


1. Introduction 
 
Shape memory alloy (SMA) elements have been considered for control of vibrations as 
well as for the enhancement of stability of composite and metallic plates by numerous 
investigators. The early work in this direction has been reviewed by the author1. In 
general, a reduction of vibration amplitudes using SMA can be achieved through two 
mechanisms. SMA fibers or wires prestressed through a phase transformation can apply 
tensile forces to the structure increasing its effective stiffness. If SMA elements operate 
in the superelastic regime, their large hysteresis loop corresponding to a significant 
energy dissipation per cycle of motion can also be employed to reduce dynamic 
deformations.  
 
The method used to reduce dynamic response or enhance stability is often based on 
embedding SMA fibers within the structure. Some of the studies concerned with 
embedding fibers bonded to the composite substrate are referred to in1; a comprehensive 
review of this subject is outside the scope of this paper. Investigations of the effect of 
SMA wires embedded in sleeves preventing direct contact between SMA and the 
substrate were initiated by Baz and his collaborators. For example, multiple dynamic 
problems of composite structures reinforced with such wires in sleeves were considered 
in2,3.  Embedding SMA wires in sleeves provides a number of advantages, including an 
ease of activation and a reduction of the effect of temperature changes in the wire on the 
adjacent composite structure. A further improvement can be achieved by placing the 
sleeves outside the structure, i.e. bonding them to the surface, rather than embedding 
within the structure4.  Externally bonded to the structure sleeves with SMA wires serve as 
an equivalent elastic foundation resisting deflections of the structure. 
 
As indicated above, the dissipation of energy in a superelastic SMA wire results in a 
reduction of the dynamic response. The hysteresis loop of SMA is very large but the 
complete hysteresis can only be achieved if the strain reaches several percents. Although 
such large hysteresis loop is unlikely to be useful in plates and shells, dampers utilizing 
the complete superelastic hysteresis have been considered for civil engineering 
applications5 and in spring-mass isolation systems6.  In the present problem, superelastic 
wires undergo an incomplete hysteresis (inner hysteresis loop). Accordingly, when it 
comes to the control of forced vibrations, the dissipation of energy may be a secondary 
effect compared to the resistance of stretched wires to deflections of the structure. 
Nevertheless, the following solution can account for both phenomena. 
 
The solution presented in the paper refers to a shear deformable composite plate analyzed 
by a first-order theory. The particular case of a thin plate treated by the classical plate 
theory is also presented. 
 
2. Analysis 
 
Consider a shear deformable rectangular plate with SMA wires in sleeves bonded to one 
of the surfaces as shown in Fig. 1. SMA wires can freely slide along the sleeves, i.e. 
friction is negligible. One of the advantages of such design compared to embedding SMA 



fibers in sleeves within the structure is related to the ease of manufacture. In addition, 
external sleeves do not compromise the integrity of the composite structure as may be the 
case if they were embedded. The issues of maintenance and joining SMA wires to 
supports are also easier solved in the configuration considered here. Bonding the sleeves 
at selected locations to the structure results in a selective transfer of the reactions as 
described below in the paper optimizing the effect of SMA wires on the response. It is 
assumed that the stiffness of the sleeve material is small, i.e. the sleeves do not affect the 
matrix of stiffnesses of the plate. If necessary, this requirement can be enforced by 
cutting the sleeves at periodic, closely spaced intervals. In the unlikely case where it is 
necessary to account for the contribution of the sleeves, the method enabling us to 
incorporate their stiffness in the analysis can be based on standard discrete stiffener 
method or in case of closely spaced sleeves, on the smeared stiffeners technique7. The 
contribution of the sleeves and SMA wires to the inertial coefficients is included in the 
present solution.   
 
Prior to the installation, a SMA wire is cooled so that the material is transformed into 
martensite and stretched to a required length. Subsequently, it is inserted in the sleeves 
and constrained by joining it to the supporting structure. As temperature returns to the 
operational level corresponding to the austenitic phase of SMA, the wire is in tension as a 
result of constrained recovery, while the supporting structure resists the reactive forces.  
Such approach has been introduced and applied in numerous references reviewed in 
Introduction. As is shown in Fig. 1, two mutually perpendicular systems of wires oriented 
along the edges of the plate overlap. Several methods of design of such overlapping 
systems could be suggested but these details are outside the scope of this paper (of 
course, desirable results could also be achieved using a single system of wires oriented 
along either x or y directions).    
 
As was shown by Epps and Chandra on the example of a beam, the effect of a stretched 
wire that can freely slide within the sleeve continuously bonded to the vibrating structure 
is equivalent to an elastic foundation with the stiffness varying along the wire4. In the 
present paper, we formulate the problem of an optimal distribution of SMA wires bonded 
to the plate either continuously or at selected points with the goal of reducing the 
dynamic response to a prescribed level. The design approach considered in the paper 
provides the following advantages: 
 

1. Optimizing the distribution of SMA wires (or attaching the sleeves to the plate at 
appropriately selected points) it is possible to minimize the number of wires and 
maximize their effectiveness, while reducing the reactive force that is applied to 
the supporting structure. As a result the weight of the plate and wires can be 
reduced. 

2. The wires located in the sleeves outside the body of the plate can be activated 
thermally on the “as needed” basis, without significant heat transfer to the plate. 
Accordingly, the reactive force applied to the supporting structure will be 
generated only during time intervals when the plate experiences significant 
vibrations (the SMA wire can remain in the martensite phase at other time 
intervals).  



 
It is noted that the amplitude of forced vibrations of the plate is reduced due to two 
mechanisms:  
 

1. The “elastic foundation” or “elastic supports” provided by stretched SMA wires; 
2. Superelastic hysteresis in a SMA wire when it experiences vibrations. The strain 

range of a typical vibrating structure being relatively small compared to the range 
needed for a complete hysteresis loop in such SMA as Nitinol, it is anticipated 
that the wire can only experience an incomplete hysteresis.  

 
2.1. SMA wires in sleeves continuously bonded to the plate 
 
It is assumed that the plate considered in the analysis is symmetric about its middle plane. 
Accordingly, the equations of motion can be obtained as an extension of the equations for 
a shear deformable plate without an elastic foundation presented in numerous references, 
such as the monograph of Reddy8: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) yyyxyxxxyyyy

xxxxyyyyxxxx

yyyyxxxx

yxIwADDDD

yxIwADDDD

wxcycwyxmtyxqwyxkyxkwAwA

φφφφφ

φφφφφ

φφ

&&

&&

&&&

,,,,,

,,,,,

][,,,],,[,,,,

4466126622

5566126611

21214455

=+−+++

=+−+++

++=++−+++

           (1) 
where the extensional ( ijA ) and bending ( ijD ) stiffness coefficients are defined in the 
customary manner and q  is the applied dynamic pressure. The stiffness terms 5544 , AA  
incorporate the shear correction factor.  The stiffness of the equivalent elastic foundations 
produced by the systems of wires oriented in the y and x directions are denoted by 
( )yxk ,1  and ( )yxk ,2 , respectively, while ( ) ( )xcyc 21 , are equivalent viscous damping 

coefficients of the corresponding systems of wires. The derivation of ( )yxk ,1 , ( )yxk ,2  and 
( ) ( )xcyc 21 ,  is shown below. 

 
The inertial terms include the mass per unit surface area of the plate that can be 
calculated accounting for the weight of sleeves and wires and using the analogy to the 
smeared stiffeners technique: 
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where wp ρρ , and sρ denote the mass density of the plate, wire and sleeve materials, 
respectively, h is the thickness of the plate, and ( )xll xx =  and ( )yll yy = are spacings of 
the systems of wires oriented in the y and x directions, respectively (see Fig. 1).  The 
cross sectional areas of the wires oriented in the y and x directions and the cross sectional 
areas of the sleeves encompassing these wires are denoted by syxy AAA ,, and sxA .   



 
The rotational inertia can also be evaluated “smearing” the wires in sleeves over the 
surface of the plate, so that  
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In (3), the integration is conducted through the thickness of the plate, 
while sxxsyy IIII ,,, denote the moments of inertia of respective wires and sleeves about 
the middle plane of the plate. 
 
The damping coefficient of a system of wires can be determined in terms of the 
coefficient of a single wire wC .  Then the smeared damping of the systems of wires in the 
x and y direction is 
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where wxC  and wyC represent damping produced in a single wire oriented in the x and y 
directions, respectively. 
 
In the areas of the plate where the distance between the wires is large smearing the 
inertial and damping effects may become inaccurate so that each wire has to be accounted 
for individually. This can be accomplished by replacing the spacing in (2), (3) and (4) 

with a Dirac delta function, so that ( ) ( )j
y

i
x

yy
l

xx
l

−→−→ δδ 1,1 , ix  and jy being the 

coordinates of the corresponding wire. 
 
The stiffness of the foundation modeling the effect of a system of wires is now derived 
expanding the solution for a single wire by Epps and Chandra4. The bending stiffness of 
the wire could be accounted for but it is negligible in realistic design applications.  The 
bending moment acting at a cross section ξ=x of a wire oriented in the x-direction, 
stretched by a tensile forceT  and subject to a concentrated force Q as shown in Fig. 2 is 
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The negligible bending stiffness of the wire implies that this moment is equal to zero. 
Accordingly, the deflections of the wire at the point of application of the force is 
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The stiffness of the foundation produced by the systems of wires oriented in the x-
direction is now available using the smearing technique:  
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By analogy, 
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In the regions of the plate with sparsely located wires, the corresponding stiffness terms 
can be adjusted replacing the spacing with the Dirac delta function as explained above. 
The evaluation of damping in a wire as a result of incomplete superelastic hysteresis is 
discussed in par. 2.2.  
 
Note that for practical manufacturing reasons it may be more convenient to bond the 
sleeves to the plate at some distance from the boundaries supporting only its central 
section where vibrations are maximum. In this case the boundaries of the region of the 
plate supported by prestressed wires are 2121 , bybaxa <<<< as reflected in Fig. 3. This 
may introduce a limited concentration of inertial contributions of wires and sleeves at the 
boundary of the supported region, while the counter-pressure produced by wires is absent 
outside this region. However, the system of wires with sleeves being much lighter than 
the supported plate, the correction to the inertial term can be disregarded, if the supported 
region is extended close to the edges of the plate. 
 
The elastic foundation provided by SMA wires does not affect the boundary conditions of 
the plate. Accordingly, if the edges of the plate are supported by stringers that posses 
infinite bending and axial stiffness and a negligible torsional stiffness, the corresponding 
conditions are 
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It is evident that conditions (9) are identically satisfied by the solution in the form 
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The substitution of (10) into (1) where the applied pressure is represented 

by ∑=
nm

mn t
b
yn

a
xmqq

,

sinsinsin ωππ ,ω  being a frequency of the driving pressure and the 

application of the Galerkin procedure yields a system of coupled algebraic equations with 
respect to the amplitudes of the terms in series (10): 
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where the coefficients are 
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where 
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Other similar functions are defined by analogy with those in (13). 
 
The integrals that appear in (12), including rsmnK , can be evaluated using a symbolic math 
program, such as Mathematica. In case where the frequency of the driving pressure is 
close to the fundamental frequency of the plate so that the analysis can adequately be 



conducted using a one-degree of freedom approximation, the integrals rsmnK  are evaluated 
in terms of sine and cosine integral functions. For example, if 1== mr  
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The evaluation of integrals rsmnC  does not present difficulties if the equivalent damping is 
determined as shown in par. 2.2.  Other integrals in (12) are also easy to calculate. 
 
A relatively simple approximate solution can be obtained by the Rayleigh-Ritz method. 
Such solution may lead to approximate expressions for the amplitudes of motion that are 
convenient for a qualitative analysis of the effect of SMA wires. An example of the 
Rayleigh-Ritz solution for an isotropic beam supported by a system of wires oriented in 
the axial direction is shown in the Appendix (to be added to the final version of the 
paper). 
 
2.2. Equivalent viscous damping for a SMA wire 
 
The equivalent viscous damping of a system of SMA wires reflects the dissipation of 
energy due to a complete or partial phase transformation of the wire material during 
vibrations. Representative hysteresis loops of a superelastic SMA material are shown in 
Figs. 4a,b. Note that a typical strain range corresponding to a complete hysteresis is of an 
order of several percent, i.e. it requires the motion with exceedingly large amplitudes that 
are not encountered in structural applications involving composite plates. Therefore, it is 
anticipated that the wire will experience a partial transformation during vibrations 
corresponding to the range of strain εΔ2  as shown in Fig. 5.  This section illustrates the 
evaluation of an equivalent viscous damping for a representative SMA wire with a 
prescribed strain range during a cycle of motion.  
 
A wire in the sleeve that is continuously bonded to the plate is shown in Fig. 3. This 
section illustrates the computation of damping produced by a system of wires parallel to 
the y-axis, i.e. ( )xc2  since the contribution to damping of wires oriented in the x-
direction is found through the analogous procedure. 
 
The process described here is iterational, i.e. the deflections of the vibrating plate are 
assumed known from the previous iteration. In the case of the first iteration it is possible 
to determine deflections from the solution neglecting the effect of damping. At any 



iteration the motion of a wire located at xx = is given by ( )∑=
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The energy dissipated in the wire during the cycle can be evaluated from the incomplete 
superelastic hysteresis loop (inner loop) similar to that shown in Fig. 5 using the range of 
strain specified in the previous iteration. This range is immediately available from  
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where the prime identifies the amplitude values of the corresponding terms obtained in 
the previous iteration and the factor 2 in front of the square brackets refers to the range, 
rather than the amplitude value of the strain.   
 
Given static tension in the wire, the pre-strain sε is immediately available. Subsequently, 
the area enclosed within the inner hysteresis loop limited by the strains 

εεεεεε Δ−=Δ+= ss minmax , can be found as  
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where the integration is conducted over the volume of wire wV . This area represents the 
amount of energy dissipated by the wire during a cycle of motion. Note that a relatively 
simple method of calculation of the energy dissipated during a cycle of motion 
corresponding to an incomplete transformation based on the complex modulus approach 
was suggested by Gandhi and Wolons9.  
 
Let the wire be replaced with a continuous equivalent viscous damper with the damping 
coefficient wyC . The energy dissipated in such damper during one cycle of motion would 
be10 
 

( ) ( ) ( ) dt
a
xi

a
xmtWtWCbdydtyxwCU

nm ni
inmnwy

b

wyd
ππω

π
ω

π

sinsin
4

,
2
1

2

0 , ,

2

0 0

2 ∫ ∑∑∫ ∫ ′′==′Δ &&&  

(17)  
The requirement dd UU ′Δ=Δ results in the expression for the damping coefficient of the 
wire. The hysteresis damping in the wires modeled by smeared or discrete stiffeners can 
subsequently be determined from (4).  Note that the units of wyC found from this 

approach are 2
*

m
sN . This is in agreement with the units in the corresponding equation 

(1).   
 
 2.3. SMA wires in sleeves connected to the plate at discrete points 
 



An alternative approach to design can employ SMA wires in the sleeves, or even without 
sleeves, connected to the plate at a number of points, rather than along a continuous line. 
For example, the concentrated force transmitted from the wire to the plate at the 
attachment points can be found for the cases shown in Figs. 6 and 7.  
 
It is easily shown that the reaction of a wire attached at the mid-point (Fig. 6) and 
oriented in the x-direction is given by  
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The forces transmitted to the plate by a wire attached at three symmetric points (Fig. 7) 
are 
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Therefore, each force can be represented as a linear function of displacements of the 
points of connection of the sleeve (wire) to the plate.  Note that it is assumed that the 
wires are sufficiently stretched so that their bending between the points of connection to 
the plate during vibrations can be disregarded.  
 
The elastic reactions of SMA wires can now be represented in terms of functions of 
deflections of the connection points, so that the reaction at a point ( )ji yx ,  supported by 
wires in both x and y directions is 
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where the subscripts identify the points of wire connection to the plate and the 
coefficients ija are easily available.  
 
Collecting the reactions of SMA wires at all connection points the overall reaction of the 
system of wires can be represented by 
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where ijk are coefficients dependent on the prestress of wires and the location of the 
connection points. 



 
The Galerkin procedure applied to the equations of motion yields the following 
coefficient at the corresponding term in (11): 
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The energy dissipated due to damping in a SMA wire experiencing vibrations with the 
strain range equal to εΔ2 is evaluated as explained above (see eqn. 16).  The energy 
dissipated due to an equivalent viscous damping is determined using the velocities of the 
wire at the connection points. For example, for the wire oriented along xx = and 
connected at N  points ( )Nkyyxx k ,...2,1, === the energy dissipation due to an 
equivalent system of viscous damping elements at these points is calculated from 
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Equating the energy dissipation given by (16) to that according to (23) it is possible to 
evaluate the equivalent viscous damping.  The damping pressure applied at all connection 
points can now be written in the form similar to (21), i.e. 
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In (24), is ijc′ a damping coefficient accounting for equivalent viscous damping produced 
by all wires connected to the plate at the point ji yyxx == , .  
 
The term reflecting viscous damping in equations of motion (11) becomes 
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The inertial terms in equations of motion must reflect the fact that wires are connected at 
a limited number of points ( )ji yx , . The contribution of the wires in sleeves to rotational 
inertias can be neglected. If the mass of wires and sleeves at the point ( )ji yx ,  is ijm , the 
mass per unit surface area is 
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Accordingly, the corresponding coefficient in (11) is 
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Note that if the plate is thin all previous derivations concerning the stiffness and damping 
contributions of SMA remain unchanged. The equation of motion becomes 
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The deflection represented by the first series (10) satisfies boundary conditions for a 
simply supported plate. Upon the substitution of the deflection into (28) and the 
application of the Galerkin procedure the equation of motion is 
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where the coefficients rsmnrsmnrsmn KCM ,, and ( )tqrsmn are not altered compared to the case 
of a shear deformable plate. The coefficient reflecting the stiffness of the plate is 
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3. Numerical examples 
 
The illustration of the effectiveness of the proposed method was considered on the 
example of a composite plate supported at the center by two mutually perpendicular 
SMA wires, each of them parallel to a pair of plate edges. In Figs. 8-10 the cross-ply 
symmetrically laminated plate was manufactured from AS/3501 graphite epoxy. The 
example in Fig. 11 is shown for an aluminum Al 2024 plate.  The estimated force in the 
wires was based on the recovery stress of 220MPa recorded by Cross for nitinol11. In case 
of a 5mm wire diameter, the recovery force in the wire is equal to kNT 32.4= . This 
estimate determined the range of recovery forces considered in the following examples. 
The plates considered in examples were simply supported and subject to a harmonic 
pressure distributed over the surface according to the fundamental mode of vibrations.  
 
The following figures illustrate relationships between a nondimensional frequency 
calculated as a ratio of the driving frequency to the fundamental frequency of the plate 
without wires and a reduction in the amplitude of motion, i.e. a ratio of the amplitude of 
the plate with SMA wirers to the amplitude of the same plate without such wires. As 
follows from Figs. 8 and 9, it is possible to significantly reduce the amplitude of motion 
of AS/3501 plates using SMA wires. The maximum reduction was achieved at the 



fundamental frequency. At lower driving frequencies the effectiveness of the method was 
reduced but it was still significant even as the driving frequency dropped to 75% of the 
fundamental frequency value. At higher driving frequencies, the presence of SMA wires 
that support the center of the plate becomes counterproductive due to the resonance of the 
plate-wire system whose fundamental frequency is higher than the counterpart of the 
plate without wires.  Predictably, a larger recovery force in SMA wires increases their 
effect on the amplitude of vibrations. A thinner plate (Fig. 9) is more affected by the 
presence of wires than a thicker and stiffer counterpart (Fig. 8), even if the recovery force 
generated in the wires supporting the former plate is smaller.    
 
The effect of the size of the plate on the effectiveness of SMA wires is depicted in Fig. 
10. Predictably, larger plates that are relatively less stiff are affected by SMA wires to a 
larger degree than their otherwise identical but smaller counterparts. Finally, the results 
for aluminum plates shown in Fig. 11 confirm all conclusions previously discussed in 
regards to Figs. 8 and 9.   
 
4. Conclusions 
   
The paper presents a methodology of the dynamic analysis of composite and isotropic 
plates supported by functionally graded SMA wires embedded in sleeves. The solution is 
obtained for shear deformable plates using the first-order shear deformation theory and 
for thin plates by the classical plate theory. Two designs of functionally graded SMA 
reinforcements are considered, including wires in sleeves that are continuously bonded to 
the surface of the plate and wires attached to the plate at selected points.  In the first 
method, the spacing of wires can be nonuniform to achieve maximum effectiveness for 
the prescribed amount of SMA. Similarly, in the second case, the points of attachment of 
SMA wires to the plate can be chosen to maximize their effect. 
 
SMA wires considered in the paper are prestressed through the phase transformation. It is 
assumed that they operate in the austenitic phase. Accordingly, SMA wires reduce the 
amplitude of forced vibrations through two mechanisms: (1) resistance to deflections of 
the structure, i.e. acting similar to an elastic foundation; (2) dissipation of energy as a 
result of the hysteresis. Although in a realistic range of strain amplitudes SMA wires 
vibrating with the plate experience an incomplete hysteresis, the dissipation of energy 
may be significant enough to be included in the analysis. 
 
Numerical examples presented in the paper confirm that strategically placed SMA wires 
supporting composite and isotropic plates can serve as an effective tool for the reduction 
of amplitudes of forced vibrations. The wires do not reduce the amplitude of motion for 
an arbitrary value of the driving frequency. Instead, they effectively “shift” the resonance 
frequencies of the plate to larger values. Therefore, they should be used selectively, only 
in applications where the spectrum of driving frequencies is known in advance.    
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Fig. 1. SMA wires in sleeves bonded with a variable spacing providing a higher support 
at the central part of the plate. A detail of the cross section with a SMA wire free to slide 
along the sleeve is also shown. 
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Fig. 2. SMA wire subject to a concentrated force Q at x=ξ. 
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Fig. 3. Plate supported by SMA wires in sleeves within the 
region 2121 , bybaxa <<<< . Solid lines identify wires in the region supported by the 
sleeves. Broken lines are wires in the unsupported regions.  
 
 
 



 
 
Fig. 4a. A typical hysteresis loop of a FlexinolTM wire (From: Zak AJ, Cartmell MP, 
Ostachowicz WM and Wiercigroch M, “One-dimensional shape memory alloy models 
for use with reinforced composite structures,” Smart Materials and Structures, 12, 338-
346, 2003). 
 

 
 
 
Fig. 4b. A typical hysteresis loop of a NiTi SMA (From: Seelecke S., Heintze O, Masuda, 
A, “Simulation of earthquake-induced structural vibrations in systems with SMA 
damping elements,” Proc. SPIE Smart Structures and Materials, 2002, Vol. 4697, San 
Diego, 2002). 
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Fig. 5. Dissipation of energy in a prestressed SMA wire vibrating with a prescribed strain 
range (the corresponding inner hysteresis loop is clearly identified). The energy 
dissipated per cycle corresponds to the area of the inner loop. The range of strains being 
prescribed, the area of the loop remains stable during oscillations.  
 
Modified figure from: Saadat S, Salichs, J, Noori M, Hou Z, Davoodi H, Bar-On I, 
Suzuki Y, Masuda A, “An overview of vibration and seismic applications of NiTi shape 
memory alloy,” Smart Materials and Structures, 11, 218-229, 2002.   
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Fig. 6. Prestressed SMA wire connected to the plate at a single central point. The lower 
figure illustrates a deformed shape of the wire (bending of wire between the supports and 



the mid-point is neglected due to prestress and a large difference between its natural 
frequency and the frequency of the driving load).  
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Fig. 7. Deformed shape of a SMA wire connected to the plate at three points.   
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Fig. 8. Effect of SMA wires on the amplitude of vibrations of a square AS/3501 
plate ( )mmhmba 0.4,0.1 === .  Case 1: T=3.0kN, case 2: T=6.0kN, case 3: T=9.0kN. 
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Fig. 9. Effect of SMA wires on the amplitude of vibrations of a square AS/3501 
plate ( )mmhmba 0.2,0.1 === .  Case 1: T=1.0kN, case 2: T=2.0kN, case 3: T=3.0kN. 
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Fig. 10. Effect of the size on the amplitudes of vibrations of a 4mm thick square AS/3501 
plate supported with SMA wires with the recovery force equal to 3kN. Case 1: 
a=b=0.75m, case 2 a=b=1.0m, case 3: a=b=1.25m. 
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Fig. 11. Effect of SMA wires on the amplitude of vibrations of a square aluminum (Al 
2024) plate ( )mmhmba 0.4,0.1 === .  Case 1: T=2.0kN, case 2: T=4.0kN, case 3: 
T=6.0kN. 
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