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On Achieving Fairness in the Joint Allocation of
Processing and Bandwidth Resources: Principles
and Algorithms

Yunkai Zhou and Harish Sethu

Abstract— The problem of achieving fairness in the allocation others, max-min fairness [2-5], proportional fairness [6], and
of the bandwidth resource on a link shared by multiple flows of ytility max-min fairness [7].
traffic has been extensively researched over the last decade. How- . .
ever, with the increasing pervasiveness of optical networking and ~ Based on these notions of fairness—most commonly, based
the occasional trend toward using over-provisioning as the solu- on the notion of max-min fairness—much research over the last
tion to bandwidth congestion, a router’s processor also becomes decade or two has focused on the allocation of the bandwidth
a critical resource to which, ideally speaking, all competing flows yagoyrce on a link [3,4,8-12]. It has also been shown that con-
should have fair access. For example, if the network is not fair lgorithms f hieving fai in the allocati f
in allocating processing resources, denial of service attacks basedceptS and algorithms for achieving fairness in e, alloca _'On 0
on an excessive use of the router processor (such as by using un@ Single resource can be extended to the case with multiple re-
necessary optional headers) become possible. In this report, wesourcesof the same kind13]. However, as flows of traffic
investigate the issue of achieving fairness in the joint allocation of traverse a computer network, they share many different kinds
the processing and bandwidth resources. We first present a simple ¢ rasources such as link bandwidth. buffer space, time on the
but powerful general principle for defining fairness in such sys- . o
tems based on any of the classic notions of faimess such as max __router processors and alsq electrical power, a critical resource
min faimess, proportional faimess and utility max-min faimess I Mobile systems. The ultimate goal, therefore, should be the
defined for a single resource. We apply our principle to a system overall fairness in th@int allocation of all resources shared by
with a shared processor and a shared link with max-min fairess  the flows of traffic and not just one specific kind of resource
as the desired goal. We then propose a practical and provably fair g ;e a5 the link bandwidth. For example, if the network is not

packet-by-packet algorithm for the joint allocation of processing fair in allocating processing resources, DoS attacks based on an
and bandwidth resources. We demonstrate the fairness achieved !

by our algorithm through simulation results using both synthetic ~ €Xcessive use of the router processor (_SUCh as by using unnec-
and real gateway traffic traces. The principles and the algorithm essary optional headers) become possible.

detailed in this report may also be applied in the allocation of other A A . .
kinds of resources such as power, a critical resource in mobile sys- The significance of considering the fair allocation of more

tems. than just the link bandwidth is increasingly becoming apparent
. . . today, since the link bandwidth is often not the only critical re-
Index Terms—Fairness, resource allocation, processor sharing, . . . N
max-min. source. With the current pervasiveness of optical networking in
the Internet backbone, and with the occasional trend toward us-
ing over-provisioning as the solution to congestion in the edge
networks, a router’s processor is often also a critical resource to
A. Introduction and Motivation which, ideally speaking, all competing flows should have fair

Fairness in the allocation of resources in a network shar@gcess. Given the fact that processing requirements of differ-
amongst multiple users is not only an intuitively desirable go&Nt Packets vary widely, the issue of fairness in the allocation
but also one with many practical benefits. Fairness in trf the processing resources gains significance. In addition, be-
fic management can improve flow and user isolation, offéides the fact that packet lengths can vary widely, the presence
a more predictable performance, and eliminate certain kin@optional headers and the various kinds of control informa-
of bottlenecks. In addition, strategies and algorithms for faiion carried by packets create a wide variation in the ratio of a
management of network traffic can serve as a critical compeacket's demand for bandwidth and its demand for processing
nent of Quality-of-Service (QoS) mechanisms to achieve céycles. Thus, packets of the same length cannot be guaranteed
tain guaranteed services such as delay bounds and minimi@nhave similar requirements for the processing resources on a
bandwidths. Fair resource allocation strategies can also hEjgter. In fact, the processing delay plotted as a function of the
in countering certain kinds of denial-of-service (DoS) attack¥acket length shows that the processing requirements of pack-
[1]. Various formal notions of fairess have been proposed @S vary across a wide range even for packets of the same length
the literature to precisely define what is fair in the allocatiol-4]- Thus, one cannot achieve overall fairness merely with the

of a resource amongst competing flows. These include, amday allocation of link bandwidth alone, or merely through the
fair allocation of the processing resource alone, since different

This work was supported in part by NSF CAREER Award CCR-9984161 affihyys—and different packets within the same flow—may have
U.S. Air Force Contract F30602-00-2-0501. A preliminary version of this re- diff td ds for th t kinds of All
search appeared Proc. Int'l Workshop on Quality of Service (IWQoSjon-  VETY difierent demands lor these two Kinds or resources.

terey, CA, June 2003. of this begs the question this report seeks to address: how does
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one achieve fairness in thant allocation of the processing andrelated to each other. For example, since each packet is asso-
bandwidth resources? ciated with certain processing and bandwidth requirements, a
The need for fairness in the joint allocation of multiple hetspecific increase in a flow’s demand for link bandwidth is typ-
erogeneous resources has also been recognized in other @aily associated with a specific increase in its demand for the
texts besides the one discussed here. For example, it has hgepessing resource. A simpler example, involving multiple re-
recognized that fair allocation of both the channel bandwiddources of the same kind, is a tandem network with multiple
and the power consumed needs to be achieved simultaneolisls where the demand of a flow for bandwidth is the same on
in mobile networks where power and bandwidth are both critadl the links. In the system model used in this report, we as-
cally important and scarce resources [15]. However, a rigorosisme multiple resources that are related, although we make no
theoretical framework that may be universally employed asassumptions on the specific nature of the relationship between
guide in the design of practical algorithmic strategies for theeflow’s demand for different resources. The existence of a re-
joint allocation of such heterogeneous sets of resources dés#nship between the demands of a flow for various resources
not exist. calls for thejoint allocation of these resources, as opposed to an
In this technical report, we investigate the issue of fairnegsdependent and separate allocation of the resources.
in such systems and develop a general principle that forms thérhe primary contribution of this report is a theoretical frame-
foundation for the design of practical and fair strategies for userk based on which one can define fairness in the joint alloca-
in routers. We also present an evaluation of the practical stratien of multiple heterogeneous resources that are essential and
gies proposed in this report using both synthetic and real gatelated. We make no assumptions on the notion of fairness; in

way traffic traces. fact, our framework may be applied to any of several notions
of fairness such as max-min fairness, proportional fairness or
B. Contributions utility max-min. Through illustrative examples, we claim that,

In the joint allocation of the processing and bandwidth réit €ach instant of time, it is the maximum of a flow's normal-
sources, if a certain resource is never the bottleneck, then tfd demand for the various resources that should count in the
fair allocation strategy degenerates to the fair allocation of judgcisions made by a fair resource allocation algorithm. We then
the other resource. For example, if the available bandwidthd§velop the fundamental principles of fairness for systems with
large enough that no flow experiences congestion due to lack¥ltiple es_ser_wtlal and r_elated he_terogeneous resources, and pro-
bandwidth alone, one only needs to worry about the allocatiBfSe thePrinciple of Fair Essential Resource Allocatian the
of the processing resource. Fair allocation of a single bottlEERA principle expressed within a rigorous theoretical frame-
neck resource has been studied extensively in the literature 4fRfK- We also prove that, under certain conditions, there exists
has led to a large number of practical algorithms that are in 1@a!nique, fair, and work-conserving resource allocation policy
today in Internet routers, operating systems, and transport-lepdlich satisfies the FERA principle. _
protocols. This report, on the other hand, answers the questiofPiven the FERA principle, we proceed to apply it to a system
of what is a fair allocation when more than one resource is coffith @ shared processor and a shared link, using max-min fair-
gested and extends the notions of faimess applied to a singfSS s the notion of fairness. We propose an ideally fair pol-
resource to systems with multiple heterogeneous resources.i¢Y: called theFluid-flow Processor and Link Sharing (FPLS)

We define aressentiafesource as one for which a flow’s de-2lgorithm, for the joint allocation of processing and bandwidth
mand does not reduce with an increase in the allocation of otfiggources. We then develop a practical pravablyfair packet-
resources to the flow. A number of resources such as the I Packet approximation of the FPLS algorithm, calRetket-
bandwidth, processor or power, in most contexts, are essenfiPacket Processor and Link Sharing (PPLR)e PPLS algo-
resources. On the other hand, buffer resources in a network difgm, based on an extension of the Deficit Round Robin algo-
often non-essential resources as per the above definition; M [10], has a per-packet work complexity 6f(1). We il-
example, in a system with a buffer and a link, a flow uses ”I,léstr.ate the fairness of the P'PLS algorithm using both synthetic
buffer only if the link resource is currently unavailable to it, an§faffic and real gateway traffic traces. .
thus a flow’s demand for the buffer resource reduces as more of ven though this report primarily focuses on processing and
the link bandwidth is allocated to it. Note that a non-essentigndwidth resources, the FERA principle may be readily ap-

resource does not necessarily mean that it is not useful. In Bfigd to a variety of contexts beyond those discussed in this

system model used in this report, we assume that the flows K80

in competition for resources that are all essential. The issue of o

achieving fairmess in a system where flows have to compete for Organization

a non-essential resource such as a buffer entails a different séfthe rest of this report is organized as follows. Section Il

of challenges than those considered here, and is addresseittioduces a generic notation to represent notions of fairness.

some other recent works such as [16]. This section also describes the general system model with mul-
We define a pair of resources edatedto each other if a tiple shared resources considered in this study, along with our

flow’s demand for one resource uniquely determines its demamatation. Section Ill presents the Principle of Fair Essential

for the other resource. Resources in a set are said teléiied Resource Allocation for the system model under consideration.

if each resource is related to every other resource in the s&ction IV applies the FERA principle to a system with a shared

Resources in real scenarios are almost always related sincegtoeessor and a shared link, and proposes a practical and fair

demands of a flow for different individual resources are oftestheduling algorithm for the joint allocation of the processing



and bandwidth resources, called the Packet-by-packet Proces- Flow 1 j]]]]]\
sor and Link Sharing (PPLS) policy. The fairness properties of Fow2  [[]][— .
the PPLS strategy are demonstrated by simulation experiments jﬂ]ﬂ/
using both synthetic and real gateway traffic in Section V. Fi- Flow N
nally, Section VI concludes the report.

Fig. 1. A general system model.

Il. SYSTEM MODEL AND NOTATION

A. Generic Notation for Notions of Fairness Often, a fairness notion implies a certain way to compute the
Consider a setak flows,1 < i < N, competing for a single utility to a flow of the allocations. Different notions of fairness

shared resource which may be consumed at a peak rate ofssume different utility functions, though all are non-decreasing
Denote byw, the weight of flow, indicating the flow's relative functions with re§pec_t to qugntit_y of th_e aIIocQ'Fed resource. For
rightful share of the resources. For a flow under a Differentiat@&(ample' max-min fairess 'mP"eS, a Ilngar “t"'tY funcnon, pro-
Services (DiffServ) framework [17], its weight is determinecﬂ’ort'onal fairness uses a logarithmic utility function, and in util-
by its traffic class among the 64 possible classes; for a flow ! Max-min, each flow determines its own utility function. The
a best-effort network, its weight is typically the same as that gption of fairness in (1) represents a general notation to describe
all other flows. how, given a certain vector of demands, one may determine the
Several different notions of fairness have been proposeddf°cated consumption rate of the resource for each flow, in or-
the research literature for the allocation of a single shared A" that the utilities corresponding to the allocations satisfy the
source among a set of requesting entities. All of these notio#¥en fairness notion with respect to the demands for utility. In
specify a particular rate of consumption of the resource for ea®ii€” Words, the notation of (1) implicitly incorporates utility
of the flows, given the consumption rate demanded by the ﬂov&g.nctlons into the nptlon of fairness. ) )

In this subsection, we develop a generic notation that can ex-1N€ constraintC' is used as a parameter in the functiéh
press any of these notions of fairess. because, given the same demand and weight vector, the fair al-
Without loss of generality, we assume that the entities corgcation is different under different constraints imposed on the

peting for the single shared resource are traffic flows. d;et SYStem. The constraidt can be used to incorporate the perfor-
be the demand of flow for the shared resource. Define thdhance level achieved by the allocation. For example, an allo-

normalized demand of flow D, for the resource as follows: cation of no resource to any flow may also be considered a fair
k2l . . . . . . .
allocation by the max-min fair criterion albeit one that leads to

D — d; very poor performance. In general, this parameter allows us to
"R define the fairness of non-work-conserving allocation strategies
by notimposing a specific level of performance achieved by the
allocation in the definition of fairness. As a simple example, the
constraintC' can be just the sum of the utilities achieved by all

The normalized demand of floiindicates the fractional share
of the resource demanded by the flow. Denotazbyhe allo-
cated resource consumption rate for flowDefine the normal-

ized allocation of flowi, 4;, as follows: flows. . . . .
Note that, in the research literature, notions of fairness have
) not been defined for multiple heterogeneous resotircide
1 T . . .pe . .
R use the above notation that specifies a notion of fairness for a

The normalized allocation of flow indicates the fractional Single resource and extend the notion to multiple heterogeneous
share of the resource allocated to flewAny notion of fair- €SOUrces in subsequent sections.

ness, thus, specifies how to distribute the fractional share of the

resource allocated to each flow, given the desired share of tBis system Model and Assumptions

resource.

For the sake of convenience, throughout this report we u eIn our system model, a set of f.IOWS’ lsis N compete
vectors to indicate values corresponding to a set of flows. \E‘g a sgt Of.K related and essgnuallresour_cmg Jj< K, as
denote a vector by the indexed value in a pair of square bracké&c.)wn n Fig. 1. As also descnbeq n Secnop I-B, we define an
For instance, we denote the vector of normalized demandse&gent'al resource as one for which qflows demand does not
D] reduce with an increase in the aIIocat!on of other resources to

Therefore, given the normalized demand veéfay] and the |'F. Since a buffer is often not an essent!al resource, our assump-
weight vectoriw,], any given notion of fairess may be repre_yon that flows only cpmpete for essential resources implies that
sented as if there are bqffgr§ in the n_etwork shared by the flows, these

[4,] = F(C,[Dy], [wi]) @ buffers are of infinite capacity so that the flows never compete

where( is the constraint, described later in greater detalil, im-' Some notions of fairness such as max-min fairness and proportional fairness

PP : can be defined for multiple resources of the same kind (e.g., a network of links),
posed on the system. The functighis different for different under the assumption that, if a flow receives allocation of several resources, the

notions of fairness such as max-min fairness, proportional faifitocation of each of these resources it receives is identical [2,6]. However, itis
ness or utility max-min fairness. Note that the notion of fairnegst straightforward to extend these notions of fairness to systems with multiple

in(1)i di . iable. th king it heterogeneous resources. On the other hand, it can be readily verified that our
in (1) imposes no dimension on any variable, thus making it s mework is the same as these notions of faimess if the shared resources are of

plicable to systems with multiple heterogeneous resources. the same kind.



for the buffer resource. In developing our fundamental princi- TABLE |

ples of fairness, we make no assumptions on the specific actiorfgAMPLES ILLUSTRATING WHAT IS A FAIR ALLOCATION IN A SYSTEM

of the scheduler or the specific order in which the packets u4&* A SHARED PROCESSORP AND A SHARED LINK L. IN ALL OF THESE

the K resources. EXAMPLES, THE TOTAL AMOUNT OF RESOURCEP 1S 100 MHz, AND THE
Note that in this general model, we also make no assumptions TOTAL AMOUNT OF RESOURCEL IS 100 MaPs

on the internal architecture of the set of shared resources. It can

be a simple sequence of resources such as in a tandem network

with multiple links, a parallel structure such as the resources|of | Flow Demand Allocation
electric power and bandwidth in a wireless sensor network, [or ID || P(MHz) [ L (Mbps) | P (MHz) | L (Mbps)
a more complex hybrid. A 1 75 25 75 25
Denote byR; the peak rate at which resourgenay be con- 2 25 75 25 75
sumed. For example, in the case of a link resourc®;, is the 1 225 75 75 25
peak bandwidth available on the link. As before, denotevby B 2 50 150 25 75
the weight of flow:. Letd; ; be the consumption rate demanded 1 100 20 50 10
by flow ¢ for the shared resourge Our assumption of related C 2 100 10 50 5

resources implies that, givef) ;, one can determing; ; for
all j # k. Denote byag‘j, the consumption rate of the shared

resourcej allocated to flowi under the allocation policy. ) . ]
In networking terminology, a bottleneck resource is one that

IIl. THE FERA PRINCIPLE is the most congested. It is critical to note that neither the re-
A. The Concept of the Prime Resource source for which a flow has the Iarg.est normaﬁzed demaljd nor
' its prime resource under an allocation policy is necessarily the
We begin with a few preliminary definitions. _ same as the bottleneck resource in the system.
Def|n|t|.on 1. Define the normalized demand of flawfor Note that a flow may have more than one prime resource.
resourcej, D; ;, as follows: The prime resource is defined based on the actual allocations
di; and not on the demand of the flows for the resources.

Di,j = Rj .

Define thelargest normalized demandf flow i, D;, as the B. The FERA Principle
maximum amongst the normalized demands of fiofer all

; We introduce our principle with a few illustrative examples
resources. That s,

shown in Table I. In these examples, two flows with equal
D; = max {D,;}. weights, labeled as 1 and 2, share two different resources: a
J processof for packet processing, and a lidkfor packet trans-
Definition 2: Define A? . as the normalized allocation of Mission. The system model in these examples is the same as the

resourcej to flow i under allocation policy, i.e., one we will discuss later in Fig. 2. The peak processing rate is
100 million processor cycles per second, i.e., 100 MHz, and the

a _ a;; peak link rate is 100 Mbps. Let us assume linear utility func-

WRy tions and max-min as the notion of fairness. In addition, for

the sake of convenience, we also assume in these examples a
proportional relationship between a flow’s demands for these
resources, and therefore, a proportional relationship between
the allocations. In other words, the ratio of a flow’s demand for
one resource and its demand for another resource is always a
A? = max { A?_j} ) constant.
J ’ In example A, assume that packets in flow 1 are all small,
Definition 4: Under an allocation po”cwl a resource is and therefore, its demand for bandwidth is small relative to its
said to be gorime resourceof flow i, denoted bys?, if and demand for processing time. In contrast, assume that packets
only if, the normalized allocation of this resource to flows in flow 2 are large, and therefore, its demand for bandwidth is
the largest normalized allocation. In other words, large relative to its demand for processing time. To better il-
lustrate the concept, we exaggerate the difference between their
4 q al; demands as follows: flow 1 has a demand of 75 MHz for pro-
Bl = argmax {Af;} = argmax | = cessing time and 25 Mbps for bandwidth, while flow 2's de-
mands are, respectively, 25 MHz and 75 Mbps. If a work-
wherearg max, f(z) indicates the value of the argumentor- conserving allocation policy is used, there is enough of both
responding to the maximum value of functigiiz). In other resources to satisfy the demands of both the flows and so the
words, we have allocations are exactly the same as the demands for each of the
q q q resources. Note that for flow 1, the prime resourc® isvhile
A g = max {Al;} = Al for flow 2, itis L.

Definition 3: The largest normalized allocationf a flow
i under allocation policy;, denoted byA?, is defined as the
maximum amongst the normalized allocations to flowof all
resources. That s,



Next, consider what happens when both flows proportionalhot exist. Assume a certain resouncés the most congested
increase their demands for both resources. In example Brasource. Lety denote the flow with the smaller demand for
comparison to example A, flow 1 increases its demands byesourcer and let3 denote the other flow. Assume that the
factor of three while flow 2 doubles its demands. Specificallpormalized allocations of resourceare z, andzg for the two
the demands for flow 1 become 225 MHz fBrand 75 Mbps flows. It can be verified that the normalized allocations of the
for L, while those for flow 2 become 50 MHz and 150 Mbpspther resource argz, andzg/3, independent of whether the
respectively. A fundamental principle behind the max-min n@esourcer is the processing resourde or the bandwidth re-
tion of fairness is that, given no additional resources, a flosourceL. Since resource is the most congested resource as
should not be able to increase its allocation by merely demamdeasured by the sum of the normalized allocations, we have,
ing more. Thus, the fair allocation should be the same as in
example A, as shown in example B. Again, the prime resource 2 +25/3 < Za + 25

for either flow remains the same as in the previous example.,nich leads tdz, < z5. Since both flow have a high demand,

We discuss example B further. Obviously, in this case, n&inger the max-min notion, this condition cannot lead to a fair
ther flow is satisfied by the allocated resources. Is the allocatigfjycation except for the trivial case wherg = z5 = 0. Thus

actually fair? _it may not be possible to achieve a fair allocation of the most
One might argue that both flows should get equal bandwidtB,gested resource as measured by the sum of the normalized

from a fair allocation, since ultimately both flows will departy)jocations of the resource.
from this system and the processor is only an intermediate regased on the discussions above, we claim that in a network
source before the flow’s packets reach the link resource. Bag@kre no explicit preference of one resource over another ex-
on this notion, we can compute the allocations as ists (i.e., each resource is essential), fairness should not be de-
fined based only on a single resource, no matter how this single
{ Sz+x/3 < 100 resource is determined, and whether it is determined before al-
20 < 100 location (i.e., based on demand) or after allocation (i.e., based

wherez is the bandwidth allocated to either flow, in units of" @llocation). Instead, the fairness in such a system should be

Mbps. It can be readily verified that, under a work-conservirfﬂ;e‘ci”ed with overall consideration of various resources involved
allocation policy, flow 1 gets 90 MHz of processing time antj the system and the relationships between the demands for the

flow 2 gets only 10 MHz, while both flows get 30 Mbps of band?@0us resources.

width. While this allocation underutilizes the link resources, G|v§n th|§ observation, one may propose yet another scheme
that is not an argument against its fairness. The unfairnd@define fairess: the sum of the normalized aIIocathns Qf the
arises from the fact that it unnecessarily favors the flow who§gS0urces computed for each flow should be max-min fair. In
prime resource is the “intermediate” resource, which turns otjf¢ Previous example B, this leads to an allocation of 75 MHz
to be flow 1 in this case. Another argument against this noti@h Processing time and 25 Mbps of bandwidth for flow 1, and
is that, even though it is true that the processor in this case is gg-V1HZ of processing time and 75 Mbps of bandwidth for flow

sitioned ahead of the link, it does not necessarily mean that el this case, for both flows, the sum of the normalized allo-

processing resource becomes less important, or less preferfaons of the two resources 15/100 + 25/100 = 1. While

as compared to the link, which is positioned as the “final” rahis appears to be a reasona_lble strategy for fair aIIocat|0n,_th|s
source. scheme of fairness cannot, in fact, be extended to other situa-

Another allocation philosophy may be to allocate resourcd8nS- This ishillustr?]tild by (ra]xampltzc des(;:ritf)ed bel\lm" .
based on a fair allocation of the most congested resource aéssumet at both flows have a demand of 100 z for re-

measured by the sum of the normalized demands for the FRU'CE» While the demands for resourdeare 20 Mbps and
source. In this example, the processing resoditds the most 10 Mbps for flows 1 and 2, respectively. Note that in this exam-
congested resource. One may allocate resoBrtzrly as ple, there is sufficient link bandwidth available for the demands

of both flows, i.e., the flows are not in competition for resource
2y < 100 L. In other words, the system regresses into an allocation of a
{ y/3+3y < 100 single resourcé’. Applying the max-min notion of fairness on
the single resourc®, we know that the fair allocation would be
wherey is the processing resources allocated to either flow, 50 MHz of processing time for each flow, leading to 10 Mbps
units of MHz. Under a work-conserving allocation policy, flonand 5 Mbps of bandwidth for flows 1 and 2, respectively. Thus,
2 gets 90 Mbps of bandwidth and flow 1 gets only 10 Mbpshe ideally fair allocation leads to 0.6 and 0.55 as the sum of
while both flows get 30 MHz of processing resources. Notae normalized allocations. Clearly, if we were to not to be
that this allocation philosophy has a similar weakness as the anax-min fair in the sum of the normalized allocations of the
based on the fair allocation of the link resource. It unnecessanisources to each flow, we would not get this result. This illus-
favors the flow whose largest normalized demand is not for thates that the strategy of achieving max-min fair distribution in
most congested resource. the sum of the normalized allocations fails to serve as the basis
One may suggest the following slight modification to the ato define fairness in the allocation of multiple resources.
location strategy: to fairly allocate the most congested resourceThe fair allocation strategies in the three examples do have
as measured by the sum of the normaliaidcationsfor the one property in common: the largest normalized allocations of
resource. However, it can be shown that such an allocation nihg flows are distributed in a max-min fair manner among the



flows. In our case with equal weights for the flows, the largesan uniquely determine the normalized allocation ve¢tt
normalized allocations are equal for the two flows. In the firgis given in (1).
two examples in Table I, resourd@is the prime resource for  Definition 7: A notion of fairnessF is said to benon-
flow 1, while the prime resource for flow 2 is resoutbe In  decreasingif and only if, given the normalized demand vector
both examples, the largest normalized allocation equals 0.9 for;] and the weight vectdrw;], the normalized allocatiofy; ]
each flow. In the third example, the processbis the prime is such that, for any two different constrairdts andCs, one of
resource for both flows, and this time the largest normalizéide following holds true:
allocation is 0.5 for both flows.

The observations from the above examples lead to the sig- F(C1,[Dy], [wi]) =< F(Co,[Dy], [ws])
nificance of incorporating the largest normalized allocation for F(Co, [Di], [wi]) < F(Cr,[Di], [wi]) .
each flow into a strategy for extending a notion of fairness to

the allocation of multiple resources. In our examples, the faijere  is a relational operator between two vectors of identical
allocation policy is to simply equalize the largest normalized &ljmensions, anély;] < [v;] impliesVi, u; < v;. This definition
locations for different flows. In the general situation, differerf non-decreasing fairness notion can be also expressed as fol-
notions of faimess may be used and flows may have differggjys: when allocating a single resource under a non-decreasing
weights, different largest normalized demands, and very diff§gjrmess notion, no flow will get a lesser amount of the resource
ent utility functions. This leads to the followingrinciple of i the total amount of the shared resource increases.

Fair I_Ess_,elntia][ Resource A_Ilolcation locati _ These classes of fairness notions are actually very broad; it
Princip e.oh Fa|1 'Elssenltla (I;Qeszurce A p?atlon (FERA): may be readily verified that many popular notions of fairness

a system W't mu t!p ere ate_ and essentia resources, an aﬂ?é both non-decreasing and uniquely deterministic. These in-

cation policyq is said to be fair as per the notion of fairneSs . ,4e max-min fairness [3-5], proportional faimess [6], and

if and only if, the largest normalized allocations are distribute&iIity max-min fairness [7] if the utility functions are non-
fairly, as per the notion of fairness, with respect to the 'argeStdecreasing

normalized demands. In other words, allocation poliéy fair

as perF if and only if, Theorem 1: If the applied notion of fairness is both non-

decreasing and uniquely deterministic, there exists a unique fair
[AY] = F (C,[Dy], [wi]) work-conserving allocation policy that satisfies the FERA prin-
ciple as stated in Section I1I-B.

whereC' is some constraint imposed on the system. Proof: The reader is referred to Appendixil

C. Fair Work-Conserving Allocation Policy

Recall that we make no assumption on whether or not the 1V. FAIR JOINT ALLOCATION OF PROCESSING AND
allocation policy is work-conserving. Therefore, under differ- BANDWIDTH RESOURCES

ent constraints, a single system can have more than one fair hi ) v the f K blished in th
allocation policy as per the same notion of fairness. Given aln this section, we apply the framework established in the

constraint, however, there exists a unique work-conserving fR€VIOUS section into an important context of special interest:

allocation policy in most situations, as will be proved in thi%_ € fair joint allocation of a shared process@rand a shared

section. ink L under the max-min notion of fairness and linear utility
First, we formally define a work-conserving policy in the alfunctions.

location of multiple resources. Recall that in the allocation of a

single resource, an allocation policy is work-conserving if anR System Model

only if one of the following two situations occurs. '
1) The demands of all flows are satisfied. In this system model, a set &f flows share a processét
2) The shared resource is completely allocated. and a link L, as shown in Fig. 2. Packets from each flow are

In other words, no more of the resource can be further allocat@cessed by processét first and then transmitted onto the
to the flows. The same idea can be applied to the allocation@ftput link L. Denote byR,, the peak bandwidth rate of link
multiple resources, except that now it is possible that only odeand by Rp the peak processing rate of processor Pack-
resource is fully utilized. ets of each flow await processing by the processor in an input
Definition 5:  In the allocation of multiple resources, an albuffer of infinite capacity, and then upon completion of the pro-
location policy is said to bevork-conservingif and only if, cessing, await transmission on the output link in another buffer
upon completion of the allocation, no more of any resource c@hinfinite capacity. The joint allocation of the processing and
be further allocated to a flow without also reducing the amoub@ndwidth resources is accomplished by the scheduler which
of some resource allocated to another flow. acts on the packets in the input buffers and appropriately orders
Next we introduce two general classes of fairness notioti®em for processing by the processor. No scheduling action
which describe the conditions under which the uniquenesstekes place after the processing; processed packets are received

the fair work-conserving allocation policy will hold. in the buffer between the processor and the link, and are trans-
Definition 6: A notion of fairnessF is said to beuniquely mitted in a first-come-first-served fashion.
deterministi¢ if and only if, given the constraint’, the nor- Denote byw, the weight of flowi, 1 < i < N, indicating the

malized demand vectdD;], and the weight vectow;], one flow’s relative rightful share of the resources.



Initialize:
FlowList «— NULL;

N =

3 Enqueue’* Invoked whenever a packet arrives */
4 p < ArrivingPacket
Fig. 2. The system model with a shared proceg3and a shared lini. 5 i «— Flow(p); /* Flow of packetp */
6 if (ExistsinFlowLisfi) = FALSE) then
7 Append flow: to FlowList,
B. Fluid-flow Processor and Link Sharing 8 PDC; « 0;
Denote byS the system illustrated in Fig. 2. We first con- |10 endif;

sider fluid-flow traffic through systerfi, and describe an ide- _
ally fair allocation strategy called tHeuid-flow Processor and |11 Dequeues* Always running */

: . . o 12 while (TRUB do
Link Sharing (FPLSplgorithm. FPLS is intended to serve the 13 if (FlowList£ NULL) then

same purpose for systefas that served by Generalized Pro- |14 i — HeadOfFlowList
cessor Sharing (GPS) for a system with just a single shared link| 15 Remove from FlowList
or a single shared processor [4, 5]. 16 PDC; — PDC; + PQ;;

In GPS, it is assumed that traffic from each flow can be di- |17 LDC; « LDC + L@,
vided into infinitesimally small chunks, and each chunk has its ig i (Ifggii mgggg@ then
demand for access to the link depending on the size of the |5q end if: ' "
chunk. The GPS scheduler visits each active flow’s queue in a[21 if (LDC; > maxl DC;) then
round-robin fashion, and serves an infinitesimally small amount | 22 LDC; «— maxLDCj;
of data from each queue, in such a way that during any infinites-| 23 end if; o
imal interval of time, it can visit each queue at least once. In our 3‘51 W:;”‘i(%izléﬁiﬁwepg{:;embi?@?
study, this assumption is still valid, and we further assume that| »g if (Sizép) > LDC; OR '
each infinitesimal chunk also has its demand for the processing 27 ProcessingCosp) > PDC;) then
time on the shared processBr 28 br_e;ak; /* escape from the inner while loop */

; ; ; 2 nd if;

At_each tlmg |_n_stan’f, the prime resource for each f_IOV\_/, ac- 38 JGDDdCl — PDC,— ProcessingCogp):
cording to Definition 4, can be_detgrmmed based on its mstan.— 31 LDC; — LDC,— Sizdp);
taneous demands for processing time and bandwidth. In addi{32 Schedule;
tion, we assume that during each infinitesimal interval of time, |33 end while;
[r,7 + A7), the prime resource for each flow does not change. |34 if (QueuelsEmpty) = FALSE) then

35 Append queuéto FlowList,

Note that in GPS, it is guaranteed that during each infinites- 36 ond i
imal interval of time, the chunks of each flow are scheduled in |37 end if: '
such a way that, for each flow, the total demand for bandwidth |38  end while;
corresponding to the chunks of the flow scheduled in this period
is proportional to the weight of the flow. Extending GPS to our. ) )
case leads to the following: under the ideally fair allocation pofb &, al;frﬁﬂ?n?'wde of the Packet-by-packet Processor and Link Sharing
icy for systems, it is guaranteed that, during each infinitesimal

interval of time, the chunks of each flow are scheduled in such
a way that, for each flow, the totabrmalizeddemand for its incremented in each round by a predetermined quafitsn-
prime resourcecorresponding to the chunks of the flow schedum When the scheduler visits one flow, it transmits the pack-
uled in this period is proportional to the weight of the flow. Wests from this flow with a total length no more than the deficit
refer to this as-luid-flow Processor and Link Sharing (FPLS) counter associated with this flow. Upon the completion of a
It can be readily verified that the FPLS strategy meets the FERfw’s service opportunity, its deficit counter is decremented by
principle described in Section IlI-B. the total size of its packets scheduled in the round. It has been
shown in [10] that, if the quantum of each flow is proportional

to its weight, the relative fairness measure as defined in [9] can
C. Packet-by-packet Processor and Link Sharing be bouno?ed (9]

It is apparent that FPLS is an ideally fair but unimple- The PPLS algorithm approximates the ideal FPLS in a very
mentable policy, in the same sense as GPS. In reality, netwaiknilar fashion as DRR achieves an approximation of GPS. The
traffic is always packetized, and therefore, we next presenPRLS scheduler maintains a linked list of the backlogged flows,
practical approximation of FPLS, call&cket-by-packet Pro- FlowList When the scheduler is initialize&|owList is set to
cessor and Link Sharing (PPLS)he pseudo-code of PPLS isan empty list (line 2). For each flow, two variables, instead of
shown in Fig. 3. one as in DRR, are maintained in the PPLS algorithproges-

The PPLS algorithm extends one of the most practical asdr deficit counter (PDCand alink deficit counter (LDC)The
simple scheduling strategies, Deficit Round Robin (DRR) [10]nk deficit counter is exactly the same as the deficit counter in
used in the allocation of bandwidth on a link. For each floMl)RR, which represents the deviation of the bandwidth received
the DRR algorithm maintains @eficit counter (DC)which is by the flow from its ideally fair share. The processor deficit



counter, on the other hand, represents the deviation of the pimether words, for each flow, the quantum value corresponding
cessing time allocated to the flow from its ideally fair shareéo a resource is proportional to the total amount of that resource.
Thus, each flow in PPLS is assigned two quantum values, aNote that in PPLS, it is possible that the prime resource for
processor quantum (P@nd alink quantum (LQ) flow ¢ remains the same for a long period, and therefore, with-
When a new packet arrives, tlgnqueueprocedure is in- out the bounding procedure in lines 18-23, the deficit counter
voked (lines 3-10). If this packet comes from a new flow, thfer the non-prime resource would reach a large value. For ex-
Enqueugrocedure appends this flow to the end offfi@vList ample, consider a case in which the prime resource for flow
(line 7) and initializes both of its deficit counters to O (lines 8+ has been the processing resouftdor a long time and, as
9). a result, the link deficit countek DC; is very large. Assume
TheDequeugrocedure (lines 11-38) functions as follows. Ithat at this point, the prime resource for flavgwitches to the
serves all flows in th&lowListin a round-robin fashion. When link resourceL and, in addition, flowi now consumes almost
the scheduler visits flow, it first increments each of the twono processing resource. In such a situation, flawll be able
deficit counters of this flow by the value of the corresponding have a long sequence of packets scheduled because of its
quantum (lines 16-17). It then verifies whether or not these twarge link deficit counted. DC;. This would significantly de-
deficit counters exceed their upper bounds respectively, andjibde the short-term fairness of the PPLS scheduler. For this
they do, it resets them to the maximum possible values (linesason, we choose to set a maximum threshold on the deficit
18-23). The rationale behind this bounding process will be diseunter for each resource, in case any specific resource has not
cussed later in detail. After the deficit counters of flowre been fully utilized for a long time. In cases where short-term
updated, a sequence of packets from floare scheduled as fairness is not important, these thresholds may simply be set
long as the total length of these packets is smaller than the litkinfinity. A similar rationale may also be found in the con-
deficit counter, and the total processing cost is smaller than tieet of fair scheduling in wireless networks where a maximum
processing deficit counter, as in thdile loop in lines 24-33. lag is applied when a flow has not fully utilized its share of the
In the meantime, when a packet is scheduled, both deficit colbandwidth [18].
ters are decremented by the corresponding cost of this packet can be readily verified that if the processor resouftcis
(lines 30-31). Finally, when the scheduler finishes servingsafficient for all flows, i.e., the processor resour@ever be-
flow and the flow still remains backlogged, the scheduler placesmes the prime resource for any flow, the PPLS strategy re-
the flow back at the end of tHéowList (lines 34—36). gresses into the DRR policy. It can also be readily verified that,
Recall that in DRR, for each flow, the quantum is set to dike DRR, the per-packet computing complexity of the PPLS
proportional to its weight, therefore, each flow receives in eaglgorithm isO(1), under the condition that for each floiy
round, on average, a service of total amount proportional to it&); > M; and PQ; > Mp whereM; andMp are the maxi-
weight. In this report, the sum of a certain quantity og#r mum packet size and the maximum packet processing cost, re-
flows is denoted by dropping the subscript for the flow in thepectively. The proof of this work complexity is similar to that
notation. For exampley is the sum of the weights for all flows, for DRR [10].
i.e.,w =), w,. Therefore, in DRR, we have

Qi Q Vi D. Fairness Analysis of PPLS
— = —, V1.
w; - w Our fairness analysis of PPLS is an extension of that

Similarly, in PPLS, the quantum values of each flow are alé'r% [101} FT/Ie(t:a"t thait '3 Er?ngW'dtTh Shr?]r":(?rhutr?]m\'/r;izs of
proportional to its weight, i.e\s, easure FM(ty, 1), is defined as the ma

Sent;(t1,ts)/w; — Sent;(t1,t2)/w; amongst all pairs of flows

PQ; PQ (,4) backlogged in the intervdk,,t2), where Sent;(t1,t2)
w; | w (2) s the total length of the packets transmitted by the scheduler
LQ; LQ from flow ¢ during interval[ty, t2), i.e., the cumulative amount

o w (3)  of bandwidth resource allocated to flawduring this interval.

! In addition, the fairness bouridB is defined as the maximum
Thus the amount of the shared resources each flow is entitk@due of FM(¢4, t2) for all possible interval§,, ¢2) [10]. Note
to utilize in each round is guaranteed to be, on average, propitvat the dimension afent;(t1,2) is in units of packet length,
tional to its weight. In addition, the ratio of the sum of process-€., bytes. To extend this concept to our situation of multiple
ing quanta for all flowsPQ, to the sum of link quanta for all heterogeneous resources, we need to normalize it by the peak
flows, LQ, should also be equal to the ratio of the total amoumngsource consumption rate.
of processing resource to the total amount of link resource inThe normalized cumulative processor allocatiof flow :

each round, i.e., during time intervalt,,¢2), denoted byCPA’ (¢,t3), is de-
PQ _ Rp 4) fined as the total amount of the processing resource allocated
LQ R’ to flow ¢ during interval[t,,t2), normalized by the peak pro-
From (2), (3) and (4), it is apparent that, cessi_ng ra'lteRp.. Thgnormalized cumulative link allocatioof
flow ¢ during time intervallt;, t2), denoted byCLAT (¢1,t2),
PQ; Rp is similarly defined, except that the resource associated is the

0. R ®) " pandwidth.



Note that both the normalized cumulative link allocation and TABLE I
the normalized cumulative processor allocation are in units of ' HE RATIO OF THE PROCESSING RESOURCE TO THE LINK RESOURCE

time. Therefore we are able to proceed to defineﬂmﬂnal- REQUIRED BY EACH FLOW IN OUR STUDY USING SYNTHETIC TRAFFIC
ized cumulative resource allocatiaf flow ¢ during time in- _
terval[t,, ), denoted byCRA” (¢, t5), as the larger value be- | Flow ID | P/L Ratio (in cycles/byte)
tween the normalized cumulative processor and link allocations 1 1
of flow i during|t, t2). In other words, 2 2
3 3
CRA? (tl, tg) = maX{CPA;”(tl, t2)7 CLA;L(tl, t2>}. 4 4
Now we can extend the definition of the fairness measure as 2 1}2
follows:
Definition 8: The normalized fairness measuaver time ; iﬁ
interval[ty, t3), FM" (¢, t2), is defined as the maximum value,
amongst all pairs of flow§i, j) that are backlogged during time
interval [¢1,t2), of the normalized cumulative resource alloca-
tion CRAY (t1,t2). Thatis, In the following, we describe two sets of simulation exper-
iments. In the first set of experiments, a synthetic traffic se-
CRAJ (t1,t2) CRAJ (t1,t2) quence is used, while the second set uses real gateway traffic

FM"™(t1,t2) = max .
(s 2) V(i) w; w; traces.

Thenormalized fairness bouridB™ is defined as the maximum A, Synthetic Traffic
value of the normalized fairness meastid" (¢1,¢2) over all

- In our first study, we use synthetic traffic to test the fairness
possible intervalty, o).

_ _properties of the PPLS algorithm under some extreme situa-
Analogous to the case of a single shared resource, ifig,s For each flow, the ratio of the amount of the processing

scheduling algorithm for the joint allocation of processing angqq rce required to the amount of the bandwidth resource re-

bandwidth resources leads to a finite normalized faimess boupieq is a fixed value. Note that in the definition of the normal-

one can cc_mclude that_ this algorithm approxmates the |de_a]4 %d fairness measurBM" (t1, 1,), if both the Rp and R, are

fair allocation and achieves long-term fairness. The following, isjied by the same value, the normalized faimess measure

theorem states this about the PPLS algorithm. _will also be multiplied by this value. In other words, the fact

~ Theorem 2: The normalized faimess bound of PPLS is @¢ \yhether or not the normalized fairness measure is bounded

finite constant. _ _ does not change except that the bound itself may vary. There-

Proof: The reader is referred to the AppendixM. fore, for better illustration and easier comparison, we normalize

the resource amounts such that the average number of proces-
sor cycles needed per packet is numerically equal to the average
number of bytes per packet. Table Il shows the ratios used in

Our simulation model consists of 8 flows with equal weightgis study. Note that flows 1 and 5 have equal normalized de-

sharing a processdr and a linkLZ, as shown in Fig. 1(a). Five mands for both resources. The prime resource for flows 2, 3
different scheduling policies including the PPLS algorithm argnd 4 is the processor, and that for flows 6, 7 and 8 is the link.
implemented. For flows 1 to 4, the sizes of packets generated is uniformly dis-

« FCFS (First-Come First-Served): A simple FCFS schentebuted between 1 and 1,600 bytes, while for flows 5 to 8, the
is used. The scheduling order is only determined by th®ocessing cost is uniformly distributed between 1 and 1,600
packet timestamps. cycles. Therefore, the maximum packet size is 6,400 bytes and

« PPLS: When the PPLS algorithm is implemented, a FCRBe maximum processing cost is 6,400 cycles. These maximum
strategy is used on the buffer between the proceBsamd values are the quantum values assigned to each flow.
the link L, since the order of the packets has already beenFig. 4 shows the normalized cumulative resource allocations,
determined by the PPLS algorithm. CRAT(0,7), for all flows i after a long run in the simulations.

o LDRR (Link Deficit Round Robin): A DRR algorithm in In this plot, the fairer an allocation policy, the closer its corre-
the allocation of only the link bandwidth is implementedponding curve to a straight horizontal line. It is apparent from
(i.e., the original DRR). this figure that the PPLS scheduling policy does achieve good

« PDRR (Processor Deficit Round Robin): A DRR algofairness. Note that, as expected, the FCFS scheme is the worst
rithm in the allocation of only the processing resource @mong all in terms of fairness. Regarding LDRR and PDRR,
implemented. each can achieve fair distribution of the normalized cumulative

« DDRR (Double Deficit Round Robin): Two DRR sched-allocation with respect to a certain resource, but not the overall
ulers are used. PDRR is used before the proceBsamd normalized cumulative resource allocation. Take LDRR as an
LDRR is used before the link. Note that this is the only example. It achieves fair distribution of the normalized cumula-
scheme in which a scheduler is implemented between tliee link allocation for all flows. Therefore, flows with the pro-
processor and the link. cessor as the prime resource, namely flows 2 to 4 in this case,

V. SIMULATION RESULTS ANDANALYSIS
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Fig. 4. The simulation results using synthetic traffic. In this plot, the fairer (b)
an allocation policy, the closer its corresponding curve to a straight horizontal 5 10’
line. o~ maxDCIQ =5
x maxDC/Q = 10 6.
4.8[1 -+ - maxDC/Q = 15 r T g
. —— maxDC/Q =20 ,’
receive a larger amount of normalized cumulative processor al- %’ 4] == MADCQ =2 !
location as compared to other flows. This indicates that LDRR g S
fails to achieve overall fairness among flows. PDRR functions E ey
exactly in the opposite way: it fairly distributes the normalized 3 —
cumulative processor allocation among all flows, but flows with E K
the link as the prime resource (flows 5 to 8) receive a large nor- z ; S
malized cumulative link allocation. Thus, PDRR also fails to T/
achieve overall fairness. e——
One interesting observation is regarding the DDRR scheme. Flow ID

Intuitively, one may expect DDRR to serve as a fair scheduler

in the allocation of processing and bandwidth resources, sirfég 5. The simulation results using gateway traffic traces. (a) The case when
ithas two scheculers, one fair with respect o the processor IfIFO SAneO% e e Sough bLSLSueh et e 0o 2
the other fair with respect to the link. However, Fig. 4 showsp| s algorithm. Here, for all, we assumenazPDC; = mazLDC; =

that this is not the case. This is because the DDRR scheme ineeDC andPQ; = LQ, = Q. Again, in these plots, the fairer an allocation
plements the two fair schedulers in different stages. Note tl,pg{icy, the closer its corresponding curve to a straight horizontal line.

the PDRR scheduler before the procesBds responsible for

fairly allocating the normalized cumulative processor aIIocati;)ge packet size (in bytes). For our experiments, we assume a
to all flows. That means, at this point, more packets (in bytegge processing rate, and correspondingly convert the process-
from. those flows with the link as the prime resource (flows 6 ‘iﬂg delay of each packet into processor cycles. Again, we con-
8) will be sche_duled from the processbr Qn the other hand, vert the processing delay of each packet in such a way that the
those fl_ows with the processor as the prime resource (flow rage processing delay per packet (in units of cycles) is nu-
tﬁ 42) V]\!f'” nbotfhaveher;p Tgh 'IPr? clieés;?rRemarllmggl bacrlflog?ed H:]erically equal to the average size per packet (in units of bytes).
the buffer before the link.. The L scheduler, therefore, r, 4chieve a better comparison with the previous study using
finds flows 2 to 4 to be relatively idle and ends up transm'tt"‘%nthetic traffic, the flows have been ordered in such way that

more packetg from flows 6 to 8, thus causing a higher norm ie overall prime resource for flows 1 to 4 is the processor, and
ized cumulative resource allocation for flows 6 to 8. In fac

the DDRR scheme allocates resources fairly to all flows wit
the same prime resource, but favors the flows with the “fina

resource as the prime resource.

at for flows 5 to 8 is the link.
., Fig. 5(a) illustrates the normalized cumulative resource allo-
ation for the five scheduling policies in this experiment. Again,
the PPLS algorithm performs very well in terms of fairness. It
] is observed that all other conclusions drawn from the synthetic
B. Gateway Traffic Traces study are still valid.

In this study, we use real traffic recorded at an Internet gate-Note that in this study, the DDRR scheme performs closer to
way as the input traffic [14, 19].The traffic traces include the the PPLS algorithm than in the previous study. This can be at-
processing delay (in milliseconds) for each packet, along withbuted to the fact that in real traces, the demands of each flow
2Global Positioning System technology was used to precisely record t%r the progessmg and ba.deId.th resources ar.e more balanced
timestamp of each packet at each node. In the trace data, filtered IP heal3@ those in the synthetic traffic. However, this would not be
were examined to track the same packet at different nodes. The difference\mgld if a flow has a dominant demand for one resource in com-

tween the timestamps of the same packet at adjacent nodes was computygﬁs ; ;
the delay. The link speed connecting these nodes was taken into considerdt on to another, as mlght happen durlng a DoS attack. In
so that the transmission delay of each packet was removed from the recorded

delay. Note that this delay was still the sum of the processing delay and tiens, the queue occupancy was never above 1 packet, and this eliminates the

gueueing delay. However, it was noticed that for traffic in one of the two direqueueing delay and validates the use of this delay as the pure processing delay.
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addition, the PPLS algorithm only needs one scheduler in réesndwidth resource is not always the sole bottleneck causing

implementation while the DDRR needs two. network congestion. In this report, we consider a set of shared
resources which aressential and relateduch as processor,
C. Effect of Maximum Deficit Counter Values link bandwidth, and power. We then present thenciple

. . . . of Fair Essential Resource Allocatipor the FERA principle,
Note that in the synthetic study, no flow changes its prime re- . : . . o .
) ) . which defines the fairness in the joint allocation of these re-
source during the experiment. Therefore, the setting of the maxX os We further apolv the EERA princiole into a svstem
imum values of the deficit counterm@xPDG andmaxLDG) ) PPy P P Y

in the PPLS algorithm has no effect on the outcome of the sir%QnSIStIng of a shared processor and a shared link, and propose

. . ractical andprovably fair algorithm, thePacket-by-packet
ulations. Next, using the real gateway traces, we focus on t%‘r%cessor and Link Sharing (PPLSpr the joint allocation of

effect of setting the maximum values of deficit counters in tqﬁe rocessor and bandwidth resources. It is our hope that this
PPLS algorithm. This is shown in Fig. 5(b), where we assume P . P

that, for alli, maxPDG (in units of processing cycles) is nu_Work yvill facilitate future research on achievipgovablefair-
! ) : ness in computer networks.

merically equal tanaxLDG (in units of bytes).

Itis apparent that the prime resource of a flow changes in this
study, since the normalized cumulative resource allocation §&- A Discussion on Implementation of PPLS
gins to show differences under the PPLS algorithm. However,in this report, we select DRR [10] as the starting point in
it should be noticed that the normalized cumulative resource gie design of the fair allocation policy for a shared processor
locations for the flows are still reasonably close to each othand a shared link, because of its relatively simple implementa-
due to the long-term fairness achieved by the PPLS algorithriion. Other fair scheduling algorithms can be also used, such as

From Fig. 5(b), itis observed that, as expected, the long-temVeighted Fair Queueing (WFQ) [3], Worst-case Fair Weighted
fairness among normalized cumulative resource allocations @&ir Queueing (WEQ) [11], Surplus Round Robin (SRR) [20],
grades as the set maximum values of the deficit counters d@d Elastic Round Robin (ERR) [12].
crease. For example, when the maximum deficit counters areNote that in many situations, the processing cost of a packet
setto be 10 times as large as the quantum values, the normaliggahot be determined before it is actually processed. If this
cumulative resource allocation exhibits a 10% variation frofg the case, one can have the following choices to modify the
the ideal. PPLS algorithm. The first way is to let the scheduler predict

Itis also observed from Fig. 5(b) that flows with more balthe processing cost, and make scheduling decisions based on
anced normalized cumulative allocations between the two fsredicted values. In the second choice, the scheduler serves the
sources over the long run, such as flows 1, 2 and 5, are likglsicket first, then updates the deficit counters accordingly. In
to receive less normalized cumulative resource allocation. Thiiis way, it is possible that after serving a packet, its process-
may be attributed to the fact that these flows are more likely jifg deficit counter becomes negative, thus breaking the fairess
temporarily change the prime resource, and therefore, settifi@perty of the PPLS algorithm. Therefore, the scheduler needs
the deficit counter for the current non-prime resource to thg additional counter to record the minimum normalized deficit
maximum value may reduce the future usage of this resouksisunter for all flows, and if this value becomes negative, at the
when it later becomes the prime resource. On the other hapdginning of next round, it needs to add a proper amount to the
the unbalanced flows are less likely to temporarily change theficit counter of each flow to make it non-negative. Note that
prime resource, and therefore, the effect on these flows of sgfen when using prediction before scheduling, one still needs
ting the deficit counter for the non-prime resource to the maghis protection from a negative deficit counter. Therefore, one
imum value is limited. Similar scenarios may also be found igan combine these two approaches: predict first, and then cor-
other situations, such as bandwidth sharing. For example,rétt if not accurate. In using this method, the PPLS algorithm
DRR, a flow that frequently changes its status (between bei@uld incorporate some of the principles of the ERR scheduler

backlogged and not being backlogged) will be sacrificed in the2], where the resource requirements are not assumed to be
long run, since each time it becomes non-backlogged its unus@@wn prior to the allocation.

deficit counter is reset to 0, thus causing it to lose bandwidth
share. . . : . C. Discussions on Further Extensions
Based on the above discussion, by setting appropriate max- i -
imum values for the deficit counters, one can tune the trade NOte that in our study, it is assumed that each flow has a
offs between long-term and short-term fairness achieved by t#Haldue weight which determines its relative rightful share for

PPLS algorithm. This is similar to the role played by the maxfach resource. |f instead, for each flow, a different weight is
mum lag in wireless scheduling [18]. associated with each individual resource, the premise of this

work can still be applied. The only difference would be that
when defining the prime resource for each flow, the weight for
each individual resource needs to be taken into consideration.
A. Summary This requires an additional concept, theéme weight defined

Research in fair allocation of the bandwidth resource has the weight associated with the prime resource. In this case,
been active for decades. Traffic flows, however, encounfer all flows, the quantum values for each resource in the PPLS
multiple resources other than bandwidth, including processafgorithm need to be proportional to the weights corresponding
buffer, and power, as they traverse the network. Further, tttethat resource.

VI. CONCLUDING REMARKS
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Even though we have focused only on the processing and APPENDIXI
bandwidth resources, the FERA principle and the design of the PROOF OFTHEOREM 1

tional essential and related resources, such as a wireless sys{@fBurces, the normalized allocations received by a flawe
where processor, link, and power are all shared. In this case,{@ntical under two allocation policiesands if AY = A,

each flow, three quanta and three deficit counters are needed. pyoof: Let B¢ and B be one of the prime resources of
The core of the algorithm, however, remains the same, i.e.fi&y ; under policizesq ands, respectively. We have,

packet from a flow can be scheduled only if all three deficit

q q
counters of the flow are large enough. Aw,ls < ALB?

S < S
B > i85
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Hence, under policy, as opposed to policy, no flow gets min{PDCi(k) LDCi(k)} <5
less allocation for any resource, and at least one flow is allo- Rp ' Ry -

cated more of some resources. This violates the assumptigiu e constants andg are defined as follows:
that policyq is work-conserving and completes the proof.

3
APPENDIXII Rp ’ Ry

max {maxPDC;} max{maxLDC;}
o= max{ vi } (7
PROOF OFTHEOREM 2

Without loss of generality, we assume that the flow weights 3 = min {MP ML} . (8)
are normalized in such a way that the smallest of the weights Rp’ Rp
assigned to a flow is 1. o _ . According to (5), we also define constanas follows,
In the rest of this proof, we will limit our consideration to
the situations where lines 19 and 22 in Fig. 3 are never exe- min {PQ;} min{LQ;}
cuted, i.e., the deficit counters of any flow are never above the v = vi 7 = 7 . (9)
P L

thresholds. The reason of this assumption is similar to the one
used in the design of Idealized Wireless Fair Queueing (IWFQ),Lemma 3: During an execution of the PPLS strategy over
where fairness in bandwidth cannot be guaranteed if any fley, rounds, for any flow,

lags more than the maximum lag allowed by the wireless packet

scheduler [21]. mw;y — B < CRAT(m) < mw;y + «
Lemma 2: In an execution of the PPLS strategy, at the end
of each round, for any flows, whereq, 3, v are constants defined in (7), (8) and (9), respec-

1) The following two statements are always satisfied: ~ tVely- ,
Proof: Denote bySCPA; (k) the cumulative processor al-

0 < PDC;(k) < max{maxzPDC;} location of flow: in a single round:. From the algorithm we
vi have,
0 < LDCy(k) < max{mazLDC;}; SCPA;(k) = PQ; + PDC;(k — 1) — PDC;(k).
2) ]:?etcll.east one of the following statements is always Sati%'his leads to
0< PDC;(k) <M Ui
= (k) < Mp CPA;(m) = > SCPA(k)
0 < LDC;(k) < My, k=1

whereMp and M, are, respectively, the maximum pro- = mPQ;i+ PDC;(0) - PDCy(m)

cessing cost of a packet and the maximum link cost of g, 4

packet.

Proof: First, it can be readily verified that the deficit coun- CPAT(m) — CPA;(m)
ters can never be negative. The first half of Lemma 2 can be ' Rp
directly derived from the assumption that lines 19 and 22 are PQ; PDC;(0) — PDC;(m)
never executed. = MR, T Rp :

Next we prove the second half of Lemma 2 by contradic-
tion. Assume that both statements are not true, then we h&y&m (2) we have,
PDC;(k) > Mp andLDC;(k) > Mj,. Note that at this mo- min {PQ,}
ment, flow: still has packets in the queue waiting to be sched- PQ; Vj o
uled. Otherwise, both deficit counters of flewhould be reset Rp  min{w;} Rp = W
to 0. Consider the head-of-line packet of flawsayp. Ap- vi
parently its processing cost is no more thah> and its link 54 therefore
cost is no more thaid/y,. In other words, its processing cost
is less thanP DC; (k) and its link cost is less thahDC;(k),
and therefore, based on the PPLS algorithm, paekabuld be

scheduled in round. This violates the assumption that packet . .
p is the head-of-line packet from flowat the end of round.  SiNce both?DC;(0) and PDC;(m) are non-negative,

PDC;(0) — PDC;(m)

CPAY(m) = mw;y +
Rp

This completes the prool
: ) PDC; PDC;(0
Lemma 2 readily leads to the following Corollary. mw;y — T(m) < CPAT(m) < mw;y + T()
Corollary 1:  In an execution of the PPLS strategy, at the P P
end of each round, for any flowz, Similarly we have

LDC;(0)
R,

- { PDCy (k) LDC’i(k)} “a LDC;(m)

Rr ' R, mw;y — i < CLAY (m) < mw;y +



Applying the above in the definition of normalized cumula-
tive resource allocation leads to the following:

CRA}(m) < mwi7+maX{PDci(0) LDCZ-(O)}

RP ’ RL
CRAJ(m) > mw;y — min PDCi(m) 7 LDC;(m) '
/ RP RL

Applying Corollary 1 into the above inequalities completes the
proof.H

Consider a certain time interval;, ¢;), during which all
flows remain backlogged. Consider any pair of floand ;.
Assume that durindtq, t2), flow i receivesm,; rounds of ser-
vice while flow j receivesm; rounds of service. Since both
flows ¢ andj are backlogged during time intervél, t>), and
the scheduler serves the flows in a round-robin fashion, we have
|mi — mj| S 1.

Applying Lemma 3 we have

CRA;” (tl , T2 )

< myy+ —

wj wy
CRA’ (t1,12)

2 s oy 2

wj wj

Therefore,

CRAZ(t1,1)  CRAJ(t1,15)

w; wy

IN

F]
|

3

g

+
|

+
|

< a+p8+7.

Similarly we can also derive that,

CRA” (t1,t n
3(17 2)—CRAZ(t17t2)Sa+ﬁ—|—7,
w w;
Since flowsi andj can be any pair of flows, based on the defi-
nition of the normalized fairness measure we have,

FM"(t1,t2) < a+ B+ 7.

Note thata, 6 and~ are all finite constants. Therefore,
FM"(t1,t2) is bounded by a finite constant over any time in-
terval during which all flows are backlogged, i.e., the fairness
boundFB" exists for the PPLS strategy and it is finite. This
proves the statement of Theorem 2.
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