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Abstract

Hjort and Claeskens (HC) argue that statistical inference conditional on a single selected
model underestimates uncertainty, and that model averaging is the way to remedy this; we
strongly agree. They point out that Bayesian model averaging (BMA) has been the dominant
approach to this, but argue that its performance has been inadequately studied, and propose
an alternative, Frequentist Model Averaging (FMA). We point out, however, that there is a
substantial literature on the performance of BMA, consisting of three main threads: general
theoretical results, simulation studies, and evaluation of out-of-sample performance. The
theoretical results are scattered, and we summarize them. The results have been quite
consistent: BMA has tended to outperform competing methods for model selection and
taking account of model uncertainty. The theoretical results depend on the assumption that
the “practical distribution” over which the performance of methods is assessed is the same
as the prior distribution used, and we investigate sensitivity of results to this assumption in
a simple normal example; they turn out not to be unduly sensitive.

We point out that HC’s risk results, that AIC-model averaging and similar methods such
as FIC-based model averaging perform well, depend crucially on their local misspecification
assumption (2.2), namely that all nuisance parameters are small and decline with sample
size, at rate O(ﬁ) The key question is thus the realism of this assumption. We question
this assumption on the grounds of its lack of face validity in some situations, the growing
separation between data collection and research, the increasing tendency for research on
different questions to be based on a few large high-quality public datasets, and the statistical
literature, where sample size and parameter values rarely covary in the design of simulation
studies. Finally, we reanalyze HC’s data example, on risk factors for low birthweight.
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1 Introduction

In their article, “Frequentist Model Average Estimators,” Hjort and Claeskens — hereafter
HC — make the point that statistical inference conditional on a model selected among
several on the basis of data will tend to underestimate variability. We strongly agree. They
argue that the way to overcome this is by model averaging, and again we agree. There is
much support for these arguments: these points have been made by many authors in a long
line of literature going back at least to Leamer (1977). HC point out that Bayesian model
averaging (BMA) dominates the literature on accounting for model uncertainty in statistical
inference. Their search for a frequentist alternative is largely motivated by the feeling that
the performance of BMA in repeated datasets or experiments has been inadequately studied.
Or, as they put it, “even though BMA ‘works’,..., rather little appears to be known about
the actual performance or behavior of the consequent inferences, like estimator precision.”

This is a somewhat surprising statement, as the performance of Bayesian model selection
and BMA has, in fact, been extensively studied. There are three main strands of results:
general theoretical results going back to Jeffreys (1939), simulation studies, and results
on out-of-sample predictive performance. HC do not refer to any of this literature. The
theoretical results are well-known but somewhat scattered in the literature. In brief, when
used for model selection, the Bayes factor minimizes the Total Error Rate (sum of Type
I and Type II error probabilities); BMA point estimators and predictions minimize mean
squared error; BMA estimation and prediction intervals are calibrated; and BMA predictive
distributions have optimal performance in the log score sense. We bring these results together
in our Section 2. These results for BMA are quite general, and do not rely on the assumption
that all uncertain parameters are small (essentially HC’s local misspecification assumption,
required by FMA). They also do not require the standard regularity conditions assumed by
HC in deriving FMA, which are violated in many models of practical interest, such as change
point models, or models involving unknown population size.

There are also several realistic simulation studies of the performance of BMA relative to
other methods in a variety of situations, including linear regression (George and McCulloch
1993; Raftery, Madigan, and Hoeting 1997), loglinear models (Clyde 1999), logistic regression
(Viallefont, Raftery, and Richardson 2001), and wavelets (Clyde and George 2000). In these
studies, BMA was compared to the prevailing state of the art methods, and generally found
to have better performance.

Finally, there has been extensive investigation of the out-of-sample predictive perfor-



mance of BMA compared to other methods, for real datasets. This is particularly important
because these are situations in which the model assumptions underlying BMA and other
methods do not necessarily hold, and they provide a neutral criterion for comparing methods.
These include graphical models (Madigan and Raftery 1994; Madigan, Gavrin, and Raftery
1995), survival analysis (Raftery, Madigan, and Volinsky 1995), linear regression (Raftery,
Madigan, and Hoeting 1997; Hoeting, Madigan, Raftery, and Volinsky 1999; Fernandez, Ley,
and Steel 2001a; Fernandez, Ley, and Steel 2001b; Hoeting, Raftery, and Madigan 2002),
binary regression (Ferndndez, Ley, and Steel 2002), and semiparametric regression (Lamon
and Clyde 2000). The results of these studies have been quite consistent: BMA had better
predictive performance than competing methods. It would be interesting to assess the predic-
tive performance of FMA in the same way, using out-of-sample predictive performance. As
HC note in their Section 10.5, the only model averaging methods that they discuss that have
optimality properties are the Bayesian ones; FMA itself does not appear to yield optimal
methods.

FMA consists of the analysis of the long-run properties of model averaging schemes
under the local misspecification assumption in HC’s equation (2.2), which is essentially an
assumption that all the parameters of interest for model averaging are small, specifically
O(ﬁ), modulo the known shift v,. As we discuss in our Section 4, this assumption is highly
consequential, and HC’s risk results depend on it crucially. As such, its realism is a critical
issue, and we discuss that in Section 4.

HC’s analysis of BMA under this local assumption, and their local approximation to
Bayes factors, BLIC, are interesting and potentially relevant if one does accept the assump-
tion. These ideas have been discussed previously. Smith and Spiegelhalter (1980) analyzed
Bayesian model selection under similar local assumptions, and proposed several “local Bayes
factors,” derived in essentially the same way as HC’s BLIC. It would be interesting to com-
pare the two.

HC’s proposal to estimate the spread in the BMA prior using empirical Bayes methods
also seems useful. However, this idea has also been discussed previously, and in more depth.
Volinsky (1997) suggested combining ridge regression and BMA in, essentially, an empirical
Bayes BMA scheme. George and Foster (2000) proposed using the data to estimate the prior
spread, and also the prior probability of a parameter being nonzero, yielding an empirical
Bayes Bayesian variable selection method; this was extended to model averaging by Clyde
and George (2000) in the context of wavelets. Hansen and Yu (2001) developed local empir-

ical Bayes approaches in which the prior depends on the model in a data-dependent way, as



in HC’s BLIC*.

This comment is organized as follows. In Section 2 we summarize some of the theoretical
results in the literature on the performance of Bayesian model selection and BMA. These rely
on the assumption that the prior distribution is representative of situations encountered in
practice, and in Section 3 we investigate robustness to this assumption in a simple situation;
the results seem fairly insensitive to this assumption. In Section 4 we show that the local
misspecification assumption is important for HC’s risk results, and we discuss its realism. In

Section 5 we discuss the logistic regression example which is HC’s only data example.

2 Performance of Bayesian Model Selection and Bayesian
Model Averaging: Theoretical Results

Our goal is to make statements about the long-run performance of model averaging and
the associated estimators. But which long run? In general, the performance of statistical
methods depends on the underlying state of nature; there is no method which is uniformly
optimal. Exceptions to this arise in special cases, for example in some estimation problems
when a pivotal quantity is available. Thus we seek good performance on average over a range
of situations, for example over the statistician’s “career” of working with the model class in
question. This involves averaging over situations where the different models hold (at least
approximately). Within a given model, it involves averaging over a range or distribution of
parameters typical of those encountered in practice. We call this the practical distribution
of the parameters. This idea goes back at least to Jeffreys (1939), who referred to it using
the term “world frequencies”.

The first key result is due to Jeffreys (1939, p.327), , and concerns testing for two nested

models.

Theorem 1 (Jeffreys) For two nested models, model choice based on the Bayes factor
minimizes the Total Error Rate (= Type I Error Rate + Type II Error Rate), if the practical

distribution is equal to the prior distribution over the parameters.

This leads to a different interpretation of the prior distribution from the usual one, namely
the distribution of the parameters over which we would like to see good performance of the
model choice method. Frequentist research on testing methods routinely implicitly defines
such a distribution through the parameter values chosen for the simulation studies carried

out to assess the power of a test; for recent articles of this kind in this journal, see Pena



and Rodriguez (2002) and Horowitz and Spokoiny (2002). Note that Theorem 1 generalizes
immediately to the situation where the costs of the two types of error are unequal, by
multiplying the Bayes factor by the ratio of the costs.

We now consider point estimation and point prediction. The BMA posterior distribution
of a quantity of interest (), which may be a model parameter, a “focus parameter” in HC’s

terminology, or an observable quantity to be predicted, is
p(Qldata) = Y~ p(QIS, data)p(S|data), (1)
s

where p(Q|S, data) is the posterior distribution of () under model S and p(S|data) is the
posterior probability of model S. It follows that the BMA point estimate of @) is

QBMA = Z Qgp(S|data). (2)
s

This is of the type of HC’s equation (4.1). As HC point out, for this to be valid, () must
have the same interpretation under all the models. What precisely this means has not been
spelled out, as far as we know. We suggest one meaning: that () be interpretable as a
quantity that could be calculated from future data, at least asymptotically. The following
result was alluded to in HC’s Section 10.5:

Theorem 2 QBMA minimizes MSE among point estimators, when the practical distribution

of the parameters is equal to the prior distribution.

We now consider interval estimation. We consider BMA estimation intervals with poste-

rior content oe. Then we have

Theorem 3 BMA estimation intervals are calibrated, in the sense that the average coverage
probability of a BMA interval with posterior content « is greater than or equal to «, on
average over datasets drawn from the practical distribution, if the practical distribution of

the parameters is equal to the prior distribution.

Note that the BMA distribution of a quantity of interest can be viewed as the posterior
distribution from the full model, with a mixed discrete-continuous prior distribution that
assigns weight to the events that the individual components of v are zero. Then Theorem
3 follows from the arguments of Rubin and Schenker (1986), with the continuous prior

distribution used there replaced by the mixed discrete-continuous prior measure induced by



BMA. The only reason that the average coverage probability of the BMA interval is not
exactly equal to a (rather than greater than or equal to «) is that for some datasets the
interval may consist of just a single value corresponding to a component of vy with posterior
probability greater than a. Also, if the BMA estimation intervals are the shortest intervals
with posterior content «a, then they are the shortest intervals with the calibration property
of Theorem 3.

Finally, we consider prediction of an observable out-of-sample quantity. Theorems 2 and 3
already show that BMA point prediction minimizes predictive MSE and that BMA prediction
intervals are calibrated. The following further optimality result for BMA prediction was given
by Madigan and Raftery (1994).

Theorem 4 The BMA predictive distribution of a predictand Q is optimal under Good

(1952)’s logarithmic scoring criterion:

E l]og {253 p(QIS, data)p(S| data)}

for any probability distribution g(-|data), where the expectation is with respect to the predictive
distribution Y- g p(Q|S, data)p(S|data).

> Ellog g(Q|data)]

This follows from the nonnegativity of the Kullback-Leibler information divergence. One
way of interpreting this result is in terms of a simulation experiment. Data are generated
from a model chosen at random among those considered, with parameters chosen at ran-
dom from the prior distribution. The predictand @) is generated from the same model and
parameter values, but these are unknown to the person forming the predictive distribution.
Predictive distributions are generated using BMA, and any other competing method consid-
ered. Theorem 4 says that the log score will be better for BMA than for any other way of
forming predictive distributions.

The results in this section are impressive, but they leave two questions open. How
much better is BMA than other methods in specific situations? And how robust are these
optimality results to the assumption that the prior distribution is equal to the practical
distribution? We consider these questions in the context of a very simple example in the

next section.

3 Normal Example

To get a sense of numerical differences in performance, and also of the extent to which

the results in the last section hold even if the prior distribution is not the same as the



practical distribution, we consider a very simple normal example. Here data (yi,...,¥yns)
are iid N(u,1) and we consider just two models, My : u = 0 and M; : u # 0. Under
M, the prior distribution is u ~ N(0,02). (The choice 0? = 1 is the Unit Information
Prior and is generally agreed to be conservative (Raftery 1999), so here we consider only
0? < 1.) The practical distribution we consider draws equally from the two models, and
under M;, u comes from a N(0,72) distribution. The prior distribution is equal to the
practical distribution when o = 7.

Analytic results are available in this situation. Although a simple special case, it is more
general than it seems, because the results carry over fairly directly to one-degree-of-freedom
nested model comparisons with at least moderate sample sizes under standard regularity
conditions.

Figure 1 shows the total error rate when n = 100. The results were similar over a wide

2, from - to 1, so we show only the results for

range of values of the practical variance 7
72 = 1. Model choice using a Bayes factor depends on the prior variance o2, and has a
lower total error rate than a 5% significance test for all 02 > 0.4, i.e. for a prior variance
that is “misspecified” relative to the practical distribution by a factor of up to 2.5. The
Bayes factor has a lower error rate than AIC for all o2 > 0.05, i.e. for prior variances that
are misspecified by a factor of up to 20. It would be interesting to extend this comparison
to include FIC. Section 5.6 of Claeskens and Hjort, “The Focussed Information Criterion,”
suggests that FIC is likely to be close to AIC in practice, so one may conjecture that its
performance will also be close to that of AIC.

Figure 2 shows the total error rate with a much larger sample size, n = 100,000. There
we see that Bayes factors (and BIC) have much lower error rates than other methods, for all
values of the prior variance. Once again, the result is robust to the practical variance 72, at
least up to the factor of 16 in our experiments.

We now turn to estimation of p. Figure 3 shows the mean squared errors of the BMA
estimator with n = 100. These are compared with the MSE of the usual estimator g = v,
which is % = 0.01. The BMA estimator outperformed the usual estimator by about 28%
in terms of MSE, as long as the prior variance was not unduly small — greater than about
0.25. As can be seen from Figure 3, this result is robust to both the prior variance and the
practical variance, and holds even when they differ by a factor of up to 4.

We now consider the coverage of interval estimates of 1. These are shown in Figure 4 for
the BMA interval estimate and the standard normal confidence interval. The BMA interval

has nearly correct coverage as long as the prior variance is not too small — again at least
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Figure 1: Total Error Rate in the Simple Normal Example for n = 100. Model choice is
based on a Bayes Factor (solid line), a 5% significance test (dashes), BIC (dots), and AIC
(dots and dashes). The z-axis shows the prior variance o?.
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Figure 2: Total Error Rate in the Simple Normal Example for n = 100, 000.

0.25.

The average length of the confidence intervals is shown in Figure 5. The BMA interval is
consistently shorter than the standard confidence interval, by amounts that depend on the
practical variance but are relatively insensitive to the prior variance. For unit prior variance,
the reductions in the length of the confidence intervals range from 6% to 40%. It would
be of interest to do a similar calculation for the AIC-based and FIC-based model averaging

estimators.

4 The Local Misspecification Assumption, AIC and
FMA

The results in Section 2 say that BMA is optimal in terms of mean squared error, and yields
calibrated interval estimators of minimal length, provided that the prior distribution is equal
to the practical distribution over which performance is assessed. HC assume that the prac-
tical distribution has variance O(%) — this is the local misspecification assumption in their
(2.2). It follows from the arguments of Akaike (1983)that AIC provides an asymptotic ap-
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Figure 3: BMA Estimation of y in the Simple Normal Example: Mean Squared Errors. The
solid line shows the MSE for the standard estimator f = g, which is 1/n = .01.

proximation to (twice the logarithm of) the Bayes factor provided that the prior distribution
of the parameters contains about the same amount of information as the data, implying that
the prior variance is O().

In the simple normal example of the last section, it can be shown that if the prior
variance is proportional to a power of n, i.e. if 02 = cn™%, then AIC — 2log By = O(1) if
and only if § = 1, where Byq is the Bayes factor for M; against Mj; otherwise, if 0 < § < 1,
AIC —2log Byy > O(1). Further, AIC is an unbiased estimator of twice the log Bayes factor

under M, i.e.

E[AIC — 2log Big|M;] = 0,

if and only if ¢ = e — 1 = 1.718. Thus, in this case, AIC is equivalent to a Bayes factor
if the prior contains the same information as about 0.58n observations. This seems like an
unreasonably informative prior for many purposes.

In light of this, HC’s risk results, that model averaging with AIC-like weights do well,
are not, surprising. In their case, both the prior and practical distributions have variances
O(%) In this situation, the results in our Section 2 suggest that AIC-based model averaging

will be close to optimal, and that BIC and standard Bayes factors will not, because the
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prior on which they are based is very different from the practical distribution used to assess
them. FIC-based model averaging is a further refinement designed specifically to give optimal
estimation results when the local misspecification assumption holds, and so it is no surprise
that it does well in the simulation studies designed by the authors.

Thus the local misspecification assumption (2.2) is critical to HC’s results. It is not just
a technical regularity condition, but a key assumption about the way the world works. The
question then becomes, it is realistic? There are two standard arguments for its realism.
One is that as the same size increases, the effects or parameters of interest become smaller
— in essence, give researchers a more powerful microscope, and they will look for smaller
objects. The other is the converse, that researchers aiming at finding small effects are more
likely to use larger sample sizes. These arguments support the direction of the association
between parameter size and sample size, but not the assumed rate.

We are not convinced, however. The local misspecification assumption applies to nuisance
parameters rather than to quantities of primary interest, and the main arguments supporting
the assumption refer mainly to quantities of primary interest. It does not seem to cover the
situation where individual 7; are not small, but model uncertainty is still present because
of correlation between the corresponding x;. It also does not represent the situation where
the coeflicients for some nuisance variables are substantial, and those for others are small;
in our experience this is a common situation.

The assumption seems implausible on its face in some situations. For example, consider
the low birthweight example. Risk factors for low birthweight have been considered in large
studies with thousands of subjects, as well as the small study with 189 subjects discussed by
HC. The main nuisance parameter in HC’s version of the problem is the effect of maternal
age — is it reasonable to expect this to be much larger in the study discussed by HC than
in another much larger one, just because the sample size is much smaller? It seems unlikely
to us.

The salience of the local misspecification assumption seems likely to be diminishing given
current trends in science. Increasingly, data collection and research are disassociated, with
disciplines more and more organized around large, high-quality publicly available databases
collected using public funds, and many researchers addressing different questions using the
same data. This makes it less likely that the size of parameters would depend on sample
size — researchers are more likely to choose datasets based on whether or not they contain
variables of interest than on their sample size.

Sociology provides one example of this — much sociological research on very diverse

12



topics is carried out using a small number of large databases such as the General Social
Survey (GSS), the National Longitudinal Survey of Youth (NLSY), and the National Survey
of Families and Households (NSFH). These databases all have comparable sample sizes, on
the order of 5,000 to 20,000. They are used to investigate all sorts of sociological questions
and to estimate a wide range of parameters, large and small. The size of the effects of main
interest is hardly related to the sample size (which is essentially constant and out of the
researcher’s control), and the size of the nuisance parameters is even less likely to be related
to sample size.

Another such discipline is astronomy, which is moving towards the same model as soci-
ology, with many researchers working at their computer screens in a “virtual observatory”
such as Skyview (http://skyview.gsfc.nasa.gov), rather than generating their own data.
Epidemiology — long a bastion of research-group-specific datasets — is also moving in this
direction, albeit in a different way, via meta-analysis, with the pooling of all data from all
available studies. A further example is political science — a great deal of North American
political science research is based on a single database, the National Election Studies (NES
— http://www.umich.edu/ nes). A bibliography lists roughly 4,000 publications based on
the NES data.

When sample size is decided on by researchers in terms of the question being studied, it
is often determined, not by the size of the effect being studied, but by its importance. Large
effects may actually be the object of larger studies. For example, the association between
smoking and lung cancer is certainly a large one, and once its existence was suspected, several
very large studies were carried out to assess it.

Do statisticians act as if they believe the local misspecification assumption? One way of
assessing this, implicitly, is by looking at the design of simulation studies in the statistical
literature that assess the performance of estimators and tests. If they did, one would expect
to see simulation studies with a relationship between sample size and parameter value, with
large sample sizes corresponding to small parameter values. This rarely, if ever, happens.
Some examples from recent issues of JASA, are Horowitz and Spokoiny (2002), Pena and
Rodriguez (2002) and Chaterjee, Chen, and Breslow (2003) — in their simulation studies, as
in most others of which we are aware, parameter values and sample size were varied indepen-
dently. It seems that statisticians do not see an inverse relationship between parameter size
and sample size of the kind implied by the local misspecification assumption as an important

enough feature of reality to be worth including in simulation studies.
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5 Model Averaging for Logistic Regression

HC’s only data example is the logistic regression for predicting low birth weight. Their “focus
parameters” are the probability of low birth weight for a white mother with covariates equal
to the average for whites in the study, the same quantity for a black mother, and the ratio
of the two. The latter seems like a strange choice. If the ratio is different from one, this
could be due to interracial differences in the probability of low birth weight, in the average
covariates, or both; the measure conflates the two sources of variation. In epidemiological
studies, interest generally focuses on the extent to which an independent variable of interest
(here race) is a risk factor, after adjusting for other covariates — in the present context this
is just the logistic regression parameter for black (z4). Epidemiologists are also interested
in subpopulation average prevalences. However, the ratio focus parameter used by HC
corresponds to neither of these, and it does not seem to provide an answer to any scientific

question of wide interest.

5.1 Bayesian Model Averaging for Case-Control Studies

HC’s analysis does not tell us how accurate any of the estimators or standard errors are
in this example. It therefore seems to be of interest to summarize the only study that we
know of the performance of model averaging for logistic regression (Viallefont, Raftery, and
Richardson 2001). This was carried out in the context of what is probably the largest area of
application of logistic regression: epidemiological case-control studies. Typically there is one
“focus parameter” of interest — the adjusted effect of a potential risk factor of interest, as
measured by the logistic regression parameter. Usually there are many potential confounders,
on the order of dozens, and the task is to make inference about the effect of the risk factor
of interest.

BMA was implemented for this application using a prior distribution for the effect of
interest that was agreed by a team of collaborating epidemiologists, and that implied that
the odds ratio was unlikely to be greater than 7. Model averaging was carried out us-
ing the glib software for BMA in generalized linear models (Raftery 1996), available at
www.research.att.com/"volinsky/bma.html. The performance of BMA and other con-
founder selection methods was analyzed by means of a simulation study whose specification
(numbers of cases and controls, numbers and effect sizes of potential confounders, actual
odds-ratios) was based on a sample of 50 case-control studies in the epidemiological litera-

ture. It is often possible to design a simulation study to favor almost any model selection
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or averaging method, and basing the design on a sample of actual studies helps to minimize
such biases.

The results were as follows. The BMA posterior probability of the adjusted odds ratio
of interest being different from 1, averaged over all models, was well calibrated, while signif-
icance tests with standard confounder selection methods were not. BMA interval estimates
were well calibrated, and BMA point estimates had MSE about 20% lower than standard

variable selection methods.

5.2 Bayesian Model Averaging for the Low Birthweight Example

We now give BMA results for the low birthweight example. As we have noted, HC’s main
focus parameter seems of dubious scientific value, but we give results for it anyhow. Also,
HC have greatly simplified the model uncertainty aspect of the problem. In the initial
dataset of Hosmer and Lemeshow (1989), there were nine independent variables about which
there was uncertainty (counting the two race dummy variables). However, HC removed five
of the variables from the dataset, namely smoking, history of premature labor, history of
hypertension, uterine irritability, and number of physician visits. They also assumed that
there is no uncertainty about the inclusion of the maternal weight variable, thus reducing
the number of uncertain variables from nine to three, and the number of potential models
from 528 to 8. First we give BMA results on the same basis as the HC analysis, and in
Section 5.3 we give BMA results for the complete problem.

We compute posterior model probabilities in four ways. First, we use the reference proper
prior approach of Raftery (1996) with prior dispersion parameter ¢ = 1. While proper, this
prior is designed to be spread out enough as to be essentially noninformative; the prior
standard deviation of the “black” effect, the regression parameter for x4, is 6.3. Weakliem
(1999) has argued that odds ratios greater than about 15 are unusual in social scientific
contexts of this kind, and we translate that into an “informative” prior for the “black” and
“other race” parameters that has standard deviation 1.35. We compare these with model
averaging using the BIC approximation and the AIC weights.

Table 1 shows the standard frequentist results and the BMA posterior model probabilities
for the 8 models considered by HC. None of the larger models fits significantly better than
the “narrow” model by standard criteria at the 5% level, and the reference BMA analysis as
well as the BIC approximation favor the narrow model, although not decisively, agreeing with
the standard analysis. The BMA analysis with an informative prior gives more weight to the

wider models; this is due to the additional information in the prior. Model averaging with
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Table 1: Standard GLIM Analysis and Posterior Model Probabilities for HC’s Subset of the
Low Birthweight Data

Model | Dev df P Posterior Model Probabilities (%)
diff value | Reference Informative  BIC AIC
Prior Prior Approx Weights
0 0 0 — 54 25 54 11
3 1.57 1 .21 8 4 9 9
4 3.62 1 .06 24 38 24 24
) 0.59 1 44 5 7 5 )
34 4.52 2 .10 3 4 3 14
35 201 2 37 1 1 1 4
45 5.43 2 .07 5) 20 4 22
345 |6.03 3 11 0 2 0 11

NotEk: Dev diff is the deviance difference between the model considered and HC’s “narrow”
model with just maternal weight as covariate.

df refers to the number of degrees of freedom in the comparison, and P value to the P value
for the asymptotic x? distribution of the deviance in testing the model considered against
the narrow model.

AIC weights also gives more weight to the wider models; this can be viewed as a consequence
of the fact that this is a form of BMA with quite informative prior distributions. The BIC and
reference BMA analyses are in close agreement, which is to be expected as both correspond
to the use of a unit information prior for the parameters (Kass and Wasserman 1995; Raftery
1995, 1996). .

Table 2 shows the BMA estimators and posterior standard deviations for HC’s focus
parameters, and may be compared with the table in HC’s Section 6.2. The results are fairly
similar across model averaging methods. The difference between model selection and model
averaging is especially striking for the reference prior BMA and the BIC approximation,
which favor the narrow model. For the narrow model, the standard error of the ratio focus
parameter is 0.06, while for BMA it is 0.42.

5.3 Analysis of Complete Low Birthweight Data

HC excluded the five variables smoking, premature labor, hypertension, uterine irritability,
and physician visits from the analysis, but did not discuss this decision; we could not see that

it would lead to better inferences, whether one is interested in the association between race
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Table 2: BMA Estimates and Posterior Standard Deviations for HC’s Focus Parameters for
HC’s Subset of the Low Birthweight Data

Reference Informative BIC AIC

Prior Prior Approx Weights
For p(white):
estimate .285 .268 .285 .261
stdev .040 .045 .040 .046
For p(black):
estimate .306 357 .306 .369
stdev .098 113 .098 112
For the ratio:
estimate 1.096 1.359 1.094 1.442
stdev 420 .532 418 .549

and low birthweight after adjusting for other factors, or in explaining the total association
between race and low birthweight in terms of other factors. Also, we were unclear about the
justification for HC’s decision to include maternal weight with prior probability 1.0. Hosmer
and Lemeshow (1989) themselves made inference about this from the data at hand rather
than a priori: the purpose of their study was to find out which of the collected variables,
all known to be associated with low birthweight in some populations, were important in the
population being served by the medical center where the data were collected; see Hosmer
and Lemeshow (1989, pp. 91-94). As already mentioned, we were also unclear about the
choice of focus parameters, which seem to differ from standard epidemiological practice.

As a result, we reanalyzed the dataset, including all the variables and taking account of
uncertainty about them, with a focus on the logistic regression parameters themselves, which
correspond to adjusted log-odds ratios. This leads us to 528 models rather than HC’s 8. We
first carried out a reference prior BMA analysis (Raftery 1996); as before, the results for this
were similar to those using BMA with the BIC approximation. We then carried out a more
informative analysis using the prior with standard deviation 1.35 for the last seven variables,
all of which are either binary or counts. For computational convenience, we excluded the
models whose BIC-approximated posterior probability was less than that of the most likely
model by a factor of 20 or more; this step is optional and the results are insensitive to it.

This left 86 models that we averaged over.
This analysis can be done easily in Splus using the two commands:
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Table 3: Posterior Effect Probabilities, BMA Posterior Means, and BMA Posterior Standard
Deviations for the Full Low Birthweight Dataset

Parameter Reference Prior Informative Prior
Pr[8#0] Mean SD |Pr[f#0] Mean SD
Age 8 .048 .035 3 —.046 .035
Maternal weight 71 —.016 .007 72 —.016 .007
Black 25 986 .509 58 910 478
Other race 17 750 .466 47 ST 417
Smoking 36 7720 .391 68 771 381
Premature labor 42 719 .335 46 627 328
Hypertension 68 1.761 .713 88 1.352 .623
Uterine irritability 29 .886 .443 49 780 .423
Physician visits 1 —.059 .168 1 —.064 .167

NotE: These results are based on Bayesian model averaging across the 86 models whose
BIC-approximated posterior probabilities were at least 1/20 of that of the model with the
highest one.

Pr[3 # 0] is the posterior effect probability, i.e. the probability, given the data, that the
parameter is different from zero, expressed as a percentage.

The posterior mean and standard deviation are calculated conditionally on the variable being
in the model, i.e. on the associated regression parameter being different from zero.

bic.hosmer <- bic.glm (x,y,binomial)
glib.hosmer <- glib (x,y,error="binomial",link="logit",models=(bic.hosmer$which)*1,phi=1)

where bic.glm and glib are Splus functions that can be downloaded from
www.research.att.com/"volinsky/bma.html, x is the 189x 9 design matrix of independent
variables, and y is the vector of responses. The BMA analysis with informative priors requires
specification of the priorvar matrix argument in glib. The results are shown in Table 3.
The posterior effect probabilities in Table 3 can be interpreted in light of the commonly
used scale for Bayes factors (Jeffreys 1939; Kass and Raftery 1995), on which odds of less
than 3:1 are viewed as weak evidence. Thus posterior effect probabilities between 25% and
75% would correspond to weak evidence one way or the other. Most of the effects in this
dataset are within this indecisive range. The additional information in the informative prior
tends to increase the evidence for individual parameters, but generally not enough to change
the qualitative conclusion. The most likely single model includes all the variables except
age, premature labor and physician visits. In most cases, the posterior effect probabilities

reflect more uncertainty than P values based on a single model; this is due in part to taking

18



account, of model uncertainty.
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