

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
07 MAR 1990 2 REPORTTYPE 00-03-1990 to 00-03-1990
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
An Opt|mal Parallel Implementation of a Quadratic Transportation £b. GRANT NUMBER
Algorithm

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Thinking Machines Cor por ation,245 First Street,Cambridge,M A,02142 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 10
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

An Optimal Parallel Implementation
of a Quadratic Transportation Algorithm *

Mike McKenna Stavros A. Zenios
Thinking Machines Corporation Decision Sciences Department
245 First Street The Wharton School
Cambridge, MA 02142. University of Pennsylvania,

Philadelphia, PA 19104.
March 7, 1990

* Research partially supported by NSF grants ECS-8718971 and CCR-8811135, AFOSR grant 89-0145

and Thinking Machines Corporation. We would like to acknowledge several useful discussions with Jill
Mesirov.

Abstract

We discuss the implementation of a quadratic transportation algorithm on massively
parallel computer architectures with hypercube communication networks. The imple-
mentation is optimal in the sense that it requires effectively O(™25*2) operations to
perform one iteration of an mp x mp problem using P processors. Peak computing
rates of 3 GFLOPS are achieved by the algorithm on a 64K Connection Machine CM-2.

1 Introduction

We consider in this paper quadratic optimization problems over transportation constraints.
Such problems find applications in logistics, traffic management, and matrix balancing
models in economics and regional planning. The dual, row-action algorithm of Zenios and
Censor [1989] is well suited for implementation on massively parallel computer architectures.
In this report we describe an optimal implementation of this algorithm on a massively
parallel architecture with a hypercube communication network. The implementation is
optimal in the sense that it requires effectively O(™%5"2) operations to perform one iteration
of an mp X mp problem using P processors. Computational experiments on a Connection
Machine CM-2 indicate that the implementation achieves a computing rate of 3 GFLOPS
when solving dense 1024 x 1024 problems on a 64K system.

2 The Quadratic Transportation Algorithm

Let < m > denote the set {1,2,3,...,m}. Denote by ™ the m-dimensional Euclidean
space. A transportation graph is defined as the triplet G = (Vp,Vp,£), where Vo =<
mo >, Vp =< mp > and € C {(¢,7) | i € Vo,j € Vp}. Vo and Vp are the sets of
origin and destination nodes of cardinality mo and mp respectively. £ is the set of n
directed arcs (4,7), with origin node ¢ and destination node j, which belong to the graph,
n < momp. Let also z = (2;;) € R™ be the vector of flows; u = (u;;) € R™ be the vector
of upper bounds on the flows; s = (s;) € R™9, for i € Vo, be the vector of supplies;
d = (d;) € R™P, for j € Vp, be the vector of demands; 7° = (x?) € R™°, for i € Vo, be
the vector of dual prices for origin nodes; 2 = (wf) € R™p, for j € Vp, be the vector of
dual prices for destination nodes; » = (r;;) € R™ be the vector of dual prices for the bound
constraints; § = {j € Vp | (4,7) € £} be the set of destination nodes which have arcs with
origin node ¢, and &; = {i € Vo | (4,j) € £}, the set of origin nodes which have arcs with
destination node j. With this notation we define the quadratic transportation problem as
follows:

Minimize F(z) = Z [%wijz?j + Cs‘jzij] (1)
(i.J)e€
Subject to :
Z Ti; = S84 Vie Vo, (2)
jest
Z: Zy = dj’ VJ € VD’ (3)
:'66’-_

052:,'5

IN

Uijy V(i,j) € €. (4)

where {w;;} and {e;;} are given positive real numbers. The following dual, row-action,
algorithm for this problem was developed in Zenios and Censor [1989], where its asymptotic
convergence was established.

Step 0: (Initialization) Set k « 0. Get 2%, (x9)°, (xP)%, 70 such that:

1 D
2=~ [0 + (0 + (P) o] (5)

Step 1: (Iterative step over constraint set (2)).

1
k k
Pt o [si- D 2, (6)
' Liest L/wij jer Y
1 .
z?j = z?j + I;'Pf y JE 6;+’ . (7)
(@) = (=) -4l (8)
Step 2: (Iterative step over constraint set (3)).
1
Ty iy Ut)
Ziea; Wij ico
k v, %
zij — z“j + ;‘;’; 3 1 € 6;, (10)
@)+ = (x)) -a. (11)
Step 3: (Iterative step over constraint set (4)).
. . k
A?j = mid {rfj, wi;(ui; - z?j)’ —w;;zh (12)
k+1 k A?j
z;; = z;+ U,-;’ (13)
et = k- AL (14)

Step 4: Replace k — k + 1 and return to Step 1.

3 An Optimal Implementation on the Connection Machine

The key to the implementation of the algorithm on the Connection Machine CM-2 hyper-
cube is the configuration of the processing elements into a two-dimensional grid. If the
grid size is larger than the number of processing elements then we configure the machine
into an mg X mp grid of virtual processors (VP), and each physical processing element
performs the work of several virtual processors. The dimension of the grid is set equal to
the number of origin nodes mo rounded up to the nearest integer that is a power of two,

and the other dimension is set equal to the number of destination nodes mp rounded up
in the same fashion. Virtual processors outside the mp x mp grid are disabled and do not
participate in the computations. The memory of virtual processor with grid coordinates
(3,7) is partitioned into the following data fields: (1) Supply and demand, s and d, (2)
dual prices, 72, x0 and r, (3) Upper bound u, (The lower bound [is assumed to be equal
to zero and hence it is treated as a constant.), (4) current iterate z, (5) a scaling factor
scale used to store p, o or intermediate results, and (6) two fields IW and OW hold the

terms > and Z;e;; Tor respectively. The algorithm is executed as follows:

iery 1/w;y

Step 1: A spread-sum operation along the 1l-axis of the grid computes the partial sums
Xiest z{-‘j for each origin node (i.e., each row of the grid). This result is spread

to the scale memory fields of all VP in the same row. A sub-mult operation (i.e.,
an optimized implementation of a(z — b)) is used to compute the scaling factor p
(equation (6)). The scaling factor updates the local field z by addition and the local
field #° by subtraction (equations (7) and (8) respectively).

Step 2: This step is similar to Step 1, with a spread-sum along the 0-axis.

Step 3: A combination of min and max operations computes the mid(.) of equation (9), which
is then used to update the local field z by a mult-add operation (equation (11)) and
local field r (equation (11)).

3.1 The Hypercube Implementation

In this section we describe how Steps 1-3 of the algorithm are implemented to run on P
physical processors of the CM-2 hypercube, so that the execution time is in effect O(292).
To simplify our discussion, assume that mo, mp and VP are powers of two. Let the
vertices of the hypercube be labeled with the integers 0 through P — 1, where vertices i
and j of the cube are connected with a wire when the absolute value of i — j is a power of
two. We initially configure the mo X mp grid of virtual processors so that each physical
processor is assigned to do the work for an —":-‘,-% X mﬁ subgrid of virtual processors. In figure
1 we have mop = 32, mp = 32, P = 16 and each physical processor does the work for an
8 x 8 subgrid of virtual processors.

In our configuration, we lay out the physical processors in a VP x /P two-dimensional
grid. Let P;; be the the physical processor that is in row ¢ and column j of the grid. We
place physical processor P;; at vertex iv/P + j of the cube. In the example of figure 1, the
16 physical processors are configured in a 4 by 4 grid, and each physical processor is placed
at vertex 4i + j of the hypercube. The arcs in figure 2 illustrate how the CM-2 hypercube
connects the VP x VP grid of physical processors.

Most of the operations in Steps 1-3 require no communication between virtual processors.
For these operations, each virtual processor spends O(1) time to work on its local memory,
and each physical processor performs the work of ™42 virtual processors. Therefore the
local operations require O(245*2) time.

The operations that do require commmunications are the spread-sums, where we add the
elements in each row of the virtual grid, and copy the results back to every processor of each
virtual row. Technically, a spread-sum is an operation where a field scale;; is allocated in
each virtual processor, and scale;; = Y "5z, . If the transportation graph is not complete,
then for each missing edge (i,j), 2i; is set to zero before performing the spread-sum. In the
rest of this section, we show how a spread-sum is performed, effectively, in O("2) time.

Let z;;45 denote the value of z that lies at position (a,b) in the subgrid of physical
processor P;j. In figure 1, physical processor P;; holds the values

Zi;,000 Zij 01y L4502y Tij07
Ti5,10, ZTij11y Tij12y ccc Ti527

235,700 ZTij 71y, L4572 v Ti5T7

A spread-sum is performed in three phases. In the first phase, each physical processor
finds the subtotal for each row in its subgrid. For example, in figure 1, each physical
processor performs the following 8 additions:

ZTijoo = Zij00 + Zijo0 + Zijo2 + -+ Zij07
Zij10 = ZTijie + Tiin + 0 Ziji2 + -0+ Zia7
Zijro = 20+ Tijn t+ Zie + e+ B

Once these additions have been performed, each physical processor holds a column vector of
subtotals (the shaded elements in figure 1). Obtaining these subtotals requires O(=952)
time.

Let C;; denote the column of subtotals that lies in physical processor P;;. In the
second phase of the spread-sum, the processors in each physical row i coordinate to perform
efficiently the vector sum SUM; =Ci;0+Ciy +---+ Cym i(7% _1) The resulting vector SUM;

holds the spread-sums for the rows of the virtual grid that are assigned to physical row
t. In figure 1, each vector SUM; would hold the spread-sums for virtual rows 8i through
8i+17.

Now note that the physical processors Py, Pi;, P2, ... of physical row ¢ all lie in a
physical subcube of the machine that spans log,v/P dimensions. (In figure 2, the thick arcs
show how each row of the physical grid spans a two-dimensional subcube.) Let C;;, denote
the kth element in column vector C;;, and let SUM; denote the kth element in column
vector SUM;. Given the log,v/P-dimensional subcube, we use the procedure listed below
to obtain the first log,v/P elements of vector SUM;. (Note that the CM-2 hypercube wires
are bi-directional and can be activated simultaneously.)

Let ¢ = log,VP;
For k = 0 through £ -1 do
(S1) Let each processor P;; send
Cijo along dimension (k + 0) mod £ of the subcube,
Cija along dimension (k + 1) mod £ of the subcube,

Cijt—1 along dimension (k + £ — 1) mod £ of the subcube;

(S2) Let each processor P;; receive
a value tempy along dimension (k + 0) mod £ of the subcube,
a value temp; along dimension (k + 1) mod £ of the subcube,

a value temp,_; along dimension (k + £ — 1) mod ¢ of the subcube;
(S3) For ¢ = 0 through ¢{ -1 do
Let Cijq = Cijq + temp,;

!".-"'
-

Problem || Itns. | VP | Real time | CM time || Real GFLOPS | CM GFLOPS
ratio || (seconds) | (seconds) || (64K CM-2) | (64K CM-2)

TEST1 5000 | 256 556.49 532.92 3.012 3.148
TEST2 || 4600 | 128 270.24 255.62 2.856 3.019
TEST2 || 4000 | 256 730.00 676.00 1.839 1.986

Table 1: Performance of the quadratic transportation algorithm using 1024 x 1024. First
and second rows report results with the optimal implementation of the algorithm. Third
row reports results using C/Paris instructions from the CM-2 library, release 5.2.

At the end of this procedure, each value Cjj; for k = 0,...,4 — 1 equals SUM;,. If we
repeat this procedure for consecutive groups of ¢ elements along vector C;;, then eventually
each vector C;; equals SUM;, which completes phase two of the spread-sum.

Each execution of steps (S1) and (S2) requires O(1) time. On a Connection Machine, the
execution time for the loop in step (S3) is negligible when compared to the communication
time in steps (S1) and (S2); so we treat the loop in step (S3) as an O(1) operation. The
outer loop of this procedure iterates { times; so the whole procedure requires O(¢) time to
execute. The procedure itself is repeated for 5% groups of { elements; so phase two of the

spread sum requires O(72) time.
If step (S3) of the above procedure was not dominated by steps (S1) and (S2), then we
would have to say that phase two of the spread-sum requires O(%logz\/l—’) time. In that

case, we could remove the log,/P factor by using a straightforward variant of the more
complex one-to-all broadcast algorithm that is given by Johnsson and Ho [1989].

In phase three of the spread-sum, we copy the column vector C;; (which now equals
SUM;) across processor P;;’'s subgrid, so that each virtual processor holds the result of a
spread-sum. This phase requires O(295"2) time. Adding the execution times for the three
phases of the spread-sum, we get an execution time that is effectively O(=<5"R).

3.2 Numerical Results

We implemented the algorithm of Section 2 as explained in Section 3 in C/Paris, using
CMIS instructions, on a CM-2 with 32-bit floating point accelerators. The performance
of the parallel implementation was evaluated using two randomly generated test problems
of dimension 1024 x 1024. The implementation uses virtual processors at a ratio of 256
and 128 virtual processors per physical processor, on a 4K and 8K CM-2 respectively. The
computing rate of the algorithm under different virtual processing ratios is summarized in
Table 1. The last row of the same table provides, as a benchmark, the performance of a
C/Paris implementation of the algorithm without using the techniques of section 3. Observe
that the computing rate estimated based on CM time is consistently in excess of 3 GFLOPS.
Computing rates estimated based on real time exceed 3 GFLOPS for higher virtual process-
ing ratios. This discrepancy was anticipated since the first phase of spread-sum requires no
communications, while hypercube communications are needed in the second phase of the
operation. The C/Paris implementation is significantly slower than the optimal implemen-
tation. The difference in the number of iterations between the two runs for problem TEST2
is due to the difference in the terminal tolerance specified. Both implementations achieve
identical final error in exactly the same number of iterations.

)]

)
7 7
. 7 %
4 Z 7, /,
o 7,
" 7 A
[7
2
7, %
| %
7 L
1 %
' .
2 Z
2 %
A 2 A4
%
/i 7.
v /. U
v 7. -
7 % A :
o > %
s » A -,
7 7, /A
2 7
7
3 4 l”(

Figure 1: Virtual Processor Configuration. Figure 2: Physical Processor Configuration.

4 Conclusions

Gigaflop performance has been quite common in several areas of large scale scientific com-
puting using massively (and other) parallel architectures. Unfortunately such performance
is difficult to achieve in numerical optimization. Optimization problems do not usually have
nice structures at a micro level, and optimization algorithms need frequent communications.
We have shown that for some well structured problems we may overcome the communica-
tion bottleneck and achieve performance in the range of 3 GFLOPS. An implementation

that is effectively optimal was achieved using a simpler scheme than the one of Johnsson
and Ho [1989].

References

(1] S.L. Johnsson and C.T. Ho., “Optimum Broadcasting and Personalized Communication

in Hypercubes”, IEEE Transactions on Computers, vol. 38, no. 9, Sept. 1989, p. 1249-
1268.

[2] S.A. Zenios and Y. Censor. Massively Parallel Row-Action Algorithms for Some Non-
linear Transportation Problems. Report 89-09-10, Decision Sciences Department, The
Wharton School, University of Pennsylvania, Philadelphia, PA, 1989.

