
March 1969

APPLICATION OF THEOREM PROVING TO PROBLEM SOLVING

Cordell Green

Artificial Intelligence Group

Technical Note No.

SRI proj ect 7494

Preliminary preprint of a paper to be presented at
the International Joint Conference on Artificial
Intelligence, Washington, D. C., May 7-9, 1969.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1969 2. REPORT TYPE

3. DATES COVERED
 00-03-1969 to 00-03-1969

4. TITLE AND SUBTITLE
Application of Theorem Proving to Problem Solving

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Artificial Intelligence Center,SRI International,333 Ravenswood
Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

APPLICATION OF THEREM PROVING TO PROBLEM SOLVING

Cordell Green
Stanford Research Institute

Menlo Park, California

Abstract

This paper shows how an extension of the
resolution proof procedure can be used to con-
struct problem solutions. The extended proof
procedure can solve problems involving state
transformations. The paper explores several
al ternate problem representations and provides
a discussion of solutions to sample problems
including the "Monkey and Bananas " puzzle and
the "Tower of Hanoi " puzzle. The paper exhibits
solutions to these problems obtained by QA3, a
computer program based on these theorem-proving
methods. In addition, the paper shows how QA3
can write simple computer programs and can solve
practical problems for a simple robot.

Key Words Theorem proving, resolution, problem
solving, automatic programing, pro-
gram writing, robots, state trans-
formations, question answering.

Automatic theorem proving by the resolution
proof procedure 2 represents perhaps the most
powerful known method for automatically determin-
ing the validity of a statement of first-order
logic. In an earlier paper Green and Raphae1
illustrated how an extended resolution procedure
can be used as a question answerer-- g., if the
statement C3x)P(x) can be shown to follow from a
set of axioms by the resolution proof procedure,
then the extended proof procedure will find or
construct an x tha satisfies P(x). This earlier
paper (1) showed how bne can axiomatize simple
question-answering subjects, (2) described a
question-answering program called QA2 based on
this procedure, and (3) presented examples of
simple question-answer5ng dialogues with QA2.
In a more recent paper the author (1) presents
the answer construction method in detail and
proves its correctness, (2) describes the latest
version of the program, QA3, and (3) introduces
state-transformation methods into the construc-
tive proof formalism. In addition to the
question-answering applications illustrated in
these earl ier papers, QA3 has been used as an
SRI robot

4 problem solver and as an automatic

program writer. The purpose of this paper is

This research
was supported by the Advanced Research proj ects
Agency of the Department of Defense and was
moni tored by Rome Air Development Center under
Contracts AF 30 (602) -4147 and F30602-69-C-0056.

This preprint is a preliminary version and is
subject to modification prior to publication.

2 References are listed at the end of this paper.

twofold: (1) to explore the question of predi-
cate calculus representation for state-
transformation problems in general, and (2) to

elaborate upon robot and program-writing appli-
cations of this approach and the mechanisms
underlying them.

Exactly how one can use logic and theorem
proving for problem solving requires careful
thought on the part of the user. Judging from my
experience, and that of others using QA2 and QA3,
one of the first difficulties encountered is the
representation of problems, especially state-
transformation problems, by statements in formal
logic. Interest has been shown in seeing several
detailed examples that illustrate alternate meth-
ods of ax iomati zing such problems--i. e., tech-

niques for "programming" in first-order logic.
This paper provides detailed examples of various
methods of representation. After presenting
methods in Secs. I and II, a solution to the
class ic "Monkey and Bananas " problem is provided
in Sec. I I I . Next , Sec. I V compares several al-
ternate representations for the "Tower of Hanoi
puzzle. Two applications, robot problem solving
and automatic programming, are discussed in Secs.
V and VI, respectively.

I. An Introduction to
State-Transformation Methods

The concepts of states and state transforma-
tions have of course been in existence for a long
time, and the usefulness of these concepts for
problem solving is well known. The purpose of
this paper is not to discuss states and state
transformations as such, but instead to show how
these concepts can be by an automatic resolu-
tion theorem prover. In practice, the employment
of these methods has greatly extended the problem-
solving capacity of QA2 and QA3. McCarthy and
Hayes5 present a relevant discussion of philosophi-

cal problems involved in attempting such formali-
zations.

First we will present a simple example.
begin by considering how a particular universe of
discourse might be described in logic.

Facts describing the universe of discourse
are expressed in the form of statements of mathe-
matical logic. Questions or problems are stated
as conjectures to be proved. If a theorem is
proved, then the nature of our extended theorem
prover is such that the proof is "constructive

e., if the theorem asserts the existence of an
object then the proof finds or constructs
such an obj ect .

At any given moment. the universe under con-
sideration may be said to be in a given state.

We will represent a particular state by a
subscripted s--e.g., s17' The letter s, with no
subscript, will be a variable, ranging over
states. A state is described by means of predi-
cates. For example, if the predicate
AT (objectl , b,S) is true, then in state sl the
object, objectl' is at position b. Let this
predicate be axiom AI:

AI. AT (object b,Sl

The question "Where is object in state sl '? " can

be expressed in logic as the theorem
x)AT(objectl,x,s

).

The answer found by using
system QA3 to prove this theorem is "yes, x =: b.

Changes in states are brought about by per-
forming actions and sequences of actions.
action can be represented by an action function
that maps states into new states (achieved by

executing the action). An axiom describing the
effect of an action is typically of the form

('fs)(P(s) :: Q(f(s))J

where s is a state variable
P is a predicate describing a state
f is an action function (corresponding to

some action) that maps a state into a
new state (achieved by executing the
action)

Q is a predicate describing the new state.

(Enti ties such as P and f are termed "situational
fluents " by McCarthy.

As an example, consider an axiom describing
the fact that objeatl can be pushed from point b
to point c. The axiom is

A2. (lfs)(AT(object s)::
AT(object c,push(objectl ,b,c,s)) J.

The function push (obj ect , b, c, s) corresponds to
the act ion of pushing obj ectl from b to c.
(Assume, for example, that a robot is the
executor of these act ions.

Now consider the question, "Does there exist

a sequence of actions such that object
t is at

point c? Equivalently, one may ask, ' Does there
exist a state, possibly resulting from applying
action functions t an initial state Sl' such
that objectl is at point c? This question, in
logic, is ('s)AT(objectl ,c,s), and the answer,
provided by the theorem-proving program applied
to axioms Al and A2, is "yes,
s = push(ObjEict

Suppose a third axiom indicates that object
can be pushed from c to d:

A3. (Vs)(AT(objectl ,c,s) ::
AT(objectl ,d,push(objectl ,c, d,s)) J.

Together, these three axioms imply that starting
in state Sl' objectl can be pushed from b to c
and then from c to d. This sequence of actions
(a program for our robot) can be expressed by
the composition of the two push functions,
push(objectl , d,push(objectl ,b,C,s

))'

The
normal order of function evaluation, from the
innermost function to the outermost, gives the
correct sequence in which to perform the actions.

To find this solution to the problem of get-
ting obj ectl to position d, the following con-jecture is posed to the theorem prover: oes
there exist a state such that obj ectl is at
position d? or, stated in logic,

(' s) AT (object l ,d, s). The answer returned is
yes, s =: push(objectl,c, d,push(Object c,S

))'

The proof by resolution, given below, demon-
strates how the desired answer is formed as a
composi tion of action functions, thus describing
a sequence of necessary actions. The mechanism
for finding this answer is a special literal, *

the "answer literal. This method of finding an
answer is explained in detail in Ref. 3. For our
purposes here, we wi 11 just show how it works by
example. In the proof below, each answer literal
is displayed beneath the clause containing it.
At each step in the proof the answer literal will
contain the current value of the object being
constructed by the theorem prover. In this exam-
ple the object being constructed is the sequence
of actions s. So initially the answer literal
ANSWER(s) is added to the clause representing
the negation of the question. (One can interpret
this clause, Clause 1, as "either obj ectl is not
at d in state s, or s is an answer. " The state
variable s, inside the answer literal, is the
place holder " where the solution sequence is
constructed. The construction process in this
proof consists of successive instantiations of
s. An instantiation of s can occur whenever a
literal containing s is instantiated in the
creation of a resolvent. Each instantiation* of
s fills in a new action or an argument of an
action function. In general, a particular infer-
ence step in the proof (either by factoring* or

resol ving) need not necessarily further instan-
t iate s. For example , the step might be an
inference that verifies that some particular
property holds for the current answer at that
step in the proof. The final step in the proof
yields Clause 7

, "

an answer is
push(object , push(object , s)) , If which

terminates the proof.

We assume the reader is familiar with the
vocabulary of the field of theorem proving
by resolution as described in Refs. 1, 7 , and 8.

Proo f

AT (obj ect
l ,

d, s) Negation of
theorem

(s)

AT(objectl ,c, s) V
AT(objectl ,d,push(objectl ,c, s))

Axi om A3

AT(object l ,c,s) Resolve 1

ANSWER (push (objectl ,c, d,s))

AT(object
l ,

b,s) V

AT (objectl ,c,push(object ' b, c, s))
Axiom A2

AT(object
l ,

b,s) Resolve 3

(push(objectl ,c,
push (object

l ,
b, c, s)))

AT (object
l ,

b,s Axiom Al

Contradiction Resolve 5

(push(objectl ,c,
push (obj ect l , b, c, s l)))

For the particular proof exhibited here, the
order of generating the solution sequence during
the search for the proof happens to be the same
order in which the printout of the proof indicates
s is instantiated. This order consists of working
backward from the goal by filling in the last
action, then he next-to-last action, etc.
general, the order in which the solution sequence
is generated depends upon the proof strategy,
since the proof strategy determines the order
in which clauses are resolved or factored. The
proof that this method always produces correct
answers, given in Ref. 4, shows that the answers
are correct regardless of the proof strategy used.

I I . Refinements of the Method
The purpose of this section is to discuss

variations of the formulation presented in the
previous section and to show how other considera-
tions such as time and conditional operations can
be brought into the formalism. The reader who is
interested in applications rather than additional
material on representation may omit Secs. II, III,
and IV, and read Secs. V and VI.

An Alternate Formulation

The first subject we shall discuss is an
al ternate to the previously given formulation.
We shall refer to the original, presented in
Sec. I, as formulation I, and this alternate as
formulation II. Formulation II corresponds to a
system-theoretic notion of state transformations.
The transformation function for a system
gives the mapping of an action and a state into
a new state. Let f represent the state transfor-
mation function, whose arguments are an action

and a state and whose value is the new state
obtained by applying the action to the state.
Let f a l be the actions, and nil be the null
action. Let g be a function that maps two actions
into a single composite action whose effect is
the same as that of the argument actions applied
sequentially. For example, axioms of the follow-
ing form would partially define the state trans-
formation function f:

B 1. ('1 s) (p (s) :: Q (f (al , s))l

B2. ('fs)(f(nil,s) =: sJ

B3 . (V s , a . , a .) (f (a . , f (a. , s)) =: f(g (a . ,a .) ,s) J .

The predicates P and Q represent descriptors
of states. Axiom Bl describes the result of an
action al applied to the class of states that are
equivalent in that they all have the property
P (s). The resulting states are thus equivalent
in that they have property Q(s). Axiom B2 indi-
cates that the null action has no effect. The
equation in B3 says that the effect of the com-
posite action sequence g(ai,a.) is the same as
that of actions ai and aj applied sequentially.
The question posed in this formulation can
include an initial state-- g., a question might
be (3x)Q(f(x,)), meaning "Does there exist a
sequence of actions x that maps state into a
state satisfying the predicate Q? Observe that
we are not insisting on finding a particular
sequence of act ions, but any sequence that leads
us to a satisfactory state wi thin the target
class of states.

This representation is more complex, but has
the advantage over the previous representation
that both the starting state of a transformation
and the sequence of actions are explicitly given
as the arguments of the state-transformation
function. Thus, one can quantify over, or specify
in particular, either the starting state or the
sequence, or both.

Next we shall show how other considerations
can be brought into a state-transformation formal-
ism. Both the original formulation (I) and the
al ternate (I I) will be used as needed.

B. No Change of State

This kind of statement represents an implica-
tion that holds for a fixed state. An axiom
typical of this class might describe the relation-
ship between movable objects j e.g., if x is to the
left of y and y is to the left of z, then x is to
the left of z.

(V x , y , z , s) (LEFT (x , y , s) A LE FT (y , z , s)

LEFT(x s))

C.

Time can be a function of a state, to express
the timing of actions and states. For example, if
the function time (s) gives the time of an

instantaneous state, in the axiom

(ls)LP(s) :: LQ(f(s))

EQUAL(difference(time(f(s)) , time(s)) ,T)JJ,

where pes) describes the initial state and Q(s)
describes the final state, the state transforma-
tion takes T seconds to complete.

D. State-Independent Truths

An example is

(Vx z) LEQUAL(plus(x 17) , z) ::
EQUAL(difference(z , x) , 17))

illustrating how functions and predicates are
explici tly made state independent by not taking
states as arguments.

E. Descriptors of Transformations

A descriptor or modifier of an action may be
added in the form of a predicate that takes as an
argument the state transformation that is to be
descri bed. For example,

WI SHED-FOR(f (action, state) , person)

might indicate a wished-for occurrence of an
action;

LOCATION (f (action, state) ,place)

indicates that an action occurred at a certain
place.

F. Disjunctive Answers

Consider a case in which an action results
in one of two possibilities. As an example, con-
sider an automaton that is to move from a to d.

START a d GOAL

TA-7494-

The above figure shows that action i leads to
ei ther b or c from a. The function f is single-
valued but we don t know its value. The goal d
can be reached from b by action j, or from c by
action k. In the formalization given below it
is possible to prove that the goal is reachable
al though a correct sequence of actions necessary

to reach the goal is not generated. Instead, the
answer produced is a disj unction of two sequences--
j (i (~)) or k (i(~

)) .

We use formulation I. Axiom Ml specifies the
starting state and starting position a. Axioms
M2, M3, and M4 specify positions resulting from
the allowed moves.

Ml. AT (a, s

M2. (V s) L AT (a, s) :: AT(b, i(s)) V AT(c, i(s))J

M3. (lS)LAT(b,s) :: AT(d,j (s))

M4. (Vs)(AT(c,s) :: AT(d, k(s))J

To find if the goal d is reachable, we ask the
following question:

Question: s)AT(d,

to which an answer is:

Answer: Yes, s =: j(i(s)) or s = k(i(~)).

The proof is:

Proof

I. ~AT(d,s) Negation
of theorem

ANSWER (s)

~AT(b,s) V AT(d, j(s)) Axiom M3

~AT(b, From 1

ANSWER (j (s))

4. ~AT(c, s) V AT(d, k(s)) Axiom M4

5. ~AT(c,s) From 1

ANSWER (k(s))

~AT(a,s) V

AT(b, i(s)) V AT(c, i(s))
Axi om

7. ~AT(a,s) V AT(b, i(s)) From 5

ANSWER (k(i(s))

~AT(a,s) From 3

ANSWER (j(i(s))) V (k(i(s))

AT(a, Axi om Ml

10. Contradiction From 8

(j (i (80))) (k(i(5o)))

Observe that clause 8 has two answers, one
coming from clause 3 corresponding to the action
k and one from clause 7 corresponding to the
action j. This shows how an " " answer can arise.

Answers with Conditionals

A conditional operation such as "if p then q
else " allows a program to branch to clther opera-
tion q or r depending upon the outcome of the test
condi tion p. By allowing a conditional operation,
a better solution to the above problem is made
possible, namely, "beginning in state So take
action i; if at b take action j, otherwise take
action k.

Consider the problem above that yields dis-
j uncti ve answers. The information in the above
problem formulation, axioms MI through M4, plus
addi tional information allows the creation of a
program with a conditional and a test operation.
The following additional information is needed,
which we shall furnish in the form of
axioms.

The first addition needed is a conditional
operation, along with a description of what the
operation does. Since our programs are in the
form of functions, a conditional function
needed. One such possible function is the LISP
conditional function "cond " which will be dis-
cussed in Sec. VI. However, another function, a
simple "select " function is slightly easier to
describe and will be used here. The function
select(x,y,z,w) is defined to have the value z if
x equals y and w otherwise.

M5. (Vx,y,z,w)(x

=: y ::

select(x,y,z,w) =: zJ

l'6. (lx,y,z,w)(X:f y:: select(x,y,z,w) =: wJ

The second addition needed is a test operation,
along with a description of what it does. Since
our programs are in the form of functions, a test
function is needed. We shall use "atf , meaning

at-function. The function "atf " applied to a
state yields the location in that state, e.g.,
atf (~) =: a. The atf function is described by

M7. (\x,s)CAT(x,s) == (atf(s) =: x)J.

These axioms lead to the solution

=: select (atf (i(s)) , b,j (i(s

)) ,

k (i (s

))) ,

meaning "if at b after applying i to s ' take action
j otherwise action k.

Al though the new axioms allow the conditional
solution, just the addition of these axioms does
not guarantee that disjunctive answers will not
occur. To prevent the possibility of disjunctive
answers, we simply tell the theorem prover not to
accept any clauses having two answers that don I
unify.

What may be a preferable problem formulation
and solution can result from the use of the al terna-
tive state formulation, II, exemplified in axioms
Bl, B2, and B3 above. Recall that f(i,s) is the
state transformation function that maps action i
and state s into a new state, the function g(i,
maps the action i and the action j into the

sequence of the two actions--i then j. The inter-
relation of f and g is described by

B3. Cfi s)Lf(j, f(i s)) = f(g(i,

j),

s)J

Axioms l'1 through l'4 remain the same but axioms M5,
M6, and M7 are replaced. The new select function
is described by the two axioms:

l'5 . (li, j,s,p, b)(test(p,s)

=:

b::
f(select(p, j) ,s)

=:

f(i,s)l
. (\i, j,s,p, b)(test(p,s) :f b::

f(select(p, j),s) = f(j,s)l,

where the function test applies the test condition
p (which will correspond to atf for this problem)
to state s. The test condition atf is defined by

. (\x,s)(AT(x, s)

==

test(atf,s) =: xl.
The new solution is

=: f(g(i,select(atf, k))'50)'

Further discussion of program writing, including
recursion, is given in Sec. VI.

Another method of forming conditional answers
is possible. This involves inspecting an existence
proof such as the one given in Sec. II-F above.
First, such a proof is generated in which clauses
having multiple answers are allowed. The con-
di tional operation is constructed by observing
the two literals which are resolved upon to
generate the two-answer clause. For example, in
the above proof clauses 3 and 7 resolve to yield8. This step is repeated below, using the varia-
ble s ' in 3 to emphasize that s ' is different from
s in 7.

Clause 3. ~AT (b, s

ANSWER (j (s

Clause 7. AT(a,s) V AT(b, (i(s)))

ANSWER (k (i(s)))

Clause 8. ~AT(a,s)

ANSWER (j (s)) V ANSWER(k(i (s)))

Clause 3 may be read as "if at b in state s

' ,

the answer is to take action j when in state s

' .

Clause 7 may be read as "if not at 2. in state i (s)
and if at a in state s, the answer is to take
action k when in state i (s) . Observing that the
resolution binds s ' to i (s) in Clause 8, one knows
from Clauses 3 and 7 the test condition by which
one decides which answer to choose in Clause
if at a in state s the answer depends on i (s) j

if at b -in i (s) take action j j otherwise take
action k.

This discussion illustrates that the creation
of a clause with two answer literals indicates

that a conditional operation is needed to create
a single condi tional answer. This information pro-
vides a useful heuristic for the program-wri ting
applications of QA3: When a clause having two
answer literals is about to be generated, let the
proof strategy call for the axioms that describe
the conditional operation (such as M5 and M6)
These axioms are then applied to create a single
conditional answer.

Waldinger and Lee
6 have implemented a program-

wri ting program PROW that also uses a resolution
theorem prover to create constructive proofs, but
by a different method than that of QA3. (The
second method for creating conditionals by combin-
ing two answers is closely related to a technique
used in PROW. Information about (I) the target
program operations, (2) the general relationship
of the problem statement and axioms to the allowed
target program operations including the test con-
ditions, and (3) the syntax of the target language,
is embedded in the PROW program. In QA3 this
information is all in the axioms--such as axioms
M5, 1\16, and M7.

Acquisi tion of Information

Another situation that arises in problem
solving is one in which at the time the problem
is stated and a solution is to be produced, there
is insufficient information to completely specify
a solution. More precisely, the solution cannot
name every action and test condition in advance.
As an example, consider a robot that is to move
from a to c. The action i leads from a to b but
no path to c is known, as illustrated below.

start

- -

8C goal

However, once point b is reached, more information
can be acquired--for example, a guide to the area
lives at b and will provide a path to point c if
asked. Or perhaps once point b is reached, the
robot might use its sensors to observe or discover
paths to c.

To formalize this, assume that the action
ask-path(b,c) will result in a proper path to
when taken at b. For simplicity, assume that the
name of the path is equal to the state resulting
from asking the question. Using formulation I I,
one suitable set of axioms is:
Nl. AT(a,~) 1\ PATH(a,

N2. Clfs,x,y,j)(AT(x,s) 1\ PATH(x,y,j) ~
AT(y, f(j,s))J

N3. ('fs)(AT(b,s) :: PATH(b,c, f(ask-path(b,c) ,s))

AT(b, f(ask-path(b,c) ,s))J

where PATH(a, b, i) means that i is a path from a
to b. The question s)AT(c,s) results in the
solution,

yes, s =: f(f(ask-path(b,c) , f(i,

) ,

f(i,sd)

Axiom N3 illustrates an important aspect of
this formalism for problem solving: If a condition
(such as the robot' s) is made state dependent,
then we must specify how this condition changes
when the state is changed. Thus in axiom N3 we
must indicate that the robot' s location is not

changed by asking for a path. In a pure theorem-
proving formalism, this means that if we want to
know any condition in a given state, we must prove
what that condition is. If a large number of
state-dependent conditions need to be known at each
state in a solution, then the theorem prover must
prove what each condition is at each state in a
conjectured solution. In such a case the theorem
prover will take a long time to find the solution.
McCarthy5 refers to this problem as the frame
problem , where the word "frame " refers to the
frame of reference or the set of relevant con-
di tions. Discussion of a method for easing this
problem is presented in Sec. V.

Assignment Operations

An assignment operation is one that assigns
a value to a variable. An example of an assign-
ment is the statement a h(a), meaning that the
value of a is to be changed to the value of the
function h(a). In our representation, we shall
use an assignment function--i. e., assign(a, h (a)) .
Using Formulation II this function is described
by the axiom

(Va'80 , s)(VALUE(a, ,s) ::
VALUE(a h(a) , f(assign(a, h(a)) ,s))J

where the predicate VALUE (a,ao ,s) means
that varia-

ble a has value a in state s.

III. An Example:
The Monkey and The Bananas

To illustrate the methods described earlier,
we present an axiomatization of McCarthy s 'Monkey
and Bananas " problem.

The monkey is faced with the problem of get-
ting a bunch of bananas hanging from the ceiling
just beyond his reach. To solve the problem, the
monkey must push a box to an empty place under
the bananas, cl imb on top of the box, and then
reach them.

The constants are mOnkey, box, bananas, and
under-bananas. The functions are reach, climb, and
move, meaning the following:

reach (m,z, s) The state resulting from the
action of m reaching z, start-
ing from state s

climb(m, b,s) The state resulting from the
action of m climbing b, start-
ing from state s

move(m, u,s) The state resulting from the
action of m moving b to place
u, starting from state s.

The predicates are:

MOVABLE (b) b is movable

AT(m,u,s) m is at place u in state s

ON(m, b,s) m is on b in state s

HAS (m , z , m has z in state s

CLIMBABLE (m, b, s) m can climb b in state s

REACHABLE (m, b, s) m can reach b in state s.

The axioms * are:

MBI. MOVABLE (box)

MB2. AT(box,place

MB3. (V x) ~ AT (x, under- bananas, s

ff4. (Vb s)LLAT(b s) 1\ MOVABLE(b)

(Vx) ~AT(x
2 ,

s)) ::

LAT(b move(monkey, s))

AT (monkey, P ' move (monkey, b , P2' s)) J

MB5. (V s) CLIMBABLE (monkey, box, s)

MB6. (Vm,p, b,s)((AT(b,p,s) 1\ CLIMBABLE(m, b,s)J::

(AT(b,p,climb(m, b,s))

ON (m, b, cl imb (m, b, s)) J J

MB7. ('1 s) ((AT (box, under-bananas, s)

ON (monkey, box, s) J ::

REACHALE (monkey, bananas, s) J

The astute reader will notice that the axioms
leave much to be desired. In keeping with the
toy problem" tradition we present an unrealis-
tic axiomatization of this unrealistic problem.
The problem s value lies in the fact that it is
a reasonably interesting problem that may be
f ami liar to the reader.

MB8. (V m, z , s) (REACHABLE (m , z , s)

HAS(m,z,reach(m,z,s))J.

The question is "Does there exist a state s
(sequence of actions) in which the monkey has the
bananas? "

QUESTION: a s) HAS (monkey, bananas, s) .

The answer is yes,

=: reach (monkey, bananas, cl imb (monkey,

box , move (monkey, box, under-bananas, 9:))) .

By executing this function, the monkey gets
the bananas. The monkey must, of course, execute
the functions in the usual order, starting with
the innermost and working outward. Thus he first
moves the box under the bananas, then cl imbs on
the box, and then reaches the bananas.

The printout of the proof is given in the
appendix.

IV. Formalizations for
the Tower of Hanoi Puzzle

The first applications of our question-
answering programs were to "question-answering
examples. Commonly used question-answering exam-
ples have short proofs, and usually there are a
few obvious formulations for a given subject
area. (The major difficulty in question-answering
problems usually is searching a large data base,
rather than finding a long and difficult proof.
Typically any reasonable formulation works well.
As one goes on to problems like the Tower of Hanoi
puzzle, more effort is required to find a repre-
sentation that is suitable for efficient problem
solving .

This puzzle has proved to be an interesting
study of representation. Several people using

QA3 have set up axiom systems for the puzzle.
Apparently, a "good " axiomatization--one leading
to quick solutions--is not entirely obvious,
since many axiomatizations did not result in
solutions. In this section we will present and
compare several alternate representations, includ-
ing ones that lead to a solution.

There are three pegs --pegl' peg2' and pegs'
There are a number of discs each of whose diameter
is different from that of all the other discs.
Ini tially all discs are stacked on pegl' in order
of descending size. The three-disc version is
illustrated below.

PEG PEG PEG

'SCI
DISC 2

DISC 3

TA-7""-

The object of the puzzle is to find a sequence of
moves that will transfer all the discs from pegl
to peg3. The allowed moves consist of taking the
top disc from any peg and placing it on another
peg, but a disc can never be placed on top of a
smaller disc.

In order to correctly specify the problem,
any formalization must: (1) specify the positions

' the discs for each state; (2) specify how ac-
tions change the position of the discs; and (3)
specify the rules of the game, i. e., what is legal.

Let the predicate ON specify disc positions.
In the simplest representation the predicate ON
specifies the position of one disc--e.g.,
ON (discl ,peg ' s) says that in stat: s discl is
on pegl' This representation requlres one predl-
cate to specify the position of each disc. The
relative position of each disc either must be
specified by another statement, or else if two
discs are on the same peg it must be implicitly
understood that they are in the proper order.
Perhaps the simplest extension is to allow the
predicate another argument that specifies the
posi tion of the disc--i. e.,
ON(discl ,pegl ,positio ,s). Again, this requires
many statements to specify a complete configura-
tion.

Since various moves are constructing stacks
of discs, and since stacks can be represented
as lists, consider as an alternative representa-
tion a list to represent a stack of discs. Let
the fun (x,y) represent the list that has
x as its first element (representing the top disc
in the stack) and y as the rest of the list
(representing the rest of the discs in the stack) .
This function corresponds to the "cons " function
in LISP. Let nil be the empty list. The state-
ment ON((disc (disc nil)),pegl 's) asserts that

the stack having top disc, disCl' and second disc,
dis , is on pegl' This representation illustrates
a useful technique in logic--namely, the use of
functions as the construction (and selection)
operators. This notion is consistent with the
use of action functions as constructors of
sequences.

Next, consider how to express possible
changes in states. Perhaps the simplest idea is
to say that a given state implies that certain
moves are legal. One must then have other state-
ments indicating the result of each move. This
method is a bit lengthy. It is easier to express
in one statement the fact that given some state,
a new state is the result of a move. Thus one
such move to a new state is described by ('1 s) (ON
O(disc ,nil),pegl's) 1\ ON(nil,pe ,s) 1\ ON((disC
(disc nil)) ,peg3 ,s)

::

ON(nil,pegl ,move(disc
pegl ,peg2 ,s)) 1\ ON((disCl ,nil) ,peg2 ,move(disc
pegl ,pe ,s)) 1\ ON ((disc2 , (disc3 ,nil)) ,peg3 '
move(discl ,pegl ,pe s)) J .

Wi th this method it is possible to enumerate
all possible moves and configuration combinations.
However , it is still easier to use variables to
represent whole classes of states and moves. Thus

Cifs,x,y,z,p. ,p"

p ,

d)(ON((d,x) ,Pi's) 1\ ON(y,P

1\ ON(z,Pk'S) :: ON(x,Pi,move(d,Pi,P j's)) 1\ ON(i

(d,y) ,p, ,move(d,p. ,p, ,s)) 1\ ON(z,Pk, move(d,Pi,P

s)) J specifies a whole class of moves. The problem
here is that additional restrictions must be added
so that illegal states cannot be part of a solution.
In the previous formalism, one could let the axioms
enumerate just the legal moves and states, thus
preventing incorrect solutions.

The first method for adding restrictions is
to have a predicate that restricts moves to just
the legitimate states. Since the starting state
is legal, one might think that only legal states
can be reached. However, the resolution process
(set-of-support strategy) typically works back-

ward from the goal state toward states that can
reach the goal state--such states are sometimes
called "forcing states. Thus illegal but forcing
states can be reached by working backward from
the goal state. This does not allow for incorrect
solutions, since the only forcing states that can
appear in the solution must be those reached from
the starting state (which is a legal state). The
restriction of moving only to new legal states
thus prevents an error. the search is un-

necessarily large, since the theorem prover is
considering illegal states that cannot lead to a
solution. So a better solution is to eliminate
these illegal forcing states by allowing moves
only from legal states legal states. This
perhaps the best specification, in a sense. Such
an axiom is (\s,x,y,z'Pi'Pj'Pk, d)(ON((d,x) 'Pi'

s) 1\ ON(y,p. s) 1\ ON(z,Pk's) 1\ LEGAL((d, x))

LEGAL((d,y)) 1\ DISTINCT(P) :: ON(X,P

move(d,P 's)) 1\ ON((d,y) ,Pj,move(d,P i,Pj's))
1\ ON(z,p move(d,p. ,P. ,s))J. . The pre icate
LEGAL (x) is true if artd only lf the dlSCS are
listed in order of increasing size. (One can
cheat " and have a simpler axiom by omitting the
predicate that requires that the state resulting
from a move have a legal stack of discs. Since
the set-of-support strategy forces the theorem
prover to work backward starting from a legal
final state , it will only consider legal states.
However, one is then using an axiomatization that,
by itself, is incorrect. The additional LEGAL
predicate is a typical example of how additional
information in the axioms results in a quicker
solution. The predicate DISTINCT(P i 'P j ,P
means no two pegs are equal.

The clauses generated during the search t
are concerned with illegal states are subsumed
by ~LEGAL predicates such as (V s)~LEGAL((disC2 '
(discl ,x))). The stacks are formed by placing
one new disc on top of a legal stack. If the new

top disc is smaller than the old top disc then it
is of course smaller than all the others on the
stack. Thus the legal stack axioms need only to
specify that the top disc is smaller than the
second disc for a stack to be legal. This blocks
the construction of incorrect stacks.

One complete axiomatization is as follows:

AXl. ('fx

p., p. ,

) LON(t(d(m) , x) ,

p. ,

s)

ON (Y , P j , s) 1\ ON (z , P k ' s) A

DISTINCT(p. , P. , 1\ LEGAL(t(d(m) , x)) A

LEGAL(t(d(n) ,y))

ON(x, move(d(m) , po , P., s))

ON(t(d(m) ,y) ,

p, ,

move(d(m) , Po ,

p. ,

s))

ON(z , move(d(m) , Po ,

p, ,

s)) J

A.X 2 . Cfm x)LLEGAL(t(d(m) , t(d(n) , x)))
LESS(m n)) 1\ (Vn)LEGAL(t(d(n) , nil))

LEGAL (nil)

Instead of naming each disc, the disc number
n is an argument of the function d (n) that repre-
sents the n disc. This representation illus-
trates how the proof procedure can be shortened
by solving frequent decidable subproblems with
special available tools--namely, the LISP pro-
graming language. The theorem prover uses LISP
(the " lessp " function) to evaluate the LESS(n,m)
predicate--a very quick step. This mechanism has
the effect of generating, wherever needed, such
axioms as LESS(3, 2) or LESS(2, 3) to resolve
against or subsume literals in generated clauses.
Similarly, LISP evaluates the DISTINCT predicate.

Note that the move axiom, AXl, breaks up into
three clauses, each clause specifying the change
in the task for one particular peg. The process
of making one move requires nine binary resolutions,
and two binary factorings of clauses.

Still other solutions are possible by using
special term-matching capabilities in QA3 that
extend the unification and subsumption algorithms
to include list terms, set terms, and certain
types of symetries.

In another axiomatization, the complete con-
figuration of the puzzle in a given state is
specified by the predicate ON. ON(x,y,z,s) means
that in state s, stack x is on peg ' stack y is
on pe , and stack z is on peg3' Thus if the
predicate ON(i(d ,nil))) ,nil, i(d

3 ,nil) ,s
holds, the stack d

l -
is on pegl and d is on

peg The predicate LEGAL again indicates that
a given stack of discs is allowed.

Two kinds of axioms are required--move axioms
and legal stack axioms. One legal stack axiom is
LEGAL(i(d ,nil))). One move axiom is
(Vd,x,y,z,s)(ON(i(d,x),y,z,s) 1\ LEGAL(i(d,x))

LEGAL(i(d,y)) ~ ON(x, i(d,y),z,move(d,Pl,P2,s))J.
This axiom states that disc d can be moved from
pegl to pe if the initial stack on pegl is
legal and the resultant stack on peg2 is legal.

In this last-mentioned formalization, using
13 axioms to specify the problem, QA3 easily solved
this problem for the three-disc puzzle. During
the search for a proof, 98 clauses were generated
but only 25 of the clauses were accepted. Of the

25, 12 were not in the proof. The solution
entails seven moves, thus passing through eight
states (counting the initial and final states).
The 12 clauses not in the proof correspond to
searching through 5 states that are not used in
the solution. Thus the solution is found rather
easily. Of course, if a sufficiently poor
axiomatization is chosen--one requiring an enumera-
tion of enough correct and incorrect disc posi tions--
the system becomes saturated and fails to obtain a
solution wi thin time and space constraints.
important factor in the proof search is the
elimination of extra clauses corresponding to
al ternate paths that reach a given state. In
the above problem it happens that the subsumption
heuristicS eliminates 73 of these redundant
clauses. However, this particular use of sub-
sumption is problem dependent, thus one must
examine any given problem formulation to deter-
mine whether or not subsumption will eliminate
alternate paths to equivalent states.

The four-disc version of the puzzle can be
much more difficult than the three-disc puzzle
in terms of search. At about this level of
difficul ty one must be somewhat more careful to
obtain a low-cost solution.

Ernst9 formalizes the notion of "diff"erence
used by GPS and shows what properties these differ-
ences must possess for GPS to succeed on a problem.
He then presents a "good " set of differences for
the Tower of Hanoi problem. utilizing this infor-
mation, GPS solves the problem for four discs,
considering no incorrect states in its search.
Thus Ernst has chosen a set of differences that
guide GPS directly to the solution.

Another method of solution is possible.
First, solve the three-disc puzzle. Save the
solution to the three-disc puzzle (using the
answer statement

).

Then ask for a solution to
the four-disc puzzle. . The solution then is:
Move the top three discs from pegl to pe ; move

disc4 from pegl to peg3 ; move the three discs on
to peg3' This method produces a much easier

solution. But this can be considered as cheating,
since the machine is "guided " to a solution by
being told which subproblem to first solve and
store away. The use of the differences by GPS
similarly lets the problem solver be "guided
toward a solution.

There is another possibly more desirable
solution. The four-disc puzzle can be posed as
the problem, with no three-disc solution. If the
solution of the three-disc puzzle occurs during
the search for a solution to the four-disc puzzle,
and if it is automatically recognized and saved
as a lemma, then the four-disc solution should
follow easily.

Finally, if an induction axiom is provided,
the axioms imply a solution in the form of a
recursi ve program that solves the puzzle for an
arbi trary number of discs. Aiko Hormann

lO dis-
cusses the related solutions of the four-disc
problem by the program GAKU (not an automatic

theorem-proving program). The solutions by lemma
finding, induction, and search guided by differences
ha ve not been run on QA3.

V. Applications to the Robot Project

Introduction to Robot Problem Solving

In this section we discuss how theorem-proving
methods are being tested for several applications
in the Stanford Research Institute Artificial
Intelligence Group s Automaton (robot). We empha-
size that this section d scribes work that is now
in progress, rather than work that is completed.
These methods represent explorations in problem
solving, rather than final decisions about how
the robot is to do problem solving. An overview
of the current status of the entire SRI robot
project is provided by Nilsson . Coles

ll has de-

veloped an English-to-logic translator that is
part of the robot.

We use theorem-proving methods for three
purposes, the simplest being the use of QA3 as
a central information storage and retrieval system
that is accessible to various parts of the system
as well as the human users The data base of QA3
is thus one of the robot s models of its world,
including itself.

A second use is as an experimental tool to
test out a particular problem formulation. When a
sui table formulation is found, it may then be
desirable to write a faster or more efficient
specific program that implements this formulation,
perhaps involving little or no search. If the
special program is not as general as the axiom
system is, so that the special program fails in
certain cases, the axioms can be retained to be
used in the troublesome cases. Both solutions can
be made available by storing, as the first axiom
to be tried, a special axiom that describes the
special solution. The predicate-evaluation mech-
anism can then call LISP to run the special
solution. If it fails, the other axioms will then
be used.

The third use is as a real-time problem solver.
In the implementation we are now using, statements
of logic--clauses--are the basic units of informa-
tion. Statements are derived from several sources:
teletype entries, axioms stored in memory, clauses
or statements generated by the theorem prover,
and statements evaluated by programs--subroutines
in LISP, FORTRA, or machine language. These
programs can use robot sensors and sensory data
to verify, disprove, or generate statements of
logic.

The SRI robot is a cart on wheels, having a TV
camera and a range-finder mounted on the cart.
There are bumpers on the cart, but no arms or grasp-
ing agents, so the only way the robot can manipulate
its environment is by simple pushing actions.
Given this rather severe restriction of no grasping,
the robot must be clever to effectively solve prob-
lems involving modifying its world. We present
below some axioms for robot problem solving.

The first axiom describes the move routines
of the robot:

R1. (ls,Pl ,P2 ,pat)(AT(robot'P
l ,s)

PATH(Pl ,P2 ,path ,s) ::
AT (robot, P2 ,move (robot, path12 ,s)) J .

This axiom says that if the robot is at Pl and
there is a path to P2' the robot will be at
after moving along the path. The predicate PATH
indicates there exists a robot-path, path12'
from place Pl to place P2 ' A robot-path is a
path adequate for the robot' s movement. The
terms Pl and P2 describe the position of therobot.

In general, it may be very inefficient to
use the theorem prover to find the path12 such
that PATH (Pl ,P2 ' path) is true. Several exist-
ing FORTRA subroutines, having sophisticated
problem-solving capabilities of their own, may
be used to determine a good path through obstacles
on level ground. We will show later a case where
the theorem prover may be used to find a more
obscure kind of path. For the less obscure paths,
the axiom Rl. is merely a description of the
semantics of these FORTRA programs, so that new
and meaningful programs can be generated by QA3
by using the efficient path-generating programs
as subprograms. The "predicate-evaluation
mechanism is used to call the FORTRA path-
finding routines. The effect of this evaluation
mechanism is the same as if the family of axioms

of the form PATH(p ,P2 ,path) for all Pl and

P. such that path exists, were all stored in
memory and available to the theorem prover.

The second axiom is a push axiom that de-
scribes the effect of pushing an object. The
robot has no arm or graspers, just a bumper. Its
world consists of large objects such as boxes,
wedges, cubes, etc. These obj ects are roughly
the same size as the robot itself.

The basic predicate that specifies the
position of an object is ATO, meaning at-object.
The predicate

ATO (object
l ,

descriptionl ,posi tionl ' S

indicates that obj ect ' having structural descrip-
tion IIdescriPtio , is in position "posi tio
in state "

'"

At the time of this writing, a
particular set of "standard " structure descrip-
tions has not yet been selected. So far several
have been used. The simplest description is a
point whose position is at the estimated center
of gravity of the object. This description is
used for the FORTRAN "push in a straight line
routine. Since all the objects in the robot'
world are polyhedrons, reasonably simple complete
structural descriptions are possible. For example,
one structural description consists of the set of
polygons that form the surface of the polyhedron.
In turn, the structure of the polygons is given by
the set of vert ices in its boundary. Connecti vi ty
of structures can be stated explicitly or else

implied by common boundaries. The position of an
object is given by a mapping of the topologically-
descri bed structure into the robot' s coordinate
system. Such structural descriptions may be given
as axioms or supplied by the scene-analysis pro-
grams used by the robot.

A basic axiom describing the robot' s manipu-
lation of an object is

R2.

(V S , objl , descl , pos l ,pos2) LATO(objl , desc l , posl , s) !\

MOVABLE(objl) !\ ROTATE-TRANSLATE-ABLE(desc

POS l ,pos 1\ OBJECT-PATH (desc l , poSl , POS2 ,

pa th12 , s) :: ATO(objl , descl , pos2 ,push(objl ,
pa th , s)) J

This axiom says that if obj ect 1 , described
by description 1 , is at position 1 , and object 1
is movable , and object 1 can be theor tically
rotated and translated to the new position 2 , and
there is an object-path from 1 to 2 , then object 1
will be at position 2 as a result of pushing it
along the path. The predicate ROTATE-TRANSLATE-
ABLE (descl ,POSl ,pos) checks the
necessary condition that the object can be theo-
retically rotated and translated into the new
posi tion. The predicate
OBJECT-PATH (descl , POSl ,pos2 ,pa th) means that
pos2 is the estimated new position resulting from
pushing along push-path, path12'

Let us now return to the frame problem. More
specifically, in a state resulting from pushing an
object , how can we indicate the location of objects
which were not pushed? One such axiom is

R3. (V objl , obj2' desc l , posl ,pa th s) (ATO(objl ,

descl ,posl , s) 1\ SAME(objl , obj

) ::

ATO(objl , descl ,posl , push(obj2 , pa th s)) J

This axiom says that all objects that are not the
same as the pushed object are unmoved. The predi-
cate evaluation mechanism is used to evaluate SAME
and speed up the proof. One can use this predi-
cate evaluation mechanism, and perhaps other fast
methods for handling classes of deductions (such
as special representations of state-dependent
information and special programs for updating this
informa tion--which is done in the robot), but
another problem remains. Observe that axiom
assumes that only the objects directly pushed by
the robot move. This is not always the case
since an object being pushed might accidentally
strike another object and move it. This leads
to the question of dealing with the real world
and using axioms to approximate the real world.

Real-World Problem Solving: Feedback

Our descriptions of the real world, axio-
matic or otherwise, are at best only approxima-
tions. For example, the new position of an
object moved by the robot will not necessarily be

accurately predicted , even if one goes to great
extremes to calculate a predicted new position.
The robot does not have a grasp on the object so
that some slippage may occur. The floor surface
is not uniform and smooth. The weight distribu-
tion of objects is not known. There is only rudi-
mentary kinesthetic sensing feedback--namely,
whether or not the bumper is still in contact with
the object. Thus it appears that a large feedback
loop iterating toward a solution , is necessary:
Form a plan for pushing the object (possibly using
the push axiom), push according to the plan , back
up, take a look, see where the object is , compare
the position to the desired position, start over
again. The new position (to some level of ac-
curacy) is provided by the sensors of the robot.
This new position is compared to the position
predicted by the axiom. I f the move is not suc-
cessful , the predicate (provided by sensors in the
new state) that reasonably accurately gives the
object' s position in the new state must be used as
the description of the initial state for the next

. attempt.

This feedback method can be extended

sequences of actions. Consider the problem:
Find sf such that P3) is true. Suppose the
starting state is sO, with property P
Suppose the axioms are as follows:

('fs) LP (s) :: P (f (s))

(V s) (p 1 (s) :: P
2 (f 2

(s))

(Vs)(P (s) :: P (s))J .

The sequence of actions f3 (f2(f 1 (s
))) trans-

forms state So with property P (s) into state s
having property P

The solution is thus s =: f

)))'

Corresponding to each " theoretical " predicate
i (s) is a corresponding "real-word " predicate

Pi (s). The truth value of pi (s) is determined by
sensors and the robot' s internal model of the
world. It has built-in bounds on how close its
measurements must be to the correct values in
order to assert that it is true. The proof
implies the following description of the result
after each step of execution of f

))):

At this time, a many-valued logic having
degrees of truth is not used , although this
is an interesting possibility.

Ac tions and Predicted Predicted
Successive Theoretical Real-World

States Resul t s Results

o (s o (s

TOP-EDGE

l = f l (s I (s I (s

2 (s
P 2 (s

-= f
3 (s

P 3 (s

BOTTOM- EDGE
To measure progress after, say, the ith step, one
checks that Pi (s) is true. If not, then some
other condi tion) holds and a new problem is
generated, given pi (S) as the starting point.
new information is present, such as is the case
vihen the robot hits an obstacle that is not in its
model, the model is updated before a new solution
is attempted. The position of this new object of
course invalidates the previous plan--i. e., had
the new obj ect ' s position been known, the previous
plan would not have been generated.

The new solution may still be able to use
that part of the old solution that is not invali-
dated by any new information. For example, if
pi (s) holds, it may still be possible to reach
the j intermediate state and then continue the
planned sequence of actions from the j state.
However, the object-pushing axiom is an example
of an axiom that probably will incorrectly pre-
dict results and yet no further information,
except for the new position, will be available.
For this case, the best approach is probably to
iterate toward the target state by repeated use
of the push axiom to generate a new plan. Hope-
fully, the process converges.

For a given axiomatization feedback does not
necessarily make it any easier to find a proof.
However, knowing that the system uses feedback
allows us to choose a simpler and less accurate
axiom system. Simple axiom systems can then
lead to shorter proofs.

One can envision formalizing this entire
problem-solving process, including the notion of
feedback, verifying whether or not a given con-
di tion is met, updating the model, recursively
calling the theorem prover, etc. The author has
not attempted such a formalization, although he
has wri tten a first-order formalization of the
theorem prover s own problem-solving strategy.
This raises the very interesting possibility of
self-modification of strategy; however, in prac-
tice such problems lie well beyond the current
theorem-proving capacity of the program.

A Simple Robot Problem

Now let us consider a problem requiring the
use of a ramp to roll onto a platform, as illus-
trated below.

TA-7494-

The goal is to push the box bl from position
to . To get onto the platform, the robot

must push the ramp rl to the platform, and then
roll up the ramp onto the platform.

A simple problem formulation can use a
special ramp-using axiom such as

R4. (V x
l ' X2 ,s, top-

edge, bottom-edge, ramPl)

(AT-RA (ramPl ' top-edge, X2 , bottom-edge,

l'S)
1\ AT-PLATFORM (side-edge,X2 ,s)

AT (robot 'X2 ,climb (ramPl ,xl's)) J

wi th the obvious meaning. Such a solution is
quick but leaves much to be desired in terms of
generality.

A more general problem statement is one in
which the robot has a description of its own
capabilities, and a translation of this statement
of its abilities into the basic terms that de-
scribe its sensory and human-given model of the
world. It then learns from a fundamental level
to deal with the world. Such a knowledge doesn
make for the quickest solution to a frequently-
encountered problem, but certainly does lend
itself to learning, greater degrees of problem-
solving, and self-reliance in a new problem
situation.

Closer to this extreme of greatest generality
is the following axiomatization.

R5. (Ifx ,r) (RECTANGLE (r, l 'X2)

LESSP(maxslope(r), 1\ LESSP(r
o ,width(r))

CLEAR(space(r,1t) ,s) 1\ SOLIDer) ::

PATH (Xl ,x2 ,r) J .

This axiom says that r describes a rectangle hav-
ing ends xl and x The maximum slope is less
than a constant , the width of r is greater than
the robot I s width w ' the space above r to the
robot' s height is clear, and the rectangle r
has a solid surface.

Two paths can be joined as follows:

R6. (ix ''S,x 3,rl,r)(PATH(x ,x" r)

PATH('S ,x
3 ,r

) ::

PATH (xl ,x3 ,join(rl ,r)) J.

From these two axioms (R5 and R6), the push
axiom (R2), and a recognition of a solid object
that can be used as a ramp, a solution can be
obtained in terms of climb, push, join, etc. This
more general method o ion w uld of course be
slower than using the special ramp axiom. On the
other hand, the more general method will probably
be more useful if the robot will be required to
construct a ramp, or recognize and push over a
potential ramp that is standing on its wide end.

The danger in trying the more general methods
is thnt one may be asking the theorem prover to re-
eri ve some significant portion of math or physics,
ln order to solve some simple problem.

VI. Automatic Programming

Introduction

The automatic writing, checking, and debug-
ging of computer programs are problems of great
interest both for their independent importance and
as useful tools for intelligent machines. This
section shows how a theorem prover can be used to
solve certain automatic programming problems. The
formalization given here will be used to precisely
state and solve the problem of automatic generation
of programs, including recursive programs, along
wi th concurrent generation of proofs of the correct-
ness of these programs. Thus any programs auto-
matically written by this method have no errors.

We shall take LISp 13 as our example of a

programming language. In the LISP language, a
function is described by two entities: (1) its
value, and (2) its side effect. Side effects can
be described in terms of their effect upon the
state of the program. Methods for describing
state-transformation operations, as well as meth-
ods for the automatic writing of programs in a
state-transformation language, were presented in
Secs. I and II. For simplicity, in this section
we shall discuss "pure " LISP, in which a LI
function corresponds to the standard notion of a
function--i . e., it has a value but no side effect.

Thus we shall use pure LI SP 1. 5 without the
program feature , which is essentially the lambda
calculus. In this restricted system, a LISP pro-
gram is merely a function. For example, the LISP
function applied to a list returns the first
element of the list. Thus if the variable x has
as value the list (a b c), then car (x) =: a. The
LISP function cdr yields the remainder of the list,
thus cdr (x) =: (b c), and car (cdr (x)) = b. There
are several approaches one may take in formaliz-
ing LI SP; the one given here is a simple mapping
from LI SP I S lambda calcul us to the predicate cal-
culus. LISP programs are represented by functions.
The syntax of pure LISP 1. 5, is normal function
composi tion, and the corresponding syntax for the
formalization is also function composition LISP
predicates " are represented in LISP--and n this

formalization--as funct ions having either the
value hi l (false) or else a value not equal to
nit (true). The semantics are given by axioms
relating LISP functions to list structures, e.g.,
(Vx,y)car(cons(x,y)) =: x, where cons(x,y) is the
list whose first element is x and whose remainder
is y.

In our formulation of programming problems,
we emphasize the distinction between the program
(represented as a function in LISP), that solves
a problem and a test for the validity of a solu-
tion to a problem (represented as a predicate in
logic). I t is often much easier to construct the
predicate than it is to construct the function.
Indeed, one may say that a problem is not well
defined until an effective test for its solution
is provided.

For example, suppose we wish to write a pro-
gram that sorts a list. This problem is not
fully specified until the meaning of "sort " is
explained; and the method of explanation we choose
is to provide a predicate R(x,y) that is true if
list y is a sorted version of list x and false
otherwise. (The precise method of defining this
relation R will be given later.

In general, our approach to using a theorem
prover to solve programing problems in LISP re-
quires that we give the theorem prover two sets of
initial axioms:

(1) Axioms defining the functions and con-
structs of the subset of LISP to be used

(2) Axioms defining an input-output relation
such as the relation R(x,y), which is to be true
if and only if x is any input of the appropriate
form for some LI SP program and y is the corre-
sponding output to be produced by such a program.

Given this relation R, and the LISP axioms,
by having the theorem prover prove (or disprove)
the appropr ate question we can formulate the
following four kinds of programming problems:
checking, simulation, verifying (debugging), and
program writing. These problems may be explained
using the sort program as an example as follows:

(I) Checking : The form of the question is
R(a, b) where a and b are two given lists.
proving R(a, b) true or false, b is checked to be
ei ther a sorted version of a 0; not. The desired
answer is accordingly ei the; yes or no.

(2) Simulation The form of the question is
ax) R(a,x), where is a given input list.
the question ax)R(a,x) is answered yes, then a
sorted version of x exists and a sorted version
is constructed by the theorem prover. Thus the
theorem prover acts as a sort program. If the
answer is no, then it has proved that a sorted
version of x does not exist (an impossible answer
if is a proper list) .

(3) Verifying : The form of the question is
C'x)R(x,g(x)), where g(x) is a program written

by the user. This mode is known as verifying,
debugging, proving a program correct , or prov-ing a program incorrect. If the answer to
(Vx)R(x , g(x)) is yes , then g(x) sorts every proper
input list and the program is correct. If the
answer is no, a counterexample list c , that the
program will not sort , must be constructed by the
theorem prover. This mode requires induction
axioms to prove that looping or recursive programs
converge.

(4) Program Writing The form of the question is
(Vx) (y)R(x

, y) .

In this synthesis mode the program
is to be constructed or else proved impossible to
construct. If the answer is yes , then a program
say f(x), must be constructed that will sort all
proper input lists. If the answer is no, an un-
sortable list (impossible , in this case) must be
produced. This mode also requires induction
axioms. The form of the problem statement shown
here is oversimplified for the sake of clarity.
The exact form will be shown later.

In addition to the possibility of "yes " answer
and the " " answer , there is always the possibil-
i ty of a "no proof found " answer if the search is
halted by some time or space bound. The elimina-
tion of disjunctive answers , which is assumed in
this section , was explained in Sec. II.

These methods are summarized in the following
table. The reader may view R(x , y) as representing
some general desired input-output relationship.

Programming Form of Desired
Problem Question Answer

(1) Checking R(a yes or no

(2) Simulation (';x)R(a yes =: b
or no

(3) Verifying ('fx)R(x , g(x)) yes
or no x = c

(4) Program ('x) ('Hy)R(x

, y)

yes f(x)
Wri ting or no X =: C

We now present an axiomatization of LISP fol-
lowed by two axiomatizations of the sort relation
R (one for a special case and one more general).

Axiomatization of a Subset of LISP

All LISP functions and predicates will be
wri tten in small letters. The functions
equal(x

, y), " "

atom(x), " and "null (x) " evaluate to
nil " if false and something not equal to "nil

say " " if true. The predicates of first-order
logic that are used to describe LISP are written
in capital letters. These , of course , have truth
values.

The version of LISP described here does not
distinguish between an S-expression and a copy of
that S-expression. There is some redundancy in
the following formulation, in that certain func-
tions and predicates could have been defined in
terms of others; however, the redundancy allows us
to state the problem more concisely. Also , some
axioms could have been eliminated since they are

deri vable from others , but are included for
clari ty. The variables x, y, and z are bound by
uni versa 1 quantifiers , but the quantifiers are
omi tted for the sake of readability wherever
possible. The formulation is given below:

Predicates Meaning

NULL(x)

LIST(x)

x = nil

x is a list
ATOM(x) x is an atom

=: y

x is equal to y

Functions Meaning

car(x)
cdr(x)

The first element of the list x.

cons(x

, y)

The rest of the list

If y is a list then the value of
cons(x , y) is a new Ii st that has
x as its first element and y as
the rest of the list , e.
cons(1 (2 3)) = (1 2 3). If Y is
an atom instead of a list
cons(x y) has as value a "dotted
pair " e. , cons(1, 2) =: (1.2).

cond(x , y, z) The conditional statement x =

nil then y else z. Note that the
synt f this function is slightly
different than the usual LISP syntax.

The null (empty) list containing no
elements.

nil

equal(x

, y)

Equality test , whose value is "nil
if x does not equal

Atom test , whose value is "nil " if
x is not an atom.

a tom(x)

null(x) Null test , whose va lue is "nil " if
x is not equal to nil.

Axioms

Ll: x = car cons(x

y))

L2: y =: cdr(cons(x

y))

L3: TOM(x):: x =: cons(car(x), cdr(x))

L4: TOM(cons(x

y))

L5: ATOM(nil)

L6: x = nil:: cond(x , y, z) =: Z

L7: x nil:: cond(x z) = y

L8: x =: y = equal(x

, y)

nil

L9: ATOM(x) = atom(x) nil

LlO: NULL(x) = null(x) nil

A Simplified Sort Problem

Before examining a more general sort problem
consider the following very simple special case.

Instead of a list-sorting program, consider a pro-
gram that "sorts " a dotted pair of two distinct
numbers; i. e., given an input pair the program
returns as an output pair the same two numbers,
but the first number of the output pair must be
smaller than the second. To specify such a pro-
gram, we must define the simple version of

o (x,y). Let us say that a dotted pair of numbers
is "sorted " if the first number is less than the
second. Thus % (x,y) is true if and only if y
equals x when x is sorted and y is the reverse of
x when x is not sorted. Stated more precisely,
we have

Rl. (\x,y)tIb (x,y)

==

((car(x) cdr(x) :: y =: xJ

1\ (car (x) t cdr (x) :: car (y) =: cdr (x)

cdr (y) = car (x) J J J .

The correspondence of the LI SP " lessp " func-
tion to the "less-than" relation is provided in
the following axiom:

R2. ('fx,y)(lessp(x,y) t- nil == x -: yJ.

Using the predicate fu we will give examples
of four programing problems and their solutions:

(1) Checking:

Q: % (cons(2, 1) ,cons(1, 2))

A: yes

(2) Simulation:

Q: x)% (cons (2, l) ,x)

A: yes, x = cons(I,
(3) Verifying:

Q: (\x)% (x,cond(lessp(car(x) ,cdr(x)) ,x,
cons (cdr (x) ,car (x)))

A: yes

Thus the program supplied by the user is
correct.

(4) Program writing:

Q: ('1x) (3x)Ib (x,y)

A: yes, y = cond(lessp(car(x) ,cdr(x)),
x,cons(cdr(x) ,car(x)))

Translated into a more readable form, the
program is:

car(x) cdr(x) then x else

cons(cdr(x) , car(x)).

Given only the necessary axioms--Ll, L2,
L6, L7, Rl, and R2--QA3 found a proof that con-
structed the sort program shown above. The
paramodulation14 ,15 rule

of inference was used
to handle equality.

We now turn to a more difficult problem.

The Sort Axioms

The definition of the predicate R is in
terms of the predicates ON and SD. The meaning
of these predicates is given below:

R(x,y) A predicate stating that if x is a
list of numbers with no number occur-
ring more than once in the list, then
y is a list containing the same ele-
ments as x, and y is sorted, i.e.,
the numbers are arranged in order of
increasing size.

ON(x,y) A predicate stating that x is an
element on the list y.

SD (x) A predicate stating that the list x
is sorted.

First we define R(x,y), that y is a sorted
version of x, as follows:

S1. (Vx,y)tR(x,y)

==

((\z)(ON(z,x)

==

ON(z,y)J

SD (y) J

Thus a sorted version y of list x contains the
same elements as x and is sorted.

Next we define, recursively, the predicate
ON(x,y) :

S2. ('1x,y)tON(x,y) == L-ATOM(y) 1\ (x =: car(y)
ON(x, cdr(y)) J J J

This axiom states that x is on y if and only
if x is the first element of y or if x is on the
rest of y.

Next we define tqe meaning of a sorted list:
S3. (\x)tSD(x) == (NULL(x) V (~ATOM(x)

NULL (cdr (x)) J V (~ATOM(x) 1\ ~NULL(cdr (x))

car (x) car(cdr(x)) 1\ SD(cdr(x))JJJ.

This axiom states that x is sorted if and only if
x is empty, or x contains only one element, or
the first element of x is less than the second
element and the rest of x is sorted.

To simplify the problem statement we assume
that the arguments of the predicates and functions
range only over the proper type of objects--i.e.,
either numbers or lists. In effect, we are assum-
ing that the input list will indeed be a properly
formed list of numbers. (The problem statement
could be modified to specify correct types by
using predicates such as NUBERP(x) --true only if
x is, say, a real number).

The problem is made simpler by using a "merge
function. This function, and a predicate P de-
scribing the merge function are named and described
as follows:

sort (x) A LISP sort function (to be con-
structed) giving as its val ue a
sorted version of x.

merge (x, u) A LISP merge function merging x
into the sorted list u, such that
the list returned contains the
elements of u, and also contains
x, and this list is sorted.

P(x, u,y) A predicate stating that y is the
resul t of merging x into the sorted
list u.

We define P (x, u,y), that y is u with x merged
into it:

84. (lx, u,y)tP(x, u,y) == (SD(u) :: (SD(y)
(lz) (ON(z,y) == (ON(z,u) V z

=:

x))JJJ.

Thus P(x,u,y) holds if and only if the fact that u
is sorted implies that y contains x in addition to
the elements of u, and y is sorted. One such merge
function is merge(x,u) = cond(null(u) , cons(x, u),
cond (lessp (x, car (u)) , cons (x, u) ,cons (car (u) ,merge (x,
cdr (u))))) .

The axiom required to describe the merge func-
tion is:

(I x, u) P(x, u,merge (x, u)) .

This completes a description of the predicates
ON, SD, R, and P. Together, these specify the
input-output relation for a sort function and a
merge function. Before posing the problems to the
theorem prover, we need to introduce axioms that
describe the convergence of recursive functions.

Induction Axioms

In order to prove that a recursive function
converges to the proper value, the theorem prover
requires an induction axiom. An example of an
induction principle is that if one keeps taking
cdr " of a finite list, one will reach the end of

the list in a f ini te number of steps. This
analogous to an induction principle on the non-
negative integers, i. e., let " " be a predicate,

and " " a function. Then for finite lists,

(P(h(nil)) 1\ (If x) L",ATOM(x) 1\ P(h(cclr(x))) ::

P(h(x)) J J :: (Vz)P(h(z))

is analogous to

LP(h(O)) 1\ (Vn)(n , 0 1\ P(h(n-l)) ::
P (h (n))J J :: (V m) P (h (m))

for nonnegative integers.

There are other kinds of induction criteria
besides the one given above. Unfortunately, for
each recursive function that is to be shown to
converge, the appropriate induction axiom must be
carefully formulated by the user. The induction
axiom also serves the purpose of introducing the

of the function to be written. We will now
give the problem statement for the sort program,
introducing appropriate induction information
where necessary.

The Sort Problem

Examples illustrating the four kinds of prob-
lems are shown below.

(1) Checking:

Q: R (cons (2 , cons (l , ni I)) , cons (l , cons (2, nil))

A: yes

(2) Simulation:

Q: (Sx)R(cons(2,cons(l, nil)) ,x)

A: yes, x=: cons(l,cons(2,nil))

(3) Verifying: Now consider the verifying or de-
bugging problem. Suppose we are given a proposed
defini tion of a sort function and we want to know
if it is correct. Suppose the proposed definition

S6. (lx)(sort(x)

==

cond(null(x) ,nil ,merge (car (x) ,

sort (cdr (x)))) J.

Thus sort is defined in terms of car, cdr, cond,
null, merge, and sort. Each of these functions
except sort is already described by previously
gi ven axioms. We also need the appropriate induc-
tion axiom in terms of sort. Of course, the par-
ticular induction axiom needed depends on the
definition of the particular sort function given.
For this sort function the particular induction
axiom needed is

S7. (R(nil,sort(nil)) 1\ (Vx)("'ATOM(x)
R(cdr(x) , sort(cdr(x))) :: R(x, sort(x))JJ

(Vy)R(y,sort(y)) .

The following conjecture can then be posed to the
theorem prover:

Q : (I x) R (x , sort (x))

A: yes

(4) Program wri ting: The next problem is that of
synthesizing or writing a sort function. We assume,
of course, that no definition such as S6 is pro-
vided. Certain information needed for this par-
ticular problem might be considered to be a part of
this particular problem statement rather than a
part of the data base. We shall phrase the question
so that in addition to its primary purpose of ask-
ing for a solution, the question provides three more
pieces of information: (a) The question assigns a
name to the function that is to be constructed.
recursi ve function is defined in terms of itself,
so to construct this definition the name of the
function must be known (or else created internally).
(b) The question specifies the number of arguments

of the function that is to be considered.

(c) The question (rather than an induction axiom)
gives the particular inductive hypothesis to be
used in constructing the function.

In this form, the question and answer are

Q: (Vx) (3:y)tR(nil,y) 1\ L(~ATOM(x)

R (cdr (x) ,sort (cdr (x))) J :: R (x, y) JJ

A: yes, y = cond(equal(x,nil) , nil,merge
(car(x) ,sort(cdr(x)))).

Thus the question names the function to be "sort
and specifies that it is a function of one argu-
ment. The question gives the inductive hypothesis--
that the function sorts cdr (x) --and then asks for
a function that sorts x. When the answer y is
found, y is labeled to be the function sort (x) .

Using this formulation QA3 was unable to write
the sort program in a reasonable amount of time,
al though the author did find a correct proof wi thin
the resolution formalism The creation of the
merge function can also be posed to the theorem
prover by the same methods.

Discussion of Automatic Programming Problems

The axioms and conjectures given here illus-
trate the fundamental ideas of automatic program-
ming. However, this work as well as earlier work
by Simon;6 Slagle; 7 Floyd;8 Manna;9 and others pro-
vides merely a small part of what needs to be done.
Below we present discussion of issues that might
profi t from fruther investigation.

Loops . One obvious extension of this method
is to create programs that have loops rather than
recursion. A simple technique exists for carrying
out this operation. First, one writes just recurs-
i ve functions. Many recursive functions can then
be converted into iteration--i. e., faster-running
loops that do not use a stack. McCarthy20 gives

cri teria that determine how to convert recursion to
iteration. An algorithm for determining cases in
which recursion can be converted to iteration, and
then performing the conversion process is embedded
in modern LISP compilers. This algorithm could be
appl ied to recursive functions written by the
theorem-proving program.

Separation of Aspects of Problem Solving Let
us divide information into three types: (1) Infor-
mation concerning the problem description and
semantics. An example of such information is given
in the axiom AT(a,), or axiom Sl that defines a
sorted list. (2) Information concerning the target
programing language, such as the axiom Lx

=:

nil ::
cond (x,y ,z) =: zJ. (3) Information concerning the
interrelation of the problem and the target lan-
guage, such as (LESS(x,y) lessp(x,y) nilJ.

After this paper was written the problem was re-
formulated using a different set of axioms

 .

the new formulation QA3 created the sort program
sort (x) =: cond (x ,merge (car (x) ,sort (cdr (x))) , nil) .

These kinds of information are not, of course,
mutually exclusive.

In the axiom systems presented, no distinction
is made between such classes of information. Con-
sequently, during the search for a proof the theorem
prover might attempt to use axioms of type I for pur-
poses where it needs information of type 2. Such
attempts lead nowhere and generate useless clauses.
However, as discussed in Sec. II-G, we can place
the proof strategy our knowledge of when such infor-
mation is to be used, thus leading to more efficient
proofs. One such method--calling for the conditional
axioms at the right time, as discussed in Sec. II-G--
has been implemented in QA3.

The PROW program of Waldinger and Lee
6 provides

a very promising method of separating the problem
of proof construction from the problem of program
construction. In their system, the only axioms
used are those that describe the subject--i. e.,
state the problem. Their proof that a solution
exists does not directly construct the program.
Instead, information about the target programming
language, as well as information about the relation-
ship of the target-programming language to the
problem-statement language, is in another part of
the PROW program--the "post-processor. The post-
processor then uses this informat ion to convert
the completed proof into a program. The post-
processor also converts recursion into loops and
allows several target programming languages.

If our goal is to do automatic programming
involving complex programs, we will probably wish
to do some optimization or problem solving on the
target language itself. For this reason we might
want to have axioms that give the semantics of the
target language, and also allow the intercommunica-
tion of information in the problem-statement lan-
guage with information in the target language.
Two possibilities for how to do this efficiently
suggest themselves: () Use the methods presented
here in which all information is in first-order
logic. To gain efficiency, use special problem-
solving strategies that minimize unnecessary inter-
action j (b) Use a higher-order logic system, in
which the program construction is separated from
the proof construction, possibly by being at
another level. The program construction process
might then be described in terms of the first-
order existence proof.

Problem Formulation The axiomatization given
here has considerable room for improvement: Missing
portions of LISP include the program feature and
the use of to bind variables. The functions
to be wri tten must be named by the user, and the
number of arguments must also be specified by the
user.

Heuristics for Program-Writing Problems Two
heuristics have been considered so far. The first
consists of examining the program as it is con-
structed (by looking inside the answer literal)
Even though the syntax is guaranteed correct, the
answer literal may contain various nonsense or
undefined constructions (such as car (nil)). Any

clause containing such constructed answers should
be eliminated. Another heuristic is to actually
run the partial program by a pseudo-LISP inter-
preter on a sample problem. The theorem prover
knows the correct performance on these sample
problems because they have either been solutions
or else counterexamples to program-simulation
questions that were stored in memory, or else they
have been provided by the user. If the pseudo-
LISP interpreter can produce a partial output that
is incorrect, the partial program can be eliminated.
If done properly, such a method might be valuable,
but in our 1 imi ted experience, its usefulness is
not yet clear.

Higher-Level Programming Concepts . A
necessary requirement for practical program wri
ing is the development of higher-level concepts
(such as the LISP "map " function) that describe
the use of frequently employed constructs (func-
tions) or partial constructs.

Induction The various methods of proof by
induction should be studied further and related
to the kinds of problems in which they are useful.
The automatic selection or generation of appro-
priate induction axioms would be most helpful.

Program Segmentation Another interesting
problem is that of automatically generating the
specifications for the subfunctions to be called
before writing these functions. For example,
in our system, the sort problem was divided into
two problems: First, specify and create a merge
function, next specify a sort function and then
construct this function in terms of the merge
function. The segmentation into two problems and
the specification of each problem was provided by
the user.

VI I. Discussion

The theorem prover may be cons idered an
interpreter " for a high-level assertional or

declarative language--logic. As in the case with
most high-level programing languages the user may
be somewhat distant from the efficiency of " logic
programs unless he knows something about the
strategies of the system.

The first applications of QA2 and QA3 were
to "question answering. Typical question-
answering applications are usually easy for a
resolution-type theorem prover. Examples of
such easy problem sets given QA3 include the
questions done by Raphael' s SI

l Slagle

DEDUCO
7 and coo ' s chemistry question-

answering program. Usually there are a few
obvious formulations for some subject area, and
any reasonable formulation works well. As one
goes to harder problems like the Tower of Hanoi
puzzle, and program-writing problems, good and
reasonably well-thought-out representations are
necessary for efficient problem sOlving.

Some representations are better than others
only because of the particular strategy used to
search for a proof. It would be desirable if the
theorem prover could adopt the best strategy for

a given problem and representation, or even chartge
the representation. I don t believe these goals

are impossible, but at present it is not done.
However, a library of strategy programs and a
strategy language is slowly evolving in QA3. To
change strategies in the present version the user
must know about set-of-support and other program
parameters such as level bound

l and term-depth

bound. To radically change the strategy, the user
presently has to know the LISP language and must
be able to modify certain strategy sections of
the program. In practice, several individuals
who have used the system have modified the search
strategies to suit their needs. To add and debug
a new heuristic or to modify a search strategy
where reprograming is required seems to take from
a few minutes to several days, perhaps averaging
one day. Ultimately it is intended that the system
will be able to write simple strategy programs
itself, and "understand " the semantics of its

strategies.

Experience with the robot applications and
the automatic programing applications emphasize
the need for a very versatile logical system. A
sui table higher-order logic system seems to be one
of the best candidates. Several recent papers are
relevant to this topic. A promising higher order
system has been proposed by Robinson

3 Banerji

discusses a higher order language. One crucial
factor in an inference system is a sui table method
for the treatment of the equality relation. Dis-
cussion of methods for the treatment of equality
is provided by Wos and Robinson;4 and Robinson
and WOS

;5
and Kowalski McCarthy and Hayes

include a discussion of modal logics.

The theorem-proving program can be used as an
experimental tool in the testing of problem formu-
lations. In exploring difficult problems it can
be useful to write a computer program to test a
problem formulation and solution technique, since
the machine tends to sparpen one s underst anding

of the problem. I believe that in some problem-
solving applications the "high-level language " of
logic along with a theorem-proving program can be
a quick programing method for testing ideas. One
reason is that a representation in the form of an
axiom system can correspond quite closely to one
conceptualization of a problem. Another reason is
that it is sometimes easier to reformulate an
axiom system rather than to rewrite a problem-
solving program, and this ease of reformulation
facilitates exploration.

Resolution theorem-proving methods are shown
in this paper to have the potential to serve as

a general problem-solving system. A modified theorem-
proving program can write simple robot problems, and
solve simple puzzles. Much work remains to be done
before such a system is capable of solving problems
that are difficult by human standards.

Acknowledgment

I would like to acknowledge valuable dis-
cussions with Dr. Bertram Raphael and Mr. Robert
Yates.

REFERENCES

J. A. Robinson

, "

The Present State of Mechan-
ical Theorem Proving, " a paper presented at
the Fourth Systems Symposium , Cleveland , Ohio
November 19- , 1968 (proceedings to be pub-
lished) .

C. Green and B 0 Raphael

, "

The Use of Theorem-
Proving Techniques in Question-Answering
Systems Proc. 23rd Nat' l. Conf. ACM
(Thompson Book Company, Washington , D. C.,
1968) .

C. Green

, "

Theorem Proving by Resolut on as a
Basis for Question-Answering Systems
Machine Intelligence 4 , D. Michie and B.
Meltzer , Eds. (Edinburgh University Press
Edinburgh , Scotland, 1969).

N. J. Nilsson

, "

A Mobile Automaton: An Appli-
cation of Artificial Intell igence Techniques
a paper presented at the International Joint
Conference on Artificial Intell igence
Washington , D. C., May 7-9 , 1969 (proceedings
to be publ ished) .

J. McCarthy and P. Hayes

, "

Some Philosophical
Problems from the Standpoint of Artificial
Intelligence Machine Intelligence 4 , D.

Michie and B. Mel tzer , Eds. (Edinburgh Uni ver-
si ty Press , Edinburgh , Scotland , 1969).

R. J. Waldinger and R. C. T. Lee

, "

PROW: A
Step Toward Automatic Program Writing, " a
paper presented at the International Joint
Conference on Artificial Intelligence , Wash-
ington , D. C., May 7-9 , 1969 (proceedings to
be published).

L. Wos , G. A. Robinson , and D. F. Carson
Efficiency and Completeness of the Set of
Support Strategy in Theorem Proving, J . AClV
Vol. 12 , No. , pp. 536-541 (October 1965).

8. J. A. Robinson Machine-Oriented Logic
Based on the Resolution Principle J .ACM

Vol. 12 , No. , pp. 23-41 (January 1965).

George Ernst

, "

Sufficient Conditions for the
Success of GPS " Report No. SRC-68-17 , Systems
Research Center , Case Western Reserve Univer-
si ty, Celveland , Ohio (July 1968).

10. A. Hormann

, "

How a Computer System Can Learn
IEEE Spectrum (July 1964).

11. L. S. Coles

, "

Talking With a Robot in English
paper submitted at the International Joint
Conference on Artificial Intell igence , Wash-
ington , D. C., May 7-9 , 1969 (proceedings to be
published) .

John McCarthy, Paul W. Abrahams , Daniel J.
Edwards , Timothy P. Hart , and Michael
Levin LISP 1. 5 Programmer s Manual (The MIT
Press , Cambridge , Mass., 1962).

13. C. Weissman LISP 1. 5 Primer (Dickenson Pub-
lishing Company, Inc., Belmont , Calif., 1967).

14. Lawrence Wos and George RObinson, "Paramodu-
lation and Set of Support, " sunary of paper
presented at the IRIA Symposium on Automatic
Demonstration at Versailles, France, December
16-21, 1968 (proceedings to be published) .

15. G. Robinson and L. Wos, "Paramodulation and
Theorem-Proving in First-Order Theories with
Equality, Machine Intelligence 4 , B. Meltzer
and D. Michie, Eds. (Edinburgh University
Press, Edinburgh, Scotland, 1969).

16. H. Simon

, "

Experiments wi th a Heuristic Com-
piler J .ACM , Vol. 10 , pp. 493-506 (October
1963) .

17. J. R. Slagle

, "

Experiments with a Deductive
Question-Answering Program Comm. ACM
Vol. 8 , pp. 792-798 (December 1965).

18. R. W. Floyd

, "

The Verifying Compiler
omputer Science Research Review , Carnegie

Mellon Universi ty (December 1967).

19. Z. Manna

, "

The Correctness of Programs
J. Computer and Systems Sciences , Vol. 3
(1969) .

20. J. McCarthy, "Towards a Mathematical Science
of Computation Proceedings ICIP (North
Holland Publishing Company, Amsterdam,
1962) .

21. B. Raphael

, "

A Computer Program Which 'Under-
stands

' ,

Proc. FJ , pp. 577 -589 (1964).

22. W. S. Cooper

, "

Fact Retrieval and Deductive
Question Answering Information Retrieval
Systems " J. ACM , Vol. 11 , pp. 117-137 (April1964).

23. J. A. Robinson

, "

Mechanizing Higher Order
Logic " Machine Intelligence 4 , D. Michie and
B. Mel tzer , Eds. (Edinburgh University Press
Edinburgh , Scotland , 1969).

24. R. B. Banerji

, "

A Language for Pattern Recog-
nition Pattern Recognition , Vol. 1 , No.
pp. 63-74 (1968).

25. R. Kowalski, "The Case for Using Equality
Axioms in Automatic Demonstration, " paper
presented at the IRIA Symposium on Automatic
Demonstration at Versai lIes, France, December
16-21, 1968 (proceedings to be published) .

APPENDIX

The axioms for the Monkey and Bananas problem are listed below , followed by the proof. The term
SK24(S , P2 , PI , B) that first appears in clause 16 of the proof is a Skolem function generated by the
elimination of (\f in the conversion of axiom MB4 to quantifier-free clause form. (One may think of
it as t he object that is not at place P2 in state S.
LIST MONKEY

J\ml (MOVABLE BOX)

J\m2 (FA (X) (NOT (AT X UNDER-BANANAS s0)))

am3 (AT BOX PLACEB S0)

J\ff4 (FA(B PI P2 S) (IF(AND(AT B PI S) (MOVABLE B) (FA (X) (NOT (AT X P2 S)))) (AND (AT MONKEY P2
(MOVE(MONKEY B P2 S))(AT B P2(MOVE MONKEY B P2 S)))))

MB5 (FA(S) (CLIJ\mABLE MONKEY BOX S))
(FA(M P B S) (IF(AND(AT BPS) (CLIMBABLE
(CLIMB M B S)))))

(FA(S) (IF(AND(AT BOX UNER-BANANAS

(FA (M B S) (IF (REACHABLE M B S) (HAS

M B S)) (AND(AT B P(CLIMB M B S)) (ON M BMB6

!lff7 S) (ON MONKEY BOX S)) (REACHABLE MONKEY BANANAS S)))

M B (REACH M B S))))W38

DONE

(EX (S) (HAS MONKEY BANANAS S))

YES , S = REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX MOVE(MONKEY , BOX , UNER-BANANAS , s0)))

PROOF

AT (X , UNER-BANANAS , S0)

AT (BOX , PLACEB , s0)

CLIMBABLE (MONKEY , BOX , S)

HAS (MONKEY , BANANAS ,

ANSWER (S)

HAS(M B ,REACH(M , B , S)) -REACHABLE (M , S)

- REACHABLE (MONKEY , BANANAS , S)

ANSWER (REACH (MONKEY , BANANAS , S))

REACHABLE (MONKEY , BANANAS , S) -AT (BOX , UNER-BANANAS , S) -ON (MONKEY , BOX

AT (BOX , UNDER-BANANAS , S) -ON (MONKEY , BOX , S)

ANSWER (REACH (MONKEY , BANANAS , S))
ON(M CLIMB(M S)) -AT(B S) -CLIMBABLE(M

AT (BOX , UNER-BANANAS , CLIMB (MONKEY , BOX , S)) -AT (BOX , P ,S) -CLIMBABLE (MONKEY , BOX ,

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , S)))
AT (BOX , UNER-BANANAS , CLIMB (MONKEY , BOX , S)) -AT (BOX , , S)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , S)))
AT(B CLIMB(M S)) -AT(B S) -CLIMBABLE(M

AT (BOX , XXI , S) -AT (BOX , UNER-BANANAS , S) -CLIMBABLE (MONKEY , BOX , S)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , S)))
AT (BOX , XXI , S) -AT (BOX , UNER-BANANAS , S)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , S)))
AT (BOX , UNER-BANANAS ,

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , S)))

AT (B , P2 , MOVE (MONKEY , B , P2 , S)) -MOVABLE (B) -AT(B , , S) AT (SK24 (S , P2 , PI , B) , P2 ,

AX 10M

AXIOM

AX I OM

NEG OF THM

AXIOM

FROM 4

AX I OM

FROM 6 , 7

AXIOM

FROM 8

FROM 3

AX 10M

FROM 11 , 12

FROM 3

FACTOR 14

AXIOM

-MOVABLE (BOX) -AT(BOX , S) AT(SK24(S , UNER-BANANAS , PI ,BOX) , UNER-BANANAS ,

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , MOVE (MONKEY , BOX , UNER-BANANAS , S))))
-MOVABLE (BOX) AT(SK24(S0, UNER-BANANAS , PLACEB , BOX) , UNDER-BANANAS , S0)

ANSWER (REACH (MONKY , BANANAS , CLIMB (MONKEY , BOX , MOVE (MONKEY , BOX , UNDER-BANANAS , S0))))

-MOVABLE (BOX)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , MOVE (MONKEY , BOX , UNER-BANANAS , S0))))
MOVABLE (BOX)

CONTRADICTION

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX , MOVE (MONKEY , BOX , UNER -BANANAS , S0))))

11 CLAUSES LEFT

28 CLAUSES GENERATED

22 CLAUSES ENTERED

FROM 15 , 16

FROM 2, 17

FROM I , 18

AXIOM

FROM 19 , 20

