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1. Introduction

Shape memory alloy (SMA) elements have been considered for control of vibrations as
well as for the enhancement of stability of composite and metallic plates by numerous
investigators. The early work in this direction has been reviewed by the author'. In
general, a reduction of vibration amplitudes using SMA can be achieved through two
mechanisms. SMA fibers or wires prestressed through a phase transformation can apply
tensile forces to the structure increasing its effective stiffness. If SMA elements operate
in the superelastic regime, their large hysteresis loop corresponding to a significant
energy dissipation per cycle of motion can also be employed to reduce dynamic
deformations.

The method used to reduce dynamic response or enhance stability is often based on
embedding SMA fibers within the structure. Some of the studies concerned with
embedding fibers bonded to the composite substrate are referred to in'; a comprehensive
review of this subject is outside the scope of this paper. Investigations of the effect of
SMA wires embedded in sleeves preventing direct contact between SMA and the
substrate were initiated by Baz and his collaborators. For example, multiple dynamic
problems of composite structures reinforced with such wires in sleeves were considered
in*’. Embedding SMA wires in sleeves provides a number of advantages, including an
ease of activation and a reduction of the effect of temperature changes in the wire on the
adjacent composite structure. A further improvement can be achieved by placing the
sleeves outside the structure, i.e. bonding them to the surface, rather than embedding
within the structure’. Externally bonded to the structure sleeves with SMA wires serve as
an equivalent elastic foundation resisting deflections of the structure.

As indicated above, the dissipation of energy in a superelastic SMA wire results in a
reduction of the dynamic response. The hysteresis loop of SMA is very large but the
complete hysteresis can only be achieved if the strain reaches several percents. Although
such large hysteresis loop is unlikely to be useful in plates and shells, dampers utilizing
the complete superelastic hysteresis have been considered for civil engineering
applications’ and in spring-mass isolation systems’. In the present problem, superelastic
wires undergo an incomplete hysteresis (inner hysteresis loop). Accordingly, when it
comes to the control of forced vibrations, the dissipation of energy may be a secondary
effect compared to the resistance of stretched wires to deflections of the structure.
Nevertheless, the following solution can account for both phenomena.

The solution presented in the paper refers to a shear deformable composite plate analyzed
by a first-order theory. The particular case of a thin plate treated by the classical plate
theory is also presented.

2. Analysis

Consider a shear deformable rectangular plate with SMA wires in sleeves bonded to one
of the surfaces as shown in Fig. 1. SMA wires can freely slide along the sleeves, i.e.
friction is negligible. One of the advantages of such design compared to embedding SMA



fibers in sleeves within the structure is related to the ease of manufacture. In addition,
external sleeves do not compromise the integrity of the composite structure as may be the
case if they were embedded. The issues of maintenance and joining SMA wires to
supports are also easier solved in the configuration considered here. Bonding the sleeves
at selected locations to the structure results in a selective transfer of the reactions as
described below in the paper optimizing the effect of SMA wires on the response. It is
assumed that the stiffness of the sleeve material is small, i.e. the sleeves do not affect the
matrix of stiffnesses of the plate. If necessary, this requirement can be enforced by
cutting the sleeves at periodic, closely spaced intervals. In the unlikely case where it is
necessary to account for the contribution of the sleeves, the method enabling us to
incorporate their stiffness in the analysis can be based on standard discrete stiffener
method or in case of closely spaced sleeves, on the smeared stiffeners technique’. The
contribution of the sleeves and SMA wires to the inertial coefficients is included in the
present solution.

Prior to the installation, a SMA wire is cooled so that the material is transformed into
martensite and stretched to a required length. Subsequently, it is inserted in the sleeves
and constrained by joining it to the supporting structure. As temperature returns to the
operational level corresponding to the austenitic phase of SMA, the wire is in tension as a
result of constrained recovery, while the supporting structure resists the reactive forces.
Such approach has been introduced and applied in numerous references reviewed in
Introduction. As is shown in Fig. 1, two mutually perpendicular systems of wires oriented
along the edges of the plate overlap. Several methods of design of such overlapping
systems could be suggested but these details are outside the scope of this paper (of
course, desirable results could also be achieved using a single system of wires oriented
along either x or y directions).

As was shown by Epps and Chandra on the example of a beam, the effect of a stretched
wire that can freely slide within the sleeve continuously bonded to the vibrating structure
is equivalent to an elastic foundation with the stiffness varying along the wire*. In the
present paper, we formulate the problem of an optimal distribution of SMA wires bonded
to the plate either continuously or at selected points with the goal of reducing the
dynamic response to a prescribed level. The design approach considered in the paper
provides the following advantages:

1. Optimizing the distribution of SMA wires (or attaching the sleeves to the plate at
appropriately selected points) it is possible to minimize the number of wires and
maximize their effectiveness, while reducing the reactive force that is applied to
the supporting structure. As a result the weight of the plate and wires can be
reduced.

2. The wires located in the sleeves outside the body of the plate can be activated
thermally on the “as needed” basis, without significant heat transfer to the plate.
Accordingly, the reactive force applied to the supporting structure will be
generated only during time intervals when the plate experiences significant
vibrations (the SMA wire can remain in the martensite phase at other time
intervals).



It is noted that the amplitude of forced vibrations of the plate is reduced due to two
mechanisms:

1. The “elastic foundation” or “elastic supports” provided by stretched SMA wires;
Superelastic hysteresis in a SMA wire when it experiences vibrations. The strain
range of a typical vibrating structure being relatively small compared to the range
needed for a complete hysteresis loop in such SMA as Nitinol, it is anticipated
that the wire can only experience an incomplete hysteresis.

2.1. SMA wires in sleeves continuously bonded to the plate

It is assumed that the plate considered in the analysis is symmetric about its middle plane.
Accordingly, the equations of motion can be obtained as an extension of the equations for
a shear deformable plate without an elastic foundation presented in numerous references,
such as the monograph of Reddy®:
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where the extensional ( A, ) and bending ( D; ) stiffness coefficients are defined in the
customary manner and  is the applied dynamic pressure. The stiffness terms A,,, A;

incorporate the shear correction factor. The stiffness of the equivalent elastic foundations
produced by the systems of wires oriented in the y and x directions are denoted by
k,(x,y) andk,(x, y), respectively, while (y), c,(x)are equivalent viscous damping

coefficients of the corresponding systems of wires. The derivation ofk,(x,y), k,(x,y) and
¢,(y), ¢,(x) is shown below.

The inertial terms include the mass per unit surface area of the plate that can be
calculated accounting for the weight of sleeves and wires and using the analogy to the
smeared stiffeners technique:
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where p,, o, and pdenote the mass density of the plate, wire and sleeve materials,
respectively, his the thickness of the plate, and |, =1 (x) and l, = Iy(y) are spacings of

the systems of wires oriented in the y and x directions, respectively (see Fig. 1). The
cross sectional areas of the wires oriented in the y and x directions and the cross sectional
areas of the sleeves encompassing these wires are denoted by A, A, A jand A, .



The rotational inertia can also be evaluated “smearing” the wires in sleeves over the
surface of the plate, so that
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In (3), the integration is conducted through the thickness of the plate,
whilel, Iy, 1, |, denote the moments of inertia of respective wires and sleeves about

the middle plane of the plate.

The damping coefficient of a system of wires can be determined in terms of the
coefficient of a single wireC,,. Then the smeared damping of the systems of wires in the

x and y direction is
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whereC,, and C,, represent damping produced in a single wire oriented in the x and y

directions, respectively.

In the areas of the plate where the distance between the wires is large smearing the
inertial and damping effects may become inaccurate so that each wire has to be accounted
for individually. This can be accomplished by replacing the spacing in (2), (3) and (4)
with a Dirac delta function, so ‘[hatll — 5(x=x), Il - §(y -, ), X% and Yy, being the

X y
coordinates of the corresponding wire.

The stiffness of the foundation modeling the effect of a system of wires is now derived
expanding the solution for a single wire by Epps and Chandra®. The bending stiffness of
the wire could be accounted for but it is negligible in realistic design applications. The
bending moment acting at a cross section X = & of a wire oriented in the x-direction,

stretched by a tensile force T and subject to a concentrated force Qas shown in Fig. 2 is
a j—
M :¥X—TW—[Q(X—§)]X>§ (5)

The negligible bending stiffness of the wire implies that this moment is equal to zero.
Accordingly, the deflections of the wire at the point of application of the force is

vv(x=§)=¥ (6)



The stiffness of the foundation produced by the systems of wires oriented in the x-
direction is now available using the smearing technique:
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In the regions of the plate with sparsely located wires, the corresponding stiffness terms
can be adjusted replacing the spacing with the Dirac delta function as explained above.
The evaluation of damping in a wire as a result of incomplete superelastic hysteresis is
discussed in par. 2.2.

Note that for practical manufacturing reasons it may be more convenient to bond the
sleeves to the plate at some distance from the boundaries supporting only its central
section where vibrations are maximum. In this case the boundaries of the region of the
plate supported by prestressed wires are @, < X< a,, b <y <b, as reflected in Fig. 3. This

may introduce a limited concentration of inertial contributions of wires and sleeves at the
boundary of the supported region, while the counter-pressure produced by wires is absent
outside this region. However, the system of wires with sleeves being much lighter than
the supported plate, the correction to the inertial term can be disregarded, if the supported
region is extended close to the edges of the plate.

The elastic foundation provided by SMA wires does not affect the boundary conditions of
the plate. Accordingly, if the edges of the plate are supported by stringers that posses
infinite bending and axial stiffness and a negligible torsional stiffness, the corresponding
conditions are

Xx=0, x=a:
w=0, y, =0, M, =D, (W,+¢,,)+D,(w, +,,)=0 o
y=0, y=>b:

W=O, l//x=0, My=D12(W9xx+¢x9x)+D22(W’W+¢y’y)=0

It is evident that conditions (9) are identically satisfied by the solution in the form
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The substitution of (10) into (1) where the applied pressure is represented

byq= z O sin%sin%sin ot ,w being a frequency of the driving pressure and the
a

application of the Galerkin procedure yields a system of coupled algebraic equations with
respect to the amplitudes of the terms in series (10):
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where the coefficients are
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Other similar functions are defined by analogy with those in (13).

The integrals that appear in (12), including K

rsmn >

(12)

(13)

can be evaluated using a symbolic math

program, such as Mathematica. In case where the frequency of the driving pressure is
close to the fundamental frequency of the plate so that the analysis can adequately be



conducted using a one-degree of freedom approximation, the integrals K ., are evaluated

rsmn

in terms of sine and cosine integral functions. For example, if r = m=1
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The evaluation of integrals C, ., does not present difficulties if the equivalent damping is
determined as shown in par. 2.2. Other integrals in (12) are also easy to calculate.

A relatively simple approximate solution can be obtained by the Rayleigh-Ritz method.
Such solution may lead to approximate expressions for the amplitudes of motion that are
convenient for a qualitative analysis of the effect of SMA wires. An example of the
Rayleigh-Ritz solution for an isotropic beam supported by a system of wires oriented in
the axial direction is shown in the Appendix (to be added to the final version of the

paper).

2.2. Equivalent viscous damping for a SMA wire

The equivalent viscous damping of a system of SMA wires reflects the dissipation of
energy due to a complete or partial phase transformation of the wire material during
vibrations. Representative hysteresis loops of a superelastic SMA material are shown in
Figs. 4a,b. Note that a typical strain range corresponding to a complete hysteresis is of an
order of several percent, i.e. it requires the motion with exceedingly large amplitudes that
are not encountered in structural applications involving composite plates. Therefore, it is
anticipated that the wire will experience a partial transformation during vibrations
corresponding to the range of strain 2A¢ as shown in Fig. 5. This section illustrates the
evaluation of an equivalent viscous damping for a representative SMA wire with a
prescribed strain range during a cycle of motion.

A wire in the sleeve that is continuously bonded to the plate is shown in Fig. 3. This
section illustrates the computation of damping produced by a system of wires parallel to
the y-axis, 1.e. C, (X) since the contribution to damping of wires oriented in the x-

direction is found through the analogous procedure.

The process described here is iterational, i.e. the deflections of the vibrating plate are
assumed known from the previous iteration. In the case of the first iteration it is possible
to determine deflections from the solution neglecting the effect of damping. At any
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iteration the motion of a wire located at X = X is given by w= E W, (t)sm s1nT.
a
m,n

The energy dissipated in the wire during the cycle can be evaluated from the incomplete

superelastic hysteresis loop (inner loop) similar to that shown in Fig. 5 using the range of
strain specified in the previous iteration. This range is immediately available from

2A£=2{ J. | ,ydy} ZZZ(nbﬂj W, W/ sm%sm% (15)
n m i a a
where the prime identifies the amplitude values of the corresponding terms obtained in

the previous iteration and the factor 2 in front of the square brackets refers to the range,
rather than the amplitude value of the strain.

Given static tension in the wire, the pre-strain £, 1s immediately available. Subsequently,

the area enclosed within the inner hysteresis loop limited by the strains
E.n =EsHAE, € =&, — A€ can be found as

U, = [§ole)deav, (16)

where the integration is conducted over the volume of wire V,,. This area represents the
amount of energy dissipated by the wire during a cycle of motion. Note that a relatively
simple method of calculation of the energy dissipated during a cycle of motion
corresponding to an incomplete transformation based on the complex modulus approach
was suggested by Gandhi and Wolons’.

Let the wire be replaced with a continuous equivalent viscous damper with the damping
coefficientC,, . The energy dissipated in such damper during one cycle of motion would

bel()

2%,b .
:_ J- J-C W? X ydydt ——CWy I zz s1n mzxsin%dt

(17)

The requirement AU, = AU results in the expression for the damping coefficient of the

wire. The hysteresis damping in the wires modeled by smeared or discrete stiffeners can
subsequently be determined from (4). Note that the units of C,, found from this

approach are N * sz . This is in agreement with the units in the corresponding equation
(D.

2.3. SMA wires in sleeves connected to the plate at discrete points




An alternative approach to design can employ SMA wires in the sleeves, or even without
sleeves, connected to the plate at a number of points, rather than along a continuous line.
For example, the concentrated force transmitted from the wire to the plate at the
attachment points can be found for the cases shown in Figs. 6 and 7.

It is easily shown that the reaction of a wire attached at the mid-point (Fig. 6) and
oriented in the x-direction is given by

2
w w
Ry =2T|,[1+4 —| —1|=4T— 18

: [aj a (18)

The forces transmitted to the plate by a wire attached at three symmetric points (Fig. 7)
are

R:v3 z4TM
a

a a

(19)

Therefore, each force can be represented as a linear function of displacements of the
points of connection of the sleeve (wire) to the plate. Note that it is assumed that the
wires are sufficiently stretched so that their bending between the points of connection to
the plate during vibrations can be disregarded.

The elastic reactions of SMA wires can now be represented in terms of functions of
deflections of the connection points, so that the reaction at a point ()(i Y ) supported by

wires in both x and y directions is

R,(%. Yi,t)=a,wlx, y;,t)+ 8 WX, ¥yt + 8 WX, Yot +

85y WO5 Yyt 8 WXL Y ot)

(20)
where the subscripts identify the points of wire connection to the plate and the
coefficients @, are easily available.

Collecting the reactions of SMA wires at all connection points the overall reaction of the
system of wires can be represented by

pw:Zkij\N(xiayj’t) (21)
1]

where k; are coefficients dependent on the prestress of wires and the location of the

connection points.



The Galerkin procedure applied to the equations of motion yields the following
coefficient at the corresponding term in (11):

Zkrs o (% )Sa (V) (22)

The energy dissipated due to damping in a SMA wire experiencing vibrations with the
strain range equal to 2A¢ is evaluated as explained above (see eqn. 16). The energy
dissipated due to an equivalent viscous damping is determined using the velocities of the
wire at the connection points. For example, for the wire oriented along X = X and
connected at N points X=X, y=Y, (k =12,...N )the energy dissipation due to an

equivalent system of viscous damping elements at these points is calculated from

o
AU =—HC S(y =y W (%, y,t)dydt =
(23)
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Equating the energy dissipation given by (16) to that according to (23) it is possible to
evaluate the equivalent viscous damping. The damping pressure applied at all connection
points can now be written in the form similar to (21), i.e.

pa = 2. Wlx.;.t) @4
1]

In (24), is Ci'j a damping coefficient accounting for equivalent viscous damping produced

by all wires connected to the plate at the point X=X, y=Y;.

The term reflecting viscous damping in equations of motion (11) becomes

= zcrs rm s) (25)

rsrm ab

The inertial terms in equations of motion must reflect the fact that wires are connected at
a limited number of points (Xi )Y ) The contribution of the wires in sleeves to rotational

inertias can be neglected. If the mass of wires and sleeves at the point (Xi ,Yi ) is m;, the

mass per unit surface area is

m(x y)= pyh+ 2 m;S(x~ x)o(y-y,)=p,h+—" (26)



Accordingly, the corresponding coefficient in (11) is
4
I\/lrsmn :pph+£zmjsrm(xi )Ssn(yj) (27)
ij
Note that if the plate is thin all previous derivations concerning the stiffness and damping

contributions of SMA remain unchanged. The equation of motion becomes

D) W, 5o +2(Dy5 + 2D W, o0 + Do W, +M(x, YW+ [, (y) + €, (X)W

+ [kl (X, y) +k, (X, y)]W =q(x y,t) (28)

The deflection represented by the first series (10) satisfies boundary conditions for a
simply supported plate. Upon the substitution of the deflection into (28) and the
application of the Galerkin procedure the equation of motion is

Z [M I’STII"I\/\./TS + CrsmnWrs + KI’SlTn\/\/I’S]-l_ anWmn = z qrsmn (t) (29)

where the coefficients M 4,,, C.qn> Kigmnand O,q, (t)are not altered compared to the case
of a shear deformable plate. The coefficient reflecting the stiffness of the plate is

4 2 2 4
an = Dn(%j + 2(D12 + 2D66 )(Mj [n_ﬂj + Dzz (n_ﬂj (30)
a a
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3. Numerical examples

The illustration of the effectiveness of the proposed method was considered on the
example of a composite plate supported at the center by two mutually perpendicular
SMA wires, each of them parallel to a pair of plate edges. In Figs. 8-10 the cross-ply
symmetrically laminated plate was manufactured from AS/3501 graphite epoxy. The
example in Fig. 11 is shown for an aluminum Al 2024 plate. The estimated force in the
wires was based on the recovery stress of 220MPa recorded by Cross for nitinol''. In case
of a Smm wire diameter, the recovery force in the wire is equal toT = 4.32kN . This
estimate determined the range of recovery forces considered in the following examples.
The plates considered in examples were simply supported and subject to a harmonic
pressure distributed over the surface according to the fundamental mode of vibrations.

The following figures illustrate relationships between a nondimensional frequency
calculated as a ratio of the driving frequency to the fundamental frequency of the plate
without wires and a reduction in the amplitude of motion, i.e. a ratio of the amplitude of
the plate with SMA wirers to the amplitude of the same plate without such wires. As
follows from Figs. 8 and 9, it is possible to significantly reduce the amplitude of motion
of AS/3501 plates using SMA wires. The maximum reduction was achieved at the



fundamental frequency. At lower driving frequencies the effectiveness of the method was
reduced but it was still significant even as the driving frequency dropped to 75% of the
fundamental frequency value. At higher driving frequencies, the presence of SMA wires
that support the center of the plate becomes counterproductive due to the resonance of the
plate-wire system whose fundamental frequency is higher than the counterpart of the
plate without wires. Predictably, a larger recovery force in SMA wires increases their
effect on the amplitude of vibrations. A thinner plate (Fig. 9) is more affected by the
presence of wires than a thicker and stiffer counterpart (Fig. 8), even if the recovery force
generated in the wires supporting the former plate is smaller.

The effect of the size of the plate on the effectiveness of SMA wires is depicted in Fig.
10. Predictably, larger plates that are relatively less stiff are affected by SMA wires to a
larger degree than their otherwise identical but smaller counterparts. Finally, the results
for aluminum plates shown in Fig. 11 confirm all conclusions previously discussed in
regards to Figs. 8 and 9.

4. Conclusions

The paper presents a methodology of the dynamic analysis of composite and isotropic
plates supported by functionally graded SMA wires embedded in sleeves. The solution is
obtained for shear deformable plates using the first-order shear deformation theory and
for thin plates by the classical plate theory. Two designs of functionally graded SMA
reinforcements are considered, including wires in sleeves that are continuously bonded to
the surface of the plate and wires attached to the plate at selected points. In the first
method, the spacing of wires can be nonuniform to achieve maximum effectiveness for
the prescribed amount of SMA. Similarly, in the second case, the points of attachment of
SMA wires to the plate can be chosen to maximize their effect.

SMA wires considered in the paper are prestressed through the phase transformation. It is
assumed that they operate in the austenitic phase. Accordingly, SMA wires reduce the
amplitude of forced vibrations through two mechanisms: (1) resistance to deflections of
the structure, i.e. acting similar to an elastic foundation; (2) dissipation of energy as a
result of the hysteresis. Although in a realistic range of strain amplitudes SMA wires
vibrating with the plate experience an incomplete hysteresis, the dissipation of energy
may be significant enough to be included in the analysis.

Numerical examples presented in the paper confirm that strategically placed SMA wires
supporting composite and isotropic plates can serve as an effective tool for the reduction
of amplitudes of forced vibrations. The wires do not reduce the amplitude of motion for
an arbitrary value of the driving frequency. Instead, they effectively “shift” the resonance
frequencies of the plate to larger values. Therefore, they should be used selectively, only
in applications where the spectrum of driving frequencies is known in advance.
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sleeves with SMA wire

Plate

SMA wire sliding within the sleeve
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Fig. 1. SMA wires in sleeves bonded with a variable spacing providing a higher support

at the central part of the plate. A detail of the cross section with a SMA wire free to slide
along the sleeve is also shown.
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Fig. 2. SMA wire subject to a concentrated force Q at x=¢.



Detail (without supporting boundaries):

\ 4

a; \
a < SMA wire

a ‘\Sleeve

A A

A
A

Fig. 3. Plate supported by SMA wires in sleeves within the
region@, < X< a,, b, < y<b,. Solid lines identify wires in the region supported by the
sleeves. Broken lines are wires in the unsupported regions.
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Fig. 4a. A typical hysteresis loop of a Flexinol™ wire (From: Zak AJ, Cartmell MP,
Ostachowicz WM and Wiercigroch M, “One-dimensional shape memory alloy models

for use with reinforced composite structures,” Smart Materials and Structures, 12, 338-
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Fig. 4b. A typical hysteresis loop of a NiTi SMA (From: Seelecke S., Heintze O, Masuda,
A, “Simulation of earthquake-induced structural vibrations in systems with SMA
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Fig. 5. Dissipation of energy in a prestressed SMA wire vibrating with a prescribed strain
range (the corresponding inner hysteresis loop is clearly identified). The energy
dissipated per cycle corresponds to the area of the inner loop. The range of strains being
prescribed, the area of the loop remains stable during oscillations.

Modified figure from: Saadat S, Salichs, J, Noori M, Hou Z, Davoodi H, Bar-On I,
Suzuki Y, Masuda A, “An overview of vibration and seismic applications of NiTi shape
memory alloy,” Smart Materials and Structures, 11, 218-229, 2002.
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Fig. 6. Prestressed SMA wire connected to the plate at a single central point. The lower
figure illustrates a deformed shape of the wire (bending of wire between the supports and




the mid-point is neglected due to prestress and a large difference between its natural
frequency and the frequency of the driving load).
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Fig. 7. Deformed shape of a SMA wire connected to the plate at three points.
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Fig. 8. Effect of SMA wires on the amplitude of vibrations of a square AS/3501
plate (a =b=1.0m h= 4.0mm). Case 1: T=3.0kN, case 2: T=6.0kN, case 3: T=9.0kN.
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Fig. 9. Effect of SMA wires on the amplitude of vibrations of a square AS/3501
plate (a =b=1.0m h= 2.0mm). Case 1: T=1.0kN, case 2: T=2.0kN, case 3: T=3.0kN.



15F

Reduction in amplitude

0.5+

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

Nondim. frequency

Fig. 10. Effect of the size on the amplitudes of vibrations of a 4mm thick square AS/3501
plate supported with SMA wires with the recovery force equal to 3kN. Case 1:
a=b=0.75m, case 2 a=b=1.0m, case 3: a=b=1.25m.
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Fig. 11. Effect of SMA wires on the amplitude of vibrations of a square aluminum (Al
2024) plate(a=b=1.0m, h=4.0mm). Case 1: T=2.0kN, case 2: T=4.0kN, case 3:
T=6.0kN.
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