PAC Learning with Generalized Samples and an Application to Stochastic Geometry*

Kulkarni, S.R.
Mitter, S.K.
Tsitsiklis, J.N.
Zeitouni, O.
**Report Documentation Page**

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUN 1991</td>
<td></td>
<td>00-06-1991 to 00-06-1991</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC Learning with Generalized Samples and an Application to Stochastic Geometry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
</table>

| Approved for public release; distribution unlimited |

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prepared by ANSI Std Z39-18
Abstract

In this paper, we introduce an extension of the standard PAC model which allows the use of generalized samples. We view a generalized sample as a pair consisting of a functional on the concept class together with the value obtained by the functional operating on the unknown concept. It appears that this model can be applied to a number of problems in signal processing and geometric reconstruction to provide sample size bounds under a PAC criterion. We consider a specific application of the generalized model to a problem of curve reconstruction, and discuss some connections with a result from stochastic geometry.
1 Introduction

The Probably Approximately Correct (or PAC) learning model is a precise framework attempting to formalize the notion of learning from examples. The earliest work on PAC-like models was done by Vapnik [21], and many fundamental results relevant to the PAC model have been obtained in the probability and statistics literature [19, 20, 5, 12]. Valiant [18] independently proposed a similar model which has resulted in a great deal of work on the PAC model in the machine learning community. More recently, Haussler [6] has formulated a very general framework refining and consolidating much of the previous work on the PAC model.

In the usual PAC model, the information received by the learner consists of random samples of some unknown function. Here we introduce an extension in which the learner may receive information from much more general types of samples, which we refer to as generalized samples. A generalized sample is essentially a functional assigning a real number to each concept, where the number assigned may not necessarily be the value of the unknown concept at a point, but could be some other attribute of the unknown concept (e.g., the integral over a region, or the derivative at a given point, etc.). The model is defined for the general case in which the concepts are real valued functions, and is applicable to both distribution-free and fixed distribution learnability. The idea is simply to transform learning with generalized samples to a problem of learning with standard samples over a new instance space and concept class. The PAC learning criteria over the original space is induced by the corresponding standard PAC criteria over the transformed space. Thus, the criteria for learnability and sample size bounds are the usual ones involving metric entropy and a generalization of VC dimension for functions (in the fixed distribution and distribution-free cases respectively).

We consider a particular example of learning from generalized samples that is related to a classical result from stochastic geometry. Namely, we take $X$ to be the unit square in the plane, and consider concept classes which are collections of curves contained in $X$. For example, one simple concept class of interest is the set of straight line segments contained in $X$. A much more general concept class we consider is the set of curves in $X$ with bounded length and bounded turn (total absolute curvature). The samples observed by the learner consist of randomly drawn straight lines labeled as to the number of intersections the random line makes with the target concept (i.e., the unknown curve). We consider learnability with respect to a fixed distribution, where the distribution is the uniform distribution on the set of lines intersecting $X$. A learnability result is obtained by providing metric entropy bounds for the class of curves under consideration.

The example of learning a curve is closely related to a result from stochastic geometry which states that the expected number of intersections a random line makes with an arbitrary rectifiable curve is proportional to the length of the curve. This result suggests that the length of a curve can be estimated (or "learned") from a set of generalized samples. In fact, this idea has been studied, although primarily from the point of view of deterministic sampling [17, 11]. The learnability result makes the much stronger statement that for certain classes of curves, from just knowing the number of intersections with a set of random lines, the curve itself can be learned (from which the length can then be estimated). Also, for these classes of curves, the learning result guarantees uniform convergence of empirical estimates of length to true length, which does not follow directly from the stochastic geometry result.

Finally, we discuss a number of open problems and directions for further work. We believe the framework presented here can be applied to a number of problems in signal/image processing, geo-
metric reconstruction, and stereology, to provide sample size bounds under a PAC criterion. Some
specific problems that may be approachable with these ideas include tomographic reconstruction
using random ray or projection sampling and convex set reconstruction from support line or other
types of measurements.

2 PAC Learning with Generalized Samples

In the original PAC learning model [18], a concept is a subset of some instance space \( X \), and a
class \( C \) is a collection of concepts. The learner knows \( C \) and tries to learn a target concept \( c \)
belonging to \( C \). The information received by the learner consists of points of \( X \) (drawn randomly)
and labeled as to whether or not they belong to the target concept. The goal of the learner is to
produce with high probability (greater than \( 1 - \delta \)) a hypothesis which is close (within \( \epsilon \)) to the
target concept (hence the name PAC for “probably approximately correct”). It is assumed that
the distribution is unknown to the learner, and the number of samples needed to learn for fixed \( \epsilon \)
and \( \delta \) is independent of the unknown concept as well as the unknown distribution (hence the term
“distribution-free”). For precise definitions, see for example [18, 4].

Some variations/extensions of the original model that have been studied and are relevant to the
present work include learning with respect to a fixed distribution [3, 6], and learning functions as
opposed to sets (i.e., binary valued functions) [6]. As the name suggests, learning with respect to
a fixed distribution refers to the case in which the distribution with which the samples are being
drawn is fixed and known to the learner. A very general framework was formulated by Haussler
[6] building on some fundamental work by Vapnik and Chervonenkis [19, 20, 21], Dudley [5], and
Pollard [12]. In this framework, the concept class (hypotheses), denoted by \( F \), is a collection
functions from a domain \( X \) to a range \( Y \). The samples are drawn according to a distribution on
\( X \times Y \) from some class of distributions. A loss function is defined on \( Y \times Y \), and the goal of
the learner is to produce a hypothesis from \( F \) which is close to the optimal one in the sense of
minimizing the expected loss between the hypothesis and the random samples.

Learning from generalized samples can be formulated as an extension of the framework in [6] as
briefly described at the end of this section. However, for simplicity of the presentation we consider
a restricted formulation which is sufficiently general to treat the example of learning a curve discussed
in this paper. We now define more carefully what we mean by learning from generalized samples.
Let \( X \) be the original instance space as before, and let the concept class \( F \) be a collection of real
valued functions on \( X \). In the usual model, the information one gets are samples \( (x, f(x)) \) where
\( x \in X \) and where \( f \in F \) is the target concept. We can view this as obtaining a functional \( \delta_x \)
and applying this functional to the target concept \( f \) to obtain the sample \( (\delta_x, \delta_x(f)) = (\delta_x, f(x)) \).
The functional in this case simply evaluates \( f \) at the point \( x \), and is chosen randomly from the class of
all such “impulse” functionals. Instead, we now assume we get generalized samples in the sense that
we obtain a more general functional \( \tilde{\delta} \), which is some mapping from \( F \) to \( \mathbb{R} \). The observed labeled
sample is then \((\tilde{\delta}, \tilde{\delta}(f)) \) consisting of the functional and the real number obtained by applying this
functional to the target concept \( f \). We assume the functional \( \tilde{\delta} \) is chosen randomly from some
collection of functionals \( \tilde{\mathcal{F}} \). Thus, \( \tilde{\mathcal{F}} \) is the instance space for the generalized samples, and the
distribution \( P \) is a probability measure on \( \tilde{\mathcal{F}} \). Let \( S_F \) denote the set of labeled \( m \)-samples for each
\( m \geq 1 \), for each \( \tilde{\delta} \in \tilde{\mathcal{F}} \), and each \( f \in F \).

Given \( P \), we can define an error criterion (i.e., notion of distance between concepts) with respect
to \( P \) as
\[
d_{P}(f_1, f_2) = E|\tilde{z}(f_1) - \tilde{z}(f_2)|
\]
This is simply the average absolute difference of real numbers produced by generalized samples on the two concepts. Note we could define the framework with more general loss criteria as in [6], but for the example considered in this paper we use the criterion above.

**Definition 1 (Learning From Generalized Samples)** Let \( \mathcal{P} \) be a fixed and known collection of probability measures. Let \( F \) be a collection of functions from the instance space \( X \) into \( \mathbb{R} \), and let \( \tilde{X} \) be the instance space of generalized samples for \( F \). \( F \) is said to be learnable with respect to \( \mathcal{P} \) from the generalized samples \( \tilde{X} \) if there is a mapping \( A : S_{\mathcal{P}} \rightarrow F \) for producing a hypothesis \( h \) from a set of labeled samples such that for every \( \epsilon, \delta > 0 \) there is a \( 0 < m = m(\epsilon, \delta) < \infty \) such that for every probability measure \( P \in \mathcal{P} \) and every \( f \in F \), if \( h \) is the hypothesis produced from a labeled \( m \)-sample drawn according to \( P^m \) then the probability that \( d_{P}(f, h) < \epsilon \) is greater than \( 1 - \delta \).

If \( \mathcal{P} \) is the set of all distributions over some \( \sigma \)-algebra of \( \tilde{X} \) then this corresponds to distribution-free learning from generalized samples. If \( \mathcal{P} \) consists of a single distribution \( P \) then this corresponds to fixed distribution learning from generalized samples. This is a direct extension of the usual definition PAC learnability (see for example [4]) to learning functions from generalized samples over a class of distributions. In the definition we have assumed that there is an underlying target concept \( f \). As with the restrictions mentioned earlier, this could be removed following the framework of [6].

Learning with generalized samples can be easily transformed into an equivalent problem of \( PAC \) learning from standard samples. The concept class \( F \) on \( X \) corresponds naturally to a concept class \( \tilde{F} \) on \( \tilde{X} \) as follows. For a fixed \( f \in F \), each functional \( \tilde{z} \in \tilde{X} \) produces a real number when applied to \( f \). Therefore, \( f \) induces a real valued function on \( \tilde{X} \) in a natural way. The real valued function on \( \tilde{X} \) induced by \( f \) will be denoted by \( \tilde{f} \), and is defined by
\[
\tilde{f}(\tilde{z}) = \tilde{z}(f)
\]
The concept class \( \tilde{F} \) is the collection of all functions on \( \tilde{X} \) obtained in this way as \( f \) ranges through \( F \).

We are now in the standard PAC framework with instance space \( \tilde{X} \), concept class \( \tilde{F} \), and distribution \( P \) on \( \tilde{X} \). Hence, as usual, \( P \) induces a learning criterion or metric (actually only a pseudo-metric in general) on \( \tilde{F} \), and as a result of the correspondence between \( F \) and \( \tilde{F} \), this metric is the equivalent to the (pseudo-)metric \( d_{P} \) induced by \( P \) on \( F \) defined above. This metric will be denoted by \( d_{P} \) over both \( F \) and \( \tilde{F} \), and is given by
\[
d_{P}(\tilde{f}_1, \tilde{f}_2) = E|\tilde{f}_1 - \tilde{f}_2| = E|\tilde{z}(f_1) - \tilde{z}(f_2)| = d_{P}(f_1, f_2)
\]
Distribution-free and fixed distribution learnability are defined in the usual way for \( \tilde{X} \) and \( \tilde{F} \). Thus, a generalized notion of VC dimension for functions (called pseudo dimension in [6]) and metric entropy of \( \tilde{F} \) characterize the learnability of \( \tilde{F} \) in the distribution-free and fixed distribution cases respectively. These same quantities for \( \tilde{F} \) then also characterize the learnability of \( F \) with respect to \( d_{P} \).
Definition 2 (Metric Entropy) Let \((Y, \rho)\) be a metric space. A set \(Y(\varepsilon)\) is said to be an \(\varepsilon\)-cover (or \(\varepsilon\)-approximation) for \(Y\) if for every \(y \in Y\) there exists \(y' \in Y(\varepsilon)\) such that \(\rho(y, y') \leq \varepsilon\). Define \(N(\varepsilon) \equiv N(\varepsilon, Y, \rho)\) to be the smallest integer \(n\) such that there exists an \(\varepsilon\)-cover for \(Y\) with \(n\) elements. If no such \(n\) exists, then \(N(\varepsilon, Y, \rho) = \infty\). The metric entropy of \(Y\) (often called the \(\varepsilon\)-entropy) is defined to be \(\log_2 N(\varepsilon)\).

\(N(\varepsilon)\) represents the smallest number of balls of radius \(\varepsilon\) which are required to cover \(Y\). For convenience, if \(P\) is a distribution we will use the notation \(N(\varepsilon, C, P)\) (instead of \(N(\varepsilon, C, dp)\)), and we will speak of the metric entropy of \(C\) with respect to \(P\), with the understanding that the metric being used is \(dp(\cdot, \cdot)\).

Using results from [6] (based on results from [12]), we have the following result for learning from generalized samples with respect to a fixed distribution.

Theorem 1 \(F\) is learnable from generalized samples (or equivalently, \(\widehat{F}\) is learnable) with respect to a distribution \(P\) if for each \(\varepsilon > 0\) there is a finite \(\varepsilon\)-cover \(\widehat{F}(\varepsilon)\) for \(\widehat{F}\) (with respect to \(dp\)) such that \(0 \leq f_i \leq M(\varepsilon)\) for each \(f_i \in \widehat{F}(\varepsilon)\). Furthermore, a sample size

\[
m(\varepsilon, \delta) \geq \frac{2M^2(\varepsilon/2)}{\varepsilon^2} \ln \frac{2|\widehat{F}(\varepsilon/2)|}{\delta}
\]

is sufficient for \(\varepsilon, \delta\) learnability.

Proof: Let \(\widehat{F}(\varepsilon/2)\) be an \(\frac{\varepsilon}{2}\)-cover with \(0 \leq f_i \leq M(\varepsilon/2)\) for each \(f_i \in \widehat{F}(\varepsilon/2)\). Let \(F(\varepsilon/2)\) be obtained from \(\widehat{F}(\varepsilon/2)\) using the correspondence between \(F\) and \(\widehat{F}\). After seeing \(m(\varepsilon, \delta)\) samples, let the learning algorithm output a hypothesis \(h \in F(\varepsilon/2)\) which is most consistent with the data, i.e., which minimizes

\[
\frac{1}{m(\varepsilon, \delta)} \sum_{i=1}^{m(\varepsilon, \delta)} |\tilde{x}_i(h) - y_i|
\]

where \((\tilde{x}_i, y_i)\) are the observed generalized samples. Then using Theorem 1 of [6], it follows that with probability greater than \(1 - \delta\) we have \(dp(f, h) \leq \varepsilon\).

Although we will not use distribution-free learning in the example of learning a curve, for completeness we give a result for this case.

Definition 3 (Pseudo Dimension) Let \(F\) be a collection of functions from a set \(Y\) to \(\mathbb{R}\). For any set of points \(\overline{y} = (y_1, \ldots, y_d)\) from \(Y\), let \(F_{\overline{y}} = \{(f(y_1), \ldots, f(y_d)) : f \in F\}\). \(F_{\overline{y}}\) is a set of points in \(\mathbb{R}^d\). If there is some translation of \(F_{\overline{y}}\) which intersects all of the \(2^d\) orthants of \(\mathbb{R}^d\) then \(\overline{y}\) is said to be shattered by \(F\). Following terminology from [6], the pseudo dimension of \(F\), which we denote \(\dim(F)\), is the largest integer \(d\) such that there exists a set of \(d\) points in \(Y\) that is shattered by \(F\). If no such largest integer exists then \(\dim(F)\) is infinite.

We have the following result for distribution-free learning from generalized samples, again using results from [6].
Theorem 2 $F$ is distribution-free learnable from generalized samples (or equivalently, $\tilde{F}$ is
distribution-free learnable) if for some $M < \infty$ we have $0 \leq \tilde{f} \leq M$ for every $\tilde{f} \in \tilde{F}$ and if
dim($\tilde{F}$) = $d$ for some $1 \leq d < \infty$. Furthermore, a sample size
\[ m(\epsilon, \delta) \geq \frac{64M^2}{\epsilon^2} \left( 2d \ln \frac{16eM}{\epsilon} + \ln \frac{8}{\delta} \right) \]
is sufficient for $\epsilon, \delta$ distribution-free learnability.

Proof: The result follows from a direct application of Corollary 2 from [6], together with the
correspondence between $F$ and $\tilde{F}$ and the fact that $d_P(f_1, f_2) = d_P(\tilde{f}_1, \tilde{f}_2)$.

Note that the metric entropy of $\tilde{F}$ is identical to the metric entropy of $F$ (since both are with
respect to $d_P$), so that the metric entropy of $F$ characterizes learnability for a fixed distribution as
well. However, the pseudo dimension of $F$ with respect to $X$ does not characterize distribution-free
learnability. This quantity can be very different from the pseudo dimension of $\tilde{F}$ with respect to
$\tilde{X}$.

As mentioned above, for simplicity we have defined the concepts to be real valued functions,
have chosen the generalized samples to return real values, and have selected a particular form for
the learning criterion or metric $d_P$. Our ideas can easily be formulated in the much more general
framework considered by Haussler [6]. Specifically, one could take $F$ to be a family of functions
with domain $X$ and range $Y$. The generalized samples $\tilde{X}$ would be a collection of mappings from
$F$ to $\tilde{Y}$. A family of functions $\tilde{F}$ mapping $\tilde{X}$ to $\tilde{Y}$ would be obtained from $F$ by assigning to each
$f \in F$ an $\tilde{f} \in \tilde{F}$ defined by $\tilde{f}(\tilde{x}) = \tilde{x}(f)$. As in [6], the distributions would be defined on $\tilde{X} \times \tilde{Y}$, a
loss function $L$ would be defined on $\tilde{Y} \times \tilde{Y}$, and for each $\tilde{f} \in \tilde{F}$ the error of the hypothesis $\tilde{f}$ with
respect to a distribution would be $EL(\tilde{f}(\tilde{x}), \tilde{y})$ where the expectation is over the distribution on
$(\tilde{x}, \tilde{y})$.

Although learning with generalized samples is in essence simply a transformation to a different
standard learning problem, it allows the learning framework and results to be applied a broad range
of problems. To show the variety in the type of observations that are available, we briefly mention
some types of generalized samples that may be of interest in certain applications. In the case where
the concepts are subsets of $X$ (i.e., binary valued functions), some interesting generalized samples
might be to draw random (parameterized) subsets (e.g., disks, lines, or other parameterized curves)
of $X$ labeled as to whether or not the random set intersects or is contained in the target concept.
Alternatively, the random set could be labeled as to the number of intersections (or length, area,
or volume of the intersection, as appropriate). In the case where the concepts are real valued
functions, one might consider generalized samples consisting of certain random sets and returning
the integral of the concept over these sets. For example, drawing random lines would correspond
to tomographic type problems with random ray sampling. Other possibilities might be to return
weighted integrals of the concept where the weighting function is selected randomly from a suitable
set (e.g., an orthonormal basis), or to sample derivatives of the concept at random points.
3 A Result From Stochastic Geometry

In this section we state an interesting and well known result from stochastic geometry. This result will be used in the next section in connection with a specific example of learning from generalized samples.

To state the result, we first need to describe the notion of drawing a "random" straight line, i.e., a uniform distribution for the set of straight lines intersecting a bounded domain. A line in the plane will be parameterized by the polar coordinates $r, \theta$ of the point on the line which is closest to the origin, where $r \geq 0$ and $0 \leq \theta \leq 2\pi$. The set (manifold) of all lines in the plane parameterized in this way corresponds to a semi-infinite cylinder.

A well known result from stochastic geometry states that the unique measure (up to a scale factor) on the set of lines which is invariant to rigid transformations of the plane (translation, rotation) is $drd\theta$, i.e., uniform density in $r$ and $\theta$. This measure is thus independent of the choice of coordinate system, and is referred to as the uniform measure (or density) for the set of straight lines in the plane. This measure corresponds precisely to the surface area measure on the cylinder.

From this measure, a uniform probability measure can be obtained for the set of all straight lines intersecting a bounded domain. Specifically, the set of straight lines intersecting a bounded domain $X$, which we will denote by $\hat{X}$, is a bounded subset of the cylinder. The uniform probability measure on $\hat{X}$ is then just the surface area measure of the cylinder suitably normalized (i.e., by the area of $\hat{X}$).

We can now state the following classic result from stochastic geometry (see e.g. [14, 2]).

**Theorem 3** Let $X$ be a bounded convex subset of $\mathbb{R}^2$, and let $c \subset X$ be a rectifiable curve. Suppose lines intersecting $X$ are drawn uniformly, and let $n(\hat{x}, c)$ denote the number of intersections of the random line $\hat{x}$ with the curve $c$. Then

$$E n(\hat{x}, c) = \frac{2}{A} L(c)$$

where $L(c)$ denotes the length of the curve $c$ and $A$ is the perimeter of $X$.

In the next section, for simplicity we will take $X$ to be the unit square. In this case, the theorem reduces simply to $E n(\hat{x}, c) = \frac{1}{2} L(c)$.

A surprising (and powerful) aspect of this theorem is that the expected number of intersections a random line makes with the curve $c$ depends only on the length of $c$ but is independent of any other geometric properties of $c$. In fact, the expression on the left hand side (suitably normalized) can be used as a definition for the length (or one-dimensional measure) of general sets in the plane [15].

An interesting implication of Theorem 3 is that the length of an unknown curve can be estimated or "learned" if one is told the number of intersections between the unknown curve and a collection lines drawn randomly (from the uniform distribution). In fact, deterministic versions of this idea have been studied [17, 11].
4 Learning a Curve by Counting Intersections with Lines

In this section, we consider a particular example of learning from generalized samples. For concreteness we take $X$ to be the unit square in $\mathbb{R}^2$, although our results easily extend to the case where $X$ is any bounded convex domain in $\mathbb{R}^2$. We will consider concept classes $C$ which are collections of curves contained in $X$. For example, one particular concept class of interest will be the set of straight line segments contained in $X$. Other concept classes will consist of more general curves in $X$ satisfying certain regularity constraints. The samples observed by the learner consist of randomly drawn straight lines labeled as to the number of intersections the random line makes with the target concept (i.e., the unknown curve). Recall, that with the $r, \theta$ parameterization, the set of lines intersecting $X$, which is the instance space $\hat{X}$, is a bounded subset of the semi-infinite cylinder. We consider learnability with respect to a fixed distribution, where the distribution $P$ is the uniform distribution on $X$.

4.1 Learning a Line Segment

Consider the case where $C$ is the set of straight line segments in $X$. In this case, given a concept $c \in C$, every straight line (except for a set of measure zero) intersects $c$ either exactly once or not at all. Thus, $\hat{C}$ consists of subsets (i.e., binary valued functions) of $\hat{X}$, where each $\hat{c} \in \hat{C}$ contains exactly those straight lines $\hat{x} \in \hat{X}$ which intersect the corresponding $c \in C$.

The metric $d_P$ on $C$ and $\hat{C}$ induced by $P$ is given by

$$d_P(c_1, c_2) = d_P(\hat{c}_1, \hat{c}_2) = E|n(\hat{x}, c_1) - n(\hat{x}, c_2)| = P(\hat{c}_1 \Delta \hat{c}_2)$$

where, as in the previous section, $n(\hat{x}, c)$ is the number of intersections the line $x$ makes with $c$. In the case of line segments $n(\hat{x}, c)$ is either one or zero, i.e. $\hat{c}$ is binary valued, so that

$$d_P(c_1, c_2) = d_P(\hat{c}_1, \hat{c}_2) = P(c_2 \Delta c_2)$$

where $\hat{c}_1 \Delta \hat{c}_2$ is the usual symmetric difference of $\hat{c}_1$ and $\hat{c}_2$.

In the case of line segments, a simple bound on the $d_P$ distance between two segments can be obtained in terms of the distances between the endpoints of the segments.

**Lemma 1** Let $c_1, c_2$ be two line segments, and let $a_1, b_1$ and $a_2, b_2$ be the endpoints of $c_1$ and $c_2$ respectively. Then

$$d_P(c_1, c_2) \leq \frac{1}{2} (||a_1 - a_2|| + ||b_1 - b_2||)$$

**Proof:** Since $c_1, c_2$ are line segments, the distance $d_P(c_1, c_2)$ between $c_1$ and $c_2$ is the probability that a random line intersects exactly one of $c_1$ and $c_2$. Any line that intersects exactly one of $c_1, c_2$ must intersect one of the segments $\overline{a_1a_2}$ or $\overline{b_1b_2}$ joining the endpoints of $c_1$ and $c_2$. Therefore,

$$d_P(c_1, c_2) \leq P(\hat{x} \cap \overline{a_1a_2} \neq \emptyset \text{ or } \hat{x} \cap \overline{b_1b_2} \neq \emptyset) \leq P(\hat{x} \cap \overline{a_1a_2} \neq \emptyset) + P(\hat{x} \cap \overline{b_1b_2} \neq \emptyset)$$

Using Theorem 3, the probability that a random line intersects a line segment in the unit square is simply half the length of the line segment, from which the result follows.

\[\square\]
Using the Lemma 1, we can bound the metric entropy of \( C \) (and hence \( \tilde{C} \)) with respect to the metric induced by \( P \).

**Lemma 2** Let \( C \) be the set of line segments contained in the unit square \( X \), and let \( P \) be the uniform distribution on the set of lines intersecting \( X \). Then

\[
N(\epsilon, \tilde{C}, P) = N(\epsilon, C, P) \leq \frac{1}{4\epsilon^4}
\]

**Proof:** We construct an \( \epsilon \)-cover for \( C \) as follows. Consider a rectangular grid of points in \( X \) with spacing \( \sqrt{2}\epsilon \). Let \( C^{(e)} \) be the set of all line segments with endpoints on this grid. There are \( \frac{1}{2^{2\epsilon}} \) points in the grid, so that there are \( \frac{1}{4\epsilon^4} \) line segments in \( C^{(e)} \). (We ignore the fact that some of these segments are actually just points, since there are just \( \frac{1}{2^{2\epsilon}} \) of these.) For any \( c \in C \), there is a \( c' \in C^{(e)} \) such that each endpoint of \( c' \) is within \( \epsilon \) of an endpoint of \( c \). Hence, from Lemma 1 \( d_P(c, c') \leq \frac{1}{2}(\epsilon + \epsilon) = \epsilon \) so that \( C^{(e)} \) is an \( \epsilon \)-cover for \( C \) with \( \frac{1}{4\epsilon^4} \) elements.

\( \square \)

The construction of the previous lemma allows us to obtain the following learning result for straight line segments.

**Theorem 4** Let \( C \) be the set of line segments in the unit square \( X \). Then \( C \) is learnable by counting intersections with straight lines drawn uniformly using

\[
m(\epsilon, \delta) = \frac{2}{\epsilon^2} \ln \frac{8}{\epsilon^4 \delta}
\]

samples.

**Proof:** Let \( \tilde{C} \) be the concept class over \( \tilde{X} \) corresponding to \( C \). Then \( \tilde{c} \in \tilde{C} \) is defined by \( \tilde{c}(\tilde{x}) = n(\tilde{x}, c) \), i.e., \( \tilde{c}(\tilde{x}) \) is the number of intersections of the line \( \tilde{x} \) with \( c \). Clearly, \( 0 \leq \tilde{c} \leq 1 \) (except for a set of measure zero) for every \( \tilde{c} \in \tilde{C} \). Using the construction of Lemma 2, we have an \( \frac{1}{4} \)-cover of \( \tilde{C} \) with \( 4/\epsilon^4 \) elements. Hence, the result follows from Theorem 1.

\( \square \)

### 4.2 Learning Curves of Bounded Turn and Length

Now we consider the learnability of a much more general class of curves. First we need some preliminary definitions. We will consider rectifiable curves parameterized by arc length \( s \), so that a curve \( c \) of length \( L \) is given by

\[
c = \{(x_1(s), x_2(s)) \mid 0 \leq s \leq L\}
\]

where \( x_1(\cdot) \) and \( x_2(\cdot) \) are absolutely continuous functions from \([0, L]\) to \( \mathbb{R} \) such that \( \sqrt{x_1^2 + x_2^2} \) is defined and equal to unity almost everywhere. If \( x_1 \) and \( x_2 \) are twice-differentiable at \( s \), then the curvature of \( c \) at \( s \), \( \kappa(s) \), is defined as the rate of change of the direction of the tangent to the curve at \( s \), and is given by \( \kappa(s) = \frac{\ddot{x}_2 \dot{x}_1 - \ddot{x}_1 \dot{x}_2}{\dot{x}_1^2 + \dot{x}_2^2} \). The total absolute curvature of \( c \) is given by \( \int_0^L |\kappa(s)| \, ds \).
Alexanderov and Reshetnyak [1] have developed an interesting theory for irregular curves. Among other things, they study the notion of the “turn” of a curve, which is a generalization of total absolute curvature to curves which are not necessarily twice-differentiable. For example, for a piecewise linear curve the turn is simply the sum of the absolute angles that the tangent turns between adjacent segments. The turn for more general curves can be obtained by piecewise linear approximations. In fact, this is precisely the manner in which turn is defined [1].

**Definition 4 (Turn)** Let $v_0 \cdots v_n$ denote a piecewise linear curve with vertices $v_0, \ldots, v_n$. Let $a_i$ be the vector $v_{i+1} - v_i$, and let $\phi_i$ be the angle between the vector $a_i$ and $a_{i+1}$. That is, $\phi_i$ represents the total angle through which the tangent to the curve turns at vertex $i$ ($\pi$ minus the interior angle at vertex $i$). The turn of $v_0 \cdots v_n$, denoted $\kappa(v_0 \cdots v_n)$, is defined by

$$
\kappa(v_0 \cdots v_n) = \sum_{i=1}^{n-1} \phi_i
$$

The turn of a general parameterized curve $c$, denoted $\kappa(c)$, is defined as the supremum of the turn over all piecewise linear curves inscribed in $c$. I.e.,

$$
\kappa(c) = \sup\{\kappa(c(s_0) \cdots c(s_n)) \mid 0 \leq s_0 < s_1 < \cdots < s_n \leq L\}
$$

where $L$ is the length of $c$.

As expected, the notion of turn reduces to the total absolute curvature of a curve when the latter quantity is defined [1]. We will use the generalized notion of turn throughout, so that our results will apply to curves which are not necessarily twice differentiable (e.g., piecewise linear curves).

We will consider classes of curves of bounded length and bounded turn. Specifically, let $C_{K,L}$ be the set of all curves contained in the unit square whose length is less than or equal to $L$ and whose turn is less than or equal to $K$. Note that for curves contained in a bounded domain, the length of a curve can be bounded in terms of the turn of the curve and the diameter of the domain (Theorem 5.6.1 from [1], for differentiable curves see for example [14] p. 35). Hence, we really need only consider classes of curves with a bound on the turn. However, for convenience we will carry both parameters $K$ and $L$ explicitly.

As before, the samples will be random lines drawn according to the uniform distribution $P$ on $X$, labeled as to the number of intersections the line makes with the unknown curve $c$. However, with curves in $C_{K,L}$ the number of intersections with a given line can be any positive integer as opposed to just zero or one for straight line segments. (Note that by Theorem 3, the probability that a random line has an infinite number of intersections with a given curve is zero, so that the number of intersections is a well defined integer valued function.) Thus, the class $C_{K,L}$ consists of a collection of integer valued functions on $X$ as opposed to just subsets of $X$ as in the previous section.

Also, as before, the results on learning for the set of curves will be with respect to the metric $d_P$ induced by the measure $P$. That is the $d_P$ distance between two curves $c_1$ and $c_2$ or their corresponding functions $\hat{c}_1, \hat{c}_2$ is given by

$$
d_P(c_1, c_2) = d_P(\hat{c}_1, \hat{c}_2) = E|n(\hat{x}, c_1) - n(\hat{x}, c_2)|
$$

where the expectation is taken over the random line $\hat{x}$ with respect to the uniform measure $P$. This notion of distance between curves has been studied previously (e.g., see [17] and [14] p.38). For
example, it is known that $d_P$ is in fact a metric on the set of rectifiable curves, so that $d_P$ satisfies
the triangle inequality and $d_P(c_1, c_2) = 0$ implies $c_1 = c_2$. (Note that in the references [14, 17] the
notion of distance used is actually $\frac{1}{2}d_P$, but this makes no difference in the metric properties.)

To obtain a learning result for $C_{K,L}$ we will show that each curve in $C_{K,L}$ can be approximated
(with respect to $d_P$) by a bounded number of straight line segments. The metric entropy computa-
tion for a single straight line segment can be extended to provide a metric entropy bound for
curves consisting of a bounded number of straight line segments. Thus, by combining these two
ideas we can obtain a metric entropy bound for $C_{K,L}$ which yields the desired learning result.

First, we need several properties of the $d_P$ metric for curves of bounded turn.

**Lemma 3** If $c_1, c_2$ are curves with a common endpoint (so that $c_1 \cup c_2$ is a curve) and similarly
for $c'_1, c'_2$ then

$$d_P(c_1 \cup c_2, c'_1 \cup c'_2) \leq d_P(c_1, c'_1) + d_P(c_2, c'_2)$$

**Proof:** For any line $\tilde{x}$ (except for a set of measure zero), $n(\tilde{x}, c_1 \cup c_2) = n(\tilde{x}, c_1) + n(\tilde{x}, c_2)$ and
similarly for $c'_1, c'_2$. Therefore,

$$d_P(c_1 \cup c_2, c'_1 \cup c'_2) = \frac{1}{2} E\left|n(\tilde{x}, c_1 \cup c_2) - n(\tilde{x}, c'_1 \cup c'_2)\right|$$

$$= \frac{1}{2} E\left|n(\tilde{x}, c_1) - n(\tilde{x}, c'_1) + n(\tilde{x}, c_2) - n(\tilde{x}, c'_2)\right|$$

$$\leq \frac{1}{2} E\left|n(\tilde{x}, c_1) - n(\tilde{x}, c'_1)\right| + \frac{1}{2} E\left|n(\tilde{x}, c_2) - n(\tilde{x}, c'_2)\right|$$

$$= d_P(c_1, c'_1) + d_P(c_2, c'_2)$$

By induction, this result can clearly be extended to unions of any finite number curves. The
case of a finite number of curves will be used in Lemma 6 below.

**Lemma 4** If $c$ is a curve and $\hat{c}$ is the line segment joining the endpoints of $c$, then

$$d_P(c, \hat{c}) = \frac{1}{2} (L(c) - L(\hat{c}))$$

**Proof:** Each line can intersect $\hat{c}$ at most once, and every line intersecting $\hat{c}$ also intersects $c$.
Therefore, $n(\hat{x}, c) \geq n(\hat{x}, \hat{c})$ so that $|n(\hat{x}, c) - n(\hat{x}, \hat{c})| = n(\hat{x}, c) - n(\hat{x}, \hat{c})$ for all lines $\hat{x}$ (except a set
of measure zero). Hence,

$$d_P(c, \hat{c}) = E|n(\hat{x}, c) - n(\hat{x}, \hat{c})| = E\left(n(\hat{x}, c) - n(\hat{x}, \hat{c})\right) = \frac{1}{2} L(c) - \frac{1}{2} L(\hat{c})$$

where the last equality follows from the stochastic geometry result (Theorem 3).

We will make use of the following result from [1].
**Theorem 5 (Alexandrov and Reshetnyak)** Let $c$ be a curve in $\mathbb{R}^n$ with $\kappa(c) < \pi$, and let $\alpha$ be the distance between its endpoints. Then

$$\mathcal{L}(c) \leq \frac{\alpha}{\cos \frac{\kappa(c)}{2}}$$

Equality is obtained iff $c$ consists of two line segments of equal length.

**Lemma 5** For $0 \leq \alpha \leq \pi/6$, $1/\cos \alpha - 1 \leq \alpha^2$ so that if $c$ is a curve with turn $\kappa(c) \leq \pi/6$ and $\hat{c}$ is the line connecting the endpoints of $c$ then

$$d_P(c, \hat{c}) \leq \frac{\mathcal{L}(c) - \mathcal{L}(\hat{c})}{2 \kappa^2(c)}$$

**Proof:** Let $g(\alpha) = 1/\cos \alpha$ and $h(\alpha) = 1 + \alpha^2$. For $0 \leq \alpha \leq \pi/6$, $\sin \alpha \leq 1/2$ and $\cos \alpha \geq \sqrt{3}/2$ so that $g(\alpha) = 2 \sin^2 \alpha / \cos^2 \alpha + 1/\cos \alpha \leq 4/3 + 2/\sqrt{3} = 10\sqrt{3}/9 < 2 = h(\alpha)$. Combining $g(\alpha) < h(\alpha)$ with the fact that $g(0) = h(0)$ and $g'(0) = h'(0)$ gives $g(\alpha) \leq h(\alpha)$ and so $1/\cos \alpha - 1 \leq \alpha^2$ for $0 \leq \alpha \leq \pi/6$.

Now, using the above result, Lemma 4, and Theorem 5 we have

$$d_P(c, \hat{c}) = \frac{1}{2} (\mathcal{L}(c) - \mathcal{L}(\hat{c})) \leq \frac{1}{2} \mathcal{L}(\hat{c}) \left( \frac{1}{\cos \frac{\kappa(c)}{2}} - 1 \right) \leq \frac{\mathcal{L}(\hat{c})}{8 \kappa^2(c)}$$

\[\square\]

**Lemma 6** If $c \in C_{K,L}$ then for each $\epsilon > 0$ the curve $c$ can be approximated to within $\epsilon$ by an inscribed piecewise linear curve with at most $\frac{K^2L}{8\epsilon}$ segments.

**Proof:** As usual, let $s$ denote arc length along $c$. Since $\kappa(c) \leq K$, for any $\alpha > 0$, we can find a decomposition of $c$ into at most $\lceil K/\alpha \rceil$ pieces $\ell_1, \ldots, \ell_{\lceil K/\alpha \rceil}$ such that $\kappa(\ell_i) \leq \alpha$ for each $i$. For example, let $s_0 = 0$ and let

$$s_i = \sup \{s_{i-1} \leq s \leq L | \kappa(c(s_{i-1}, s)) \leq \alpha \}$$

where $c(s_{i-1}, s)$ is the part of the curve $c$ between arc length $s_{i-1}$ and $s$ inclusive. Then, let $\ell_i = c(s_{i-1}, s_i)$. By definition, $\kappa(\ell_i) \leq \alpha$. The turn of a curve satisfies $\kappa(c(s, s')) \geq \kappa(c(s, t)) + \kappa(c(t, s'))$ for any $s \leq t \leq s'$ and $\kappa(c(s, s')) \to 0$ as $s' \to s$ from the right ([1], Corollaries 2 and 3, p. 121). From these properties it follows that if $s_i < L$ then for any $\eta > 0$, $\kappa(c(s_i, s_i + \eta)) \geq \eta \alpha$. Since $\kappa(c) \leq K$ we must have $s_i = L$ for some $i \leq \lceil K/\alpha \rceil$.

Now, let $\hat{\ell}_i$ be the line segment joining the ends of $\ell_i$. Clearly, the union of the $\hat{\ell}_i$ form a piecewise linear curve inscribed in $c$ (i.e., with endpoints of the segments lying on $c$). From Lemmas 3 and 5, and the fact that $\mathcal{L}(\hat{\ell}_i) \leq \mathcal{L}(c) \leq L$, we have

$$d_P(c, \bigcup_{i=1}^{\lceil K/\alpha \rceil} \hat{\ell}_i) \leq \sum_{i=1}^{\lceil K/\alpha \rceil} d_P(\ell_i, \hat{\ell}_i) \leq \frac{K}{\alpha} \cdot \frac{L}{8} \alpha^2 = \frac{KL}{8}$$

Thus, for $\alpha \leq \frac{8\epsilon}{KL}$, $d_P(c, \bigcup_{i=1}^{\lceil K/\alpha \rceil} \hat{\ell}_i) \leq \epsilon$ so that $\frac{K}{\alpha} = \frac{K^2L}{8\epsilon}$ segments suffice for an $\epsilon$-approximation to $c$ by an inscribed piecewise linear curve.
Theorem 6  Let $C_{K,L}$ be the set of all curves in the unit square with turn bounded by $K$ and length bounded by $L$. Let $P$ be the uniform distribution on the set of lines intersecting the unit square, and let $d_P$ be the metric on $C_{K,L}$ defined by $d_P(c_1,c_2) = E|n(\bar{x},c_1) - n(\bar{x},c_2)|$. Then the metric entropy of $C_{K,L}$ with respect to $d_P$ satisfies

$$N(\epsilon,C_{K,L},P) \leq \left(\frac{K^2L^2}{8\epsilon^4}\right)^{1+K^2L^2/4\epsilon}.$$

Proof: We construct an $\epsilon$-cover for $C$ as follows. Consider a rectangular grid of points in the unit square with spacing $\frac{2\sqrt{2\epsilon}}{K^2L}$. Let $C^{(\epsilon)}_{K,L}$ be the set of all piecewise linear curves with at most $\frac{K^2L}{4\epsilon}$ segments the endpoints of which all lie on this grid. There are $K^4L^2/8\epsilon^4$ points in the grid, so that there are at most $(K^4L^2/8\epsilon^4)^{1+K^2L^2/4\epsilon}$ distinct curves in $C^{(\epsilon)}_{K,L}$.

To show that $C^{(\epsilon)}_{K,L}$ is an $\epsilon$-cover for $C_{K,L}$, let $c \in C_{K,L}$. By Lemma 6 there is a piecewise linear curve $\hat{c}$ with at most $\frac{K^2L}{4\epsilon}$ segments such that $d_P(c,\hat{c}) < \epsilon/2$. We can find a curve $c' \in C^{(\epsilon)}_{K,L}$ close to $\hat{c}$ by finding a point on the grid within $\frac{2\epsilon^2}{K^2L}$ of each endpoint of a segment in $\hat{c}$. By Lemma 1 each line segment of $c'$ is a distance at most $\frac{2\epsilon^2}{K^2L}$ (with respect to $d_P$) from the corresponding line segment of $\hat{c}$. Since $\hat{c},c'$ consist of at most $\frac{K^2L}{4\epsilon}$ segments, applying Lemma 3 we get $d_P(\hat{c},c') < \epsilon/2$. Hence, by the triangle inequality $d_P(c,c') < \epsilon$.

We can now prove a learning result for curves of bounded turn and length.

Theorem 7  Let $\hat{C}_{K,L}$ be the set of all curves in the unit square with turn bounded by $K$ and length bounded by $L$. Then $\hat{C}_{K,L}$ is learnable by counting intersections with straight lines drawn uniformly using

$$m(\epsilon,\delta) = \frac{K^4L^2}{2\epsilon^4} \ln \frac{2}{\delta} \left(\frac{2K^4L^2}{\epsilon^4}\right)^{1+\frac{K^2L^2}{2\epsilon}}.$$

Proof: Let $\hat{C}_{K,L}$ be the concept class over $\hat{X}$ corresponding to $C_{K,L}$. Then $\hat{c} \in \hat{C}$ is defined by $\hat{c}(\bar{x}) = n(\bar{x},c)$, i.e., $\hat{c}(\bar{x})$ is the number of intersections of the line $\bar{x}$ with $c$.

Using the construction of Theorem 6, we have an $\frac{\epsilon}{2}$-cover, $\hat{C}^{(\epsilon/2)}$, of $\hat{C}_{K,L}$ with $(2K^4L^2/\epsilon^4)^{1+K^2L^2/2\epsilon}$ elements. Furthermore, each element of the $\frac{\epsilon}{2}$-cover consists of at most $\frac{K^2L}{2\epsilon}$ line segments. Since a line $\bar{x}$ can intersect each segment at most once, we have $0 \leq \hat{c}_i(\bar{x}) \leq \frac{K^2L}{2\epsilon}$ for every $\hat{c}_i \in \hat{C}^{(\epsilon/2)}$. Hence, the result follows from Theorem 1.

It is interesting to note that $\hat{C}_{K,L}$ has infinite pseudo dimension (generalized VC dimension), so that one would not expect $C_{K,L}$ to be distribution-free learnable. That the pseudo dimension is infinite can be seen as follows. First, assume that $K,L \geq 2\pi$. For each $k$, let $\bar{x}_1,\ldots,\bar{x}_k$ be the
set of lines corresponding to the sides of a $k$-gon inscribed in the unit circle. For any subset $G$ of these $k$ lines, we can find a curve $c_G \in C_{K,L}$ so that $n(\tilde{x}_i, c_G) = 2$ for $\tilde{x}_i \in G$ and $n(\tilde{x}_i, c_G) = 0$ for $x_i \notin G$. Such a curve can be obtained by taking a point on the unit circle in each arc corresponding to $\tilde{x}_i \in G$, and taking $c_G$ to be the boundary of the convex hull of these points. Then, $\kappa(c_G) = 2\pi$ and $l(c_G) < 2\pi$ so that $c_G \in C_{K,L}$. Thus, the set $\tilde{x}_1, \ldots, \tilde{x}_k$ is shattered by $C_{K,L}$, and since $k$ is arbitrary the pseudo dimension of $C_{K,L}$ is infinite. For $K, L < 2\pi$ we can apply essentially the same construction over an arc of the unit circle and without taking $c_G$ to be a closed curve.

### 4.3 Connections With the Stochastic Geometry Result

For the class of curves whose length and curvature are bounded by constants, the learnability result of Theorem 7 can be thought of as a refinement of the stochastic geometry result. First, using the expression for the expected number of intersections, one can estimate or "learn" the length of $c$ from a set of generalized samples. The learnability result makes the much stronger statement that the curve $c$ itself can be learned (from which the length can then be estimated). To show that the length can be estimated, we need only note that

\[ |L(c_1) - L(c_2)| = \frac{1}{2} E(n(y, c_1) - n(y, c_2)) \leq \frac{1}{2} E|n(y, c_1) - n(y, c_2)| = \frac{1}{2} d_P(c_1, c_2) \]

so that if we learn $c$ to within $\epsilon$ then the length of $c$ can be obtained to within $\epsilon/2$.

Second, for the class of curves considered, we have a uniform learning result. Hence, this refines the stochastic geometry result by guaranteeing uniform convergence of empirical estimates of length to true length for the class of curves considered.

### 5 Discussion

We introduced a model of learning from generalized samples, and considered an application of this model to a problem of reconstructing a curve by counting intersections with random lines. The curve reconstruction problem is closely related to a well known result from stochastic geometry. The stochastic geometry result (Theorem 3) suggests that the length of a curve can be estimated by counting the number of intersections with an appropriate set of lines, and this has been studied by others. Our results show that for certain classes of curves the curve itself can be learned from such information. Furthermore, over these classes of curves the estimates of length from a random sample converge uniformly to the true length of a curve.

The learning result for curves is in terms of a metric induced by the uniform measure on the set of lines. Although some properties of this metric are known, to better understand the implications of the learning result, it would be useful to obtain further properties of this metric. One approach might be to obtain relationships between this metric and other metrics on sets of curves (e.g., Hausdorff metric, $d_H$). For example, we conjecture that over the class $C_{K,L}$

\[ \inf_{\{c_1, c_2 \mid d_H(c_1, c_2) > \epsilon\}} d_P(c_1, c_2) > 0 \]

This result combined with the learning result with respect to $d_P$ would immediately imply a learning result with respect to $d_H$. 

14
The stochastic geometry result holds for any bounded convex subset of the plane, and as we mentioned before, our results can be extended to this case as well. Furthermore, results analogous to Theorem 3 can be shown in higher dimensions and in some non-Euclidean spaces [14]. Some results on curves of bounded turn analogous to those we needed also can be obtained more generally [1]. Hence, learning results should be obtainable for these cases.

Regarding other possible extensions of the problem of learning a curve, note that the stochastic geometry result is not true for distributions other than the uniform distribution. Also, we are not aware of any generalizations to cases where parameterized curves other than lines are drawn randomly. However, learnability results likely hold true for some other distributions and perhaps for other randomly drawn parameterized curves, although the metric entropy computations may be difficult.

There is an interesting connection between the problem of learning a curve discussed here and a problem of computing the length of curves from discrete approximations. In particular, it can be shown that computing the length of a curve from its digitization on a rectangular grid requires a nonlocal computation (even for just straight line segments), although computing the length of a line segment from discrete approximations on a random tessellation can be done locally [9]. The construction is essentially a learning problem with intersection samples from random straight lines. Furthermore, the construction provides insight as to why local computation fails for a rectangular digitization and suggests that appropriate deterministic digitizations would still allow local computations. This is related to the work in [11].

We considered here only one particular example of learning from generalized samples. However, we expect that this framework can be applied to a number of problems in signal/image processing, geometric reconstruction, stereology, etc., to provide learnability results and sample size bounds under a PAC criterion. As previously mentioned, learning with generalized samples is in essence simply a transformation to a different standard learning problem, although the variety available in choosing this transformation (i.e., the form of the generalized samples) should allow the learning framework and results to be applied to a broad range of problems.

For example, the generalized samples could consist of drawing certain random sets and returning the integral of the concept over these sets. Other possibilities might be to return weighted integrals of the concept where the weighting function is selected randomly from a suitable set (e.g., an orthonormal basis), or to sample derivatives of the concept at random points. One interesting application would be to problems in tomographic reconstruction. In these problems, one is interested in reconstructing a function from a set of projections of the function onto lower dimensional subspaces. One could have the generalized samples consist of drawing random lines labeled according to the integral of the unknown function along the line. This would correspond to a problem in tomographic reconstruction with random ray sampling. Alternatively, as previously mentioned, one could combine the general framework discussed by Haussler [6] with generalized samples, and consider an application to tomography where the generalized samples consist of entire projections. This would be more in line with standard problems in tomography, but with the directions of the projections being chosen randomly.

For more geometric problems in which the concepts are subsets of $X$, some interesting generalized samples might be to draw random (parameterized) subsets (e.g., disks, lines, or other parameterized curves) of $X$ labeled as to whether or not the random set intersects or is contained in the target concept. Other possibilities might be to label the random set as to the number of intersections (or length, area, or volume of the intersection, as appropriate) with the unknown
concept. One interesting application to consider would be the reconstruction of a convex set from various types data (e.g., see [7, 16, 10, 13]). For example, the generalized samples could be random lines labeled as to whether or not they intersect the convex set (which would provide bounds on the support function). This is actually just a special case of learning a curve which is closed and convex, although tighter bounds should be obtainable due to the added restrictions. Alternatively, the lines could be labeled as to the length of the intersection (which is like the tomography problem with random ray sampling in the case of binary objects). A third possibility (which is actually just learning from standard samples) would be to obtain samples of the support function.

Formulating learning from generalized samples in the general framework of Haussler [6] allows issues such as noisy samples to be treated in a unified framework. Application of the framework to a particular problem reduces the question of estimation/learning under a PAC criterion to a metric entropy (or generalized VC dimension) computation. This is not meant to imply that such a computation is easy. On the contrary, the metric entropy computation is the essence of the problem and can be quite difficult. Another problem which can be difficult is interpreting the learning criterion on the original space induced by the distribution on the generalized samples. The induced metric is a natural one given the type of information available, but it may be difficult to understand the properties it endows on the original concept class. Finally, although this approach may provide sample size bounds for a variety of problems, it leaves wide open the question of finding good algorithms.

References


