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INTRODUCTION

§1 The mixed-sensitivity minimization problem.

The problem we want to study in this paper is a classical one in Control Theory and it is

usually known as the mixed-sensitivity minimization problem; it will be precisely stated later in

the paragraph.

Throughout this paragraph all linear systems considered will be causal, time invariant,

continuos-time, single-input / single-output; moreover no formal distinction will be done

between a system and its transfer function.

Let us consider now the following feedback system:

d I

e 
r p y

!| C

d' {<W2

P is the plant and C is the control system; W 1, W 2 are two weighting functions.

Our goal is to minimize (in some sense) the effect of the disturbances d and d' on the

plant P. It is easy to verify that the transfer functions from d to y and from d' to y are,

respectively:

Wi(1+PC)-1 W 2PC(l+PC)-1

Let HO(fI r) be the Banach algebra of holomorphic, uniformly bounded, complex

functions on rI (the open right half-plane of C) with the infinity-norm. H°°(Tr ) may be seen,

in a natural way, as a closed subspace of L°(i!R), the space of essentially bounded, measurable

functions on the imaginary axis (the identification is obtained considering the extension of the

holomorphic function to the boundary iR); we will think of a H°°(lr)-function in these

different ways depending on the context. From a systems point of view H(rIr) is just the

algebra of transfer functions of systems which are linear, causal, time-invariant,

continous-time and L2 -stable. Every H°(flr)-function f may be factorized in the following

way: f = fifo where fie H~ is such that I fi I = 1 almost everywhere on the imaginary axis (it is

-- ~~---- --- ·-~~~~----------"~""""~~~~~"~~~~~~~~~II~



said the inner factor of f) and fo is the outer factor of f. fi and fo are uniquely determined up to

multiplicative complex units. Throughout this paragraph we set H° := H~°(If).

Assume that W 1, W 2 belong to Ho. C is an admissible feedback control if C is causal

and if (l+PC)-l and P(l+PC)-l belong to H°°. So now it is meaningful to state the following

H°° optimal problem:

(1) Min F W 1 (l+PC)-1 I 
Cadm. I L W 2PC(l+PC)-l 1| oo

The function S:= (1+PC)-l is the sensitivity function; for W 2 = 0, (1) reduces to the

classical optimal sensitivity problem which naturally leads to a Nehari problem. The function

PC(1+PC)-l is equal to 1-S and is called complementary sensitivity; for this reason (1) is

termed the mixed-sensitivity minimization problem.

The problem (1) looks like as a very hard one because it is non-linear in the control and,

moreover, the space on which it is defined, is not well characterized. As in the case of the

sensitivity problem, (1) may be transformed into a much simpler minimization problem; we

are going to show this fact in the next paragraph.

§2 The canonical form of the minimization problem.

In order to transform (1) in the canonical form, it is necessary to place additional

hypotheses:

H1) there exists a coprime factorization for P, that is 3 N, D, a, b E H°e s. t.

P = ND- 1 aN + bD - 1;

moreover the outer factors of N and D are invertible in the algebra HI.

H2) P(a+ib) - 0 if a -- >+oo Vb

H3) W 1, W2 are outer invertible in H°°.

Hi) and H2) allow us to use Youla parametrization of admissible controls; we have:

(2) C is admissible ,: 3 Z E H°° Z • N-lb s. t. C = (a+ DZ)(b - NZ)- 1

The proof of (2) may be found, for example in [ Desoer, 1980 ] or [ Francis; 1987 ].

From (2) we have:

S = D(b-NZ), 1-S = N(a+DZ)

so (1) is equivalent to:
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(3) Min FG11 FHi1z |1
ZEH I I LG2J LH2J Il

where: G1 := W 1Db H 1 := W 1DN

G2 := -W 2Na H 2 := W 2DN

We are going to transform (3) now, following [J.V.1986]. First, we need to remind the

concept of spectral factorization. If AE H- define A* by A*(s) := A(- s) Vse I1I (the left

open half-plane); clearly A* admits an L"-extension to the immaginary axis and we have

A*(ix)= A(ix) VxeR so that A*A = IA12 on iR.

Definition Let f e L°°; f 2 0 a.e. We say that there exists a spectral factorization for f

:= 3 ge H1 such that g*g = f a.e. on iR.

Proposition (see [Hoffman, 1962] ) f e L°; f > 0 a.e. admits a spectral factorization

- log f e LI(d/(l+t2)) where X is the Lebesgue measure on iR.

Remark If we assume that the spectral factor g is outer than we have the uniqueness of

the spectral factorization upto multiplicative complex units.

Set now:

T:=[G, 1 - FH, 1Z
LG2 J LH2 J

T*T = G1 *G, + G2*G 2 - (G1 *H1 + G 2*H 2)Z - (H 1*G 1 + H2*G2)Z* + (H1 *H 1 + H,2 *H2)Z* Z

We have H1*H 1 + H2*H 2 = D*DN*N (W 1 *W 1 + W 2*W 2)

From hypotheses H1), H3) and the preceding proposition it follows that this function admits a

spectral factorization with spectral factor M invertible in H%. Now let G be the L°-function

such that:

G* = M-1(G1 *H1 + G 2*H 2)

Then:

T*T = (G-MZ)*(G-MZ) + (GI*GI + G2*G2 - G G)

It is easily shown that:
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G1*G 1 + G2*G2 - G*G = W1 *W 1 W 2* W 2 (W 1*W 1 + W2*W2)-

so, by hypothesis H3) and the proposition 3F spectral outer factor for the above function. So

we obtain:

T*T = (G-MZ)*(G-MZ) + F*F

Therefore problem (3) is equivalent to the following:

(4) Min r G-z lII
ZeH i L F Ji oo

It is important to observe that the function Fe Ho does not depend on the plant P, but only on

the two weighting functions W 1, W 2; it is rational if W 1, W 2 are.

We are going to study problem (4) with the assumption that the L°-function G is

factorizable in the following way: G = VW where xfe HI° is inner and We H'O. Looking at the

way G is linked to P, W 1, W 2, it is easy to realize that it is not a strong assumption: it is true

for example in the case P stable, W 1, W2 rational functions. Finally, we can state the problem

in the following way:

(5) MinI r w- zl I
Ze H O IL F J Iloo

where xpe Ho is inner and We HPO.

§3 Our approach to the problem
Our approach to problem (5) will be, essentially, operator theoretic; in fact, as in the case

of the Nehari problem, operator theory seems to be a very powerful tool to analyze such

problems.

In the next five chapters we generalize most of the techniques and the results developed in

[Sarason; 1985] for the Nehari problem; we will show how our problem is connected to an

extension problem for a given operator on a Hilbert space. A similar approach has already been

used to analyze H°-problems including problem (5) in [B.H. 1983] and [B.H. 1986].

However we obtain more detailed results, for example in the parametrization of solutions

(chapter 5) and in obtaining a necessary and sufficient condition for the uniqueness of the

solution (chapter 4). Moreover, in chapter 4 we state one more uniqueness criterion which also

gives the form of the solution. Finally, in chapter 6, we give an interpolation interpretation of

problem (5) in the finite-dimensional case showing how it generalizes the classical
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Nevanlinna-Pick interpolation problem.

The problem (5) is also known as the two-block problem because of the evident two-block

structure of the function. In this paper, we treat the scalar case; our approach may be

generalized to the matrix case that is to the case in which the two blocks are matrices (and this

is done in [B.H. 1983] and [B.H. 1986]), but it does not seem possible to carry out the same

analysis as in the scalar case.

The two-block problem is a particular case of the more general four-block problem coming

from a general H'-control problem (see, for example, [Francis, 1986]). In a forthcoming

paper we shall consider such a problem showing how it may be analyzed by the same

operator-theoretic techniques.

CHAPTER ONE
Some mathematical preliminaries.

The two main mathematical tools used in this paper are Krein space theory and Hardy

space theory; in this chapter we want to remind all the material used in the sequel. In the first

paragraph we give a short introduction to Krein spaces following [Sarason; 1985].

§1 Krein spaces

Def 1.1 A Krein space is a pair (H,J) where H is a complex Hilbert space and J is a

symmetry on H, that is, a self-adjoint unitary operator on H. To eliminate trivial cases we

assume that J is different from +I.

The symmetry J induces an indefinite inner product on H given by (Jx,y) where x,y E H,

denoted by [x,y]. Obviously a(J)={-l,+l }; let us denote by H+ and H_ the corresponding

eigenspaces and by P+ and P the ortogonal projections. Thus J = P+- P_ and

Ix,y] = (P+x, P+y) - (Px, P_y).

Def 2.1 A vector xe H is called positive iff [x,x] > 0. A subspace of H is called positivw

iff it consists of positive vectors. A positive subspace is said maximal positive iff it is not

properly contained in another positive subspace. Negative vectors and subspaces are

analogously defined.

Prop 3,1 K < H is a positive subspace = 3 T: D < H+--> H. contraction such that

G(T)=K (where G(T) is the graph of T). Moreover K is maximal positive = D= H+. The
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operator T is said to be the angular operator of K.

Def 4.1 A positive subspace is said to be uniformly positive iff the norm of its

angular operator is less than one.

Using the indefinite inner product [,] one can define the J-ortogonality between vectors and

subspaces (indicated by [IL]), the J-adjoint of an operator ( indicated by a [*1 ) and so on.

Def 5.1 K<H is called regular iff 3 M+<H uniformly positive and M_ <H uniformly
negative, J- ortogonal, such that K= M + M .

Regular subspaces have nice properties as the following:

Obs 6.1 Let K<H regular and D a linear manifold in K; then D is dense in K if and oi
if no nonzero vector in K is J-ortogonal to it.

Prop 7.1 K•_H is regular <: H = K E K[IJ-. In particular K is regular if and only if K [I ]

is regular.

Example The simplest example of a Krein space is the following: let us consider the

finite-dimensional Hilbert space Cm()Cn; it is a Krein space with the isometry Jmn given by

Jm,n(x,y) := (x,-y).

§2 Hardy spaces on the unit disk.

In this paragraph we want to recall the main facts regarding Hardy space theory; we

essentially follow [Hoffman,1962].

Set the following notation: A is the unit open disk in the complex plane; T := aA. If
fe Hol(A,C) then fr indicates the function 0 -- f(reie); II lip is the canonical norm on LP( T,C)

where pil.

Def 8.1

HP(A) := { feHol(A,C) s.t. supil fr llp I re (0,1)) < +oo}

It is a Banach space with the norm: II f lip := sup{ll fr lp I re (0,1))

Prop 9.1 Let fe HP(A) then 3 fE' LP(T,C) such that fr - f a.e.

Moreover the map f-> f is an isometry between HP(A) and LP(T,C)



From now on we will simply indicate by HP and LP the spaces, respectively, HP(A) and

LP(T,C).

Remark From the preceding proposition we deduce that HP may be identified with a

closed subspace of LP. This identification will be used throughout this paper, depending on the

case, a HP-function will be thought as an analytic function on A or as an LP-function on T.

Def 10.1 Let fE HP.

1) f is said inner :<: If(eie)l = 1, 0-a.e. (in particular fe H').

2) f is said outer := clos{einef I n20} = HP

Prop 11.1 (inner-outer factorization) Let fE HP.

Then 3 4e H °° inner, 3 ge HP outer s.t. f = qg.

Moreover, the factorization is unique up to multiplicative complex units.

The two Hardy spaces which will be mainly used in the sequel, are: He which is a

Banach algebra, and H 2 which is, in a natural way, a Hilbert space. H2 may be seen as the

subspace of L2 spanned by the functions {ein° I n20}; on L2 the unitary operator T which acts

as Tf := eiOf is called the right bilateral shift; H2 is a closed invariant subspace for T and

the restriction S of T to H2 is said the right unilateral shift (it is still an isometry but no

longer unitary ). The following result is fundamental:

Prop 12.1 (Beurling-Lax) Let K < H2 be a closed, non-zero, S-invariant subspace.

Then 3 WNe H°° inner s.t. K = tH2

Moreover, the representation is unique up to multiplicative complex units.

We finish this paragraph by recalling some other useful definitions. Let us indicate by P+

the projection on H 2 and by P_ the projection on (H 2)'

Def 13.1 Let We Lo. We define:

Mw: L2 -- L2 Mw(f) := Wf Laurent operator

H3 w: H2 -- (H 2)1 :-w(f) := P(Wf) Hankel operator

Tw: H 2 -- H2 Tw(f) := P+(Wf) Toeplitz operator

W is said to be the symbol of the corresponding operator.
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Remark: While the symbol is unique for the Laurent and Toeplitz operator (in the sense

that the two maps W-- Mw and W-> T w are injective) and 11 M II 11= 11 Tw 1 = II W IIl, this is

not the case for the Hankel operator. In fact H3w does not change if we modify the symbol W

by adding a H°'-function; moreover we have only 11 3 1w < II W Illoo and, obviously, the

inequality may be strict. It is an important theorem (known as the Nehari theorem) the fact

that every Hankel operator has at least one symbol W', called minimal symbol, such that

II w , 11 = II W ' IIoo.

In paragraph 1 of the introduction we defined the algebra H°°(I-r) on which we have

stated our minimization problem. There is a nice isometric isomorphism between the two

algebras H°I(lV) and H-(A) induced by the well-known Cayley transform:

fe H°(TlIr) -, fE H°(A)

f(z) := f((l+z)(1-z)-l)

It is thus equivalent to study our problem (5) on HF°(A) instead of on H(IUr). The theory on

the unit disk is simpler, at least from a formal point of view, and so, from now on, we will

work on the unit disk A.

CHAPTER TWO
Statement of the problem in the operator theory context.

§1 Some preliminaries

Let us begin by writing down again the H- optimal problem:

(1) Min 11 r w-Z 1 =
ZEH II L F J I1oo

Let us consider now the following operator:

(2) A : H2 -- (H 2 )-I E H2

given by:

(3) A := ( H wo, TF )
Clearly, the operator A remains unchanged if we modify WW by adding an H°

1 function.
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The pairs:

F 4'w-zl
L F J

where Ze H°, are said to be symbols of A.

We have:

!IAII < IF r W-z 1 I = II r w-zlil
II L F J il0 I L F Jilo

So:

I! A il < E

The operator A behaves as a Hankel operator; the preceding inequality is, in fact, an equality

so that the solutions of (1) are just the "minimal" symbols of A.

The problem of finding the minimal symbols of A is known as the extension problem for

the operator A; the reason for this is explained in what follows. Every symbol of A naturally

induces a multiplicative operator:

F n -Z I > M H2 -- L 2 D H2

L F J M,:=[( I'W-Z)O,F4]

M is said to be a dilation of A on the space L2 D H2. Let us note that:

IIMi = II Fw-Tvz II
I IL F J II1

Such multiplicative operators are precisely the operators from H2 to L2 E H2 commuting with

the right shift. So, the problem of finding the minimal symbols of A is the same as the

problem of finding the minimal dilations of A on L2 E H2 commuting with the right shift.

The reason for which this is said to be an extension problem and not, merely, a dilation

problem is that the adjoint of each dilation of A is a real extension of A*. We now start to

study the extension problem for the operator A using Krein spaces theory.

§2 The optimal problem in the Krein spaces context

We introduce now the following Krein space:

(4) 3K := L2 D H2 D H2

with the indefinite scalar product given by:

(5) [ (f, f2, f3), (gl, g2, g3 )] := < fl, g1>L2 + < f2, g2>H2 - < f3, g3>H2

(5) (fl I f~~~l Y I OT 1 1 92, 93)~



Let J be the corresponding symmetry. On H3 we may consider the right shift S given by:

S:3 --> H3 Sf:= ei"f

If we indicate by SL2 the bilateral right shift on L2 and by SH2 the unilateral right shift on H2 ,
we have:

S (f, f 2, f3) = ( SL2 fl, SH2 f2 , SH2 f3 )

Let us recall that:

>A :H 2 - (H 2 )'1- H 2 AO := (H E wC,, TFq )

so:

A** (H 2 )'1H 2
- H2 A*( 1,p2):=3{ *W 1+T*F02

Now we have:

(6) *W SL2 * (H2)± = SH2 *3* w T FSH2 = SH2 FT*F

so that:

A*( SL2* 1(H2)1 *1 SH202) = SH2*A*( l1, 42)

from which we easily derive that G(A*), the graph of A*, seen as a subspace of 3H, is
S -invariant.

Let us state now the following fundamental:

Theorem 1.2 II A II < 1 3 ZEIH s. t.

F fw-zl II <1
I L F J i lo

that is A has a symbol whose norm is not greater than one.

Proof

We follow [Sarason;1985], slightly modifying the proof of the corresponding theorem
regarding the Nehari problem.

We have already seen that G(A*) < H is S -invariant; moreover, because of the
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assumption on the norm of A, it is uniformly positive. To find symbols of A whose norm is
not greater than one is equivalent to find extensions of the operator A* to the domain L2EH2

whose operator norm is not greater than one and whose graph is S -invariant. So, it is

equivalent to find maximal positive, S*-invariant subspaces of 3, containing G(A*).
Let us set N := G(A*)[±]. S is an isometry and also a J-isometry ( infact we have

S *=S [] ); this implies that SN is a regular subspace of N. It is easy to verify the following
inductive formula: N = L + SL + ... + Sn'1L + SnN, where L = Nn(SN)[l] is a regular
subspace and where all the sums are J-orthogonal. So we have that span{SkL I k20} [] =
rn{SnN n>1 }. On the other hand n{SnN I nl } < n{Sn1 I n>l } = L 2 3 {0} { 0) and
rf{SnN I n>l} < G(A*)[l]; so q{SnN I n>l} < H2 {0}) ( {0) and it is a reducing
subspace for S. By virtue of the Beurling-Lax theorem we have that rn{SnN I n>1} = 0}.
Being N regular, we have that N = span{SkL I k>_0 }.

Let us observe now that L is neither positive, nor negative; in fact: L positive = N
positive = 31 positive which is absurd; L negative = N negative and this is not possible
because N contains H 2 {0}1{0} which is uniformly positive. So there exists xle L:

[xl,xl]= 1.
Let us set N+ := span{ Skx 1 I k N I and let us consider the S*-invariant subspace

G(A*) + N+: it is maximal positive. It is obviously positive being the J-orthogonal sum of
positive subspace. The only thing we have to show is that P(G(A*) + N+ ) = L2 ® H2 where
P := PL2GH2G{0I. We have: S *xl[l] N =, Pxle ((H 2 ) 1 0 C) D H2 ; on the other hand

(H 2 )±1 ' H 2 < PG(A*) ) P(G(A*) + {x1} ). So P(G(A*) + (xl} ) = ((H 2 )1 I C) e H 2;

by induction we obtain the result. We have found a maximal-positive subspace of 31 which is
S -invariant and contains G(A*); therefore, the proof is complete. Q.E.D.

Theorem 2.2 II 1AII = 1 3 Ze H°° s. t.

II Fr tw-z1 II =1
I1 L F J I1oo

Proof

Let us consider A e:= (1-E)A cE (0,1). I![A11 _< 1. So, by the theorem 1.2 3 Z£E H ° :

1 II r(1-
IlL F J 1lo



So:

lim II r -vW-Z1 I _ =1
-o0 lI L F i !1m

By a standard compactness argument in the weak-* topology of L°($H ° we find Ze H a

S. t.

IF r _w-z II =1
IIL F J I Q.E.D.

CHAPTER THREE
The parameterization of the symbols in B(H°°)

§1 The parameterization

The next result we want to obtain is a parameterization of all the symbols of a having a

prescribed norm. Precisely, given A such that 11AI <1, we will describe all its symbols

whose infinity-norm is not greater than one.

Let us begin with a further analysis of the subspace L introduced in the proof of the

theorem 1.2. As we said before, it is regular, so it may be written as the J-orthogonal sum of a

uniformly positive subspace L + and a uniformly negative one L-. We observed before that

dimL+ > 1; dim L- 2 1. In fact:

Lemma 1.3 dim L + = dim L- = 1

Proof

It is obvious that dim L+ = 1 because, otherwise, G(A ) + N+ would not be maximal

positive.

dim L 1 > 3 x2 L s. t. [ x 2x 2 ]= -1 and [ x 1 ,x 2 ] = O

Let us consider the Krein space ( C 3, J2,1), as defined in the last example of introduction (§ 1);

let [, ]2,1 be the corresponding indefinite inner product. Then:

2r

[x , S 1 ] = [ xl(ei'), xl(ei 0 ) ]2,1 e-inOdO Vn
0

and this implies that the function [ x l(e i'), x l (e i') ]2,1 has the same Fourier series as the

constant function 1, and thus it is equal to 1 almost everywhere. The same argument may be

carried out for the other two orthogonality relations so, finally, we obtain:
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(1) [ xl(ei 0), xl(ei0) ]2,1 = 1 = - [ x2(ei), x 2(ei0) ]2,1 a.e.

[ xl(eio), x2(eio) ]2,1 = 0 a.e.

dimL-> 1 = 3 x 3 E L s. t. [x 3 ,x 3 ]=-1 and [x 2 , x3 ] =0
so we also would have:

[ x3(e' 0), x3(eio) ]2,1 = -1 [ x 2(ei0), x 3(eie) ]2,1 = 0 a.e.

So there should exist Ooe [0, 27c] s.t.

[x 2(eie o), x2(e(ei) ]2,1 = [ x 3(ei0o), x 3(eio0) ]2,1 = -1

[ x 2(eieo), x3(eie°) ]2,1 = 0

and this is absurd because ( C 3 , J2, 1) does not have negative subspaces whose dimension is

greater than one. Therefore, dim L- = dimL+ =1 and {xl, x2} is a base of L. Q.E.D.

We may write:

xl = PlD q1l9rl Pie L2 qi, riE H 2

X2 = p 2( q 2 9 r2

Let us consider the matrix:

r Pl P21

(2) U:= I ql q2 

L r, r 2 j 

Obs.2.3 If we fix 0, U(0) may be thought as a linear map from C 2 to C3. Because of

the pointwise relations (1) we have that:

(3) [ U(0)v 1, U(0)v2]2 1 = v1 , v211,1 V vl, v 2 E C2 .

Lemma 3.3 r2 is outer

Proof

The details of the proof may be found in [Sarason; 1985] page 304; here we only give a sketch

of it.
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N := [ G(A*) + N+ ] [I1 is S-invariant and maximal-negative; it is easy to see that it may

be represented in the following way: N = {hx 3 I he H ° } where x3 is a suitable vector of 3H.

So the last component of x3 is necessarily outer and the proof ends by showing that x2 = hox3

where hoe He outer. Q.E.D.

As we said at the beginning of this chapter, our goal is to classify all the S -invariant,

maximal positive subspaces of 31, containing G(A*); but this is equivalent to classifying all

the S-invariant, maximal negative subspaces of 31, contained in the space N introduced in the

preceding lemma. Such subspaces are just the graphs of the multiplicative operators whose

inducing functions are the symbols for A having L°-norm of at most 1.

Let us note now that the matrix U may be thought as a linear map between H~GHS and

N; moreover the Hilbert space H 2 eH 2 may be seen as a Krein space with the indefinite

product induced by that of (C2 , J1,1).The next proposition gives a first result about the

parameterization.

Prop.4.3 Let N" < H2 $H 2 be S-invariant, maximal-negative. Then:

N' := clos U(N"n H°°DH) < If is S-invariant, maximal-negative, contained in N.

Proof.

N' is clearly S-invariant and contained in N; moreover, it is negative due to the relations

in (3). It remains to be shown that is maximal-negative. It may be represented in the following

way:

3 fEeB(H-) s.t. N" = {AhEh I heH 2}

So: N' = clos {(PLYV + p 2)h E (ql t + q2)h e (rlV + r2)h I hE H2}

Let us note that rlr + r 2 e PO{}e{0 }H2N'. Therefore the proof is complete if we show that

rlN + r 2 is outer. We have: rlNf + r2 = r2 (1 + r2-1rl1 ); using again (3) we can see that r2-lrl is

in B(H ° ) so that 1 + r2-1rlr, being the sum of 1 and of a function in B(H°), is outer. By the

lemma 3.3 the proof is complete. Q.E.D.

Obs.5.3 The angular operator associated to the subspace N' is the multiplicative operator

induced by the pair:

(4) ( (P1l + P2)(rlV + r2 )l , (qlf + q2)(rl, + r2)-1 )

By the preceding proposition all these are symbols for A; so necessarily:
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(ql9 + q2)(rl, + r2)-l = F VBe B(H°°) =

(5) ql = Fr1 q 2 = Fr2

We will show now that (4) gives a complete parameterization of all the symbols of A.

Let us set:

U':= r P1 P 21

L rl r2 j

Let us set the following notation:

(6) U' t(W, 1) = (P 1N + P 2)(rl + r2)-l

U ' t(l, 1), U' t(0 , 1) are symbols for If -w (by prop.4.3) so that: U't(1,1) - U't (O,l)e H~;

by a simple calculation we thus derive: r2'l(r 1 + r2)-ldet U' E He =, det U' E H 1 .

Lemma 6.3 det U' E Ho and it is outer.

Proof

From relations (3) and (5) we easily obtain:

(7) U t*Fl 0 1u '= Fl o 1I

L o -(1-IF12) J L o -I J

(8) I detU' 12 = (1 - IF12)-' a.e. on at

This implies that det U' belongs to Ho (we use the fact II F IIoo II 1 II <1) and its outer factor

is uniquely determined by the spectral factorization of (1 - IF12 )-1.

Let us show now that det U' is outer; it is equivalent to showing that ((det U')H 2) 1 is

trivial. Let he ((det U')H 2)1 and let x = PH(h{0}E)r2-1p 2h). It is a mere matter of calculation

to show that: x [I] Snxl, x [I] Snx 2 Vn > 0; therefore x [I] N => xc G(A.*) = he (H 2)'

h= 0. Q.E.D.

Let us set d := det U'. By (8) we have that Id12 = (1 - IF12)-1. So d is exactly the outer

factor of the spectral factorization of (1 - IF12 )-1 unique up to multiplicative complex units. Let

us observe that d is a unit in the algebra H".
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Obs.7.3 By manipulating relation (7) established in the preceding lemma we have:

(9) P = r 2
d-1 P2

= rl df-

We may now state the fundamental result of this chapter:

Theorem 8.3 t( ), F) is a symbol of A: II t(o, F) II < 1 <:

3WE B(H°°): q = U' t(N, 1) = (Pl1 + p2)(rlW + r2)-l

Proof.

(t=) has been already proved: it is contained in Prop.4.3.

Let us prove now ( =*). Let t(4, F) be a symbol of A.: 11 t(o, F) li < 1. U' is invertible

a.e.; let us set (i 1r, WN2) = U '-1 t(4 , 1). We have:

(10) U' t(lN2-'l, 1) = 4 in the sense of (6) =

U't(VIV2-l, 1) = 2- 1 t(4 ), F, 1).

From the preceding relation, using (3), we obtain iI f,1N2 '1 Ilo < 1.

We complete the proof showing that Nt := Nf2 'lr2
1 e H-o. From (9) we have that: r2-1 rid-1

is a symbol of 3E w and so q - r2'l rl d'l E Ho. From (10) we have that:

(11) v= r2()-r2-l rl d-1)(-rlo + r 2 d-l) - l

We may observe that r2 (4 - r2-1 r1 d -1) belongs to H 2. On the other hand from (9) we

derive:

(12) Ir212 d2 - Ir1 12 d1l = d =

> rl d-1 = rl(Q)-r rl d-l) + dr2-1 H2 .

So -rlQ) + r2 d- l E H2. On the other hand: -rlq + r2 d-l = r2-ld( I r2 2 I d 1-2 - r1 r2 d-l2)

I r2 12 1 d 1-2 - r1 r2d -1 q E H 1 and, from (12), its real part is always positive; so it is outer.
We deduce that VN is analytic on A and so it belongs to H-. Q.E.D.

§2 The construction of the matrix U

In this paragraph we want to give an explicit expression of the elements of the matrix U in

terms of the operator A.

Obs.9.3 It is obvious that the matrix U is not uniquely determined because the two
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vectors x I and x2 are not unique.

Prop.10.3 A possible choice of the elements of U is the following:

r 2 = 11 (I - A*A)-1/21112-1 ( IA A)

the other elements of U are linked to P2 and r2 by relations (5) and (9).

Proof.

It is easy to see that: N = H2 { (0} {0} 0 G(A). On the other hand L <N and

S*L<G(A*), so we have: L < C ){0}0){0} G(A). Let xE L, then 3 4eH 2 , 3 ca C

s.t.

(13) x=(H w + a , T, )

S*xe G(A*) = 3 Tl1e (H 2 ) 1-, Tl2 eH 2 S.t. S*x=lll 2 33{* w w 1 + T*Fr1 2. So*we

have:

SL2* (H W + (C)= 11

SH2* TF e = T12

SH2* =3* -w1l+T*F2 .SH2 ~ = ,Wrl1 + F 12'

Applying 3{* w to the first relation, T* F to the second and then summing, we obtain that

there exists fE C s.t.

(14) A = c(I A*A)-1 SH23* SL2 + P(I - *A)-11

This is a necessary condition on the pair (4, cx) so that a vector x as defined in (13) belongs to

L but the argument is clearly reversible so that the condition (14) is also sufficient.

If we put ca = O0 in (14) we obtain 5 = P(I - AA)-11 and the corresponding vector is:

( [3* -w(I - *A)-11 , [TF(I - A*A)-11, [3(I- A*A) )

V[3 0 which is strictly negative and so it is a possible choice for x2. [ will be determined by

the condition [x2, x2] = -1; we obtain [ = 11 (I - A*A)-l/21112-1. Remembering that P2 and
r2 are,respectively, the first and the third component of x2, the proof is complete. Q.E.D.
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CHAPTER FOUR
Some results about the uniqueness of the solution

§1 A generalization of Krein's uniqueness condition.
From now on we will suppose II A 11 = 1. Let us consider A:= (1-8)A eC (0,1);

IIAl1l<1. By the result obtained in the last chapter we have that the symbols of A. in B(H ° )
are parameterized by the mean of a given matrix U's:

U'e := r Pie P2el
L rl r 2 i J

where: F r2 = I ( I - A*A~)-l/212-1( I - A*A) 1

I P2 = ~3fEr2E fE=(1-E) VW

(1 ) I rle = de P2E

L = r2 

d e = det U'E is outer invertible in H-° VeE (0,1); it may be computed by the relation

Ide1 2 =(1-IFI2)- 1 where F. = (1-E)F. Now r Ec d '-1 = P2E E (H 2)- = rlEdE- 1(0 ) = 0; being de

invertible we have:

(2) r1,(0) = 

moreover,

(3) r2e(0) = < r 2e, l>H2 = II ( I - e*A)/21112

Let us state the fundamental result:

Theorem 1.4 The operator A admits a unique minimal symbol ,:

(4) lim 11 (I - AE *A)-1/21112 = +o°

Proof.

It is similar to the proof given in [Sarason; 1985] for Hankel operators, with some slight

technical modifications.

Let rfe B(H°°); U'erf is the corresponding symbol of AF in the sense of the (6) of

chapter three. Then:

U'F - U'eO = [ r 2e (rl,,\ + r2E)]-l d e E H °
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The set of values taken by the preceding function in a point z of the unit open disk when \V
varies in B(H°*), is a closed disk whose ray is given by:

p,(z) = Id,(z)l [ I r2,(z) 12 - I rl,(z) 12]

We know that rlsr2,-le B(H*); so, from (2) and the Schwarz' lemma, we obtain:

(5) Idz(z)l I r2,(z) 1-2 < pe(z) < Id,(z)l (1 - Iz12)- 1 I r2,(z) 1-2

Let us note that all the minimal symbols of A may be obtained by taking limit on sets of the
kind [U'fW I £E (0,1)), so a necessary and sufficient condition for the uniqueness of the
minimal symbol of A is that p,(z)-->0 when -->0 Vz in A (the preceding limit always exists
because (1 - E£)lp,(z) decreases with £ ). From (5) we have that:

lim p,(z) = 0 Vz E A e=
8-->

(6) sup Id,(z) -l 1 I r 2 (z) 12 = + Vz E A

Let us observe now that {d - ' } is a normal family and d,-l(z) • 0 Vz Ve. From Hurwitz'
theorem (see, for example, [Cartan, 1963], Chap.V, Prop 2.1) there are only two possibilities:
either inf Id,(z)l-1 > 0 Vz or every limit point of {d - I }when -->0 in the open-compact
topology is the null function. In the first case, we note that (6) becomes equivalent to:

(7) sup I r2 (z) 12 =+oo Vz A.

Using again Hurwitz' theorem we have that (7) is equivalent to:

(8) sup I r 2 (0 ) 12 +oo.

Let us note that I r2,(0) 12 = p(0)-lld,(O)l; p,(0) admits a finite limit when E--0, even Id.(0)l
admits a finite limit different from zero because of the assumption made on the family {d - 1}.
So necessarily even Ir2,(O)l admits a limit when e-->; therefore, (8) is equivalent to:

(9) lim Ir28(0)I = +oo

which is exactly (4).

The other possibility is that every limit point of { de-1 is the null function. In this case,
necessarily IFI = 1 a.e. on the boundary which implies that NW =0 (owing to i1l11 =1); the
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minimal symbol is thus unique given by t(0,F). On the other hand we have:

II1 ( I - AP*A )-1/21112 = [£(2-£)] -1/ 2 -> +oo when -->0

and so the proof is complete. Q.E.D.

Obs.2.4 It is easy to see that (4) is equivalent to the two following conditions:

(10) 1 T(I -A *a )1/2

(11) lim < (I -As A<) 1, 1> = +o

§2 The maximal vector uniqueness criterion

The criterion we now expose is the generalization of a well-known uniqueness criterion

for Hankel operators (see, for example, [A.A.K. 1968] and [Sarason; 1967] ). It has the

defect of not being necessary, but it is simpler to verify than (4) and, moreover, it also gives

the structure of the solution.

Def.3.4 Let T: H --> K be a bounded operator acting on Hilbert spaces. A vector ge H,

Ilgll= 1 is said a maximal vector for T :<;: IITgll = IITII.

Theorem 4.4 Let us suppose that A has a maximal vector g. Then A has a unique

minimal symbol given by:

(12) r g'l{f iwgl

L F J

Moreover:

(13) I g-lf wg 12 + IF12 = IIA1I 2 a.e. on DA.

Proof.

Let t(q, F) be a minimal symbol for the operator A. Then:
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II(H -wg, TFg)122 = I(Og, TFg)l 2
2 = II Hig 112 2 + IITFgl22 =

= II P_(Og) 1122 + II Fg 1122 < II qg 1122 + II Fg 112 =

27t 2n 2i=lq121gl 2d + JIFI21g 2d = j( 1 2 + IE2) Igi 2 d II I0 F2+ Ii2 = IIAII

0 0 0

Because g is a maximal vector we have that all the preceding inequalities are in. fact equalities;

thereby:

Og E (H 2 )1 ; 1012 + IF12 -= 1A112 a.e.

qg E (H 2)- => g = Og = > = g-13. Og = g-1H _wg- Q.E.D

Obs.5.4 The relation (13) generalizes the result that the minimal symbol of a Hankel

operator having a maximal vector is unimodular.

Obs.6.4 The operator A admits a maximal vector e< A*A = 3 -W 3 Ww+ T F*TF

admits a maximal eigenvalue X. In this case every eigenvector of A *A relative to X is a

maximal vector of A and vice versa.

Obs.7.4 It follows from the last observation that A compact ~= A has a maximal

vector. However A is compact = -w and TF are compact and it is well-known that TF is

compact <= F = 0. So the operator A may be compact only in the case it reduces to a purely

Hankel operator.

Obs.8.4 It follows from the obs.6.4 that a sufficient condition for the existence of a

maximal vector for A and consequently for the uniqueness of the minimal symbol is that:

(14) pess(A A) < II A*A 11

where Pess is the essential ray of the operator.

So it may be fruitful to analyze the spectrum and the essential spectrum of A*A to

verify (14); this has been done in some special cases: in [J.V.; 1986] and, in more generality,

in [Z.M. 1987].
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CHAPTER FIVE
A parametrization of the minimal symbols.

Let us now suppose that we are in the case of non-uniqueness of the minimal symbols of
the operator A whose norm is supposed to be equal to one. From (7) of chapter four this is
equivalent to assuming sup [ Ir2,(z)l I £e (0,1) } < +oo Vze A; this implies that rl, and r2s are

uniformly bounded on the compact sets of A; so 3 £En 4 0, 3 rl,r2e Hol (A):

rln := rlEn - rl

r2n := r2e n - r2

uniformly on the compact sets of A. rl,r2 do not necessarily belong to H ° but, anyhow:

r2ni, rlnr2n-1 e B(H) r2l, rlr2l B(H

therefore rl,r2 are two holomorphic functions with bounded characteristic and so they have
well-defined values on the boundary. It is not restrictive to suppose that 3 O¢ e L o :

r2 n' 1 r1n dn-1 -- qo

in the weak-* topology of Ho; we have set dn = dzn. So (Oq, F) is a minimal symbol of .

Let now N E B(H°):

U'n- r2n- 1 rln dn-1 = [r 2n( ranV + r2n)Y-1'WdnE H ° U'° = U'n

note that:

II U'nf 11 < 1 Ir-11 r2nl rn n-l 11 <1

so [ r2 n( rlnNi + r 2n)]-ly'd n e H- are uniformly bounded by the constant two. Moreover,

[ r2 n( rlnf + r2n )]-lVdn - [ r2( rlf + r2)]-l+ d

pointwise on A; d is determined by the condition Id12 = (1-IFI2)-'. So we may suppose:

[ r2n ( rlnV + r2n)]lVdn -4 [ r2 ( rl1N + r2)]- 1Wd E H °

in the weak-* topology of Lo. This implies that (40 + [ r2( rlN + r2)]-lNfd, F) is a minimal
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symbol of A.
Let us set:

U':= r d-l r -
L rl r2 J

What we will prove is that U'yr = (o + [ r 2( rlNr + r2 )]'lYd ; this is not as trivial a result as
might appear on first sight.

Let us start by considering the fuction Ox = Qo + [ r 2( rlX + r2)] - lXd Ikl =1

Lemma 1.5 .I l<2 + IF12 = 1 a.e.

Proof.

A part from some slight technical differences the proof of this lemma is quite equivalent to the

corresponding one in [Sarason; 1985].

((l-an)4 , F ) is a symbol for (l-£n)A in B(H° ) Vn. So, by theorem 8.3, there exist

NfnE B(H° ) such that:

(1) (l-£n)OXh = U'nn =: >

(l-,£n) 0o + (1-en)[ r2 ( rlX + r2)]-lXd = r2n-1 rln dn, ' + [ r2n( rlnlfn + r2n)]' ndn

so Vn converges to X pointwise on A. On the other hand from (1) we have that:

- -1 -- 1
r2 n( (1-£n)(O- rlnr2ndn)

/n _ _-1 _-1 _
r2nd n 1O ( 1 -(1-£n)rlnr2nd n )

from which:

I (l-En))dnl + I rlnr2 n
n < n xn In2nIWnl 1

1 + I rlnr 2n] I (l-En)4dn 

Note that we have I 4%12 + IF12 < 1 a.e. Let us set:

E(c):= ({ 0 e a II;dl <cJ ce (0,1)

F(n,a) := { 0 A I r2 ndn-ll < a a>O
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By the way d is linked to the function F it is clear that our proof is complete if we show

that m(E(c)) =0 VcE (0,1) where m is the Haar measure on aA.
On E(c)rnF(n,a) we have that IVnl < [1 + (1-a' 2)l/ 2c]'l[c+ (1-a-2) 1/2] = K(c,a); from this

we derive:

1Nfn(0)1 < 1 - (1 - K(c,a)) m(E(c)rnF(n,a))

K(c,a) <1; moreover there exists nj --> +o s.t. INnj(O)l -- 0. It follows that, for fixed a and c,

(2) m(E(c)rF(nj,a)) --> 0.

Now we have that

2n

[1 - m(F(n,a))]log a < flog Ir2n(0)d1(0)I dO < M
0

from which we have that 1 - m(F(n,a)) < M(log a)-1, so, by choosing a sufficiently large, we

can guarantee that m(F(n,a)) is closer to one than any preassigned positive number, for every

n. If 3c : m(E(c)) > 0 then 3a : 1 - m(F(n,a)) < 1/2 m(E(c)) Vn, and we would have

m(E(c)nF(n,a)) > 1/2 m(E(c)) in contradiction with (2). Q.E.D.

Let X, as above, be a number of unit modulus.

Obs.2.5 We know that U'n > . in the weak-* topology of L° and consequently, also

in the weak topology of L2. Moreover, we know that:

I U'nl12 = 1 -i(l-en)FI2 a.e.

I q12 = 1 - IFI2 a.e.

From these two relations, we obtain that II U'n 112--> 11 OI112. It follows, that U'n). -- q in
L2-norm.

Obs.3.5 From what has just been established we easily deduce that

1 -. U', dX- - -1 -1- dX

in L2-norm and so r2n 'l r1n dn-l -> o in L2-norm.

24



Lemma 4.5 r2n1- r2' 1 in L2 -norm.

Proof.

We have:

27c 2r

1 J U'2(u 1XJ -U ) d_ -2 dX
2xi 0i 2xi 0

in L2 -norm and so r2 ,n2 d --> r2
2 d in L 2-norm. We know that dn-1 -- d ' 1 in L2 -norm and

so we deduce that r2n-2 -r2_2 in Ll-norm. The last conclusion implies that Ir2 n-l112--->1 r2-1112.

On the other hand r 2nl- r2' 1 in the weak topology of L2. So we conclude that r2n 1-- > r2'l in

L2-norm. Q.E.D.

From obs.3.5 and lemma 4.5, we can assume that, passing to a subsequence if

necessary, r2n- 1 rln dn-l - )o a.e on DA and r2n'l-- r2
' 1 a.e on aA. Moreover, because

U'nl-->l in L2 -norm, we have also U'nI -> 1 a.e on aA. From this it is easy to derive the

following relations:

r r1n - rl a.e on DA

(3) I % = r-1 r1 d'l a.e on a

L un' -- U' a.eonDA

Theorem 5.5 { (U'yr, F) I Nyr B(H°°) } is the set of all the minimal symbols of A.

Proof.

From (3) we easily obtain that U'W = qo + [ r2( r 1,r + r2)]-'lNd which implies that

(U'v,F) is a minimal symbol for A, V y E B(H°).

Now let (Q, F) be a minimal symbol for A; we have 1!12 + IF12 < 1 a.e. on DA.

(1-en)(O,F) is a symbol for (1-£n) A in B(H° ) so that 3Bn E B(H° ) : U'nf n = (1-£n) ). We

may suppose that Vn --> E B(H°) uniformly on the compact sets of A. We have that:

(1-£n) - r2n-l rln dn-1 = [r2n( rlnWn + r2 n)]N1ndn Vn

the left side of the preceding relation converges in L 2-norm to q - r2-1 rl d -l . On the other

hand we have that the right side converges in the weak-* topology of L° to [ r 2( r lN+ r2)] 1 jfd;

therefore we obtain q = r2-1 rl d- 1 + [ r2( rl + r2)]'l=d = U'xV as expected. Q.E.D.
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CHAPTER SIX
The finite-dimensional case; an interpolation approach

We want to analyze deeply the optimal problem in the finite-dimensional case that is in the
case when v is a pure finite Blaschke product.

Let us consider again the optimal problem:

~(1) Minw-zl I
ZEH | L F J Iloo

with Nf = B is a finite Blaschke product with simple zeros {Zl,.. .Zn} in A. W, F E H°° rational
functions.

It is well-known that if we set w i := W(zi), then {W-rwh I h E H°°} is exactly the set
of the bounded holomorphic functions interpolating the points ( zi, wi). So we have that:

(2) £o = Min i r W-hiz 1 1 = min {lt(f,F)II fe H ° f(zi) = wi}
ZeH I|I L F J I1

so, as in the case of the finite-dimensional Nehari problem, there is an interpolation problem
linked to the original H°-optimal problem. A function fe He solving problem (2) in the
interpolation form is called a minimal interpolating function of (2). We have the following:

Prop. 1.6 Let us assume that go > IIFII,. Then:

(i) there exists a unique minimal interpolation function f which is rational;
(ii) the outer factor g of f is determined by the condition IgI2 + IF12 = £02 a.e.
(iii) the inner factor of f is a Blaschke product B' of degree at most n-l which

is the minimal solution of the Nevanlinna-Pick interpolation problem relative to the pairs

(Zi,wig(zi)-l)

Proof.
Let us note that the operator 31 §w is compact because BW E H ° + C(i R). So we

have:

Pess(H3 bw*H gW + TF *TF) = Pess(TF*TF) = Pess(TIF,2) = II F 112

Therefore in the case eo > IIFIIc there exists a maximal vector for A; by applying theorem 4.4,
we prove the uniqueness of the solution.

Now, consider the inner-outer factorization of the minimal solution f: f = B'g. From
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theorem 4.4 it follows that the outer factor g is determined by the condition Ig12 + IFI2 = Fo 2

a.e..

On the other hand B' is, obviously, a function interpolating the pairs (zi,wig(zi)'l); it has

to be the interpolating function of minimal norm because, otherwise, f could not be the

minimal solution of the original problem; in particular, this shows that B' is a Blashke product

of degree at most n- 1.

Finally, f is rational because g and B' are. Q.E.D.

In the case £o = IIFlloo the existence of a maximal vector is not assured anymore and,

therefore, we can not carry out the same analysis as before.

Consider the outer function ga determined by the condition Ig.12 +IFI 2= g2 a.e., where

>1llFIIoo. It turns out that gE is invertible in He if and only if £ > IIFIIoo. Now, consider the

Nevanlinna-Pick interpolation problem (NPe) relative to the pairs (zi,wig,(zi)-l); the Hankel

operator canonically associated to this problem, when £ > IIFIIo, is 3- swg8 -l. It is easy to see

that:

il-15;Bwgt-l <l1 E g>eo

and, if go > IIFIIoo, then

!l; BWg-I Il = 1 : = E o

This observation leads to an algorithm to find the optimal value called the e-algorithm and

illustrated in [C.D.L. 1986]; the main problem connected to the e-algorithm is that giFll, is not

invertible in H- so that, in the case £o = IIFIIo, we can not get the optimal value. In the sequel

of the paragraph we shall analyze the case eo = IIFIIoo, showing, in particular, how it is possible

to overcome the above difficulty.

Let us consider now the Nevanlinna-Pick interpolation problem relative to the pairs

(zi,wi(E)) where as before i=l,...,n and zi: zj if i • j and let us suppose wi(E) --> 0 when

--->0. Let c B e be the minimal solution of it; cE is a complex constant and B e is a finite

Blaschke product whose degree is less or equal to n-1.

n z-v.(E)
B (z) = in v.(6) E A

vj(E)£1 1 -vj()z
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Lemma 2.6 ca -> O when --O 0.

Proof.

We have that cB,(zi) = wi( ) --> 0. If c% does not converge to zero then necessarily

3£k--0 such that B (zi)--> 0 that is:

1- v.(e)z

So we have that Vi 3ji such that:

z i- vji(k)

1 i( -k)Zi

Because of Ivji(ek)zil < Izil < 1 we obtain zi - vji(Ek) - O that is vji(ek) -- zi Vi. Because of
Zi# z1if i X 1 then necessarily jib jl if i • 1; this is an absurd because the index i takes n distinct
values while j at most n-1. Q.E.D.

Let us now return to our initial problem. If F(z) = IIFIIo Vz E A, then the optimal
problem (2) is trivial with unique solution given by f = 0. Therefore, by the maximum
principle, we may assume that F does not assume its maximum value on the open disk A. Set

g:= glFllo; we have: g(zi) : 0 Vi. Therefore it is meaningful to consider the Nevanlinna-Pick
interpolation problem (NP) relative to the pairs (zi,wig(zi)-1). Let f' a some interpolating
function of (NP); the Hankel operator associated to (NP) is, thus, given by 3 gr . Moreover
let f£ the minimal interpolating function of the Nevanlinna-Pick interpolation problems relative
to the pairs (zi,wig(zi)'l - wig,(zi) -l ); gF -- g uniformly on the compact sets of A therefore,
by the preceding lemma, we have that lf'11i, -- 0 (eventually passing to a sequence). If we
consider now, the relative Hankel operators, we have:

3 gWg-l- H Bf' = B B(Wg--1-f) = Bf -> O0

in the operator norm. So 31 bwg,-l -- 31 Hf in the operator norm. We are in the case
8o=1tFIIo so, necessarily, 113H bfll _< 1 Va. Therefore, we have II11 3 fll < 1.
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Theorem.3.6 Suppose eo=IIFIIo; then:

(i) i11 3 fll = 1 =* there is a unique minimal interpolating function fo of (2)

given by fo =B'g where B' is the interpolating function of minimal norm relative to (NP).

(ii) II11 fll < 1 > there are infinitely many minimal interpolating function of

(2) given by fi =)g where 4 is any interpolating function of (NP) whose norm is not greater

than 1.

Proof.

Let us note that every function f of the form f, =0g, where q is an interpolating function

of (NP) whose norm is not greater than 1, is a minimal interpolating function of our original

problem. Therefore, the proof is complete if we show that every minimal interpolating function

is necessarily of this form.

Let foe H ~ a minimal interpolating function of problem (2) ; clearly Ilg,-lfoll < 1

V£>IIFI .Therefore there exists ek---liFFl: g·eklfO -i E B(H° ) in the compact-open

topology; on the other hand gek - >g in the compact-open topology; we conclude that 4)g = fo.

We show now that 4) is an interpolating function of (NP). Let f some interpolating

function of problem (NP). Bgek-lfo are symbols for the Hankel operators 3 BWgek-l; we

know that there exist f'e H°° such that Bfsk are symbols for Hi( BWgsk-l - Bf): 11 fEl1 ---> .

Then Vk BgEk-lf - Bfek are symbols of 3f b converging to Bq from which we derive

that Bq is a symbol of If Bf and consequently, q is an interpolating function of (NP).

Q.E.D.

Obs.4.6 From the preceding proposition we see that the solution of our initial problem

may be unique even if the operator A does not have a maximal vector, in fact it is quite easy

to build an example where this happens.

Obs.5.6 The result contained in theorem 3.6 permits to overcome the difficulty connected

to the e-algorithm; in fact, instead of starting the algorithm from an arbitrary value of e, now,

we can start from £=IIFllI calculating II 3 -Bfll. If II H3 Bfll < 1 then, eo=IIFIIl; if 11 H Bfll > 1

then Eo>IlFIIoo; in the latter case we increase the value of £ and we continue the algorithm.
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