predictive distribution for Z(xg)
given the observed values Z. We use expression (14) to approximate the predictive dis-
tribution with a Rao-Blackwellized estimator, conditioning on the posterior simulated

values for all the parameters, using for this simulation the following Gibbs algorithm.

2. Algorithm for Gibbs sampling

We discuss now how to sample from the posterior distribution of the parameters. In our
Gibbs sampling approach there are three stages. We alternate between the parameters
that measure the lack of stationarity, (3, 0) (Stage 1), the parameters that measure the
bias of Models-3 and the measurement error of CASTNet (Stage 2), and the unobserved
true values of 7 at all the CASTNet sites and at the blocks where we have the Models-3
output (Stage 3).

Gibbs sampling: Stage 1.

We obtain the conditional posterior for the parameters that measure the lack of sta-

tionarity, (3, 8(s)), conditioning on the values of Z that are updated in Stage 3. The

12



posterior of (3, 8(s)) will be completely specified once we define the priors for (3, 6(s)),
because we have that
[Z|B, 0] is Gaussian,

where the brackets [] are used here to denote densities.

Gibbs sampling: Stage 2.

We obtain the conditional posterior for the parameters ag, b, 02 and o? that measure

the bias and uncertainty of Models-3, and the measurement error of CASTNet.
The posterior of o2 given the n values of Z and Z at the CASTNet sites (updated in
Stage 3), can be easily obtained, because we have the following regression problem:

Z(s) = Z(s) +e(s),

where o2 is the variance of the error term e(s), and Z(s) is independent of e(s). We
have that

[Z(s)|Z(s), 0?] is normal with mean Z(s) and variance o2.
Then, the posterior of 0?2 is proportional to

(Z(x1),..., Z(x)|Z(x1), - .., Z(X,),02][0?]

€

where [02] denotes the prior distribution for o2, and xy,...,%, are the n CASTNet

sites.

The posterior distributions of ag, b, 0? given the values of Z and Z (updated in Stage

3) at the m blocks, can be easily calculated, because we have the following regression

Z(Bi):/Bia(s)ds—l—b/ ds+/ d(s

where o2 is the variance of the error term §(s), and Z(s) is independent of §(s). I
follows that

problem:

[Z(By),...,Z(Bn)|Z(By), ..., Z(Bn),a, b, o2
is normal with mean a+b{Z(B,), ..., Z(B,,)}, wherea = {fBl a(x)dx, ..., [z a(x)dx} ,

and a diagonal covariance matrix with diagonal elements o2|B;|. Thus, the posterior

of ag, b, 03 is proportional to
[Z(B1)7 R Z(Bm)|Z(Bl)7 R Z(Bm)vaO: b7 O'g][ao, ba O-g]

13



Gibbs sampling: Stage 3.

We simulate values of Z (the unobserved true values) at the n locations where we have
measurements for Z, and also at the m blocks where we observe Z, conditioning on the
values of 3,60 (updated in Stage 1) and Z. The simulated values at the m blocks are
obtained by simulating values of Z at a sample of locations within each block. Then
Z(B;) is approximated by L* Zﬁzl Z(s;,), where s;,,...,s;, is a centered systematic

sample in B;.

For model validation, we simulate values from the posterior distribution of CASTNet
given Models-3,
P(Z|Z,a=0,b=1),

and we compare the actual observations with this simulated posterior predictive distribution.

4 Application: Air Pollution Data

The regional scale air quality models (Models-3) run by the U.S. EPA estimate hourly
concentrations and fluxes of different air pollutants. The primary objective of Models-3 is to
improve the environmental management community’s ability to evaluate the impact of air
quality management practices for multiple pollutants at multiple scales, as part of the process
of regulating air pollution. The spatial domain, D, is a regular grid (81x87), the dimensions
of each pixel in the grid are 36km x 36km. Models-3 provides hourly concentrations for
each pixel. As an example we examine sulfur dioxide. Figure 2 shows the weekly averaged
concentrations of SO, for the week starting July 11, 1995. Our first objective is the validation
of Models-3.

The Clean Air Status and Trends Network (CASTNet) measures SO, weekly averaged
concentrations and fluxes at 50 sites (see Figure 1). We propose to combine both sources of
information, namely the monitoring data and the output of the air quality models, to get
more reliable maps of air pollutants concentrations and fluxes.

In Figure 4(a) we show the CASTNet values at 6 selected sites that are representative
of different metereological, land use, and altitude conditions. For validation of Models-
3, in Figure 4(b) we show the modes of the posterior predictive distribution (eq. (6)) of
CASTNet given Models-3 at the 6 selected sites. There is clear evidence that Models-3
is overestimating the concentrations of SO,. We modeled the covariance for Models-3 using

equation (17), taking into account the lack of stationarity and the change-of-support problem
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SO2 concentrations (CASTNet) SO2 concentrations (Models-3)

Figure 4: (a): Weekly average of SO concentrations (ppb) at some selected CASTNet sites,
for the week of July 11, 1995. (b): Weekly average of SOz concentrations (ppb) from Models-3
interpolated at 6 selected locations, for the week of July 11, 1995, for Models-3 validation.

(we calculated the covariances involving block averages by drawing a set of 4 locations in

each pixel).

Now, we use the methodology presented in this paper to estimate the bias in Models-3
for bias removal, using expression (7). We modeled Models-3 in terms of an underlying
unobservable process Z with the true values of SO,, but we added an additive constant bias,
a multiplicative constant bias, and a measurement error term. We also modeled CASTNet
in terms of the “true” process Z and we added a measurement error term (see Section 2.2).

Figures 5 and 6 show the posterior distributions of some covariance parameters for the
underlying process Z at the selected sites shown in Figure 4 (a). We used vague gamma
priors for all the Matérn covariance parameters, except for the sill parameter for which we

used

p(o) xo !,

which is a uniform prior for log(o). The sill parameter changes with location as illustrated
by the variation in the distributions in Figure 6. Thus, this indicates a lack of stationarity.
The range parameter does not change much with location (Figure 5). The smoothing pa-
rameter does not change with location either, and is always close to 1/2 (exponential). We

u—s

implemented the nonstationary model (15) with weight function K(u —s) = %Ky (%2),
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Figure 5: Posterior distributions for the range parameter (km) of the Matérn covariance for
the SO, concentrations of Z, for the week starting July 11, 1995, at the 6 selected locations
showed in Figure 4 (a).

where Ky(u) is the quadratic weight function

Ko(m) = S(1 = w?), 501 - w?), (19)

for u = (uy, uz). The bandwidth parameter h is defined as [/2 + [/2¢, where [ is the distance
between the sample points sy, ..., sy in (18), and € is a value between 0 and 1. For € we used
a uniform prior in the interval [0, 1]. The parameter € determines the amount of overlapping
between the subregions of stationarity centered at the sampling points sy, ..., sy, and h can
be interpreted as the diameter of the subregions of stationarity.

The mode of the posterior distribution for the parameter that measures the measurement
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Figure 6: Posterior distributions for the sill parameter of the Matérn covariance for the SO,
concentrations of Z, for the week starting July 11, 1995, at the 6 selected locations showed
in Figure 4 (a).
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error for CASTNet is .8, and for Models-3 it is .1. The mode of the posterior distribution
for the parameter that measures the multiplicative bias for Models-3 is .5 with a standard
error of .5, and for the additive bias we have a polynomial of degree 4.

We use a Bayesian approach for spatial prediction. We sample from the predictive dis-
tribution (eq. (5)) of the true underlying process Z given the observations and the model
output, taking into account the lack of stationarity and the change-of-support problem (we
calculated the block averages covariances drawing a set of 4 locations in each pixel). We
use posterior predictive checks (PPC) as suggested by Rubin (1984) and Raftery (1988) for
validation of the proposed model for Z. Thus, we compare the posterior predictive distri-
butions of the “true” process Z at different locations to the observed data, and we judge
whether the generated data are similar to the CASTNet data (Figure 4(a)). Figure 7 shows
simulated values from the posterior predictive distribution (eq. (5)) of SOy weekly average
concentrations at the CASTNet selected sites. Figure 8 is a comparison of the generated
data through the Bayesian melding approach proposed in this paper to CASTNet, taking
into account the uncertainties about CASTNet and Models-3. The graph on the right in
Figure 8 shows the CASTNet measurements for the week starting July 11, 1995, versus the
modes and 90% credible intervals of the predictive Bayesian distributions (eq. (5)) derived
from the Bayesian melding approach at the CASTNet locations. The dotted lines indicate
a 90% credible region for the CASTNet values. All the modes fall within the credible region
for CASTNet, so that the generated data are similar to the observed data. On the other
hand, the graph on the left in Figure 8 shows CASTNet measurements versus the modes
and 90% credible intervals of the predictive Bayesian distributions (eq. (6)) derived only
from Models-3 (without combining Models-3 with CASTNet) at the CASTNet locations for
validation of Models-3. The modes in the latter plot do not fall within the credible bands for
CASTNet. This figure shows the improvement obtained in the prediction of SO, by com-
bining CASTNet and Models-3 through the Bayesian melding approach presented in this
paper.

In Table 1 we have the modes, sample standard deviations, and 90% credible intervals
of the posterior predictive distribution (5) for SO, at the 6 selected sites. As expected, we
get very high variability at the Indiana site. This site is very close to several coal power
plants, and so the SO, levels can be very high or very low depending on wind speed, wind
direction, and on the atmospheric stability. The sites in Maine and Florida have the lowest
SO, levels and variability. The agricultural site in Illinois and the site in North Carolina

have similar behavior in terms of SO, levels. The site in North Carolina is not far from the
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Figure 7: Predictive posterior distributions for the SO, concentrations of Z, at the 6 selected
locations showed in Figure 4, for the week starting July 11, 1995. The predictive posterior
values are for the spatial underlying process Z given CASTNet and Models-3.



Table 1: Columns 2-5 in this table show the modes, standard errors and 90% credible intervals
of the posterior predictive distribution (eq. (5)) for the underlying process Z measuring the
true SO, concentrations at the 6 selected sites. Column 6 are the CASTNet values (Z ).
Columns 7-9 show the modes and the corresponding 90% credible intervals of the posterior
predictive distribution (eq. (6)) for model validation.

| Site | Mode | SE. [ 90% C.1. | CASTNet || Models-3 | 90% C.L |
Maine 0.18 | 0.08 | 0.15 0.25 0.15 0.33 0.10 0.43
Illinois 280 | 0.84 | 2.55 3.41 3.29 3.33 217  5.03
North Carolina | 1.38 | 0.98 | 1.18 2.08 0.90 5.32 3.67 6.67
Indiana 098 | 531 | 0.74 5.63 3.14 9.59 4.20 20.50
Florida 091 |0.16 | 0.87 1.05 0.57 0.52 0.20 0.80
Michigan 0.83 | 040 0.79 1.14 1.02 1.04 0.53 1.70

Tennessee power plants, and the site in Illinois is also relatively close to some Midwestern
power plants. The site in Michigan, which is very close to Lake Michigan and relatively far
from power plants, also has low SO levels.

In Table 1 we also show the CASTNet values, to judge if the generated data are similar
to the CASTNet data. Considering that the uncertainty about CASTNet is 0.8 ppm, the
predictive values are fairly similar to CASTNet, for the most part. The CASTNet values
in table 1 at the 6 sites represent the 5th, 91st, 1st, 68th, Oth, and 79th percentiles of
the corresponding posterior predictive distributions from the Bayesian melding approach.
The last 3 columns in Table 1 are the modes and the corresponding 90% credible intervals
of the posterior predictive distribution (6) for model validation, which are also plotted in
Figure 4 (b). We can clearly appreciate the bias in the numerical models by comparing these
values with CASTNet. For instance, for the site in North Carolina, the interpolated value
of Models-3 is 5.32 ppm (s.e. 3.00 ppm) while the CASTNet value is only 0.90 ppm (see
Figure 8). We could remove the bias in these interpolated Models-3 values by taking into
account the additive bias measured by a(x) (a polynomial of degree 4 with coefficients ag)
and the multiplicative bias (b ~ N(.5,.5)). Thus, we simulated values of ay and b from the
posterior distribution (7) at each site, and we obtained the following adjusted Models-3 values
(adjusted value = a x (Models 3) +b) at the 6 selected sites: 0.22, 2.90, 1.67, 2.36, 0.96, and
1.00. These values are again similar to CASTNet, especially considering that the uncertainty
about CASTNet is approximately 0.8ppb. Therefore, the methodology presented here for

combining spatial data is not only useful for improving the prediction of air quality but it
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is also a tool for validating air quality numerical models and for quantifying bias for bias
removal.

Figure 9 shows the predicted values of SO, at different locations in a regular grid, using
a Bayesian melding approach for prediction to combine CASTNet and Models-3 data. The
predicted values in Figure 9 are the mean of the posterior predictive distribution (eq. (5))
for the SO,. This graph looks similar to the output of Models-3 shown in Figure 2. However,
the SO, values in Figure 9 are between Oppb and 8ppb, while in Figure 2 the SO, values were
between Oppb and 40ppb. The range of values in Figure 9 is more reasonable, and it is closer
to the range of values for CASTNet shown in Figure 1. This illustrates the effectiveness of
the Bayesian melding approach for correcting the bias in Models-3. In Figure 10 we have
6 ensembles of SOy concentrations, where each ensemble is a simulation from the posterior
predictive distribution (eq. (5)) of the SOy. The variability from ensemble to ensemble is
due to the uncertainty in the prediction. Figure 11 shows the standard error of the posterior
predictive distribution at each point. There is higher uncertainty in the Midwest.

5 Discussion

In this paper we have introduced a new statistical methodology for validation and adjustment
of numerical models, and for spatial prediction combining data with the output from nu-
merical models. In the application presented in this paper, we assume there is some smooth
underlying (but unobserved) spatial field that measures the "true” concentration/flux of the
pollutant at each location. The data collected at the monitoring sites are considered the
“true values” plus some measurement error. The output of the air quality numerical models
can be also written in terms of the true underlying, but unobservable, process, with some
parameters that explain the bias and microscale noise in the numerical models. The truth
is assumed to be a smooth underlying spatial process with some parameters that explain
the large scale and short scale dependency structure of the air pollutants. This spatial field
is represented locally as a stationary isotropic random field, but the parameters of the sta-
tionary random field are allowed to vary across space. Kernel functions are used to ensure
that the field is well-defined but also continuous. In this paper we also take into account the
change of support problem that occurs when combining data with different spatial resolution.

Our objectives are model validation and bias removal for the air quality numerical models,
and construction of reliable maps of air pollution combining the output of numerical mod-

els with air pollution measurements at monitoring sites. We validate air quality models by
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Figure 8: The graph on the left shows CASTNet measurements for the week starting July
11, 1995, versus the modes and 90% credible intervals of the predictive Bayesian distribution
(p(Z|Z,a = 0,b = 1)) given Models-3 at the CASTNet locations for Models-3 validation.
The graph on the right shows the CASTNet measurements versus the modes and 90% cred-
ible intervals of the predictive Bayesian distributions (p(Z|Z, Z)) derived from a Bayesian
melding approach to combine observations and Models-3 output. The dotted lines indicate
a 90% credible region for the CASTNet values.
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Figure 9: Predicted SO, concentrations via a Bayesian melding approach to combine CAST-
Net and Models-3 data. This graph shows the mean of the posterior predictive distribution
for the underlying process Z given CASTNet and Models-3.
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Figure 10: Simulated SO; concentrations from the predictive distribution for the SO, using
a Bayesian melding approach for prediction to combine CASTNet and Models-3 data. The

simulated values are from the posterior predictive distribution for the underlying process Z
given CASTNet and Models-3

24



Standard Error of Bayesian Prediction

50

45

40

30

-100 .90 .80 70 .60

Figure 11: Standard error of the posterior predictive distribution for the SO, concentrations
of Z, using a Bayesian melding approach for prediction to combine CASTNet and Models-3
data.
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obtaining the posterior predictive distribution of the measurements at the monitoring sites
given the numerical models output. We remove the bias the air quality models by obtaining
the posterior distribution of the bias parameters given the measurements at the monitoring
sites and the numerical models output. We construct reliable maps of air pollutants simulat-
ing values from the posterior predictive distribution of the true values (underlying process)
given the measurements at the monitoring sites and the numerical models output.

In this paper we have focused on air quality applications, but the methods presented here
could be extended to other problems where we need to combine data from various sources
and with different spatial /temporal resolutions. For instance, combining spatial data is from
models and observations a frequent problem in climate and weather prediction.

Another approach to model validation is to use spatio-temporal models for monitoring
data to provide estimates of average concentrations over grid cells corresponding to model
prediction (Dennis et al. (1990), Sampson and Guttorp (1998)). This approach is reasonable
when the monitoring data are dense enough that we can fit an appropriate spatio-temporal
model to the data. In situations like the one presented here, with few and sparse data points
that show a lack of stationary, the interpolated grid square averages would be poor because
of the sparseness of the CASTNet network, and so treating them as ground truth for model
validation would be questionable.

The spatial patterns shown by the air pollutant fluxes and concentrations change with
location, so that the underlying process Z with the true values of fluxes/concentrations of air
pollution is nonstationary and standard methods of spatial modeling and interpolation are
inadequate. In recent years, probably the most extensively studied method for nonstationary
spatial processes is the deformation approach due to Sampson and Guttorp (1992); see
also Guttorp and Sampson (1994), and Guttorp, Meiring and Sampson (1994). Maximum
likelihood versions of the method were developed by Mardia and Goodall (1993) and Smith
(1996). In a series of papers best represented by Haas (1995), T. Haas has proposed an
approach to nonstationary spatial kriging based on moving windows. Higdon, Swall and
Kern (1999) give a model for accounting for heterogeneity in the spatial covariance function
of a spatial process, using a moving average specification of a Gaussian process. Another
approach has been developed by Nychka and Saltzman (1998) and Holland et al. (1999),
that extends the “empirical orthogonal functions” (EOF) approach that is popular among
atmospheric scientists. Here we use a new model for nonstationary processes proposed by
Fuentes (2001a,b), and further developed by Fuentes and Smith (2001). In this model the

process is represented locally as a stationary isotropic random field, but the parameters of
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the stationary random field are allowed to vary across space. With this model we are able
to make inferences about the nonstationary random field with only one realization of the
process.

The approach presented in this paper gave us a good understanding of the spatial struc-
ture of the “true” concentrations of SO,. This information can be very useful for designing
future data collection. Part of our future work is to use the findings in this paper for moni-

toring network design.
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