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Routing in Packet-Switched Networks Using Path-Finding Algorithms

Shree Murthy

Abstract

Route assignment is one of the operational problems of a communication network. The

function of a routing algorithm is to guide packets through the communication network to

their correct destinations. This dissertation is on the design and analysis of distributed,

adaptive routing algorithms and protocols for packet switching networks. We introduce

the general framework on which these algorithms are based. Using this general model, we

propose several routing techniques to suit heterogeneous environments.

In this dissertation, we concentrate on distance-vector algorithms. One important draw-

back of previous distance-vector algorithms based on the distributed Bellman-Ford algo-

rithm for shortest-path computation is that they su�er from counting-to-in�nity problem

and the bouncing e�ect. Recently, distributed shortest-path algorithms which utilize infor-

mation about distance and second-to-last hop along the shortest-path to each destination

have been proposed. This class of algorithms are called path-�nding algorithms. Our pro-

posals are based on path-�nding algorithms.

We have proposed two new routing algorithms, PFA and LPA, for 
at networks which

are devoid of the drawbacks of the previous proposals. While PFA reduces the number

of cases in which a temporary routing loop can occur, LPA is the �rst routing algorithm

that is loop-free at every instant. To accommodate the increasing number of network users,

aggregation of routing information is required. A hierarchical routing algorithm, HIPR,

based on the maintenance and exchange of hierarchical routing trees, has been proposed

for this purpose. To accommodate the low bandwidth requirements of mobile and wireless

networks, a wireless routing protocol, WRP, has been proposed. This protocol minimizes

protocol overhead.



To increase the responsiveness of a routing protocol and to guarantee the quality of ser-

vice required by the user, routing and congestion control mechanisms have been integrated.

This protocol ensures that packets arriving into a packet-switched network will be delivered

unless a resource failure prevents it. Using this mechanism, we can ensure certain level of

performance guarantees for network 
ows.
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Chapter 1

Introduction

One of the important components of a computer network is the communication subnetwork

which includes the hardware and the software required for the transmission of data within

the network. Traditionally, two di�erent types of networks have supported the communi-

cation needs of end users: the telecom networks (telephone, cable and satellite networks)

and data networks (Internet). The telephone network is designed to support high quality

audio communications. These networks are engineered to provide low delay and �xed band-

width service. Telecom networks are based on circuit-switching mode of operation in which,

at the start of each session, the network determines the connection route and establishes

end-to-end path from sender to receiver. In contrast, data networks are usually based on

packet-switching, where there is no �xed physical path between a sender and a receiver.

Instead, when a sender has a block of data to send, it is received in its entirety and then

forwarded to the next hop along the path to the destination. Even though providing service

guarantees is easier in circuit-switched mode of operation, because of the bursty nature of

the tra�c, packet-switching is favored in the present day Internet. Also, with the increasing

demand for mobile and wireless communication, better techniques need to be developed for

data transfer in a packet-switched environment.

In the context of the internal operation of a network, a connection is usually called

virtual circuit in analogy with the physical circuits setup by the telephone system. The

independent packets of the connectionless organization are called datagrams, in analogy

with data networks. The idea behind a virtual circuit is to avoid having to make routing
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Table 1.1: Comparison of Datagram and Virtual Circuit Networks

Each packet contains a short VC
number

Each packet contains the source

Each packet is routed
independently

All VCs passing through the
failed resource are terminated

Resource failure

Suitability

State Information

Congestion control

Connection-oriented and

Routing

Addressing

Route is chosen when VC is setup.
All packets follow this route

ISSUE DATAGRAM

State information about each VC

is maintained

and the destination address

Easy if enough buffers can be
allocated in advance

Connection-oriented service

Does not hold packet level state

information

VIRTUAL   CIRCUIT

Difficult

Packets are lost only during
resource failure

connectionless service

decisions for every packet sent. The route from a source to a destination is chosen as part

of the connection setup mechanism.

In contrast, with a datagram network, no routes are setup in advance. Each packet

is routed independently. Successive packets may follow di�erent routes. While datagram

networks have to do more work, they are more robust and adapt to congestion and fail-

ures easily. Table 1.1 summarizes some of the di�erences between datagrams and virtual

circuits [Tan91].

Routing forms an integral part of the communications subnetwork. The routing algo-

rithm is a part of the network layer which is responsible for deciding on which outbound

queue an incoming packet should be transmitted. It guides packets through the communi-

cation network to their correct destinations. If the network uses datagrams internally, this

decision must be made for every arriving data packet. However, if virtual circuits are used

internally, routing decisions are made only when a new virtual circuit is being set up. The
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selection of the path towards a destination itself is made by a well-de�ned decision rule

which is referred to as the routing policy.

Regardless of whether routes are chosen independently for each packet or only when new

connections are established, certain properties are desirable in a routing algorithm. Some

of them are:

� Simplicity: Simple algorithms are preferred for ease of implementation and higher

e�ciency in operational networks.

� Robustness with respect to failures and changing conditions: The algorithm must be

able to adjust the routing decisions when tra�c conditions change or when there is

a resource failure. The algorithm monitors the network constantly and updates the

routing information

� Stability of the routing decisions: The routing algorithms should adapt smoothly to

changes in operating conditions. i.e., a small change in operating conditions should

provide a comparatively small change in routing decisions.

� Fairness of the resource allocation: Data 
ows with the same characteristics should

result in similar packet delay and throughput.

� Optimality of the packet travel times: The routing algorithm should maximize the

network designer's objective function, while satisfying design constraints.

� Loop freedom: At any instant, the paths implied from the routing tables of all hosts

taken together should not have loops. Each router in the path from a source to

destination should be visited only once.

� Convergence characteristics: Time required to converge after a topology change should

not be high. This is required to maintain up-to-date network state information.

� Processing and memory e�ciency: The resources used at each router should be mini-

mal. The computation time spent at a node a�ects the convergence time of the routing

algorithm.
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In this dissertation, our objective it to satisfy most of the above mentioned attributes of

routing algorithms.

The two main functions performed by the routing algorithms are the selection of routes

for various origin-destination pairs (route computation) and the delivery of messages of their

correct destinations once the routes are selected (packet forwarding). We focus on the route

computation function of the routing algorithm and design mechanisms to compute routes

at each router.

Routing policies can be grouped into two major classes as static or nonadaptive and

adaptive depending on whether the routes change in response to the current tra�c pat-

tern and topology. In a static routing policy, the path a packet takes from a source to a

destination is predetermined. The routing tables are set up at a certain time before the

data transmission begins and the routing tables are not changed thereafter. In an adap-

tive policy, packets are routed taking into account the current state of the network such

that congested and damaged areas in the network are avoided. The routing tables are ac-

cordingly changed to dynamically adapt to changing network conditions. The information

maintained at each routing node is updated taking into account the up-to-date network

state information available at that time.

Adaptive routing algorithms require information about network tra�c and topology to

make good routing decisions. Depending on how and where this information is maintained,

adaptive routing algorithms are further classi�ed as centralized and distributed routing poli-

cies. In a centralized approach, the path information is computed at one central node,

whereas in a distributed approach, routes are computed at each routing node using the net-

work state information present at that node. Henceforth, we refer to adaptive distributed

routing simply as routing.

Many practical routing algorithms are based on the notion of a shortest path between

two nodes. Each communication link is assigned a positive number called its length. A link

can have a di�erent length in each direction. Each path (i.e., a sequence of links) between

two nodes has a length equal to the sum of the lengths of its links. A shortest path routing
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algorithm routes each packet along a minimum length (shortest) path between the origin

and destination nodes of the packet. The simplest possibility is for each link to have unit

length (one hop), in which case a shortest path is simply a path with minimum number

of links (hop count). More generally, the length may depend on transmission capacity and

tra�c load. The idea of shortest path algorithms is that the path should contain relatively

few and uncongested links.

Distributed routing algorithms can be subdivided into distance vector algorithms (DVA)

and link-state algorithms (LSA) depending on the method adopted to maintain routing in-

formation in router databases. In a distance vector algorithm, each node has knowledge

of only the local links. The shortest paths are computed using a distributed version of

Bellman-Ford algorithm [BG92] in which nodes exchange their shortest path lengths to

other nodes with their neighbors periodically or on a event-driven basis. Using this infor-

mation received from its neighbors, each node constructs a routing table containing the

distance of the shortest path to every destination in the network. In other words, the pro-

cess of route computation is carried out in a distributed way with each node performing

part of the computation. Examples of distance-vector protocols include the old Arpanet

algorithm [MW77], RIP [Hed88] and Cisco's IGRP [Hed].

In a link-state algorithm, each node has complete information of the network topology

using which each node computes routes independently. When a node detects any change in

the link distances, it sends out an update to all other nodes by broadcasting. Upon receiving

an update, each node recomputes shortest paths to all other nodes using Dijkstra's shortest

path algorithm [BG92] and constructs its new routing table. Some of the link state protocols

are the new Arpanet routing protocol [MRR80], OSPF [Moy94] and ISO's IS-IS [Ora90].

1.1 Problem Formulation

In this dissertation, we concentrate on routing techniques for packet-switched networks using

distance-vector algorithms. These algorithms are applicable to circuit-switched networks

also. In the next few paragraphs we outline the motivation for our work. The main focus of
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this work is to identify the drawbacks of the existing routing techniques and propose routing

algorithms to overcome these drawbacks. With this as the basis, the suitability of these

algorithms to heterogeneous environments has been explored and the routing protocols have

been proposed accordingly.

Some of the most popular routing protocols used in today's internets (e.g. RIP [Hed88])

are based on distributed Bellman-Ford (DBF) algorithm for shortest path computation [BG92].

However, DBF su�ers from the bouncing-e�ect and counting-to-in�nity problems. Recently,

distributed shortest path algorithms that utilize information regarding the length and sec-

ond to last hop of the shortest path to each destination have been proposed to overcome

the counting-to-in�nity problem of DBF. This class of algorithms is referred to as the path-

�nding algorithms. However, these algorithms do not eliminate the possibility of temporary

routing loops. All the loop-free algorithms reported to date rely on mechanisms that require

routers to either synchronize along multiple hops [GLA92a, JM82, MS79] or exchange path

information that can include all the routers in the path from source to destination [GLA92b].

We propose two routing algorithms for a 
at network topology that belong to the class of

path-�nding algorithms. The �rst of the two algorithms called Path-Finding algorithm

(PFA), eliminates a number of cases in which a temporary routing loop can occur. The sec-

ond algorithm, Loop-free Path-�nding algorithm (LPA), guarantees loop-freedom at every

instant.

Routing information maintained at each router must be updated frequently to dynami-

cally adapt to the changes in the topology and congestion in the network. In an internetwork

with a 
at routing scheme, the size of the routing table grows linearly with the number of

destinations in the network. With the increasing number of network users, aggregation of

routing information becomes a necessity in any type of routing protocol. The goal of a

hierarchical scheme is to reduce the size of the routing databases maintained at each router

so that the exchange of routing or topology information among routers can be minimized.

Prior proposals to hierarchical routing have assumed variants of DBF or topology broadcast

algorithms. We propose a hierarchical routing algorithm based on the maintenance and ex-
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change of hierarchical routing trees. We call this algorithm the Hierarchical Information

Path-based Routing (HIPR). HIPR is based on a path-�nding algorithm but does not require

host routes for shortest path computation (unlike other path-�nding algorithms) and is free

of routing loops.

Today's internetwork technology is oriented towards computer communication in rel-

atively stable operational environments. This cannot adequately support many of the

emerging wireless applications. The challenge is to achieve reliable, high performance com-

munications for mobile and wireless applications. Routing forms an integral part of this

communications infrastructure. To adapt to the emerging applications, the routing proto-

cols need to support wireless and mobile stations in addition to �xed stations. The routing

protocols used in multihop packet radio network implemented in the past [Bea89, Bey90,

LNT87] were based on shortest-path routing algorithms that have been typically based on

DBF. DBF is susceptible to the counting-to-in�nity problem and the bouncing-e�ect and

will take a long time to converge. This is not desirable, more so in a wireless network since

its bandwidth is very limited. Also, some of the techniques which have been proposed to

overcome the basic problem of DBF in wired networks such as 
ooding, multihop internodal

synchronization and the speci�cation of complete path information would incur too much

overhead with a dynamic topology and hence are not desirable. Therefore, a new routing

protocol, devoid of all these drawbacks, is required to support the needs of emerging ap-

plications. We propose the wireless routing protocol (WRP) as a solution for routing in

wireless networks. WRP overcomes the aforementioned drawbacks of DBF and exchanges

minimal routing information among neighbors.

Routing and congestion control are two interrelated problems. Combining congestion

control and routing techniques becomes especially important in order to guarantee quality-

of-service requirements of the applications. A drawback of the existing Internet routing

protocols is that their route computation and packet forwarding mechanisms are poorly

integrated with congestion control mechanisms. More speci�cally, today's Internet routing

is based on single-path routing algorithms. A routing protocol based on single-path routing
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is ill-suited to cope with congestion, because the only thing the protocol can do to react

to congestion is to change the route used to reach a destination, and this could lead to

unstable oscillatory behavior [Ber82]. In many networks there are several paths between

pairs of nodes that are almost equally good. Better performance can be achieved by split-

ting the tra�c over several paths to reduce the load on each of the links. This technique

of using multiple routes between a single pair of nodes is called multipath routing. This is

similar to inverse multiplexing in circuit-switched networks where the primary motivation

is to provide high bandwidth with the limitation of low bandwidth links. Furthermore, in

a datagram network, routers forward packets only on a best-e�ort basis and drop the pack-

ets when congestion occurs. The routers adapt to congestion only after network resources

have already been wasted. We propose a new framework for dynamic multipath routing in

packet-switched networks that attempts to prevent the over-utilization of network resources

and hence avoid congestion. This protocol illustrates the provision of performance guaran-

tees in a connectionless routing architecture. Using this approach, we propose a two-tier

architecture in which the end users can request performance guarantees similar to a connec-

tion oriented architecture and, within the network, packet transmission is done hop-by-hop

as in a connection-less network.

1.2 Dissertation Overview

This dissertation is organized as follows:

Chapter 2 gives an overview of the routing algorithms that are being used in today's

internetwork. We highlight the problems in the existing algorithms and explain the

working of the basic path-�nding algorithm. We also introduce the network model

and some of the terminologies used in the dissertation.

Chapter 3 presents two path-�nding algorithms, PFA and LPA, which eliminate the loop-

ing problem of the existing distance-vector routing algorithms. We show through sim-
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ulations that these two algorithms have better performance than the state of the art

routing algorithms such as DUAL and an ideal link-state algorithm.

Chapter 4 proposes a novel methodology for routing in hierarchical networks. We formally

verify the hierarchical routing algorithm and present some simulation results. The

performance of this algorithm is compared with that of OSPF.

Chapter 5 describes a wireless routing protocol which is suitable in a packet-radio net-

work. Simulation results of the basic routing algorithm are presented to evaluate the

performance of the proposed protocol. Some implementation issues are also discussed.

Chapter 6 proposes a novel approach for integrating routing with congestion control. A

worst-case delay bound for this dynamic solution is derived. A two-tier architecture

is also proposed for mapping connection-oriented 
ows to connection-less 
ows and

thereby guaranteeing certain level of QoS to end users of a packet-switched network.

Chapter 7 gives a summary of this work, together with some conclusions and directions

for future research.
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Chapter 2

Background

As explained in the previous chapter, routing algorithms are responsible for forwarding the

data packets over routes to provide good or optimal performance. Consequently, a routing

protocol is required to maintain the status of all the routes in the network. A router

runs a speci�ed routing algorithm to compute routes to all known destinations. A routing

algorithm mainly consists of two parts { an initialization step and a recurring step that is

repeated until the algorithm terminates. The recurring step involves updating the minimum

distance of each router for all destinations until the algorithm converges to correct shortest

path distances. The routing algorithms di�er in the way by which the updating step is

implemented. There are two types of adaptive routing algorithms { link state and distance

vector algorithms.

Link-state Algorithms: In the link-state approach, each router maintains a complete

view of the network topology and the cost associated with each link [MRR78, MRR80].

The topology information is updated regularly. A router broadcasts regularly the link state

information of all its outgoing links to all other routers by 
ooding. A complete computation

of the best routes is done at each node using the information present in its local topology

database. When a router receives information about the change in the link cost, it updates

its view of the network and applies a shortest path algorithm to choose its next hop to each

destination.

Link state algorithms are basically free of long-term loops. Routers may not always

have a consistent view of the network topology, because of the time updates take to reach
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all routers. This inconsistent view of the network can lead to the formation of loops, which

are temporary and disappear in the time it takes for all routers to have the same topological

information.

Link state algorithms have a disadvantage of not being scalable in terms of number of

messages exchanged and the memory required to maintain the state of the entire network

topology. Each time the topology changes, all network nodes have to recompute their

routing tables, which creates a peak of activity.

Shortest Path First (SPF) [McQ74] is a link-state protocol in which each node computes

and broadcasts the costs of its outgoing links periodically and applies Dijkstra's shortest

path algorithm [BG92] to determine the next hop; other routing protocols that work on the

same link-state approach are IS-IS [Ora90, Per91], and OSPF [Moy94].

Distance-Vector Algorithms: Distance-vector algorithms are often referred to as Bellman-

Ford algorithms because they are based on the shortest-path computation algorithm by R.E.

Bellman [Bel57]. Distance-vector algorithms have been used in several packet-switched net-

works such as Arpanet.

In a distance-vector algorithm, a router knows the length of the shortest-path (distance)

from each of its neighbors to every destination in the network and uses this information to

compute its own distance and the next router (successor) to each destination. Well-known

examples of routing protocols which are based on distance-vector algorithms (DVA), are the

routing information protocol (RIP) [Hed88], the HELLO protocol [Mil83a], the gateway-to-

gateway protocol (GGP) [HS82], the exterior gateway protocol (EGP) [Mil83b] and the old

Arpanet routing protocol [McQ74]. All these DVAs have used variants of the distributed

Bellman-Ford algorithm (DBF) for shortest-path computation [BG92].

Distance-vector algorithms perform their route computation on a per-destination basis.

If a link fails, only routes for those destinations which were routed over the failed link need

to be recomputed. Moreover, the computation is localized to one part of the network only

{ the routers upstream of the failed link. Therefore, distance-vector algorithms are simpler.
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The primary disadvantages of DBF are routing-table loops and counting-to-in�nity prob-

lem [GLA]. A routing-table loop is a path speci�ed in the routers' routing tables at a

particular point in time, such that the path visits the same router more than once before

reaching the intended destination. A router is said to be counting-to-in�nity when it incre-

ments its distance to a destination until it reaches a prede�ned maximum distance value.

Some solutions such as split horizon and poisson reverse have been proposed to overcome

these basic problems [Hui95].

2.1 Network Model

A computer network G is modeled as an undirected graph represented as G(V;E), where

V is the set of nodes and E is the set of edges or links connecting nodes. Each node

represents a router and is a computing unit involving a processor, local memory, and input

and output queues with unlimited capacity. Extending the model to account for end node

(link) destinations attached to routers is trivial. A functional bidirectional link connecting

nodes i and j is denoted by (i; j) and is assigned a positive weight in each direction. A link

is assumed to exist in both directions at the same time. All messages received (transmitted)

by a node are put in the input (output) queue on a �rst-come-�rst-serve (FCFS) basis and

are processed in that order. An underlying protocol assures that:

� Every node knows who its neighbors are; this implies that a node within a �nite time

detects the existence of a new neighbor or the loss of connectivity with a neighbor, or

the change in the cost of an adjacent link.

� All packets transmitted over an operational link are received correctly and in the

proper sequence within a �nite time. (This assumption is made for convenience.

Reliable message transmission can be easily incorporated into the routing protocol

(e.g. [MGLA95, Moy94])

� All update messages, changes in the link-cost, link failures and link recoveries are

processed one at a time in the order in which they occur.
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Each node is given a unique identi�er. Any link cost can vary over time but is always

positive. The distance between the two nodes in the network is measured as the sum of the

link costs of the shortest path between nodes.

When a link fails, the corresponding distance entry in a node's distance and routing

tables are marked as in�nity. A node failure is modeled as all links incident on that node

failing at the same time. A change in the operational status of a link or a node is assumed

to be noti�ed to its neighboring nodes within a �nite time. These services are assumed to

be reliable and are provided by the lower level protocols.

Routing updates which are sent by a router to all its neighboring nodes can be of two

types { periodic (time driven) and triggered (event driven). Periodic routing updates are sent

periodically when the periodic update timer expires. The value of this timer depends on the

network propagation delay and latency. Triggered updates increases the responsiveness of

the protocol by requesting routers to send updates as soon as certain event occurs. Typical

events are the changing of a local metric value, or the reception of a routing table update

from a neighbor. This procedure speeds up the convergence time of the routing algorithm.

The algorithms we propose use event-driven updating mechanism.

2.2 Notations and De�nitions

A path from node i to node j is a sequence of nodes where (i; n1), (nx; nx+1), (nr; j) are

links in the path. A simple path from i to j is a sequence of nodes in which no node is

visited more than once. A implicit path from i to j is a path that is derived from predecessor

node information. The paths between any pair of nodes and their corresponding distances

change over time in a dynamic network. At any point in time, node i is connected to node

j if a path exists from i to j at that time. The network is said to be connected if every pair

of operational nodes are connected at a given time.
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Throughout the paper the following notation is used:

; : An empty set.

1 : An arbitrarily large number.

null : A nonexistent node.

Ai : Set of areas in a hierarchical network

Cj(t) : Loop formed for destination j at time t

Di
j : Distance entry at node i to destination j in the routing table

Di
jk : Distance entry at node i to destination j through neighbor k

in the distance table

FDi
j(t) : Distance value used by node i to evaluate feasibility at time t

H(I; d) : Maximum number of links in the loop-free path from node i having

a length not exceeding d in the �nal topology

LISTk : List of entries received by node i in message Mk.

LISTi(n) : List of entries in a message Mi sent by node i to node n.

Mi : Message sent by node i.

Ni : Set of neighbors of i

Pxj(t) : Path from node x to node j implied by successor entries at time t

RDi
j(t) : Distance from node i to node j at time t

RH i
j(t) : Predecessor of node j along the path from i to j at time t

Sj(t) : Successor graph of G at i for destination j at time t

T (i) : Time by which all messages that are in transit at time T (i� 1) have

reached the destination

b; k : Neighbor nodes

dik : Link cost from i to neighbor k

j : Destination node identi�er j 2 N

pij : Predecessor entry from i to j in the routing table

pijk : Predecessor entry from i to j through k in the distance table

rijk : Reply status 
ag for a query sent by node i for j through k
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sij : Successor from node i to j

tagij(t) : Tag at node i for destination j at time t

uij(t) : Update 
ag

The time at which the value of a variable applies is speci�ed only when it is necessary.

The successor to destination j for any node is simply referred to as the successor of that

node, and the same reference applies to other information maintained by a node. Similarly,

updates, queries and responses refer to destination j, unless stated otherwise.

In the algorithm's description, the time at which the value of a variable X of the algo-

rithm applies is speci�ed only when it is necessary; the value of X at time t is denoted by

X(t).

2.3 Evolution of Distance-Vector Algorithms

One of the earliest implementations of DVA was the routing protocol implemented in the

Arpanet in the early 1970s. In this protocol, every router in the networkmaintains a distance

and a routing table. The shortest path information for all destinations is maintained in the

routing table. A router examines its routing table entries to determine the shortest path to

a particular destination before sending a packet to that destination.

Many approaches have been proposed in the past to solve, at least in part, the looping

problems in DVAs. A widely known proposal is the split-horizon technique, which avoids

ping-pong looping, whereby two nodes choose each other as the successor to a destination

[Ceg75, Sch86]. Another well known technique which has been proposed is the use of

hold downs. Both of these approaches do not completely solve the counting-to-in�nity

problem [GLA]. Some other solutions have also been proposed to overcome this problem

[GLA].

Figure 2.1 illustrates the looping and bouncing e�ect scenarios. Consider a three-node

network with n1 being the destination node. Assume initially all nodes maintain correct

routing table entries. Nodes n2 and n3 choose nodes n1 and n2 as their successors respec-
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Figure 2.1: Counting-to-In�nity Problem

tively. Now, if link (n1; n2) fails, based on the distance table entries, node n2 will choose

n3 as its successor to destination n1. This information is sent to n3 (i.e., n2 announces a

distance of 3 to reach n1), which leads to the formation of a routing loop between nodes

n2 and n3. Furthermore, since the distances of n2 and n3 are much less than 100, which

is the cost of the link (n1; n3), nodes n2 and n3 will keep increasing their distances till a

distance value > 100 is reached. After this, the distance converges and the correct path

is chosen. Thus, we can see that, using DBF, nodes have to go through a long period of

message exchanges among nodes belonging to loops before the algorithm converges. This

is referred to as the counting-to-in�nity problem.

Some of the most popular routing protocols used in today's Internet (e.g., RIP [Hed88])

are based on the distributed Bellman-Ford algorithm (DBF) for shortest-path computa-

tion [BG92]. The counting-to-in�nity problem is overcome in one of the three ways in

existing Internet routing protocols. OSPF [Moy94] relies on broadcasting complete topol-

ogy information among routers, and organizes the Internet hierarchically to cope with the

overhead incurred with topology broadcast. BGP [RL94] exchanges distance vectors that

specify complete paths to destinations. EIGRP [Far93] uses a loop-free routing algorithm

called DUAL [GLA92a], which is based on internodal coordination that can span multiple

hops; DUAL also eliminates temporary routing loops.

Recently, distributed shortest-path algorithms [CRKGLA89, Hag83, Hum91, RF91,

Mur94] that utilize information regarding the length and second-to-last hop (predecessor
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Figure 2.2: Path Traversal using Predecessor Information

or node next to the last hop) of the shortest path to each destination have been proposed

(path-�nding algorithms) to eliminate the counting-to-in�nity problem of DBF.

2.4 Path-Finding Algorithms

Path-�nding algorithms eliminate the counting-to-in�nity problem of DBF using predecessor

information. Predecessor information can be used to infer an implicit path to a destination.

Using this path information, routing loops can be detected. Each distance entry in the

distance and routing tables is associated with the predecessor node information. The design

of the path-�nding algorithm is such that at all times, the distance and routing table entries

satisfy the following property:

The path implicit in a distance entry from router i to destination j through a

neighbor k, Dk
ij, with associated predecessor h

k
ij = h, is the path implicit to node

h, Dk
ih, augmented by link (h; j).

If each column in the distance and routing tables of a router satis�es this property at all

times, then it can be used to maintain only simple paths to destinations.

Figure 2.2 illustrates the path traversal using predecessor information. Let n1{n7 be

the nodes in a network. The �gure shows the routing table entries at node n1. A routing

table is a vector with each entry specifying the destination j, current shortest distance Di
j ,

successor sij and the predecessor p
i
j . In�nite distance is represented as1 and null path by *.
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Suppose node n1 want to determine if its neighbor n7 is in the shortest path to destination

n2. Node n1 starts the trace from the entry for destination n2 (Figure 2.2(a)) and �nds

that the predecessor to n2 is node n5. Subsequently, n1 walks through the predecessors of

its path to n5 and n6 until it reaches node n1 itself (Figure 2.2(d)). From this, node n1

determines n7 is not in the path from n1 to n2 (not encountered during the trace). The

sequence of predecessors encountered during such a trace represents a path from n1 to n2.

This is referred to as the implicit path or the path extracted from the predecessor node

information [CRKGLA89].

Although path-�nding algorithms provide a marked improvement over DBF, the exist-

ing path-�nding algorithms [CRKGLA89, GLA86, Hag83, Hum91, RF91] do not eliminate

the possibility of temporary loops. The algorithms we have proposed are similar to previ-

ous path-�nding algorithms with respect to maintaining predecessor information in distance

and routing tables. Because each router reports to its neighbors the predecessor to each

destination, any router can traverse the path speci�ed by the predecessors from any desti-

nation back to a neighbor router to determine if using that neighbor as its successor would

create a path that contains a loop (i.e., involves the router itself). Furthermore, a router

detects a temporary loop within a �nite time that depends on the speed with which correct

predecessor information reaches the router, and not on the distance values of the paths

o�ered by its neighbors; therefore, temporary loops are detected much faster than in DBF

and its variations.

The next chapter describes the two algorithms, path-�nding algorithm (PFA) and loop-

free path-�nding algorithm (LPA) and present some of their performance results. This

forms the basis of our discussion in this dissertation.
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Chapter 3

New Path-Finding Algorithms

This chapter describes two routing algorithms which we propose for a 
at network. The

two algorithms, path-�nding algorithm (PFA) and loop-free path-�nding algorithm (LPA),

belong to the class of path-�nding algorithms which forms the basis of our discussion in the

rest of the dissertation. The working of the basic path-�nding algorithm has been explained

in the previous chapter.

3.1 Path-Finding Algorithm

PFA uses predecessor information to extract implicit paths from its distance and routing

tables without excessive overhead. It substantially reduces the number of cases in which

routing loops can occur. Each node maintains the shortest-path spanning tree reported

by its neighbors, and uses this information and the information regarding the cost of the

adjacent links to generate its own shortest-path spanning trees. The fact that PFA reduces

temporary looping accounts for its superior performance over DUAL and the ideal link

state algorithm (ILS). In addition to this, PFA also has an e�cient updating mechanism.

Each time an update is received by a router, the distance table and routing table entries

are updated to re
ect the change in the network state and thus maintain correct path

information to all destinations.
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3.1.1 PFA Description

Each node maintains a distance table, a routing table and a link-cost table. The distance

table at node i is a matrix containing the distance (Di
jk) and predecessor (pijk) entries

(path information) for all destinations (j) through all its neighbors (k). The routing table

is a column vector of minimum distance to each destination (dij) and its corresponding

predecessor (pij) and successor (sij) information. The link-cost table lists the cost of each

link adjacent to the node (lik); the cost of a failed link is considered to be in�nity. An

update message contains the source and the destination node identi�ers, and the distance

and predecessor for one or more destinations.

When a node i receives an update message from its neighbor k regarding destination

j, the distance and the predecessor entries in the distance table are updated (Step 1). A

unique feature of PFA is that node i also determines if the path to destination j through

any of its other neighbors fb 2 Nijb 6= kg includes node k. If the path implied by the

predecessor information reported by node b includes node k, then the distance entry of that

path is also updated as Di
jb = Di

kb +Dk
j and the predecessor is updated as pijb = pkj . Thus,

a node can determine whether or not an update received from k a�ects its other distance

and routing table entries. Before updating the routing table, node i checks for all simple

paths to j reported by its neighbors, and the shortest of these simple paths becomes the

path from i to j. This implies that at each stage node i checks for the simple paths and

avoids loops. Link or node failures, recoveries and link-cost changes are handled similarly.

In contrast to PFA, which makes a node i check the consistency of predecessor informa-

tion reported by all its neighbors each time it processes an event involving a neighbor k,

all previous path-�nding algorithms [CRKGLA89, Hum91, RF91] check the consistency of

the predecessor only for the neighbor associated with the input event. This unique feature

of PFA accounts for its fast convergence after a single resource failure or recovery as it

eliminates more temporary looping situations than previous path-�nding algorithms.

The following example illustrates the working of the algorithm. Consider a four node

network shown in Figure 3.1(a). Let PFA be used at each node in this network. All links
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Figure 3.1: Example of PFA's Operation

and nodes are assumed to have the same propagation delay. Link-costs are as indicated in

the �gure and are assumed to be the same in both the directions. Node i is the source, j

is the destination and nodes k and b are the neighbors of node i. The directed lines next

to links indicate the direction of update messages and the label in parentheses gives the

distance and the predecessor to destination j. This �gure focuses on update messages to

destination j only.

When link (j; k) fails, nodes j and k send update messages to their neighboring nodes

as shown in Figure 3.1(b). In this example, node k is forced to report an in�nite distance

to j as nodes b and i have reported node k as part of their path to destination j. Node

b processes node k's update and selects link (b; j) to destination j. This is because of

the e�cient updating mechanism of PFA that forces node b to purge any path to node

j involving node k. Also, when i gets node k's update message, i updates its distance

table entry through neighbor k and checks for the possible paths to destination j through

any other neighboring nodes. Thus, a node examines the available paths through its other

neighboring nodes and updates the distance and the routing table entries accordingly. This

results in the selection of the link (i; j) to the destination j (Figure 3.1(c)). When node i

receives b's update reporting an in�nite distance, node i does not need to update its routing
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Figure 3.2: Simulated Topologies

table as it already has correct path information (Figure 3.1(d)). Similarly, updates sent by

node k reporting a distance of 11 to destination j will not a�ect the path information of

nodes i and b. This illustrates how the e�cient updating mechanism of PFA helps in the

reduction of the formation of temporary routing loops in the explicit paths.

The proofs of correctness, convergence and complexity of PFA are given elsewhere [Mur94].

The worst-case complexity of PFA has been found to be O(h) for single recovery/failure, h

being the height of the tree.

3.1.2 Simulation Environment

The performance of the proposed routing algorithms is evaluated by simulations. The

simulation results of these algorithms have been compared with that of DUAL and an ideal

link-state algorithm (ILS), which uses Dijkstra's shortest path algorithm for shortest path

computation.

The di�using update algorithm (DUAL) proposed by J.J. Garcia-Luna-Aceves aims at

removing transient temporary loops. DUAL is based on the di�using algorithm for partial

route updates proposed by E.W. Dijkstra and C.S. Scholten in 1980 [DS80] and on the

remark that one cannot create a loop by picking a shorter path to the destination [Jaf88].
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DUAL uses an interneighbor coordination mechanism to achieve loop freedom. When there

is no acceptable neighbor through which it can reach a given destination, the router will

engage a di�using computation. As long as this computation is not complete, the router

freezes its routing tables, or at least the route to that destination. Since there are no

loops before, freezing tables cannot create a loop. It however marks that destination as

unreachable for the packets that are being sent towards the broken pipe, but this will last

only for the duration of the di�using computation.

Simulations have been developed using an actor-based, discrete-event simulation lan-

guage called Drama [Zau91], together with a network simulation library. The library treats

both links and routers as actors. Link failures and recoveries are simulated by sending a

link status message to the routers at the end points of the appropriate links. Router failures

can be simulated by making all the links connecting to that router to go down at the same

time, and the link cost changes are treated as a link failing and recovering with a new cost.

All simulations are performed for unit propagation time. If a link fails, the packets in

transit are dropped. A router receives a packet and responds to it by running the simulated

routing algorithm and queueing the outgoing updates and processing the packets one at a

time in the order of their arrival. The redundant packets are removed from the queue. The

simulation ensures that all packets at a given simulation time are processed before the new

updates are generated.

3.1.3 Instrumentation

A set of counters are used to instrument the simulations. These counters can be reset at

various points. When the event queue empties that is, when the algorithm converges, the

values of these counters are printed. During each simulation step, a router processes input

events received during the previous step one at a time, and generates messages as needed

for each input event it processes.

To obtain the statistical averages, the simulation makes each link (router) in the network

fail, and counts the steps, messages and operations needed for each algorithm to converge.
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It then makes the same link (router) recover and repeats the process. The average is then

taken over all link (router) failures and recoveries. The routing algorithm was allowed to

converge after each such change. In all cases, routers were assumed to perform computations

in zero time and links were assumed to provide one time unit of delay. For the failure and

recovery runs, the costs are set to unity. Both the mean and the standard deviation are

computed for each counter; the four counters used are

� Update Count: The total number of updates (including queries and replies where

applicable) and changes in link status processed by routers.

� Message Count: The total number of packets transmitted over the network. Each

packet may contain multiple updates.

� Duration: The total elapsed time it takes for an algorithm to converge.

� Operations: The total number of operations performed by all nodes in the network.

The operation count is incremented whenever an event occurs, but also counts the

number of times the statement within a for or (while) loop are executed.

There is no sampling error for the results because all possible cases are covered in the

simulations. Both the mean and the standard deviation of the distributions are given.

3.1.4 Simulation Results

The performance of PFA has been compared with DBF, DUAL and ILS. The simulations

were run on several network topologies such as Los-Nettos, Nsfnet and Arpanet (Figure 3.2).

We choose these topologies to compare the performance of routing algorithms for well-known

cases, given that we cannot sample a large enough number of networks to make statistically

justi�able statements about how an algorithm scales with network parameters. Here we

present the simulation results of Arpanet topology only.

For the routing algorithms under consideration, there is only one shortest path between a

source and a destination pair and we do not consider null paths from a router to itself. Data

was collected for a large number of topology changes to determine statistical distributions.
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Figure 3.3: ARPANET Link Failure

  0

 50

100

150

200

250

300

350

  0  10  20  30  40  50  60  70

M
E

S
S

A
G

E
S

LINK RECOVERIES

PFA
DBF

DUAL
ILS

  0

  5

 10

 15

 20

  0  10  20  30  40  50  60  70

S
T

E
P

S

LINK RECOVERIES

PFA
DBF

DUAL
ILS

Figure 3.4: ARPANET Link Recovery

Total Response to a Single Resource Change

The graphs in Figures 3.3 and 3.4 depicts the number of messages exchanged and the number

of steps required before each algorithm converges for every link failing and recovering in

the Arpanet topology. Similar graphs for every router failing and recovering is given in

Figures 3.5 and 3.6 respectively. All topology changes are performed one at a time and the

algorithms were allowed to converge after each such change before the next resource change

occurs. The ordinates of the graphs represents the identi�ers of the links and the nodes

while the data points show the number of messages exchanged after each resource change
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Figure 3.5: ARPANET Router Failure
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Figure 3.6: ARPANET Router Recovery

(graphs on the left hand side) and the number of steps needed for convergence (graphs on

the right hand side) in each of these �gures.

For a single resource failure, PFA outperforms both DBF and DUAL. This is because

PFA does not su�er from the counting-to-in�nity problem of DBF and does not use an

internodal coordination mechanism that spans several hops to achieve loop freedom as in

DUAL. The performance of PFA is comparable to ILS. The overall performance of the

protocol is also comparable to ILS. The overall performance of PFA and DUAL after the

recovery of a single router or a link is better than ILS. This is expected of any distance-
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vector algorithm. The convergence time of PFA and DUAL is also comparable to that of

ILS. For a single resource recovery also PFA and DUAL are superior to ILS.

Dynamic Response to a Single Change

To study the dynamic behavior of the routing algorithms, we ran an exhaustive series of

test cases for all router and link failures and recoveries and recorded the required statistics.

A statistical characteristic was obtained by treating each router change as a separate case

and by computing a distribution as a function of time. In this section, we present the results

of the dynamic behavior of the above mentioned algorithms for Arpanet topology.

Instrumentation has been done to take care that a path from a router to itself is not

considered. Some of the statistics also have been characterized by the probability as a

function of time that some condition is true and by an average value given that a condition

is true.

Figures 3.7, 3.9, 3.11 and Figures 3.8, 3.10, 3.12 show the transient response of the

routing algorithm after a link failure and recovery respectively. Figures 3.13, 3.15, 3.17 and

Figures 3.14, 3.16, 3.18 show similar graphs for router failure and recoveries respectively.

The �gures show the average packet length, the probability that the messages are in transit

and the average number of messages that are exchanged after a resource change. All these

parameters are plotted as a function of time.

The results indicate that for a resource failure, ILS performs better than DUAL and

PFA in terms of the number of messages exchanged. However, the performance of PFA

is comparable to ILS for a resource failure and performs much better than DUAL. For a

resource recovery also, the performance of DUAL and PFA are comparable and performs

better than ILS. The average packet length for PFA is smaller than DUAL. This is because

of the tagging scheme used in PFA.
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Response to Multiple Link-Cost Changes

The steady-state behavior of the algorithms is more interesting with multiple link-cost

changes than the transient response after each topology change. Figures 3.19 and 3.20

shows the average number of update messages when messages are in transit and the average

length of messages as a function of the interarrival times between link-cost changes for PFA,

DUAL and ILS respectively. This again is for Arpanet topology. From [ZGLA92], it has

been observed that the behavior of DUAL and ILS for multiple link-cost changes is similar

for di�erent network topologies; our conjecture is that the same is true for PFA also.

For very long interarrival times, the number of messages during busy periods is inde-

pendent of the interarrival time because the probability of two topology changes occurring

simultaneously is small. In this case, the performance approaches that of single link-cost

change. When the interarrival time approaches the network diameter, this situation changes

and the number of messages during the busy period increases because of multiple topology

changes occurring simultaneously.

The average number of messages exchanged when messages are in transit is slightly less

for PFA compared to DUAL and ILS. This is because PFA does not use any interneighbor

coordination mechanism to eliminate all temporary looping cases.
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3.2 Loop-Free Path-Finding Algorithm

All the loop-free algorithms reported to date rely on mechanisms that require routers to

either synchronize along multiple hops [GLA92a, JM82, MS79], or exchange path informa-

tion that can include all the routers in the path from a source to destination [GLA92b].

We present the loop-free path-�nding algorithm (LPA), which is the �rst routing algorithm

that is loop-free at every instant and does not use either of these two techniques.

Updates take time to propagate and routers have to update their routing tables using

information that can be out of date, which can lead to temporary routing loops. In LPA,

when a router detects that it can create routing table loops if it changes its successor to a

destination, it blocks such a potential loop. The router accomplishes this by reporting an

in�nite distance for the destination to all its neighbors and by waiting for those neighbors

to acknowledge its message with their own distances and predecessor information, before

the router changes its successor. Because of the overhead involved, a router should not send

a query every time it has to change its successor to a destination; a router decides when

to block a potential loop by comparing the distances reported by its neighbors against a

feasible distance, which is de�ned to be the smallest value achieved by the router's own

distance since the last query sent by the router. The router is forced to block a potential

loop with a query only when no neighbor reports a distance smaller than the router's own

feasible distance. This feature accounts for the low overhead incurred in LPA to accomplish

loop-free paths at every instant. Furthermore, a router detects a temporary loop within a

�nite time that depends on the speed with which correct predecessor information reaches

the router, and not on the distance values of the paths o�ered by its neighbors; therefore,

temporary loops are detected much faster than in DBF and its variations.
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3.2.1 LPA Description

Information Maintained and Exchanged

Each router maintains a distance table, a routing table and a link-cost table. The distance

table at each router i is a matrix containing, for each destination j and for each neighbor

k of router i, the distance and the predecessor reported by router k, denoted by Di
jk and

pijk, respectively. The set of neighbors of router i is denoted by Ni.

The routing table at router i is a column vector containing, for each destination j, the

minimum distance (denoted by Di
j), the predecessor (denoted by p

i
j), the successor (denoted

by sij), and a marker (denoted by tagij) used to update the routing table. For destination

j, tagij speci�es whether the entry corresponds to a simple path (tagij = correct), a loop

(tagij = error) or a destination that has not been marked (tagij = null).

The link-cost table lists the cost of each link adjacent to the router. The cost of the link

from i to k is denoted by dik and is considered to be in�nity when the link fails.

An update message from router i consists of a vector of entries reporting incremental

updates to its routing table; each entry speci�es an update 
ag (denoted by uij), a des-

tination j, the reported distance to that destination (denoted by RDi
j), and the reported

predecessor in the path to the destination (denoted by rpij). The update 
ag indicates

whether the entry is an update (uij = 0), a query (uij = 1) or a reply to a query (uij = 2).

The distance in a query is always set to 1.

Because every router reports to its neighbors the second-to-last hop in the shortest path

to each destination, the complete path that a router assumes to any destination (called

its implicit path to the destination) at a given time t
0
is known by the router's neighbors

at a subsequent time t
00
> t

0
. This is done by means of a path traversal routine on the

predecessor entries reported by the router. In the speci�cation of LPA, the successor to

destination j for any router is simply referred to as the successor of the router, and the

same reference applies to other information maintained by a router. Similarly, updates,

queries and replies refer to destination j, unless stated otherwise. Figures 3.21 and 3.22
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specify LPA in pseudo-code. The rest of this section provides an informal description of

LPA.

The procedures used for initialization are Init1 and Init2; ProcedureMessage is executed

when a router processes an update message; procedures linkUp, linkDown and linkChange

are executed when a router detects a new link, the failure of a link, or the change in the cost

of a link. We refer to these procedures as event-handling procedures. For each entry in an

update message, Procedure Message calls procedure Update, Query, or Reply to handle an

update, a query, or a reply, respectively. An important characteristic of all event-handling

procedures is that they mark tagij = null for each destination j a�ected by the input event.

Router i initializes itself in passive state with an in�nite distance for all its known

neighbors and with a zero distance to itself. After initialization, router i sends updates

containing the distance to itself to all its neighbors.

Distance Table Updating

When router i receives an input event regarding neighbor k (an update message from

neighbor k or a change in the cost or status of link (i; k)), it updates its link-cost table

with the new value of link dik if needed, and then executes procedure DT . The intent

of this procedure is for the router to erase the outdated path information in the distance

table by making path information from all neighbors consistent with the latest update.

To accomplish this, DT updates the distance and predecessor entries of neighbor k as

Di
jk = Dk

j +dik and p
i
jk = pik for each destination j a�ected by the input event. In addition,

DT determines whether the path to any destination j through any of the other neighbor of

router i includes neighbor k. This is done by traversing the path speci�ed by the predecessor

entries reported by a neighbor from destination j towards node i. If the path implied by

the predecessor reported by router b (b 6= k and b 2 Ni) to destination j includes router k,

then i assumes that b has outdated path information and substitutes the subpath from k

to j reported by b as part of its path to j with the path reported by k itself. This is done

by updating Di
jb = Di

kb +Dk
j and pijb = pkj .
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Procedure Init1
when router i initializes itself
do begin

set a link-cost table with
costs of adjacent links;
N  fig;Ni  fx j dix <1g;
for each (x 2 Ni)
do begin

N  N [ x; tagix  null;

six  null; pix  null;

Dix  1; FDix  1
end

si
i
 i; pi

i
 i; tagi

i
 correct;

Di
i
 0; FDi

i
 0;

for each j 2 N call Init2(x, j);
for each (n 2 Ni) do
add (0, i, 0, i) to LISTi(n);
call Send

end

Procedure Init2(x, j)
begin

Di
jx
 1; pi

jx
 null;

si
jx
 null; ri

jx
 0;

end

Procedure Send
begin

for each (n 2 Ni)
do begin

if (LISTi(n) is not empty)
then send message with
LISTi(n) to n

empty LISTi(n)
end

end

Procedure Reply(j, k)
begin

ri
jk
 0;

if (ri
jn

= 0; 8n 2 Ni)

then if ((9x 2 Ni j D
i
jx

<1)

or (Di
j
<1))

then call PU(j)
else call AU(j, k)

end

Procedure Message
when router i receives a message
on link (i; k)

begin

for each entry (uk
j
; j; RDk

j
; rpk

j
)

such that j 6= i

do begin
if (j 62 N)
then begin

if (RDk
j
=1)

then delete entry
else begin

N  N [ fjg; FDi
j
=1;

for each x 2 Ni
call Init2(x, j)

tagi
j
 null;

call DT(j; k)
end

end
else

tagi
j
 null; call DT(j; k)

end

for each entry (uk
j
; j; RDk

j
; rpk

j
) left

such that j 6= i

do case of value of ui
j

0: [Entry is an update]
call Update(j, k)

1: [Entry is a query]
call Query(j, k)

2: [Entry is a reply]
call Reply(j, k)

end
call Send

end

Procedure Update(j, k)
begin

if (ri
jx

= 0; 8x 2 Ni)

then begin

if ((si
j
= k) or (Di

jk
< Di

j
))

then call PU(j)
end
else call AU(j, k)

end

Procedure PU(j)
begin

DTmin  MinfDi
jx
8 x 2 Nig;

FCSET  fn j n 2 Ni; D
i
jn

= DTmin,

Dn
j
< FDi

j
g;

if (FCSET 6= ;) then begin
call TRT(j, DTmin);

FDi
j
 MinfDi

j
; FDi

j
g

end
else begin

FDi
j
= 1; ri

jx
= 1; 8x 2 Ni ;

Di
j
= Di

j si
j

;

pi
j
= pi

j si
j

;

if (Di
j
=1) then si

j
 null;

8 x 2 Ni do begin
if (query and x = k)

then ri
jk
 0;

else add (1, j, 1, null)
to LISTi(x)

end
end

end

Procedure Query(j, k)
begin

if (ri
jx

= 08x 2 Ni)

then begin

if (Di
j
=1 and Di

jk
=1)

then add (2, j, Di
j
, pi

j
)

to LISTi(k)
else begin

call PU(j);

add (2, j, Di
j
, pi
j
)

to LISTi(k);
end

else call AU(j, k)
end

Figure 3.21: LPA Speci�cation

The example in Figure 3.23 illustrates how procedure DT helps to expedite LPA's con-

vergence. In the example, router x has reported to i its predecessors to y and j, and i infers

that x's path to j is xyj. Router c has reported to i its predecessors to d, a, b and j, and

i infers that c's path to j is cdabj. Router a has reported to i its predecessors to b and

j, and i infers that a's path to j is abj. With these conditions, assume that a sends i an

update stating that Da
j =1 and paj = null. Router i uses procedure DT to ensure that the

path information from the other neighbors re
ects the most recent update obtained from

any other neighbors for any destination. Since c's path to j includes a, i substitutes the

out-of-date sub-path abj in c's path information with the information supplied by a, which

makes the path from c to j non-existent. The path from x to j does not include a and i
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Procedure Link Up (i; k; dik)
when link (i; k) comes up do begin

dik  cost of new link;
if (k 62 N) then begin

N  N [ fkg; tagi
k
 null;

Di
k
 1; FDi

k
 1;

pi
k
 null; si

k
 null;

for each x 2 Ni do call Init2(x, k)
end
Ni  Ni [ fkg;
for each j 2 N do call Init2(k, j);

for each j 2 N � k j Di
j
<1 do

add (0, j, Di
j
, pi
j
) to LISTi(k);

call Send
end

Procedure Link Down(i; k)
when link (i; k) fails do begin

dik  1;
for each j 2 N do begin

call DT(j, k);

if (k = si
j
) then tagi

j
 null

end
delete column for k in distance table;
Ni  Ni � fkg;

delete ri
jk

;

for each j 2 (N � i) j k = si
j

call Update(j, k)
call Send

end

Procedure AU(j, k)
begin

if (k = si
j
) then begin

Di
j
 Di

jk
; pi

j
 pi

jk
;

end
end

Procedure DT(j; k)
begin

Di
jk
 RDk

j
+ dik ; p

i
jk
 rpk

j
;

for each neighbor b do begin
h  j;

while (h 6= i or k or b) do h pb
h
;

if (h = k) then begin

Di
jb
 Di

kb
+ RDk

j
; pi
jb
 rpk

j
;

end
if (h = i) then begin

Di
jb
 1; pi

jb
 null;

end
end

end

Procedure Link Change (i; k; dik)
when dik changes value do begin

old dik ;
dik  new link cost;
for each j 2 N do begin

call DT(j, k);
for each j 2 N

do if (Di
j
> Di

jk
or k = si

j
)

then tagi
j
 null;

end
for each j 2 N do begin

if (dik < old)

then for each j 2 N � i j Di
j
> Di

jk
do call Update(j, k)

else for each j 2 N � i j k = si
j

do call Update(j, k)
end
call Send

end

Procedure TRT(j, DTmin)
begin

if (Di
j si

j

= DTmin)

then ns si
j
;

else ns b j fb 2 Ni and Di
jb

= DTming;

x j;

while (Dix ns = MinfDi
xb
8 b 2 Nig

and (Dixns <1) and (tagix = null))

do x pix ns;

if (pix ns = i or tagix = correct)

then tagi
j
 correct;

else tagi
j
 error;

if (tagi
j
= correct)

then begin

if (Di
j
6= DTmin or pi

j
6= pi

j ns
)

then add (0, j, DTmin , p
i
j ns

)

to LISTi(x) 8x 2 Ni;

Di
j
 DTmin; p

i
j
 pi

j ns
;

si
j
 ns;

end
else begin

if (Di
j
<1)

then add (0, j, 1, null)
to LISTi(x) 8x 2 Ni ;

Di
j
 1; pi

j
 null;

si
j
 null;

end
end

Figure 3.22: LPA Speci�cation (cont...)

does not change x's information. Note that i does not have to wait for an update from c to

infer that it should not use c as successor to j.

Blocking Temporary Loops

The example shown in Figure 3.24 illustrates the possibility of looping, even when path

information is used. In the example, it is assumed that a has reported the implicit path aj

to i and that b has reported the implicit path bcdj to i. Furthermore, this path information
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Figure 3.23: Updating Mechanism

old
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j d
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c

new

Figure 3.24: Possibility of a Loop

is outdated, because c has changed its successor from d to e and the new path information

has not reached i. If link (i; a) failed, simply using path information would permit i to use

b as successor to j. However, this would create a temporary routing loop.

To eliminate temporary loops, a router i forces its neighbors not to use it as a successor

(next hop) when it detects the possibility of creating a temporary loop, before i changes its

own successor. This is done using interneighbor synchronization mechanism based on the

notion of feasible distance.
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The feasible distance of router i for destination j (denoted by FDi
j) is the smallest

value achieved by its own distance to j since the last time i initialized itself or sent a query

reporting an in�nite distance to j. LPA allows a router to use a neighbor k as its successor

to destination j only if it satis�es the following condition.

Feasibility Condition (FC): If at time t router i needs to update its current successor,

it can choose as its new successor sij(t) any router n 2 Ni(t) such that Di
jn(t) + din(t) =

Dmin(t) =MinfDi
jx(t)+dix(t)jx 2 Ni(t)g and D

i
jn(t) < FDi

j(t). If no such neighbor exists

and Di
j(t) <1, router i must keep its current successor. If Dmin(t) =1 then sij(t) = null.

FC is used to establish an ordering of routers along a given loop-free path to j, i.e.,

all the routers in a loop-free path to j have feasible distances to j that decrease as j is

approached. If router i does not �nd neighbor that satis�es FC, it is forced to send a query

to its neighbors reporting an in�nite distance to j and wait for the replies before it can

change its own route. Because every router uses FC to decide whether to adapt a successor

or to block paths through itself (described next), no temporary loops can exist.

Routing Table Updating

After procedure DT is executed, the way in which router i updates its routing table for

a given destination depends on whether router i is passive or active for that destination.

A router is passive if it has a feasible successor, or has determined that no such successor

exists and is active if it is searching for a feasible successor. A feasible successor for router

i with respect to destination j is a neighbor router that satis�es FC.

When router i is passive, it reports the current value of Di
j in all its updates and replies.

While router i is active, it sends an in�nite distance in its replies and queries. An active

router cannot send an update regarding the destination for which it is active; this is because

any update sent during active state would necessarily have to report an in�nite distance to

ensure the correct operation of the inter-neighbor synchronization mechanism used in LPA.

If router i is passive when it processes an update for destination j, it determines whether

or not it has a feasible successor, i.e., a neighbor router that satis�es FC.
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If router i �nds a feasible successor, it sets FDi
j equal to the smaller of the updated

value of Di
j and the present value of FDi

j . In addition, it updates its distance, predecessor,

and successor making sure that only simple paths are used, as described in Section 2.4.

Router i then prepares an update message to its neighbors if its routing table entry

changes. Alternatively, if router i �nds no feasible successor, then it sets FDi
j = 1 and

updates its distance and predecessor entries to re
ect the information reported by its current

successor. If Di
j(t) =1, then sij(t) = null. Router i also sets the reply status 
ag (rijk = 1)

for all k 2 Ni and sends a query to all its neighbors. Router i is then said to be active, and

cannot change its path information until it receives all the replies to its query.

The tagging mechanism used for routing table updating ensures that only those routing

table entries a�ected by the input event will be traversed and updated. i.e., if there is a

topology change in the existing routing tree, then only nodes which are downstream to that

topological change need to be updated since the nodes upstream to the topological change

will not be a�ected. This mechanism minimizes the processing that has to be done for each

update message.

A path P i
jk(t) is de�ned by the predecessors reported by neighbor k to router j stored

in i's distance table at time t. To ensure loop-free paths, path traversal from j back to k is

made using the predecessor information. Complete or partial path can be traversed. Path

traversal ends when either a predecessor x for which tagix = correct or tagix = error or

neighbor k is reached. If tagix = error, then tagij is set to error also; otherwise, the neighbor

k or a correct tag must be reached in which case tagij is set to correct. This mechanism

ensures loop-free paths without having to traverse the entire routing table.

Processing Queries and Replies

Queries and replies are processed in a manner similar to the processing of an update de-

scribed above. If the input event that causes router i to become active is a query from its

neighbor k, router i sends a reply to router k reporting an in�nite distance. This is the case,

because router k's query, by de�nition, reports the latest information from router k, and
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Figure 3.25: Example of LPA's Operation

router i will send an update to router k when it becomes passive if its distance is smaller

than in�nity. A link-cost change is treated as a number of updates.

Once router i is active for destination j, it may not have to do anything more regarding

that destination after executing procedures RT and DT as a result of an input event.

However, when router i is active and receives a reply from router k, it updates its distance

table and resets the reply 
ag (rijk = 0).

Router i becomes passive at time t when it receives replies from all its neighbors indicat-

ing that they have processed its query. As a result, router i is free to choose any neighbor

that provides the shortest distance, if there is any. If such a neighbor is found, router i

updates the routing table with the minimum distance as described for the passive state and

sets FDi
j = Di

j .

A router does not wait inde�nitely for replies from its neighbors because a router replies

to all its queries regardless of its state. Thus, there is no possibility of deadlocks due to the

inter-neighbor coordination mechanism.

If router i is passive and has already set its distance to in�nity (Di
j =1), and receives

an input event that implies an in�nite distance to j, then router i simply updates Di
jk and
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dik and sends a reply to router k with an in�nite distance if the input event is a query

from router k. This ensures that updates messages will stop when a destination becomes

unreachable.

Figure 3.25 illustrates LPA's interneighbor coordination mechanism. The number ad-

jacent to each link represents the weight of that link; U indicates updates, Q represents

queries and R replies. The arrowhead from node x to node y indicates that node y is the

successor of node x towards destination j; i.e., sxj = y. The label in the parenthesis assigned

to node x indicates current distance (Dx
j ) and the feasible distance from x to destination j

(FDx
j ). Active nodes are indicated in black.

In the example (Figure 3.25), we assume that messages propagate across all links at the

same speed, which is considered a step. Nodes process all messages received in the previous

step in zero time.

When link (a; j) fails, node a updates its distance table by setting the distances from d

and b to j equal to 1, because the paths to j reported by both b and d include a. After

that, node a is unable to �nd a feasible successor to j, because Da
jb = Da

jd =1 > 1 = FDa
j .

Accordingly, it sends a query to all its neighbors (Figure 3.25(b)).

When node d receives a's query, it updates its distance table as follows: it sets Dd
ja =1

because a reports Da
j =1, and it sets Dd

jb = Dd
jc =1, because the paths to j reported by

b and d include node a. Because d uses a to reach j, d must also update its routing table.

After updating its distance table, the neighbor that o�ers the shortest distance to j is j

itself. Furthermore, Dd
jj = 0 < 2 = FDd

j , and d sends an update to all its neighbor with

Dd
j = 1 + 9 = 10 and a reply to node a (Figure 3.25(c)).

When node b receives a's query (before receiving a new update from d), it must set

Db
ja = Db

jd = Db
jc = 1, because all its neighbors have reported a path to j that include

node a. Because b's own path to j includes node a, it must update its routing table. Node

b sends a query to its neighbors because every distance to j through any neighbor is in�nity

(Figure 3.25(c)).
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When a receives the replies from d and b, it makes node d its new successor and also

sends a reply to b (Figure 3.25(d)). When c receives the update from d and the query from

b, it makes e its successor, because Dc
je = 1 < 4 = FDc

j and e o�ers the shortest path to j

among all of c's neighbors. Accordingly, c sends an update with its new distance of 10 and

a reply to b's query.

Finally, when b receives all the replies to its queries, it sets d as its successor and sends

updates accordingly (Figure 3.25(e)).

Ensuring Simple Paths

Before updating the routing table, the algorithm ensures that all �nite distances in the

routing table corresponds to a simple path by allowing router i to select as the successors

to destination only neighbors that satisfy the following property:

Property 1 Router i sets sij = k at time t only if Di
xk(t) + dik(t) � Di

xp(t) + lip(t) for

every neighbor p other than k and for every node x in the path from i to j de�ned by the

predecessors reported by neighbor k.

Let P i
jk(t) denote the path from k to j de�ned by the predecessors reported by neighbor

k to router i and stored in router i's distance table at time t. Procedure TRT enforces Prop-

erty 1 by traversing all or part of P i
jk(t) from j back to k using the predecessor information.

This path traversal ends when either a predecessor x is reached for which tagix = correct or

error, or neighbor k is reached. If tagix = error, then tagij is set to error also; otherwise, the

neighbor k or a correct tag must be reached, in which case tagij is set to correct. Lemma 3.2

shows that this traversal correctly enforces Property 1, without having to traverse an entire

implicit path; as the simulation results presented in Section 3.2.3 show, this makes LPA

considerably more e�cient than other prior path �nding algorithms [CRKGLA89, Hum91].

Handling Topology Changes

When router i establishes a link with a neighbor k, it updates its link-costs table and

assumes that router k has reported in�nite distances to all destinations and has replied to
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any query for which router i is active; furthermore, if router k is a previously unknown

destination, router i initializes the path information of router k and sends an update to

the new neighbor k for each destination for which it has a �nite distance. When router i

is passive and detects that link (i; k) has failed, it sets dik = 1, Di
jk = 1 and pijk = null;

after that, router i carries out the same steps used for the reception of a link-cost change

message in passive state. When router i is active and loses connectivity with a neighbor

k, it resets the reply 
ag and resets the path information i.e., assumes that the neighbor k

sent a reply reporting an in�nite distance.

It follows from this description of router i's operation that the order in which router i

processes updates, queries and replies does not change with the establishment of new links

or link failures. The addition or failure of a router is handled by its neighbors as if all the

links connecting to that router were coming up or going down at the same time.

LPA is loop-free at every instant. This is possible by the single-hop interneighbor

coordination and the e�cient updating mechanism. The details of the proofs of loop-freedom

of LPA are given in [GLAM96]. LPA has been shown to have a worst-case complexity of

O(x) after a single resource failure, where x is the number of routers a�ected in the topology

change. This is also made possible by the e�cient updating mechanism used to update the

distance table entries in LPA.

3.2.2 Correctness of LPA

To prove that LPA converges to correct routing-table values in a �nite time, we assume

that there is a �nite time Tc after which no more link-cost or topology changes occur.

Lemma 3.1 LPA is live.

Proof: Consider the case in which the network has a stable topology. When a router is

in the active state and receives a query from a neighbor, the router replies to the query with

an in�nite distance. The router updates its distance table entries when either an update

or a reply message is received in active state. On the other hand, when a router in passive

state receives a query from its neighbor, it computes the feasible distance and updates its
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distance and routing tables accordingly. If the router �nds a feasible successor, it replies

to its neighbor's query with its current distance to the destination. If the router can �nd

no feasible successor, it forwards the query to the rest of its neighbors and sends a reply

with an in�nite distance to the neighbor who originated the query. Accordingly, in a stable

topology, a router that receives a query from a neighbor for any destination must answer

with a reply within a �nite time, which means that any router that sends a query in a stable

topology must become passive after a �nite time.

Consider now the case in which the network topology changes. When a link fails or is

reestablished, an active router that detects the link status change simply assumes that the

router at the other end of the link has reported an in�nite distance and has replied to the

ongoing query. Because an active router must detect the failure or establishment of a link

within a �nite time, and because router failures or additions are treated as multiple link

failures or additions, it follows from the previous case that no router can be active for an

inde�nite period of time and hence the lemma is true. 2

Lemma 3.2 TRT correctly enforces Property 1.

Proof: TRT correctly enforces Property 1 if the tag value given by TRT at router i for

destination j equals correct. This is true only when the neighbor n that router i chooses as

successor to j o�ers the smallest distance from i to each node in its reported implied path

from n to j.

First note that, procedure DT is executed before TRT and ensures that router i sets

Di
jb = 1 if its neighbor b reports a path to b that includes i. Therefore, TRT deals with

simple paths only.

According to procedure TRT, there are two cases in which a router stops tracing the

routing table (a) the trace reaches node i itself (i.e., pixns = i), and (b) a node on the path

to j is found with tagix = correct. We prove that the correct path information is reached in

both cases.

Case 1: Assume that TRT is executed for destination j after an input event. The tag for

each destination a�ected by the input event is set to null before procedure TRT is executed.
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Therefore, if TRT is executed for destination j and node i (the source) is reached, the tag of

each node in the path from i to j through neighbor n must be null. Therefore, the distance

from i to j through n is the shortest path among all neighbors since node i chooses the

minimum in row entry among its neighbors for a given destination j. The lemma is true

for this case.

Case 2: If node x1 with tag
i
x1

= correct is reached, then it must be true that either node

i or a node x2 with tagix2 = correct is reached from x1.

If node i is reached from x1, then it follows from Case 1 that neighbor n o�ers the

smallest distance among all of i's neighbors to each node in the implied subpath from n to

x1 reported by neighbor n. Furthermore, because x1 is reached from j, node n must also

o�er the smallest distance among all of i's neighbors to each node in the implied subpath

from x1 to j reported by n. Therefore, it follows that the lemma is true if node i is reached

from x1 (from Case 1). Otherwise, if x2 is reached, the argument used when i is reached

from x1 can be applied to x2. Because router i always sets tag
i
i = correct and TRT deals

with simple paths only, this argument can be applied recursively only for a maximum of

h <1 times until i is reached, where h is the number of hops in the implicit path from n

to j reported by n to i. Therefore, Case 2 must eventually reduce to Case 1 and it follows

that the lemma is true. 2

Lemma 3.3 The change in the cost or status of a link will be re
ected in the distance and

the routing tables of a router adjacent to the link within a �nite time.

Proof: Regardless of the state in which router i is for a given destination j, it updates

its link-cost and distance table within a �nite time after it is noti�ed of an adjacent link

changing its cost, failing, or starting up. On the other hand, router i is allowed to update its

routing table for destination j only when it is in passive state for that destination. However,

because LPA is live (Lemma 1), if router i is active for destination j, it must receive all the

replies to its query regarding j within a �nite time, i.e., when it becomes passive. When

router i becomes passive for destination j, it executes Procedure TRT, which updates the

routing-table entry for destination j using the most recent information in router i's distance
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table. This implies that any change in a link is re
ected in the distance and routing tables

of a neighbor router within a �nite time T . 2

Given Lemma 3.3 and our assumption about time Tc, a �nite time must exist when all

routers adjacent to the links that changed cost or status have updated their link cost and

status information, and after which no more link-cost or topology changes occur. Let T

denote that time, where Tc � T <1.

Theorem 1 After a �nite time t � T , the routing tables of all routers must de�ne the �nal

shortest path to each destination.

Proof: Let T (H) be the time at which all messages sent by routers with shortest paths

having H�1 hops (H � 1) to a given destination j have been processed by their neighbors.

Assume that destination j is reachable from every router.

For any router a adjacent to j, it follows from Lemma 2 that, if router a's shortest path

to j is the link (a; j), then router a must update Da
j = daj by time T = T (0) and the

theorem is true for H = 0.

Because LPA is loop free at every instant (Theorem 1), the number of hops in any

shortest path (as implied by the successor graph) is �nite. Accordingly, the proof can

proceed by induction on H .

Assume that the theorem is true for some H > 0. According to this inductive assump-

tion, by time T (H), router i must have a correct routing-table entry for every destination

for which it has a shortest path of H hops or less. Property 1 must be satis�ed for all

such destinations and LPA enforces it correctly (Lemma 3.2). On the other hand, from the

de�nition of T (H + 1), it follows that any update messages sent by routers with shortest

paths of H hops or less to j or any other destination have been processed by their neighbors

by time T (H + 1). Therefore, if router i's shortest path to destination j has H + 1 hops,

Property 1 must be satis�ed at router i for that destination by time T (H + 1), because all

possible predecessors for destination j must satisfy Property 1 at router i and that router

must have the correct information for link (i; sij) at time T (0) < T (H + 1) (Lemma 3.2). It

follows that the theorem is true for the case of a connected network.
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Consider the case in which j is not accessible to a connected component C of the network.

Assume that there is a router i 2 C such that Di
j <1 at some arbitrarily long time. If that

is the case, j must satisfy Property 1 through at least one of router i's neighbors at that

time; the same applies to such a neighbor, and to all the routers in at least one path from i

to j de�ned by the routing tables of routers in C. This is not possible, because C is �nite

and LPA is always free of loops and live, which implies that, after a �nite time tf � T , all

paths to j de�ned by the successor entries in the routing tables of routers in C must lead

to routers that have set their distance to j equal to1. Therefore, because C is �nite, LPA

is live, and messages take a �nite time to be transmitted, it follows that destination j will

fail to satisfy Property 1 at each router within a �nite time t � tf , and routers must then

set their distances to in�nity, and the theorem is true. 2

Theorem 2 A �nite time after t, no new update messages are being transmitted or pro-

cessed by routers in G, and all entries in distance and routing tables are correct.

Proof: After time T , the only way in which a router can send an update message is after

processing an update message from a neighbor. Accordingly, the proof needs to consider

three cases, namely: router i receives an update, a query, or a reply from a neighbor.

Consider an arbitrary router i 2 G. Because LPA is live (Theorem 1) and router i

obtains its shortest distance and corresponding path information for destination j in a

�nite time after T (Theorem 2), router i must be passive within a �nite time ti � T .

If router i receives an update for destination j from router k after time ti, router i must

execute Procedure Update. If router i has no path to destination j, Di
j must be in�nity

and router k must report an in�nite distance as well, because router i achieves its �nal

shortest-path at time ti; in this case, router i simply updates its distance table. On the

other hand, if router i has a path to destination j, then Di
j <1 and router i must �nd that

FC is satis�ed and execute Procedure TRT. Because an update entry is added only when

the shortest distance or predecessor to j change, router i can send no update or query of

its own.
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If router i receives a query from a neighbor for destination j after time ti, it must execute

Procedure Query. If router i has no physical path to destination j, Di
j must be in�nity and

router k must report an in�nite distance in its query, because router i achieves its �nal

shortest-path at time ti; in this case, router i simply updates its distance table and sends

a reply to router k with an in�nite distance. On the other hand, if router i has a physical

path to destination j, it must determine that FC is satis�ed when it processes router k's

query. Accordingly, it simply sends a reply to its neighbor with its current distance and

predecessor to router j. Therefore, router i cannot send an update or query of its own when

it processes a query from a neighbor after time ti.

After time ti, router i cannot receive a reply from a neighbor, unless it �rst sends a

query after time ti, which is impossible according to the above two paragraphs.

It follows from the above that, for any given destination, no router in G can generate

a new update or query after it reaches its �nal shortest path and predecessor to that

destination. Because every router must obtain its �nal shortest distance and predecessor

to every destination within a �nite time (Theorem 2), the theorem is true. 2

3.2.3 Simulation Results

The performance of LPA was compared with that of DUAL and ILS. Simulation environ-

ment and instrumentation are as described in Section 3.1.2 and 3.1.3 respectively. Here,

we focus our simulation study on Arpanet topology. We have studied the performance of

the algorithm for single resource failures and recoveries and for random link cost changes.

For random link-cost changes, links were chosen at random, with link costs chosen from

the interval (0,1] and with a Poisson distributed interarrival time. Five independent runs

were made and the average and the standard deviation of all quantities measured were de-

termined. Interarrival time between the link-cost changes was varied to simulate multiple

link-cost changes.

The link model allows the link delay to be set independently for each link. Each unit of

time represents a step in which all currently available packets are processed. Although the
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Figure 3.27: ARPANET Link Recovery
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Figure 3.28: ARPANET Node Failure
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Figure 3.29: ARPANET Node Recovery

choice of input parameters causes the simulation to proceed synchronously, the node model

treats each incoming packet asynchronously. Each input event is processed independently

of other events received during the same simulation step.

The graphs in Figures 3.26 and 3.27 depicts the performance of the routing algorithms

for a single topology change. The graphs show the number of messages exchanged before

LPA, DUAL and ILS converge for every link failing and recovering in the Arpanet topology

respectively. Similar graphs for each node failing and recovering are given in Figures 3.28

and 3.29, respectively. All topology changes were performed one at a time and the algo-

rithms were allowed to converge after each such change before the next resource change
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Table 3.1: Routing Algorithm Response to a Change in Link Cost

Parameter LPA DUAL ILS
mean sdev mean sdev mean sdev

Los-Nettos Cases

Event Count 21.4� 0.47 35.6� 2.8 34.0� 0.24 45.0� 0.54 18.5� 0.05 18.5� 0.04
Packet Count 12.2�0.15 7.5� 0.41 15.45� 0.14 18.6� 0.25 17.5� 0.05 17.5� 0.04
Duration 3.95� 0.06 1.76� 0.07 4.9�0.06 2.17� 0.07 4.06� 0.01 0.46� 0.03

Operation Count 45.7� 0.23 23.1� 1.1.7 44.0� 0.24 52.9� 0.5 473.9� 3.08 475.5� 3.09

NSFNET Cases

Event Count 34.65� 0.83 72.86� 2.7 50.97� 1.2 68.7� 2.5 28.5� 0.09 28.5� 0.09
Packet Count 14.97� 0.15 14.78� 0.47 21.81� 0.54 27.1� 0.82 27.5� 0.1 27.5� 0.09
Duration 4.624� 0.05 2.45� 0.05 5.516� 0.17 2.57� 0.15 4.7� 0.02 0.46� 0.01

Operation Count 55.323� 0.4242.64� 1.21 63.97� 1.2 78.8� 2.35 1012.88� 3.9 1014.5� 3.76

ARPANET Cases

Event Count 247.5� 16.09679.7� 24.6 350.09� 15.08501.4� 22.7 84.1� 0.23 84.6� 0.21
Packet Count 55.8� 1.86 66.8� 3.0 81.8� 2.99 102.9� 4.9 83.1� 0.23 83.6� 0.21
Duration 7.042� 0.22 4.9� 0.09 10.84� 0.45 4.75� 0.55 7.74� 0.028 0.74� 0.022

Operation Count 269.7� 8.05 359.2� 12.2 396.1� 15.1 534.6� 22.6 13613.1� 51.013691.3� 47.4

occurs. The ordinates of the graphs represent the identi�ers of the links and the nodes,

while the data points show the number of messages exchanged after each resource change

in each of these �gures.

The response of the algorithms for a single link-cost change is given in Table 3.1. The

table gives the average value and the standard deviation along with the statistical error for

each link-cost change. The statistical errors were determined based on repeated trails. For

a single link-cost change, LPA is faster and needs fewer messages and operations than both

DUAL and ILS in all topologies. We can conclude from these results that LPA has a better

average performance than ILS and DUAL after any single link-cost or topology change.

Dynamic Response to a Single Change

To study the dynamic behavior of the routing algorithms, we ran an exhaustive series of test

cases for all the node and the link failures and recoveries and recorded the message related

statistics. A statistical characterization of the performance of the routing algorithms was

obtained by treating every node change as a separate case and by computing a distribution

as a function of time. In this section, we present the results of the dynamic behavior of the
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routing algorithms for the Arpanet topology. In the instrumentation, we do not consider

paths from a node to itself, because they do not require a network. In our simulations, we

have taken care to handle these cases.
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Figures 3.30{3.37 show the transient response of the routing algorithms (probability of

packets in transit and the average number of messages that are exchanged) after a link

failure, link recovery, node failure and node recovery respectively. These are shown as a

function of time.

The results indicate that for a link failure, ILS performs better than DUAL and LPA

in terms of the number of messages exchanged. LPA's average performance is much better

than ILS for resource addition at any time after the change. The performance of LPA

is comparable to ILS after a node failure. In all cases, LPA outperforms DUAL. The

probability of packets being in transit for LPA after a resource recovery is less than ILS

and DUAL. The average packet length for LPA after a resource change is much smaller

than DUAL. This is because of the single hop interneighbor coordination mechanism and

the tagging mechanism used in LPA.

Response to Multiple Link-Cost Changes

The steady-state behavior of the algorithms is more interesting with multiple link-cost

changes than the transient response after each topology change. Figures 3.38{3.41 shows

the average number of update messages when such messages are in transit, the average

lengths of messages, the average number of messages in transit and the probability that the

messages are in transit as a function of the interarrival times between link-cost changes for

LPA, DUAL and ILS. This again is for the Arpanet topology. From [ZGLA92], it has been

observed that the behavior of DUAL and ILS for multiple link-cost changes is similar for

di�erent network topologies; our conjecture is that the same is true for LPA.

For very long interarrival times, the number of messages during busy periods is inde-

pendent of the interarrival time because the probability of two topology changes occurring

simultaneously is small. In this case, the performance approaches that of single link-cost

change. When the interarrival time approaches the network diameter, this situation changes

and the number of messages during the busy period increases because of multiple topology

changes occurring simultaneously.
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Figure 3.39: Average Message Length

The average number of messages exchanged when messages are in transit is slightly less

for LPA compared to DUAL and ILS. This again is because of the single-hop internodal

synchronization mechanism and updating of the distance-table entries, which has been

explained earlier. All curves are of roughly the same shape. For ILS, the average message

length is close to 1. DUAL and LPA have longer messages as a message can contain multiple

updates; this occurs when messages from the routers at both ends of a link that changes

cost arrive at some router at the same time. With the increase in the interarrival time

between changes, the average number of messages drops down as it now approaches a single

link-cost change. The average number of messages that are in transit and the probability

that messages are in transit are signi�cantly smaller for LPA compared to DUAL and ILS.
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However, DUAL and ILS roughly follow the same curve. The results clearly indicate that

LPA incurs smaller overhead tra�c than either DUAL and ILS when multiple link-cost

changes occur.

3.3 Summary

In this chapter, we presented two path-�nding algorithms, PFA and LPA, for loop-free rout-

ing in 
at networks. Both the algorithms are based on the principle of deriving implicit path

information from the predecessor node entries in the distance and routing tables at each

router. PFA reduces the number of cases a temporary routing loop can occur while LPA

eliminates the formation of temporary routing loops without internodal synchronization

spanning multiple hops or the communication of complete or variable length path informa-

tion. We also have presented the performance of these two algorithms and have compared

with the state of the art routing techniques namely, DUAL and ILS.

The statistical techniques used in our analysis provide a way of characterizing the per-

formance of various algorithms, and can be used as a basis for a tradeo� analysis during

network design. Our study shows that both PFA and LPA are more e�cient than the

algorithms compared. The time behavior of loop-free distance-vector algorithms show that
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the parameters such as packet length can change as updates propagate, thereby suggesting

the possibility of heuristics that can exploit local conditions. Our analysis indicates that

overall, LPA and PFA perform signi�cantly better than DUAL and ILS.

In the following chapters, we propose several routing protocols for di�erent networking

environments, which use PFA or LPA as the basic routing algorithm.
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Chapter 4

A Hierarchical Routing Algorithm

The loop-free path-�nding algorithm (LPA) has been shown to maintain loop-free routing

tables. LPA obtains correct routing tables after topological and link-cost changes faster

and with less processing and communication overhead than link-state algorithms and prior

loop-free routing algorithms based on vectors of distances. The limitation of LPA and prior

routing algorithms based on routing trees is that it requires the routers to maintain more

\host routes" than would be needed in a traditional distance-vector algorithm.

Routing information maintained at each router has to be updated frequently to adapt to

changes in the topology and congestion of the internetwork. In an internetwork with a 
at

routing structure, the size of the routing tables grow linearly with the number of destinations

in the network. Due to this, the routing information that is required to be maintained at

a node may become excessive in terms of storage and CPU utilization. The information

exchanged among nodes may prove to be expensive in terms of channel bandwidth since

updates need to be exchanged frequently in order to maintain up to date network state

information. Accordingly, aggregation of routing information becomes a necessity in any

type of routing protocol.

For routing in large networks, the aggregation of routing information is achieved through

a hierarchical partitioning of the network. The main idea of hierarchical routing is to main-

tain exact routing information regarding nodes very close to it and less detailed information

regarding nodes that are farther away from it. The goal of maintaining hierarchy of infor-

mation is to reduce the size of the routing database maintained at each router so that the
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exchange of topology information among the routers can be minimized. The objective of

doing so is to obtain a reasonable compromise among the size of routing tables, number of

updates required to maintain such tables and the speed with which updates are propagated.

In this chapter, we present a hierarchical routing algorithm which we call Hierarchical

Information Path-based Routing (HIPR), which can be used in large systems.

4.1 Prior Work

Hierarchical routing for datagram computer networks was �rst proposed by McQuillan [McQ74]

to reduce the overhead by limiting the amount of routing information each routing node

maintains and to reduce the length of the routing table. In order to reduce the amount

of information maintained at each node and the communication overhead, the network is

organized into clusters or areas by grouping together (clustering) the nodes which are close

by. Each of these clusters is a single addressable entity from the point of view of higher level

clusters. The topology within the area is transparent to the nodes outside the area. The dis-

tance from a source node to an area represents the actual distance in physical hops (number

of nodes traversed) from the source node to the destination remote node. It then becomes

important to determine a speci�c clustering structure, cluster size, and the number of clus-

ters that will result in a minimum table length. Given that an optimal clustering technique

has been determined, an e�cient routing algorithm can be applied to these clusters.

McQuillan [McQ74] proposed an extension to the old Arpanet routing algorithm for

hierarchical networks. This scheme was analyzed by Kamoun and Kleinrock [Kam76]. Ac-

cording to McQuillan, the nodes in the network are organized into m levels of clusters, with

each node belonging to exactly one cluster at each level of the hierarchy. Nodes represent

clusters at level 0; a group of nodes form a cluster at level 1, called 1-cluster; Similarly, a

group of (k � 1) clusters forms a cluster at level k, called a k-cluster. The distance from a

source node to a k cluster represents the length of the shortest-path from the source node to

another node in the k-cluster. Each node maintains a routing table with distance entries to
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all other nodes in its 1-cluster, as well as to other i-cluster nodes that belongs to its (i+ 1)

cluster.

There have been several subsequent proposals for hierarchical routing which vary in the

way in which the nodes are organized (addressing scheme) and the routing algorithms used.

Baratz and Ja�e [BJ83] have proposed a modi�cation to McQuillan's hierarchical routing

scheme to support virtual-circuit routing in a two-level hierarchical network. In this scheme,

each node maintains an entry in its routing table for every other node in its same l-cluster

as well as for each boundary node in the network; a collaboration protocol is then used to

obtain virtual circuit to optimal lengths between nodes in di�erent clusters.

Meanwhile, Ramamoorthy and Tsai [RT83] have extended the new Arpanet routing al-

gorithm [MRR80] to work in a hierarchical network. In their scheme, nodes within the same

1-cluster use intra-cluster updates, according to the shortest-path �rst (SPF) algorithm, to

obtain the shortest paths to one another. This implies that each node maintains a full

topology of its 1-cluster in addition to its intra-cluster routing table, and that every update

message is distributed to all the nodes in the 1-cluster. Boundary or border nodes are in

charge of inter-cluster routing updates. A virtual network at level i is de�ned as one in

which a link between two i-level boundary nodes is formed by the shortest path between

them; the delay of the virtual link is then the delay in the shortest path. The SPF algorithm

is used at every level of the hierarchy to allow each i-level boundary node to compute the

shortest path to another i-level boundary node.

Besides these algorithms, as part of the DARPA-sponsored SURAN project, a number

of hierarchical network architectures have been proposed and analyzed for large packet radio

networks [GLAS85, Lau86]. In these schemes, a modi�cation of McQuillan's scheme has

been used. The algorithms for computing the shortest paths include variations of DBF.

Finally, Seeger and Khanna employ Ramamoorthy and Tsai's hierarchical scheme in a two-

level hierarchy designed to reduce routing overhead in the DDN [SK86].

OSPF [Moy94], a link-state protocol, implements an area-based routing architecture

similar to the above, and divides the Internet into areas connected by boundary nodes
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linked by a physical backbone. Routing nodes connected to the backbone serve the role of

boundary nodes called backbone nodes or border nodes. Routers not connected to the back-

bone correspond to simple nodes called area nodes. Boundary nodes exchange information

about the backbone links adjacent to them, and area nodes exchange information about

their adjacent intra-area links.

A boundary node reports to other boundary nodes the distance to multiple destinations

in its own area. Topology information about an area is not directly propagated to routers

outside the area. OSPF allows entries in one area to be represented in other areas and

in the backbone as a cost associated with a summary address and a mask. To route to a

destination address, the mask is applied to the address; if it matches the summary address,

the routing-table entry for that summary is used. If there are multiple matches, the most

speci�c is used.

OSPF provides a means to transfer and maintain a set of tables giving the costs of links

and a cost for summary descriptions of distant nodes in the networks. Each boundary node

computes a summary distance for mask/address combinations that match the nodes in each

area attached to the backbone, and sends these distances to other boundary nodes. The

boundary nodes then compute the shortest path to each globally visible node and summary

entry, treating the summary as a link. Boundary nodes also send distances of globally

visible nodes and summarizes outside an area to nodes in that area. The local simple nodes

then treat such a distance as the cost of a link from the boundary node to that destination.

Shortest paths are computed using Dijkstra's shortest-path algorithm for simple nodes and

the boundary nodes.

With very few exceptions [GLAZ94], prior proposals to hierarchical routing have as-

sumed variants of DBF or topology-broadcast algorithms. In the following sections we

present, verify and analyze the performance of the �rst hierarchical routing algorithm

(HIPR) based on the maintenance and exchange of hierarchical routing trees. The main

idea of HIPR consists of providing a distributed implementation of Dijkstra's shortest path

algorithm running over a hierarchical graph organized in areas according to McQuillan's
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scheme for hierarchical routing. LPA is extended for this purpose. HIPR constitutes the

basis for a new Internet routing protocol that are as simple as RIPv2 [Mal94].

4.2 Network Model

Following the McQuillan's approach to area-based routing, hosts and networks can be orga-

nized into L levels of areas. An area at level k is called a k-area. Each router or destination

belongs to only one area at each level of the hierarchy above level-1 and each k-area is a

proper subset of only one (k + 1)-area. For simplicity, no further mention is made of the

destinations directly attached to routers through LANs or point-to-point links. Hence for

the purposes of discussion, a destination is a router or a k-area.

Routers are themselves 0-areas; a group of nodes forms a 1-area and a group of k-areas

forms (k + 1)-area. A boundary node or a border node is de�ned as a router with direct

connectivity with its peer boundary nodes in areas to which it does not belong. A k-level

border node is the border node that connects k-areas. The distance from a source router

to a remote k area represents the length of the true shortest-path from a node to any

remote area. Clearly, the distance from a router to another router in the same 1-area is the

true shortest path distance. Similarly, the distance from a router to itself (or any directly

adjacent host) is 0 and the distance from the router to its own k-area is 0.

In OSPF terminology, a routing node connected to the backbone network serves as a

boundary node. Routers not connected to the backbone are simple nodes. How the areas

of the network are chosen is outside the scope of this paper, just as the way in which

areas are chosen is not part of the OSPF speci�cation. For example, by taking into account

destination behind routers, masks and subnets, our description of the network hierarchy can

be mapped into a hierarchical addressing scheme that would be practical on an Internet.

For our purposes, it su�ces to illustrate the fact, for HIPR, a destination is a single entity

or an arbitrary aggregation of entities following McQuillan's scheme.
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4.3 HIPR

4.3.1 Design Principle

The basic design concept of HIPR is simple. Each router communicates to its neighbors

its hierarchical routing tree in an incremental fashion. Its hierarchical routing tree consists

of all its preferred hierarchical shortest paths to each known individual destinations in its

own 1-area, all known highest-level areas, and in general all (k � 1)-areas within its own

k-area. This means that border nodes forbid detailed routing tree information regarding

their own areas from percolating to other areas. Hence, for a hierarchical routing tree an
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Figure 4.3: Hierarchical Routing Trees Sent by Border Nodes

entire foreign area is simply another node in the tree. Figures 4.1 and 4.2 illustrates this

idea. Figure 4.1 shows the topology of a network organized hierarchically into three levels,

and Figure 4.2 shows the hierarchical routing tree that router d needs to communicate to its

neighbor routers (within area A1) and the hierarchical routing trees of its two neighbors a

and c. Bold nodes in the trees correspond to \self reference" entries in the router's routing

table. Notice that the path from d to remote areas consists of both routers within router

d's 1-area and other remote areas.

Consider a border node in the given topology (say c). The hierarchical routing tree

propagated to all nodes within the area containing node c is shown in Figure 4.3(a). For

the areas outside the area containing node c (i.e., outside A), the hierarchical routing tree

sent to the peer nodes of other areas is shown in Figure 4.3(b).

Consider border node b in Figure 4.1. This is a border node connecting areas A1 and

A2 which are contained in the bigger area A. The routing tree sent by node b to its peer

border node in area A2 (within area A) is shown in Figure 4.3(c).

Routers exchange their hierarchical routing trees incrementally by communicating only

the hierarchical distance and second-to-last hop (predecessor) to each destination. In the

case of destinations within router d's 1-area, the second-to-last hop consists of a router. In

the case of a remote area known to router d, the predecessor consists of either a border

node in router d's 1-area or a remote area. The hierarchical distance to a destination

consists of the true shortest distance to a border node. The rest of this section describes
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the information and procedures that HIPR uses to update the hierarchical routing trees of

routers distributedly, examining that no routing table loops are ever formed. In essence,

HIPR implements Dijkstra's shortest-path algorithm distributedly over a hierarchical graph.

Although HIPR supports multiple levels of areas, OSPF can support only two levels

(subnets and backbone). In this paper, we discuss HIPR based on only one level of areas to

simplify its description and because supporting a minimum of one level of areas is critical

for using HIPR as part of an Internet routing protocol, given that, for scalability purposes,

Internet routing protocols maintain routing information about networks (not individual

hosts) and must support subnetting.

4.3.2 Information Maintained at a Router

Each router maintains a single routing table that, for the purpose of the description, can

be thought of as having two parts: a node-level routing table (NRT) and a area level routing

table (ART). The NRT portion of the routing table maintains information about the routers

and destinations in the same area with which a node is a�liated. The ART portion of the

routing table maintains information about other areas (higher-level areas to which a node

belongs). Both parts of the routing table are updated using the same algorithm.

The entry for destination j in node i's NRT consists of the destination's identi�er, the

distance to the destination (Di
j), the successor (s

i
j), the predecessor (p

i
j) along the preferred

path (shortest path) to the destination, and the feasible distance to the destination (FDi
j),

which we de�ne subsequently. The NRT also maintains a marker (denoted by tagij) used

to update the routing table entries. For destination j, tagij speci�es whether the entry

corresponds to a simple path (tagij = correct), a loop (tagij = error) or a destination that

has not been marked (tagij = null). This marker is used to reduce the number of routing

table entries that need to be processed after each input event impacting the routing table.

ART maintains similar information for each area known to node i.

The distance from a source to destination area (ADi
j) is the length of the hierarchical

path from source to the destination area. There can be two variations as to how the distance
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information is maintained. It can be either the hop count to reach a boundary node of the

destination area or it can be the actual distance to reach the boundary node. Hop count

just gives the number of hops required to reach the destination area and does not necessarily

correspond to the actual path length and hence it need not be the shortest path. In our

simulations we have assumed hop counts for simplicity.

The successor entry for the ART is the next area in the path towards the destination

area (Asij) and the predecessor entry (Ap
i
j) is the area previous to the destination area. The

successor and the predecessor entries will be null when i determines that the individual or

area destination is unreachable. The ART also maintains a marker (Atagij) for each known

area.

From the above, it is clear that HIPR simply maintains a hierarchical routing tree in a

concise manner.

In addition to its routing table, a router also maintains a distance table, link-cost table

and a reply-status table. Distance table maintained at each router is a matrix containing

for each destination j, the hierarchical routing tree reported by its neighbors k 2 Ni. At

router i, Di
jk and pijk represents the distance and the predecessor reported by neighbor k

for destination j respectively.

The link-cost table contains the cost of each link adjacent to the node maintaining the

table. The cost of the link is denoted by lik. The cost of an inactive link is set to in�nity.

The reply-status table at node i maintains the values of the reply status 
ag (rijk) for

each neighbor, k, and for each known destination and area, j, to node i. Each entry in this

table indicates whether or not a node is waiting to get a reply from its neighbor in response

to its query.

4.3.3 Information Exchanged between Nodes

Routing information is exchanged among neighboring nodes by means of update messages.

An update message from router i consists of a vector of entries reporting incremental updates

of its routing table; each entry speci�es an update 
ag (denoted by uij), a destination j (i.e.,
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an individual node or an area), the reported distance to that destination, and the reported

predecessor (individual node or an area) in the path to the destination. The update 
ag

indicates whether the entry is an update (uij = 0), a query (uij = 1) or a reply (uij = 2).

The distance in a query is always set to 1.

Because every router reports to its neighbors the second-to-last hop in the shortest path

to the destination, the complete path to any destination (called the implicit path to the

destination) is known by the router's neighbors. This is done by the path traversal on the

predecessor entries reported by the router.

In the speci�cation of HIPR, the successor to destination j for any router is simply

referred to as the successor of the router. Same reference applies to other information

maintained by the router. Similarly, updates, queries and replies refer to destination j

unless otherwise stated.

Figures 4.4 and 4.5 specify HIPR. The procedures used for initialization are Init1 and

Init2; procedure Message is invoked when a router processed a message. Procedures linkup,

linkdown and linkchange, which are referred to as event-handling procedures, are executed

when a router detects a new link, the failure of a link or the change in the cost of a link.

Procedure Message calls Update, Query or Reply to handle an update, a query or a reply

respectively. An important characteristic of all event-handling procedures is that they mark

tagij = null for each destination j a�ected by the input event.

The information propagated to the neighbor depends on whether the node is a border

node or not. Border nodes block any information about its local area before sending an

update to other border nodes (in its peer areas). This ensures that the algorithm is scalable.

Router i initializes itself in passive state with an in�nite distance for all its known

neighbors and with a zero distance to itself. After initialization, router i sends updates

containing the distance to itself to all its neighbors.

4.3.4 Distance Table Updating

The procedures used in HIPR to update the entries of the distance tables are similar to the

procedures used in LPA [GLAM95]. The key di�erence is that, as we have stated, a border
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Procedure Init1
when router i initializes itself
do begin

set a link-state table with
costs of adjacent links;
N  fig;Ni  fx j dix <1g;
initialize Ai;
for each (x 2 Ni)
do begin

N  N [ x; tagix  null;

six  null; pix  null;

Dix  1; FDix  1
end
for each (y 2 Ai)
do begin

Atagiy  null; ADiy  1;

Apiy  null; Apiy  null;

end

si
i
 i; pi

i
 i; tagi

i
 correct;

Di
i
 0; FDi

i
 0;

for each j 2 N call Init2(x, j);
for each (n 2 Ni) do
add (0, i, 0, i) to LISTi(n);
for each (n 2 Ai) do
add (0, i, 0, i) to LISTi(n);
call Send

end

Procedure Query(j, k)
begin

if (ri
jx

= 08x 2 Ni)

then begin

if (Di
j
= 1 and Di

jk
= 1)

then add (2, j, Di
j
, pi
j
)

to LISTi(k)
else begin

call Passive Update(j);

add (2, j, Di
j
, pi
j
)

to LISTi(k);
end

else call AU(j, k)
end

Procedure Update(j, k)
begin

if (ri
jx

= 0; 8x 2 Ni)

then begin

if ((si
j
= k) or (Di

jk
< Di

j
))

then call Passive Update(j)
end
else call AU(j, k)

end

Procedure Init2(x, j)
begin

Di
jx
 1; pi

jx
 null;

si
jx
 null; ri

jx
 0;

end

Procedure Message
when router i receives a message
on link (i; k)

begin

for each entry (uk
j
; j;RDk

j
; rpk

j
)

such that j 6= i

do begin
if (j 62 N)
then begin

if (RDk
j
=1)

then delete entry
else begin

N  N [ fjg; FDi
j
=1;

for each x 2 Ni
call Init2(x, j)

tagi
j
 null;

call DT Update(j;k)
end

end
else

tagi
j
 null; call DT Update(j; k)

end

for each entry (uk
j
; j;RDk

j
; rpk

j
) left

such that j 6= i

do case of value of ui
j

0: [Entry is an update]
call Update(j, k)

1: [Entry is a query]
call Query(j, k)

2: [Entry is a reply]
call Reply(j, k)

end
call Send

end

Procedure Reply(j, k)
begin

ri
jk
 0;

if (ri
jn

= 0; 8n 2 Ni)

then if ((9x 2 Ni j D
i
jx

<1)

or (Di
j
<1))

then call Passive Update(j)
else call Active Update(j, k)

end

Procedure Send
begin

if (i is not a border node)
begin

for each (n 2 (Ni [ Ai))
do begin

if (LISTi(n) is not empty)
then send message with
LISTi(n) to n

empty LISTi(n)
end

end
else begin

for each (n 2 Ai)
do begin

if (LISTi(n) is not empty)
then send message with
LISTi(n) to n

empty LISTi(n)
end

end
end

Procedure Passive Update(j)
begin

DTmin  MinfDi
jx
8 x 2 Nig;

FCSET  fn j n 2 Ni; D
i
jn

= DTmin,

Dn
j
< FDi

j
g;

if (FCSET 6= ;) then begin
call RT Update(j, DTmin);

FDi
j
 MinfDi

j
; FDi

j
g

end
else begin

FDi
j
= 1; ri

jx
= 1; 8x 2 Ni ;

Di
j
= Di

j si
j

;

pi
j
= pi

j si
j

;

if (Di
j
=1) then si

j
 null;

8 x 2 Ni do begin
if (query and x = k)

then ri
jk
 0;

else add (1, j, 1, null)
to LISTi(x)

end
end

end

Figure 4.4: HIPR Speci�cation

node at level k running HIPR supports hierarchical routing by making sure that no routing

information regarding destinations in its own 1-area or any (k � 1)-area in its own k-area

percolates to a neighbor border node in another k-area.

When router i receives an input event regarding neighbor k indicating the change in the

link cost (i; k), it updates its link-cost table with the new cost of the link and then updates

the distance table entries making sure that the implicit paths after the changed state of the

network does not imply any loops. Updating the distance table entries erases the outdated

path information by making the path information consistent with the latest update. This is
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Procedure Link Up (i; k; dik)
when link (i; k) comes up do begin

dik  cost of new link;
if (k 62 N) then begin

N  N [ fkg; tagi
k
 null;

Di
k
 1; FDi

k
 1;

pi
k
 null; si

k
 null;

for each x 2 Ni do call Init2(x, k)
end
Ni  Ni [ fkg;
for each j 2 N do call Init2(k, j);

for each j 2 N � k j Di
j
<1 do

add (0, j, Di
j
, pi
j
) to LISTi(k);

call Send
end

Procedure Link Down(i; k)
when link (i; k) fails do begin

dik  1;
for each j 2 N do begin

call DT Update(j, k);

if (k = si
j
) then tagi

j
 null

end
delete column for k in distance table;
Ni  Ni � fkg;

delete ri
jk

;

for each j 2 (N � i) j k = si
j

call Update(j, k)
call Send

end

Procedure Active Update(j, k)
begin

if (k = si
j
) then begin

Di
j
 Di

jk
; pi

j
 pi

jk
;

end
end

Procedure DT Update(j; k)
begin

Di
jk
 RDk

j
+ dik ; p

i
jk
 rpk

j
;

for each neighbor b do begin
h  j;

while (h 6= i or k or b) do h pb
h
;

if (h = k) then begin

Di
jb
 Di

kb
+ RDk

j
; pi
jb
 rpk

j
;

end
if (h = i) then begin

Di
jb
 1; pi

jb
 null;

end
end

end

Procedure Link Change (i; k; dik)
when dik changes value do begin

old dik ;
dik  new link cost;
for each j 2 N do begin

call DT Update(j, k);
for each j 2 N

do if (Di
j
> Di

jk
or k = si

j
)

then tagi
j
 null;

end
for each j 2 N do begin

if (dik < old)

then for each j 2 N � i j Di
j
> Di

jk
do call Update(j, k)

else for each j 2 N � i j k = si
j

do call Update(j, k)
end
call Send

end

Procedure RT Update(j, DTmin)
begin

if (Di
j si

j

= DTmin)

then ns si
j
;

else ns b j fb 2 Ni and Di
jb

= DTming;

x j;

while (Dix ns = MinfDi
xb
8 b 2 Nig

and (Dixns <1) and (tagix = null))

do x pix ns;

if (pix ns = i or tagix = correct)

then tagi
j
 correct;

else tagi
j
 error;

if (tagi
j
= correct)

then begin

if (Di
j
6= DTmin or pi

j
6= pi

j ns
)

then add (0, j, DTmin , p
i
j ns

)

to LISTi(x) 8x 2 Ni;

Di
j
 DTmin; p

i
j
 pi

j ns
;

si
j
 ns;

end
else begin

if (Di
j
<1)

then add (0, j, 1, null)
to LISTi(x) 8x 2 Ni ;

Di
j
 1; pi

j
 null;

si
j
 null;

end
end

Figure 4.5: HIPR Speci�cation (cont...)

done by updating the distance and predecessor information for each destination j a�ected

by the input event (Di
jk = Dk

j + dik and pijk = pik). In addition to this, the path to any

destination j through any other neighbor which includes neighbor k is also updated. This is

done by traversing the path speci�ed by the predecessor entries reported by a neighbor from

destination j towards node i. If the path implied by the predecessor reported by router b

(b 6= k and b 2 Ni) to destination j includes router k, then the distance and predecessor

entries are updated for that path.
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The topology information within an area is transparent to nodes outside the area. Bor-

der or boundary nodes prevent the propagation of routing information outside an area by

blocking such messages. All updates received by a node are processed in a similar manner.

4.3.5 Blocking Temporary Loops

A router forces its neighbors not to use it as a successor (next hop) to a given destination

when it detects the possibility of a temporary loop. This is done by using an interneighbor

coordination mechanism. The algorithm de�nes a feasibility condition through which a

complete order of routes along a given path can be established. The feasible distance (FDi
j)

of router i for destination j is the smallest value achieved by the router is its own distance

to j since the last time router i sent a query reporting an in�nite distance to j. Between

two synchronization points, the cost of the link can change or remain the same but cannot

increase. This ensures that routing table loops are eliminated.

The feasible distance to a destination is initialized to in�nity. At every synchronization

point, the feasible distance is taken as the minimum of the existing feasible distance and the

shortest path entries. Whenever the feasible distance has to be increased, an interneighbor

coordination mechanism is initiated by the exchange of queries and replies.

A router is chosen as a successor to a destination only if it satis�es the following feasibility

condition.

Feasibility Condition: At time t, router i can choose any router n 2 Ni(t) as its new

successor sij such that Di
jn(t) + din(t) = Dmin(t) = minfDi

jx(t) + dix(t)jx 2 Ni(t)g and

Di
jn(t) < FDi

j(t). If no such neighbor exists and Di
j(t) <1, router i must keep its current

successor.

4.3.6 Routing Table Updating

After procedure DT Update is executed, the way in which router i updates its routing table

for a given destination depends on whether router i is passive or active for that destination.

A router is passive if it has a feasible successor, or has determined that no such successor
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exists and is active if it is searching for a feasible successor. A feasible successor for router

i with respect to destination j is a neighbor router that satis�es FC.

When router i is passive, it reports the current value of Di
j in all its updates and replies.

While router i is active, it sends an in�nite distance in its replies and queries. An active

router cannot send an update regarding the destination for which it is active, because

any update sent during active state would necessarily have to report an in�nite distance

to ensure the correct operation of the inter-neighbor synchronization mechanism used in

HIPR.

If router i is passive when it processes an update for destination j, it determines whether

or not it has a feasible successor, i.e., a neighbor router that satis�es FC.

If router i �nds a feasible successor, it sets FDi
j equal to the smaller of the updated

value of Di
j and the present value of FDi

j . In addition, it updates its distance, predecessor,

and successor making sure that only simple paths are used.

Router i then prepares an update message to its neighbors if its routing table entry

changes. Alternatively, if router i �nds no feasible successor, then it sets FDi
j = 1 and

updates its distance and predecessor to re
ect the information reported by its current

successor. If Di
j(t) =1, then sij(t) = null. Router i also sets the reply status 
ag (rijk = 1)

for all k 2 Ni and sends a query to all its neighbors. Router i is then said to be active, and

cannot change its path information until it receives all the replies to its query.

The tagging mechanism used for routing table updating ensures that only those routing

table entries a�ected by the input event will be traversed and updated. i.e., if there is a

topology change in the existing routing tree then, only nodes which are downstream to that

topological change need to be updated since this change does not a�ect nodes upstream to

the topological change. This mechanism minimizes the processing that has to be done for

each update message.

A path P i
jk(t) is de�ned by the predecessors reported by neighbor k to router j stored

in i's distance table at time t. To ensure loop-free paths, path traversal from j back to k is

made using the predecessor information. Complete or partial path can be traversed. Path
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traversal ends when either a predecessor x for which tagix = correct or tagix = error or

neighbor k is reached. If tagix = error, then tagij is set to error also; otherwise, the neighbor

k or a correct tag must be reached in which case tagij is set to correct. This mechanism

ensures loop-free paths without having to traverse the entire routing table.

4.3.7 Processing of Queries and Replies

Queries and replies are processed in a manner similar to the processing of an update, as

described above. If the input event that causes router i to become active is a query from its

neighbor k, router i sends a reply to router k reporting an in�nite distance. This happens

because router k's query, by de�nition, reports the latest information from router k, and

router i will send an update to router k when it becomes passive if its distance is smaller

than in�nity. A link-cost change is treated as a link failing and recovering with a new link

cost.

When router i is active and receives replies from all its neighbors, it resets the reply


ag (rijk = 0). This means that router i's neighbors have processed the query reporting

an in�nite distance. Therefore, router i is free to choose any neighbor that provides the

shortest distance, if there is any. If such a neighbor is found, router i updates the routing

table with the minimum distance and sets FDi
j = Di

j .

A router does not wait inde�nitely for replies from its neighbors because a router replies

to all its queries regardless of its state. Thus, there is no possibility of deadlock due to the

inter-neighbor coordination mechanism.

If router i is passive and has already set its distance to in�nity (Di
j =1), and receives

an input event that implies an in�nite distance to j, then router i simply updates Di
jk and

dik and sends a reply to router k with an in�nite distance if the input event is a query

from router k. This ensures that updates messages will stop when a destination becomes

unreachable.
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4.3.8 Example

Consider the topology with three areas, A, B and C in Figure 4.1. We concentrate on

area A1 which contains a four-node network. Area A1 has three border nodes, a, b and c

through which it is connected to areas A3 (and B), A2 and C, respectively. To simplify

the description of how HIPR operates, a \virtual topology" of areas and routers is shown

in Figure 4.6 (a). This topology consists of the destinations known to routers in area A1

and the links between destinations that may be known to the routers in area A1 depending

on their routing trees. This is an eight-node topology, with each node representing either

a node or an area. A link to an area indicates the existence of a link from a border node

outside the area to a border node inside the area. A node indicating an area represents

the border node(s) that provides inter-area connectivity to the area. Message sent by an

\area node" over a link corresponds to messages sent by the corresponding border node.

We explain the working of HIPR on this topology when the link connecting areas A and C

fails and focus on the routing table entry for destination C.

In Figure 4.6, the number adjacent to each link represents the weight of that link; U

indicates updates, Q and R represents the queries and replies respectively. The arrowhead

from node x to node y indicates that node y is the successor of node x towards destination

j; i.e., sxj = y. The label in the parenthesis assigned to node x indicates current distance

(Dx
j ) and the feasible distance from x to destination j (FDx

j ).

When link (c; C) fails, node c updates its distance table by setting the distance to C

to 1. Node c is unable to �nd a feasible successor which satis�es the feasibility condition

to reach area C. This is because the distance to C through its other neighbors i and b is

greater than the feasible distance (i.e., Dc
Ci > FDc

C and Dc
Cb > FDc

C). Accordingly, node

c sends a query to all its neighbors (Figure 4.6 (b)).

When nodes d and b receive the query, it updates its distance table and determines it is

also not able to �nd a feasible successor to reach area-node C that satis�es the feasibility

condition. In turn, they become active by sending out a query to their neighbors and also

reply to node c with an in�nite distance (Figure 4.6 (c)).
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Figure 4.6: Example of HIPR

Upon receiving the queries about destination C, nodes a and A2 reply with a �nite

distance to their neighbors, because they have a feasible successor satisfying the feasibility

condition. Also, node a updates its distance and routing table entries as it now uses a

di�erent path to reach C and also sends an update regarding this (Figure 4.6 (d)). On

receiving replies with �nite distances, nodes d and b update their distance and routing table

entries and in turn send updates about their new path and distance to reach area-node C to

all their neighbors, including node d (Figure 4.6 (e)). Finally, node d updates its distance

and routing table entries, recomputes its feasible distance and sets node d as its successor

node to reach area-node C. Updates are sent accordingly (Figure 4.6 (f)).
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Any topological change within an area is transparent to the nodes outside the area

unless the graph is partitioned. When a link within area A1 fails, HIPR will be run within

area A1 only and this information will not be propagated to nodes outside A1.

4.4 Correctness of HIPR

Let Sj(G) be the successor graph for each destination j 2 G, where G de�nes the network

topology. Loop freedom is guaranteed at all times in G if Sj(G) is always a directed acyclic

graph. In the steady state, when all routing tables are correct, Sj(G) must be a directed

tree pointed towards j. The following theorem proves that HIPR is loop free.

Theorem 3 HIPR is loop-free at every instant.

Proof: Let G be a stable topology and let the successor graph Sj(G) be loop-free at every

instant before time t. No loops can be created at this state unless routers change successors

and modify the successor graph.

There can be two instances when a successor graph can change (a) successor graph

within a area can change. (b) successor graph of the virtual network can change.

Because HIPR is the same as LPA within an area, the proof that HIPR is loop-free

for case (a) follows from the proof that LPA is loop-free [GLAM96]. Because all areas

in the network form a virtual heterarchical network, and each area is viewed as a single

router/destination from a local node, case (b) reduces to case (a). Therefore, the successor

graph is loop-free for case (b) also. This proves Theorem 3. 2

To prove that HIPR converges to correct routing table entries, we assume that there is

a �nite time Tc after which no more resource changes (link-cost change or topology change)

occur. We extrapolate the correctness properties of LPA [GLAM96] to prove that HIPR

converges to correct routing tables.

Theorem 4 HIPR is live.

Proof: Consider the case when the network topology is stable. When a router receives a

message about a topology change, it tries to �nd a feasible successor to the destination for
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which the cost metric has increased. A router sends a query to its neighbors if a feasible

successor is not found. A node can be in (a) active state or (b) passive state when a query

is received.

Case (a): If the node is in an active state, it immediately replies to the neighbor with an

in�nite distance.

Case (b): If the node is in a passive state, it tries to �nd a feasible successor for the

destination and replies with the distance to destination.

Accordingly, when a query is received, a node either replies with a distance to destination

or with an in�nite distance. This implies that any router which is active by sending a query

in a stable topology will become passive in a �nite time (because a neighbor must answer

with a reply in a �nite time). This implies that HIPR is free of deadlocks and live-locks

in a heterarchical network. Because the areas form a virtual heterarchical network, the

same results can be extrapolated to the virtual network of areas. Therefore, HIPR is free

of deadlocks and live-locks for hierarchical networks. This proves the theorem. 2

Theorem 5 After a �nite time t � T , the routing tables of all routers must de�ne the �nal

shortest path to each destination.

Summary of Proof: Let us assume that the result is true for a stable topology at time T (H)

when all messages sent by routers with shortest paths having (H � 1) hops (H � 1) to a

given destination j have been processed by a neighbor. Also, assume that destination j is

reachable through every router.

By the inductive proof for an heterarchical network [GLAM96], the result is true for

HIPR within an area.

Each router maintains information about all areas and a routing table entry for a area

is treated similar to an entry of a local router/destination. This forms a virtual network

where each node in the network is a area and this can be viewed as a heterarchical virtual

network. The rest of the proof consists of applying a similar inductive proof as in [GLAM96]

to this virtual network. 2
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Theorem 6 A �nite time after t, no new update messages are being transmitted or pro-

cessed by routers in network G, and all entries in distance and routing tables are correct.

Proof: On initialization, distance entries of distance and routing tables are set to in�nity

and predecessor entries are set to invalid. Since all nodes are disjoint when initialized, the

table entries are correct.

Let the distance and routing table entries be correct at time t1 and let the topology be

stable at that time.

If the entries are not correct at time t2 = t1 + t, the only way a router can change its

distance and routing table entries is by processing an update message. So, there could be

three possibilities. A router might have processed an update, a query or a reply.

From Theorem 4, a �nite time after an arbitrary change, router i must be passive. If

router i receives an update for destination j from neighbor k at time ti, the distance table

of i has to be updated and routing table is updated if required. This update can be of two

types:

(a) for a local destination

(b) for a remote destination (area)

Case (a): If the update is about a local destination, if there is no path to destination j an

in�nite distance is reported. If a �nite distance is reported to the destination and a feasible

successor is found, distance and routing tables are updated.

Case (b): If the update is about a remote destination (area), local tables are updated with

the new path information.

An updated entry is added to the routing table only when the shortest path information

is changed and this new information will be reported to the neighbors as routing updates.

Queries and replies are received about local destinations only (within a area). A query

is always answered with a reply containing a �nite distance (if feasible successor is found)

or with an in�nite distance (if a path does not exist). The query originator, after getting

all replies from its neighbors, updates the distance and routing table entries and conveys

this changed information to its neighbors.



75

This implies that, for any given destination, a router generates new updates or queries

after it reaches its �nal shortest path to that destination. Because every destination must

obtain its �nal shortest path to all destinations in �nite time (from Theorem 5), the theorem

is true. 2

4.5 Performance of HIPR

HIPR implements Dijkstra's shortest path algorithm over a hierarchical graph in a com-

pletely distributed manner; this means that each router works directly with the hierarchical

routing tree needed to carry out part of the computation of hierarchical shortest paths. In

contrast, OSPF implements Dijkstra's algorithm in a replicated manner, which means that

each router needs a copy of a hierarchical graph on which it runs Dijkstra's algorithm to ob-

tain a hierarchical routing tree of its own. Therefore, HIPR can be expected to outperform

OSPF. However, to obtain insight on the average performance of HIPR in a real network,

we performed simulations of HIPR and OSPF, both running over the same hierarchical net-

work topologies. Although HIPR supports arbitrary hierarchical topologies, OSPF requires

the use of a backbone that interconnects areas. Accordingly, to establish a fair basis for

comparison between HIPR and OSPF, we only simulated those elements of OSPF that are

essential for route computation under the assumption that messages are always delivered

error free over an operational link and that an in�nite sequence number space can be used

in OSPF to determine the validity of link state updates.

4.5.1 Network Topologies

Simulations are performed for both well-known and randomly generated backbone-based

topologies. The �rst topology is basically a modi�ed Doe-Esnet topology with an additional

router added to the basic topology. The additional router was added to the network so

that the topology can be conveniently broken up into areas, with each router placed in

approximately its geographic location as it would appear on the map. The modi�ed Doe-

Esnet topology has 27 nodes and 48 links, and is shown in Figure 4.7.
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Figure 4.7: Modi�ed Doe-Esnet Topology

To ensure that simulations of the di�erent routing algorithms are independent of the

idiosyncrasies of any speci�c network topology within the backbone or within areas, we

also used random graphs in our study. The random graph model used to obtain random

graphs is the one by Waxman [Wax88], where graphs were constructed by distributing n

nodes across a cartesian coordinate grid (RG1 model). Our only interest in using Waxman's

model was to obtain sparingly connected graphs to re
ect the fact that, in practice, every

router in an Internet is unlikely to be connected to a large percentage of the other routers.

Graphs were constructed by distributing n nodes across a cartesian coordinate grid

(RG1 model). The location of each node has integer coordinates and multiple nodes were

permitted to exist at any location. A Euclidean metric is used to determine the distance

between each pair of nodes. The edges are introduced between pairs of nodes (u; v) with a

probability that depends on the distance between them. The edge probability is given by

P (u; v) = �exp
�d(u; v)

�L
(4.1)

where d(u; v) is the Euclidean distance between the nodes u and v, L is the maximum

distance between two nodes, � and � are the parameters in the range (0,1] i.e., 0 < �,� � 1.

Larger values of � results in graphs with higher edge densities, while small values of �

increase the density of short edges relative to longer ones. The cost of each edge is equal

to the distance between its endpoints. The values 0.25 and 0.2 for � and � provide graphs
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Figure 4.8: Modi�ed Doe-Esnet Link Failure

which have the appearance roughly resembling that of geographical maps of the major nodes

in the Internet.

The second topology for which we present simulation results has 10 areas and each area

has 10 nodes in it. Each area has at the most 3 border nodes and a border node connects

two or more areas. The interconnection among areas is based on McQuillan's approach

to hierarchical routing. To generate backbone-based areas, we generated a random graph

for each subnet; the backbone is also a random graph interconnecting these subnets. The

random graphs are generated using Waxman's model. Our simulation network has 100

nodes and 124 links. The third topology which we have simulated is also a random graph

which has approximately 300 nodes, 14 areas and the number of nodes in each area varied

from 30 to 12.

4.5.2 Simulation Results

For each network, we generated test cases consisting of all single failures and recoveries

for both routers and links in which the routing algorithms were allowed to converge after

each change. In all cases, nodes were assumed to perform computation in zero time and

links were assumed to provide one time unit of delay. The link model allows link delay

and link cost to be set independently. Each unit of time therefore represents a step in

which all currently available packets are processed. Although the choice of input parameters
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Figure 4.9: Modi�ed Doe-Esnet Link Recovery
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Figure 4.10: Modi�ed Doe-Esnet Node Failure
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Figure 4.11: Modi�ed Doe-Esnet Node Recovery
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Figure 4.12: Modi�ed Doe-Esnet: Average Duration
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Figure 4.13: Modi�ed Doe-Esnet: Average Number of Messages
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Figure 4.14: Modi�ed Doe-Esnet: Average Number of Operations

causes the simulation to proceed synchronously, the node model treats each incoming packet
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Figure 4.15: Random Graph (Topology 2): Average Duration

asynchronously. Each input event is processed independently of other events received during

the same simulation step.

The average of the measured parameters is taken over all resource failures and recoveries.

The algorithm was allowed to converge after each such change. Because of the distribution

of values, both the mean and the standard deviation of the distribution are given. There is

no sampling error for the results because all possible cases are covered.

The graphs in Figures 4.8 and 4.9 depict the number of messages exchanged and the

number of steps required before each algorithm converges for every link failing and recover-

ing in the modi�ed Doe-Esnet topology. Similar graphs for every node failing and recovering

in modi�ed Doe-Esnet are given in Figures 4.10 and 4.11 respectively. All topology changes

are performed one at a time and the algorithms were allowed to converge before the next

resource change. The ordinates of the graphs represents the identi�ers of the links (Fig-

ures 4.8 and 4.9) and nodes (Figures 4.10 and 4.11). The data points show the the number

of messages exchanged after each resource change (graphs on the left hand side) and the

number of steps needed for convergence (graphs on the right hand side) in each of these

�gures.

The graphs in Figures 4.12{4.14 show the average number of steps taken, average number

of messages exchanged and the average number of operations performed for HIPR and OSPF

before each algorithm converges in the case of modi�ed Doe-Esnet topology. The error-bars
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Figure 4.16: Random Graph (Topology 2): Average Number of Messages
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Figure 4.17: Random Graph (Topology 2): Average Number of Operations

in the graphs indicate the standard deviation of each of the mean values. Similar graphs

for the random topology are shown in Figures 4.15{4.17 for Topology 2 and in Figures

4.18{4.20 for Topology 3 respectively.

HIPR outperforms OSPF in all cases considered. While the number of steps taken by

HIPR to converge after a resource failure is comparable to OSPF, the number of steps

taken to converge after a resource recovery is signi�cantly better than that of OSPF. For

the modi�ed doe-esnet topology, the number of messages exchanged after node failure and

recovery in case of OSPF is twice that of HIPR. The number of operations required by

OSPF is an order of magnitude greater than HIPR. HIPR needs 300 operations where

OSPF needs about 5000 operations. For Topologies 2 and 3 also the number of messages
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Figure 4.18: Random Graph (Topology 3): Average Duration
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Figure 4.19: Random Graph (Topology 3): Average Number of Messages

exchanged after a resource failure in OSPF is at least twice that of HIPR and the number

of messages exchanged after a resource recovery is always greater than HIPR. The number

of operations in OSPF is an order of magnitude greater than that of HIPR.

This emphirical results illustrates the performance advantage provided by the distributed

implementation of Dijkstra's shortest path algorithm in HIPR. It is clear that HIPR has

better average performance compared to OSPF in all cases.

4.6 Summary

HIPR, the �rst hierarchical routing algorithm based on the maintenance and exchange of

hierarchical routing trees, has been presented. The main idea of HIPR is to provide a
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Figure 4.20: Random Graph (Topology 3): Average Number of Operations

distributed implementation of Dijkstra's shortest path algorithm over a hierarchical graph

organized into areas. HIPR is an extension of LPA using McQuillan's scheme for hierarchical

routing.

The performance of HIPR was compared with that of OSPF. The simulation results

presented in this chapter illustrate the fact that HIPR's performance is superior to OSPF's.

The number of messages exchanged in HIPR after a node failure and recovery is half that

of OSPF; the number of operations required is an order of magnitude less than OSPF;

and HIPR requires fewer steps to converge after a single resource change as compared to

OSPF. This suggests that an Internet routing protocol based on the exchange of hierarchical

routing trees would be superior to OSPF in terms of scalability and e�ciency.
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Chapter 5

Routing in Wireless Networks

Today's Internet technology has been extremely successful in linking huge number of com-

puters and users. However, this technology is oriented towards computer interconnection in

relatively stable operational environments, which cannot adequately support many of the

emerging uses.

Wireless communication is the next step in the evolution of data networking. Wire-

less networks have the potential to replace the conventional wired networks where cabling

proves impractical. This technology is intended to provide pervasive communication ser-

vices to individuals regardless of their location. In a wireless data-network, workstations are

networked using radio transmissions to accommodate mobility requirements. This requires

e�cient information exchange among the mobile nodes/routers. In this chapter we present

an e�cient routing protocol for wireless packet radio networks, which takes into account

the requirements of a wireless data network. This protocol, which we call Wireless Routing

Protocol (WRP), is based on path-�nding algorithm (PFA) described in Chapter 3.

Routing protocols used in multihop packet-radio networks implemented in the past [Bea89,

Bey90, LNT87] are based on shortest-path routing algorithms that have been typically based

on the distributed Bellman-Ford algorithm (DBF) [BG92]. According to DBF, a routing

node knows the length of the shortest path from each neighbor to every network destination

and this information is used to compute the shortest path and the successor in the path

to each destination. An update message contains a vector of one or more entries, each of

which speci�es as a minimum, the distance to a given destination. A major performance
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problem with DBF is that it takes a very long time to update the routing tables of network

nodes after network partitions, node failures, or increase in network congestion as it has

no inherent mechanism to determine when a network node should stop incrementing its

distance to a given destination (counting-to-in�nity problem).

As mentioned earlier in Chapter 2, counting-to-in�nity problem can be overcome in three

ways in the existing Internet routing protocols. However, there are signi�cant di�erences

between wireless networks and wired internets in which Internet routing protocols are used.

A wired Internet has relatively high bandwidth and topology that changes infrequently;

in contrast, wireless networks have mobile nodes and have limited bandwidth for network

control. Accordingly, 
ooding, multihop internodal synchronization and the speci�cation of

complete path information would incur too much overhead in a multihop packet radio net-

work with a dynamic topology. On the other hand, the routing protocols based on DBF or

modi�cations of DBF would take a long time to converge and the frequent topology changes

in a wireless network with mobile nodes make the looping problem of DBF unacceptable.

Therefore, there is a need for a new routing protocol, which is devoid of all these drawbacks.

In the recent past, a number of e�orts have been made to address the limitation of DBF

and topology broadcast in mobile wireless networks. One such e�ort is the DSDV proto-

col [PB94]. In this protocol, each mobile host, which is a specialized router, periodically

advertises its view of the interconnection topology to other mobile hosts within the network

to maintain an up to date network state information. Unfortunately, in DSDV a node has

to wait until it receives the next update message originating from the destination in order

to update its distance-table entry for that destination. This implicit destination-centered

synchronization su�ers from the same latency problems as DUAL (and similar algorithms

based on explicit synchronization). DSDV uses both periodic and triggered updates for

updating routing information; also, DSDV 
oods the sequence numbers originated by each

destination, which could cause excessive communication overhead.

A distributed routing algorithm for mobile wireless networks based on di�using compu-

tations has been proposed by Corson and Ephremides [CE95]. This protocol relies on the
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exchange of short control packets forming a query-reply process. It also has the ability to

maintain multiple paths to a given destination. This is a destination-oriented protocol in

which separate versions of the algorithm run independently for each destination. Routing

is source-initiated, which means that routes are maintained by those sources that actually

desire routes. Even though this algorithm provides multiple paths to a destination, because

of the query-based synchronization approach to achieve loop-free paths, the communication

complexity could be high.

Path-�nding algorithms are an attractive approach for wireless networks, because they

eliminate counting-to-in�nity problem. As seen in Chapter 3, they converge faster than

the state of the art routing algorithms. In the remaining of this chapter we describe a

wireless routing protocol (WRP) based on PFA illustrating the key aspects of the protocol's

operation and present some performance results.

5.1 Wireless Routing Protocol

5.1.1 Overview

WRP is designed to run on top of the medium-access control protocol of a wireless net-

work. Update messages may be lost or corrupted due to changes in radio connectivity or

jamming. Reliable transmission of update messages is implemented by means of retrans-

missions. After receiving an update message free of errors, a node is required to send a

positive acknowledgment (ACK) indicating that it has a good radio connectivity and has

processed the update message. Because of the broadcast nature of the radio channel, a node

can send a single update message to inform all its neighbors about changes in its routing

table; however, each such neighbor sends an ACK to only the originator node.

In addition to ACKs, the connectivity can also be ascertained with the receipt of any

message from a neighbor (which need not be an update message). To ensure that connec-

tivity with a neighbor still exists when there are no recent transmissions of routing table

updates or ACKs, periodic update messages without any routing table changes (null update
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messages) are sent to the neighbors. These messages are also known as Hellomessages. The

time interval between two such null update messages is the HelloInterval.

If a node does not receive any message from a neighbor for a speci�ed amount of time

(e.g., three or four times the HelloInterval known as the RouterDeadInterval), the node will

assume that connectivity with that neighbor is lost.

5.1.2 Information Maintained at Each Node

For the purpose of routing, each node maintains a distance table, a routing table, a link-cost

table and a message retransmission list.

The distance table of node i is a matrix containing, for each destination j and each

neighbor of i (say k), the distance to j (Di
jk) and the predecessor (pijk) reported by k.

The routing table of a node i is a vector with an entry for each known destination j

which speci�es:

� The destination identi�er (j)

� The distance to the destination (Di
j)

� The predecessor of the chosen shortest path to j (pij)

� The successor of the chosen shortest path to j (sij)

� A marker (tagij) used to update the routing table entries; it speci�es whether the entry

corresponds to a simple path (tagij = correct), a loop (tagij = error) or a destination

that has not been marked (tagij = null).

The link-cost table of node i lists the cost of relaying information through each neighbor

k, and the number of periodic update periods that have elapsed since node i received any

error-free messages from k.

The cost of a failed link is considered to be in�nity. The way in which costs are assigned

to links is beyond the scope of this speci�cation. As an example, the cost of a link could

simply be 1 re
ecting the hop count, or the addition of the latency over the link plus some

constant bias. The cost of the link from i to k (i; k) is denoted by lik.
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Procedure Init1
when router i initializes itself
do begin

set a link state table with costs of adjacent links;

N  i; Ni  x j lix < 1;
for each (x 2 Ni)
do begin

Ni  N [ x; tagix  null;

six  null; pix  null; Dix  1
end

Di
i
 0; si

i
 null; pi

i
 null; tagi

i
 correct

for each j 2 N call Init2(x; j)
for each (n 2 Ni) do add (0; i; 0; i) to LISTi(n)
x retransmission time; y  hello count;
z retransmission count;
call Send

end

Procedure Init2(x; j)
begin

Di
jx
 1; pi

jx
 null; si

jx
 null; seqnoi

jx
 0

end

Procedure Send
begin

for each (n 2 Ni)
do begin

if (LISTi(n) is not empty)
then send messages with LISTi(n) to n
empty LISTi(n)

end
end

Procedure Message
when router i receives a message on link (i; k)
begin

if (k 62 Ni) do
begin
Ni  Ni [ k;

li
k
 cost of new link;

if (k 62 N) begin

N  N [ k; tagi
k
 null;

Di
k
 1; pi

k
 null; si

k
 null;

for each x 2 Ni do call Init2(x; k)
end

for each (i; k; li
k
) do

send update(0; k; Di
k
; pi
k
)

end

reset HelloTimer;

for each entry (uk
j
; j;RDk

j
; rpk

j
) j i 6= j

do begin
if (j 62 N)
then begin

if (RDk
j
=1) then delete entry

else begin
N  N [ j;
for each entry x 2 Ni call Init2(x; j)

tagi
j
 null; call DT

end
end
else begin

tagi
j
 null;

end
end

for each entry (uk
j
; j;RDk

j
; rpk

j
) left j i 6= j

do case of uk
j

0: call Update(j; k)
1: call ACK(j; k)

end
call Send

end

Procedure Create RList(seqno)
begin
seqno seqno + 1; NeighborSet Ni
bitmap[] 0; RetransmissionTimer  x

add updates to RList
end

Procedure Delete RList(seqno)
begin

set bitmap[seqno] 1; delete 1
for all n 2 Ni begin

if (bitmap[seqno] = 0) delete 0;
end
if (delete = 1) delete RList[seqno] end

Procedure Update RList(seqno)
begin

reset RetransmissionTimer
send update RList[seqno];

end

Procedure Clean RList (seqno)
begin
for all entries in RList

delete RList[seqno];
end

Procedure Connectivity
when HelloTimer expires
begin

HelloCount[k] HelloCount[k] + 1;
if (HelloCount[k] < y) then
reset HelloTimer;

else begin
Ni  Ni � k

call Delete RList(k)

li
k
 1

tagi
k
 null

delete column for k in distance table
update routing table

end
end

Procedure TimeOut(i; k)
when RetransmissionTimer expires
begin

RetransmissionCounter  RetransmissionCounter - 1;
if (RetransmissionCounter < z)
call Update RList(k)

else begin
Ni  Ni � k

call Delete RList(k)

li
k
 1

tagi
k
 null

delete column for k in distance table
update routing table

end
end

Procedure DT
when distance table update has to be done
begin

Di
jk
 li

k
+Dk

j
; pi
jk
 pk

j
;

(2) for all neighbors b
do begin

if k is in the path from i to j in
the distance table through neighbor b

then Di
jb
 Di

kb
+Dk

j
; pi
jb
 pk

j
end

end

Figure 5.1: Protocol Speci�cation
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Procedure ACK(n)
when router i receives an ACK on link (i; k)
begin

call Delete RList(n);
RetransmissionCounter  z;

end

Procedure Update(i; k)
when router i receives an update on link (i; k)
begin

send ACK to neighbor k
RetransmissionCounter  z;
RetransmissionTimer  x;

(0) begin
update=0;

RTEMPi  �;

DTEMPi;b  � for all neighbors b

(1) for each triplet (j;Dk
j
; pk
j
) in V k;i; j 6= i do

call procedure DT
(3) begin

if there are b and j such that

(Di
jb

< Di
j
) or ((Di

jb
> Di

j
) and (b = si

j
))

then call RT Update
end

(4) begin if (RTEMPi 6= �) then
for each neighbor b do begin

for each triplet t = (j;Di
j
; pi
j
) in RTEMPi

do begin
if b is not in the path from i to j

then DTEMPi;b  DTEMPi;b [ t;
end

send DTEMPi;b to neighbor b;
end

end
end

Procedure RT Update
when routing table has to be updated
begin

�nd minimum of the distance entries DTmin
if (Di

j si
j

= DTmin) then ns si
j

else ns b j fb 2 Ni and Di
jb

= DTming;

x  j;

while (Dix ns = MinfDi
xb
8 b 2 Nig

and Dixns
<1 and tagix = null)

do x  pix ns;

if (pix ns = i or tagix = correct)

then tagi
j
 correct else tagi

j
 error

if (tagi
j
= correct) then begin

if (Di
j
6= DTmin or pi

j
6= pi

j ns
) then begin

seqno seqno + 1;

add (0, j, DTmin , p
i
j ns

; seqno) to LISTi(x) 8x 2 Ni;

call Clean RList(seqno)
call Create RList(seqno)

end

Di
j
 DTmin; p

i
j
 pi

j ns
; si
j
 ns

end
else begin

if(Di
j
<1) then begin

seqno seqno + 1;
add (0, j, 1, null, seqno) to LISTi(x) 8x 2 Ni ;
call Clean RList(seqno)
call Create RList(seqno)

end

Di
j
 1; pi

j
 null; si

j
 null

end
end

Figure 5.2: Protocol Speci�cation (Cont..)

The message retransmission list (MRL) speci�es one or more retransmission entries,

where the mth entry consists of the following:

� The sequence number of an update message

� A retransmission counter that is decremented every time node i retransmits an update

message

� A 
ag indicating whether node i has received an ACK from neighbor k to the update

message sent to k (present in the retransmission entry)

� The list of updates sent in the update message

The above information permits node i to know which updates of an update message

(each update message may contain a list of updates) have to be retransmitted when the

timer expires and which neighbors should be requested to acknowledge such retransmission.

Node i retransmits the list of updates in an update message when the retransmission timer
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of the corresponding entry in the MRL expires. The retransmission counter of a new entry

in the MRL is set equal to a small number (e.g., 3 or 4).

5.1.3 Information Exchanged among Nodes

In WRP, nodes exchange routing-table update messages (which we call \update messages"

for brevity) that propagate only from a node to its neighbors. An update message contains

the following information:

� The identi�er of the sending node.

� A sequence number assigned by the sending node.

� An update list of zero or more updates or ACKs to update messages. An update

entry speci�es a destination, a distance to the destination, and a predecessor to the

destination. An ACK entry speci�es the source and sequence number of the update

message being acknowledged.

� A response list of zero or more nodes that should send an ACK to the update message.

In the event that the message space is not large enough to contain all the updates and

ACKs that a node wants to report, they are sent in multiple update messages. An example

of this event can be the case in which a node identi�es a new neighbor and sends its entire

routing table.

The response list of the update message is used to avoid the situation in which a neighbor

is asked to send multiple ACKs to the same update message, simply because some other

neighbor of the node sending the update did not acknowledge.

The �rst transmission of an update message must ask all neighbors to send an ACK, of

course, and this is accomplished by specifying the \all-neighbors address," which consists

of all 1's.

When the update message reports no updates, the \empty address" is speci�ed; this

address consists of all 0's and instructs the receiving nodes not to send an ACK in return.

This type of update message is used as a \hello message" from a node to allow its neighbors
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to know that they maintain connectivity, even if no user messages or routing-table updates

are exchanged.

As we explain subsequently, an ACK entry refers to an entire update message, not an

update entry in an update message, in order to conserve bandwidth.

5.1.4 Routing-Table Updating

Figures 5.1 and 5.2 specify important procedures of WRP used to update the routing and

distance tables.

A node can decide to update its routing table after either receiving an update message

from a neighbor, or detecting a change in the status of a link to a neighbor. When a node

i receives an update message from its neighbor k, it processes each update and ACK entry

of the update message in order.

In WRP, a node checks the consistency of predecessor information reported by all its

neighbors each time it processes an event involving a neighbor k. i.e., the distance table

is updated for all entries referring directly to neighbor k and all other entries that refer to

node k indirectly (k is in the path of a destination). In contrast, all previous path-�nding

algorithms [CRKGLA89, Hum91, RF91] check the consistency of the predecessor only for

the neighbor associated with the input event. This unique feature of WRP accounts for its

fast convergence after a single resource failure or recovery as it eliminates more temporary

looping situations than previous path-�nding algorithms.

Processing an Update: To process an update from neighbor k regarding destination j,

the distance and the predecessor entries in the distance table are updated. A 
ag (tag) is

set to specify that this entry in the table has been changed. A unique feature of WRP is

that node i also determines if the path to destination j through any of its other neighbors

fb 2 Nijb 6= kg includes node k. If the path implied by the predecessor information

reported by node b includes node k, then the distance entry of that path is also updated as
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Di
jb = Di

kb +Dk
j and the predecessor is updated as pijb = pkj . Thus, a node can determine

whether or not an update received from k a�ects its other distance and routing table entries.

To update its distance and predecessor for destination j (procedure RT Update), node

i chooses a neighbor p that has reported routing information such that:

� The path from p to j (which is implied by the predecessor information reported by p)

does not include node i

� Di
jp � Di

jx for any other neighbor x, and D
i
yp � Di

yx for any other neighbor x and for

every node y in the path from i to j.

The above means that node i chooses node p as its successor to a destination j if that

neighbor appears to o�er a smallest-cost loop-free path to j on all the intermediate nodes

in the path to j.

When node i sends an update message, it updates its message retransmission list. For

each destination j for whom an update is being reported, node i sets the ack-required 
ag

for all its neighbors. It also adds an entry in the message-retransmission list containing the

sequence number given to the update message, and starts the retransmission timer for that

entry.

Sending New and Retransmitted Update Messages: Node i sends a new update

message after processing updates from its neighbors or detecting a change in the status of

the link to a neighbor. Whenever node i sends a new update message, it must

� Add an entry in the MRL for the new update message

� Delete the updates in the existing entries of MRL for the updates that are included

in the new update message

� Initialize the retransmission counter of ther new update messages entry in the MRL

to a maximum value.

When the list of updates of a MRL entry is outdated by the transmission of a new

update message, node i erases the old entry from the MRL.
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When the retransmission timer for a entry m in the MRL expires, node i retransmits

the update message as an update list containing the list of updates of the retransmission

entry, and a response list specifying those neighbors who did not acknowledge the update

message earlier (i.e., every neighbor k for whom aikm = 1). The retransmission counter of

that entry in the MRL is decremented.

Note that, if we do not use the retransmission counter, based on the above retransmission

strategy, there is no limit on the number of times node i would retransmit an update message

to an existing neighbor. However, as we discuss below, node i stops considering node k as

its neighbor after it fails to communicate with it for some �nite amount of time.

Retransmission counter limits the number of times an update can be retransmitted to a

neighbor. Each time an update is retransmitted, the corresponding retransmission counter

is decremented. If an ACK is not received from a neighbor before the retransmission counter

becomes zero, then that neighbor is assumed to be no longer existent.

Processing an ACK: An ACK entry in an update message refers to another update

message, i.e., it acknowledges all the updates included in the update message bearing the

referenced sequence number. Therefore, it is up to the node whose update message is being

acknowledged to ascertain which updates are implied by a received ACK.

To process an ACK from neighbor k, node i scans its MRL for the sequence number

matching the sequence number speci�ed in the ACK received. When a match is found, node

i resets the ack-required 
ag for neighbor k; if aipm = 0 for entry m and every neighbor p of

node i; the retransmission entry is deleted if all entries of the retransmission entry has been

acknowledged. This scheme obtains short ACKs at the expense of additional processing.

Node i may receive an ACK for an update message whose retransmission entry has been

erased after sending a more recent update message for the same destinations. In that case,

node i simply ignores the ACK.

Handling Topology and Link-Cost Changes: To ensure that nodes know that they

have connectivity even when they do not transmit user messages or routing-table updates
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for some time, every node must periodically send an update message reporting no changes

(hello messages). Acknowledgments are not required for such update messages, and they

can be very short (e.g., a byte for control information and a byte for the node identi�er,

since the control information can imply that there is no sequence number, update list, or

response list in the message). Alternatively, a node may retransmit an update message if

it is not too long. On initialization, a node transmits a hello message.

Given that short periodic update messages are transmitted by every node, the failure of a

link to a neighbor is detected by the lack of any user or update messages being received from

that neighbor over a period of time equal to a few update-message transmission periods.

Similarly, new links and nodes are detected by means of update messages or user messages.

When node i receives an update or user message from node k and node k is not listed in

its routing table or distance table, it adds the corresponding entry to its distance or routing

table for destination k. An in�nite distance to all destinations through node k is assumed,

with the exception of node k itself and those destinations reported in node k's updates, if

the message received from k was an update message. In addition, node i noti�es node k of

the information in its routing table. This information can be transmitted in one or multiple

update messages that only node k needs to acknowledge.

When a link fails or a link-cost changes, node i recomputes the distances and predeces-

sors to all a�ected destinations, and sends to all its neighbors an update message for all

destinations whose distance or predecessor have changed.

5.2 Correctness of WRP

In this section, we show that the basic routing algorithm used in WRP is correct. The

following assumptions are made on the behavior of links and routers for the working of

WRP.

1. Messages are transmitted reliably. A lower-level protocol is responsible for maintaining

the status of the link.
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2. Messages are sent by a router over a link only when the link is perceived as being up.

3. A router that is not functional cannot receive or send any messages.

4. All routers are initially down.

5. Update messages received by a router are processed in the order of their arrival

(FIFO).

6. Link lengths are always positive and a failed link has an in�nite length.

7. Time T is de�ned such that between the time interval 0 and T links and routers go

up and down and the cost of the link changes; at time T , links have the same status

at both ends and there are no changes after time T .

For simplicity, the proof assumes that all update messages sent over an operational

link are received correctly. In practice, WRP handles errors by means of retransmissions.

In terms of the correctness proof, the e�ect of retransmissions is that of added delay in

the delivery of an update message to a neighbor, and a link fails when a given number

of retransmissions have been attempted. In essence, this proof is very much similar to

that of the path-�nding algorithm (PFA) on which WRP is based is correct. The proof of

correctness is given in [MGLA96].

WRP's time complexity is O(h) in the worst-case, where h is the height of the routing

tree. Time complexity is de�ned as the largest time that can elapse between the moment T

when the last topology change occurs and the moment at which all the routers have �nal

shortest path to all other routers. Communication complexity is de�ned as the maximum

number of node identities exchanged (messages) after time T before the �nal graph is

reached.

5.3 Simulation Results

We have studied the average-case performance of WRP in a dynamic environment using

Drama. The performance of the basic routing algorithm used in WRP has been compared
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with that of DUAL and ILS. In order to simulate mobility, the connectivity of a mobile

node is said to be lost when a node does not hear from a mobile node for a certain period of

time. The connectivity with a node will be reestablished when a node hears from a mobile

node again. Mobility is modeled as an arbitrary set of failures and recoveries of a mobile

node at random points in time. All simulations are done assuming unit propagation time

and zero packet processing time at each node. If a mobile node fails when the packets are

in transit, the packets are assumed to get dropped.

Our goal is to compare the performance of WRP against the performance of routing

protocols based on DBF, DUAL, and ILS. To reduce the complexity of the simulation, we

have eliminated those features of the protocols that were common to all; these features

concern the reliable transmission of updates over unreliable links, and the identi�cation of

neighbors. Accordingly, our simulation assumed that, for any of the protocols simulated,

any update message sent over an operational link is received correctly, and that a node

always receives enough user messages to know that it continues to have connectivity with a

neighbor. According to these assumptions, there is no need to account for acknowledgments,

retransmissions of updates, or periodic transmissions of update messages.

However, our intent in running the simulations was to obtain insight on the comparative

overhead of di�erent protocols that necessarily require the transmission of acknowledgments

to update messages. We approached this problem in the following manner: In a wireless

packet radio network, the same update messages sent by a node is received by all its neigh-

bors, i.e., each update message is broadcast to a node's neighbors. However, to guarantee

the reliable transmission of updates, each neighbor must send an acknowledgment to the

sender of the update. Therefore, under the assumption that no errors or collisions occur in

the network channel, counting the number of acknowledgments received for a single update

broadcast to all neighbors is much the same as counting the number of updates sent by

a node to its neighbors on a point-to-point basis and with no acknowledgments|the two

counts di�er only by one. Accordingly, we simulated the routing protocols' operation in

a wireless network using the same point-to-point links typical of wireline networks. The
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message count obtained from the simulation runs is not the exact number of updates and ac-

knowledgments sent by each protocol, but accurately re
ects the relative di�erences among

protocols.

The resulting simpli�ed version of WRP we simulated is simply the path �nding algo-

rithm (PFA), and is the same basic algorithm �rst described in [MGLA94]. Similarly, ILS,

DBF, and DUAL correspond to the ideal case of the best protocols that could be designed

based on these algorithms.

The simulations were run on several network topologies such as Los-Nettos, Nsfnet and

Arpanet. We chose these topologies to compare the performance of routing algorithms for

well-known cases given that we cannot sample a large enough number of networks to make

statistically justi�able statements about how an algorithm scales with network parameters.

The Los-Nettos topology has 11 nodes, a diameter of 4 hops, and each node has at most

four neighbors. The Nsfnet topology has 13 nodes, a diameter of 4 hops, and each node has

at most 4 neighbors. The Arpanet topology has 57 nodes, a diameter of 8 hops, and each

node has a maximum of four neighbors.

For the routing algorithms under consideration, there is only one shortest path between

a source and a destination pair and we do not consider null paths from a node to itself. Data

are collected for a large number of topology changes to determine statistical distribution.

The statistics has been collected after each failure and recovery of a link. To obtain the

average �gures, we make each link (or node) in the network fail and count the number of

steps and messages required for each algorithm to converge. Then the same link (node)

is made to recover and the process is repeated. The average is taken over all failures and

recoveries. Again, this message count is not exact, but the relative di�erence from one

protocol to another is accurate.

5.3.1 Dynamics with Mobile Nodes

We modeled mobility in the simulation by making the links fail and come back up arbitrarily

at random times. The network is assumed to be fully connected with potential links. At
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startup, the topology is initialized to some well known topology, such as Los-Nettos, Nsfnet

or Arpanet. After initialization, to simulate the movement of a node, a node is assumed

to have failed at its previous location and reappear in its new location. Node failure is

simulated as all the links associated with that node going down at the same time. The

gradual movement of a node from one location to another is simulated by means of link

failures and additions. When a link fails, it can be assumed that a node is no longer in the

neighborhood of its previous neighbor. The addition of a new link is viewed as a movement

of a node wherein, a node reappears in the new neighborhood.

The links are chosen at random from the set of all the existing links in the fully connected

network. Selecting any particular link is equally likely. The probability of a link failing or

recovering is also equally likely. We also have imposed an additional condition in our

simulations that a node at any given time cannot have more than x neighbors. Here, x

indicates the degree of the node. This condition is imposed in order to make sure that

all the links pertaining to one node alone will not be active. This helps in simulating

the mobility more closely. This, of course, is only an approximation of the more gradual

topology changes that would be experienced in a real mobile network.

The average number of messages and the average message length for each of these

algorithms are obtained by varying the interarrival time between two events (Figures 5.3{

5.5). An event can be either a link failure or a link recovery. For the purpose of event

generation, we consider a fully connected topology and start o� with a given initial topology.

Since any random link can fail or recover at any time, our model simulates mobility closely.

The above results indicate that the routing algorithm of WRP outperforms all other

algorithms which we have simulated, namely, DBF, DUAL and ILS. We were not able to

simulate ILS for the Arpanet topology due to limited resources. The statistics about the

average number of messages and the average message length have been collected for all

the above mentioned topologies for all the four algorithms by varying the interarrival time

between events (failures and recoveries).
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Figure 5.3: Los-Nettos
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Figure 5.4: Nsfnet
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Figure 5.5: ARPANET

In all cases, the average number of messages for DBF and DUAL are more than that

of WRP. This results from DBF's counting-to-in�nity problem and DUAL's use of an
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interneighbor coordination mechanism to achieve loop-freedom and this synchronization

mechanism spans the entire diameter of the network. ILS sends maximum number of mes-

sages since the complete topology information has to be exchanged between neighbors every

time the topology changes.

The average length of each message is the highest in DUAL as compared to all other

algorithms. The average message length in case of ILS is almost constant since it always

sends the complete topology information. Even though we do not have simulation results

for ILS in case of Arpanet topology, we can extrapolate the results from the other two

network topologies and can expect similar behavior for Arpanet topology also.

5.4 Implementation Status

We have completed an initial implementation of the wireless routing protocol under the

BSD version of the UNIX operation system [Ana96]. This implementation contains all fea-

tures of the basic WRP, and we are currently considering additions to the implementations

to support subnetting. Our implementation includes all functions of the basic routing al-

gorithm, the hello protocol, which is used to maintain neighbor discovery information and

the reliable exchange of messages (which includes ACKs).

The implementation is mainly done in the user space and the kernel routing tables are

updated as and when required. We are also considering the implementation of WRP based

on the implementation of some of the existing routing daemons of UNIX such as routed and

gated.

5.4.1 Optimization

In order to reduce the routing control messages in the protocol and thus to minimize the

protocol overhead, we limit the number of times a Hello packet has to be sent to the

neighbors. Any packet received from a neighbor can be treated as an implicit Hello and the

hello timer will be reset. Only when there is no tra�c in the network, an explicit Hello will

be sent to the neighbors. This reduces the number of control messages in the network.
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In order to reduce the number of acknowledgments exchanged for each update, we use

piggy-backed acknowledgments. After an update is received and before an ACK is sent in

response to that update, if the node has any updates to be sent to the neighbor for which

it has to send the ACKs, these ACKs will be piggy-backed with the updates.

5.5 Summary

In this chapter, we have described a wireless routing protocol, WRP, which is based on

path-�nding algorithm. A mechanism has been proposed for the reliable exchange of update

messages as part of WRP. The basic algorithm used in WRP has been proved to be correct

and WRP's complexity has been analyzed. The performance of the routing algorithm in

WRP has been compared with that of an ideal topology broadcast algorithm (ILS), DUAL

and DBF for highly dynamic environment through simulations. The simulation results

show that WRP provides about 50% improvement in the convergence time as compared to

DUAL. The results indicate that WRP is an excellent alternative for routing in wireless

networks.



102

Chapter 6

Congestion-Oriented Routing

The previous chapters described routing algorithms and protocols for various network en-

vironments such as hierarchical networks and wireless networks. Using e�cient routing

algorithms we get small average packet delays but, the network might be able to accept

more tra�c if 
ow control is associated with routing. On the other hand, e�cient 
ow con-

trol algorithm alone rejects excessive o�ered load that would necessarily increase the packet

delays by saturating network resources. This can possibly be avoided by rerouting packets

through non-congested links. Therefore, it is clear that routing and congestion-control are

very much interrelated.

In this chapter, we present a congestion-oriented multipath routing algorithm in which

we combine congestion-control with routing and present an integrated solution based on

credits. Our objective is to provide certain level of performance guarantees in a connec-

tionless network. This we do by de�ning a two-tier architecture where connection oriented

sessions are mapped on to connectionless 
ows thereby supporting multiple QoS levels. To

the end user, this architecture looks very much similar to a connection-oriented architecture

through which several levels of performance guarantees can be requested. We �rst describe

the connectionless model and then present the two-tier model.

6.1 Prior Work

One of the drawbacks of the existing Internet routing protocols is that their main routing

mechanisms (route computation and packet forwarding) are poorly integrated with conges-
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tion control mechanisms. More speci�cally, today's Internet routing is based on single-path

routing algorithms. Even in theory, a routing protocol based on single-path routing is ill

suited to cope with congestion. The only thing a single path routing protocol can do to

react to congestion is to change the route used to reach a destination. However, as has been

documented in [Ber82], allowing a single-path routing algorithm to react to congestion can

lead to unstable oscillatory behavior.

Datagram based networks carry tra�c that spans a fairly wide range of rates, but

their performance is guaranteed on a best e�ort basis only. Recently, quality of service

(QoS) has become a very important issue. The newer Internet routing protocols such as

IPv6 [DH96] have mechanisms to support di�erent service qualities. This implies that

just best-e�ort service alone does not su�ce for datagram networks for future applications.

Also, current routing protocols react to congestion after the network resources have been

wasted i.e., a source reacts to congestion only after it receives a congestion indication from

the congested resource in the data path before the source can regulate the rate at which

it inputs data into the network. Furthermore, for a connectionless service, any datagram

o�ered to the network is accepted. It is up to the transport protocol to react to congestion

after network resources are already being wasted. This requires a congestion control scheme

which is responsive to the changes in the available bandwidth and e�ciently uses the unused

bandwidth. The bandwidth must be available on a timely basis allowing application to

almost instantaneously use the available bandwidth while maintaining low packet losses.

Hop-by-hop credit-based schemes have a potential for the desired responsiveness [KTA94].

The performance of these schemes is independent of the input tra�c pattern. These schemes

can be used to fairly share the network bandwidth among competing 
ows. Also, when there

is bandwidth contention, each 
ow obtains a fair share of the bandwidth.

Our work was motivated by our conjecture that architectural elements similar to those

used in a connection-oriented architecture to allow the network to enforce performance

guarantees can be used in a connectionless architecture to integrate routing with congestion

control, and to provide some delay bounds for the delivery of those datagrams that are
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accepted in the network. We propose a new framework and protocol for dynamic multipath

routing in packet-switched networks that attempts to prevent over-utilization of network

resources and hence congestion. Packets are individually routed towards their destinations

on a hop-by-hop basis. A packet intended for a given destination is allowed to enter the

network if and only if there is at least one path of routers with enough resources to ensure

its delivery within a �nite time. In contrast to existing connectionless routing schemes, once

a packet is accepted into the network, it is delivered to its destination, unless a resource

failure prevents it. Each router reserves bu�er space for each destination, rather than for

each source-destination session as it is customary in a connection-oriented architecture, and

forwards a received packet along one of multiple loop-free paths towards the destination.

The bu�er space and available paths for each destination are updated to adapt to congestion

and the dynamic state of the network.

Our framework is based on three main architectural elements namely:

� tra�c shaping by means of destination-oriented permit buckets

� tra�c separation and scheduling on a per destination basis

� maintenance of dynamic multiple loop-free paths to reduce the delay from source to

destination.

Permit buckets consist of permits or tokens fed by periodic updates of credits. To

schedule packet transmission, we assume a packet-by-packet generalized processor sharing

(PGPS) server [PG93] at each node. To establish loop-free multipaths, we extend prior

results on loop-free single-path routing algorithms introduced in [GLAM95]. This results in

a congestion-oriented multipath routing architecture that uses a short-term metric based on

hop-by-hop credits to reduce congestion over a given link, and a long-term metric based on

end-to-end path delay to reduce delay from source to destination. The main contribution of

this work is to illustrate the provision of performance guarantees in a connectionless routing

architecture.
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Figure 6.1: Basic Credit-based Scheme

Based on this model of dynamic multipath routing, we present a two-tier architecture for

providing several levels of performance guarantees in a connectionless network architecture.

This mechanism is capable of supporting multiple QoS for data 
ows.

6.2 Protocol Description

The protocol can be divided into three functional elements, namely: packet scheduling

and transmission, congestion-based credit mechanism and maintenance of multiple loop-free

paths. To forward packets to a given destination, the protocol uses two routing metrics:

a short-term metric based on hop-by-hop credits to reduce congestion along a link, and a

long-term metric based on path-delay to minimize end-to-end delay.

The routing variables associated with each link are determined by periodically moni-

toring tra�c on the incoming and the outgoing links at each node through each neighbor.

Given the capacity of each link and the tra�c on the link, the utilization of the link can

be determined. Credits are reassigned to upstream neighbors contributing to the tra�c at

a node depending on the relative tra�c 
ow on each of the incoming links. A multipath

routing algorithm based on LPA maintains multiple loop-free paths. Each time the network

state changes, paths are recomputed and the updated network state is obtained. This is

made possible by the periodic exchange of routing information.

Each node maintains a routing table, a distance table, a link cost table and a link credit

table. The distance table at node i is a matrix that contains, for each destination j and for

each neighbor k, the distance (Di
jk) reported to node i by node k regarding destination j, the
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predecessor reported to node i by node k regarding destination j (pijk) and a successor 
ag

(flagijk) indicating whether neighbor k belongs to the shortest multipath set, for destination

j. Node i's routing table is a column vector containing the routing information about

the shortest path to all destinations; it maintains information about the distance (Di
j),

predecessor (pij), successor (s
i
j), and the routing parameters (credits and delay) for each

shortest path. The neighbor nodes used for packet forwarding from node i to node j are

said to belong to the shortest multipath from i to j, denoted by SM i
j . If the neighbor

node belongs to SM i
j , then flagijk is set to 1; otherwise it is set to 0. The link cost table

maintains the distance information about all the neighboring links and the link-credit table

maintains information about the credits available through all the neighboring links for each

destination.

6.2.1 Basic Credit-based Mechanism

Figure 6.1 depicts the basic hop-by-hop credit-based 
ow control mechanism. U is the

upstream node and D is the downstream node. A node D is said to be downstream to

a node U with respect to destination j if there is a routing path from U to j passing

through D. Similarly, node U is an upstream node from D, if D is downstream to U .

Two types of packets, data and credits are used. Node U keeps a credit register for each

connection (destination) x, which indicates the number of credits available for a connection

(destination) x.

Before forwarding the data packets on each link, the sender needs to receive credit

information from the credit cells sent by the receiver. At various times, receiver sends

credit cells to the sender indicating that there is a certain amount of bu�er space available

for receiving data packets for a connection (destination). After having received credits, the

sender is eligible to forward some number of data packets to the receiver according to the

received credit information. Each time sender forwards a data packet, credit count for that

connection (destination) is decremented by one.
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The advantages of credit-based 
ow control scheme are maximizing network utilization

and controlling congestion.

6.2.2 Message Types

Messages are exchanged among routers for the proper functioning of the protocol. We

classify the messages into six types.

Explicit Credit Requests: When a source becomes active and has some data to be sent

towards a destination it sends an explicit credit request message to the destination of

that 
ow requesting for credits. Explicit credit requests are associated with sequence

numbers. The state of the source indicating the source which initiated the credit

request and the corresponding sequence number are recorded at the time of request.

(These messages can be viewed analogous to PATH messages in RSVP).

Explicit Credit Response: This message is sent in response to an explicit credit re-

quest message and indicates the credit availability for data transmission and the se-

quence number of the request. The available credits are then distributed among the

sources that requested for credits. (These messages are analogous to RESV messages

of RSVP).

Explicit Teardown: This message is sent to reclaim all the credits assigned to a particular


ow. A source on recognizing that there are no more packets associated with a 
ow

that needs to be delivered to the destination initiates this message. Credits reserved

for a 
ow are reclaimed at each hop along the way to a destination. (These are similar

to TEARDOWN messages of RSVP).

Fast Reservation Packet: When a node sends an explicit credit request, its neighbor

along the path to a destination responds to this with a fast reservation packet indi-

cating that the source can use small amount of credits to start with before the actual

credit allocation is made. This enables sources to start transmitting data without
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having to wait till it receives credits from the destination and thus prevents starva-

tion. The fast reservation credits are reclaimed when the credits from the destinations

are assigned to the 
ow.

Periodic Credit Updates: Credits are updated periodically to maintain the correct net-

work state information. These are simple update messages which carry the rate at

which data packets can be sent and do not have a sequence number associated with it.

At every periodic interval, current credit information is exchanged among neighboring

nodes and credits are redistributed among active 
ows at each source accordingly. A

credit update which is sent in response to an explicit credit request will be taken into

account in the periodic update after the explicit credit response was sent.

Routing Table Update: Whenever the information present in the routing table changes,

a routing table update is exchanged between neighbors. These updates are also not

associated with sequence numbers. Routing table update updates both the cost and

the credit information. The way in which the routing table entries are updated is

dependent on the underlying routing algorithm.

6.2.3 Packet Scheduling and Transmission

Packet scheduling is done by means of permit bucket �lters for each destination. The

packet-by-packet generalized processor sharing (PGPS) scheme is used at each server [PG93].

Packets are transmitted as individual entities. A packet is said to have arrived only after

the last bit has been received at a node. The server picks up the �rst packet that would

complete service if no additional packets would arrive. Routing is done on a per destination

basis over multiple paths.

In a connectionless architecture, the route which a packet takes to reach a destination is

determined independently at each hop. All nodes along any path from source to destination

has a potential to contribute to the 
ow for a destination. This necessitates tra�c scheduling

to be done at each hop to regulate the incoming tra�c instead of having intermediate nodes
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Figure 6.2: Credit Aggregation

as just forwarding nodes as in a connection-oriented architecture [PG94]. PGPS servers are

used at each node to regulate the incoming tra�c.

The protocol uses two routing metrics for transmitting packets to a given destination:

a short-term metric based on hop-by-hop credits to reduce congestion along a link, and a

long-term metric based on path-delay to minimize end-to-end delay along the paths. The

number of packets sent to a neighbor depends on the credits available through that neighbor.

Credits for a destination are sent from a destination towards the source along the reverse

paths implied by the routing tables. When a node becomes operational, depending on the

availability of resources at each node, credits are distributed among its neighboring nodes.

Credit based mechanism is explained in the next section.

The tra�c at each node is regulated by permit-buckets, independently for each destina-

tion. In the traditional leaky bucket congestion-control scheme, buckets are session oriented

i.e., credits are assigned on a per session basis. Data packets accepted from the transmitter

and the average rate of 
ow is controlled by a burst rate for a source-destination session.

In our scheme, permit buckets (which are similar to leaky buckets) are destination oriented

i.e., at every router permit buckets are maintained for all active destinations. For a given

destination j, credits arrive to a node i at a rate �ij, which is called the token generation rate

for destination j at node i. The bucket size, denoted by �ij(t) [PG93] gives the maximum

number of packets that can be transmitted from i to j at time t, and �ij(t) is de�ned for

each destination j at time t � 0 as
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�ij(t) = lij(t) + Qi
j(t) (6.1)

where lij(t) is the number of left-over credits (or tokens) in the bucket at node i for destina-

tion j at time t, and Qi
j(t) is the backlog for destination j at time t. This de�nition is much

the same given in [PG93], the only di�erence being that here we maintain leaky-bucket

parameters for each active destination rather than for each session.

Destination-based credits are aggregated at each node. Each hop is considered as a

source; credits sent by the downstream nodes are aggregated at each hop for a given desti-

nation and are redistributed among its upstream neighbors. The total available credits at

each node for a given destination is the sum of the credits received from its downstream

neighbors for that destination. In Figure 6.2, if z is the number of credits received by node

a from its downstream neighbors to destination j, then node a maintains a permit bucket of

size z. These credits are redistributed among its upstream neighbors relative to the tra�c


ow along links (i; a) and (s; a) as x and y.

The number of credits left behind, denoted by lij , is the di�erence in the number of

arrivals and the number of credits that arrive within a given time interval. Accordingly,

lij(�; t) = Ai
j(�; t)� [Ki

j(t)�K
i
j(�)], where K

i
j(t) is the number of credits that arrive at node

i at time t for destination j and Ai
j(�; t), the tra�c arriving at node i for destination j in

the interval (�; t] is the number of arrivals in units of credit. The total number of accepted

credits in a time period should be less than the credit generation rate. Therefore, with

� � t,

Ki
j(t)�Ki

j(�) � �ij(t� �) (6.2)

and

�ij(�; t) � Ai
j(�; t)� �ij(t � �) +Qi

j(�; t) (6.3)

Let t��t be the time when credits were last updated at node i before time t. For the time

interval (t��t; t) we can write Eq. 6.3 as:
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�ij(t) � Ai
j(t)� �ij(t) + Qi

j(t) (6.4)

�ij is related to the number of total available credits at time t and is the sum of the

credits available through all the nodes downstream of node i. Consider Figure 6.3, the total

number of credits available at router i for destination j is the sum of the credits available

from its downstream neighbors a, b, and c for destination j. The total number of packets

transmitted to destination j from node i cannot exceed the total available credits at i for

j at time t. The number of available credits also depends on the tra�c 
ow on that link

which is a measure of the congestion level of that link.

6.2.4 Credit-based Congestion Mechanism

Congestion over a given link is controlled by a hop-by-hop credit-based mechanism. Each

node selects a path to a destination based on the bandwidth available through a given link,

utilization of that link, and the distance to the destination. The chosen path is subjected

to a constraint that the bandwidth available is at least equal to the required bandwidth,

and the total bandwidth allocated through a link is less than the capacity of that link. The

available bandwidth is then translated into credits. Credits given by a node to its upstream

neighbors for a given destination represents the number of packets that the node can accept

from its upstream neighbors for that destination. Credits to upstream nodes are sent along

the reverse direction of the routing tree. Upstream nodes receive credits from downstream

nodes for a given destination before they send data towards the downstream nodes.
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Figure 6.4 presents a formal description of the credit allocation scheme. Procedure

Initialize indicates the action taken by a node when it becomes active for the �rst time.

Procedure Receive describes the functions performed by a node when a node receives a

periodic update.

Initialization

The number of credits available at each node is determined by the total resources (bu�er

space) available at that node (MaxBufsj). A part of the total available credits (Reserve)

is reserved for a fast reservation mechanism. A fast reservation mechanism is used to

allocate credits to a new source when an explicit credit request is received for a destination.

This mechanism sends a minimum number of credits to the new upstream neighbor as

explained below. This speeds up the credit allocation process, thus avoiding slow start.

Since there is always some reserved credits at each node, nodes upstream do not starve.

The reserved credits which are used for fast reservation when the upstream neighbor/ source

�rst initializes are reclaimed when the tra�c 
ow through that path starts. The remaining

credits, CRi
j , are equally distributed among the neighboring nodes, Ni, on startup. This is

termed as the weighted credit WCRi
jk. The hop-by-hop delay incurred for the credits to

reach next-hop neighbor is incorporated while computing the available credits.

On initialization, credits are equally distributed among neighbors since there will not be

any tra�c on any of the links of a newly established node. Credits are dynamically assigned

thereafter among all the active 
ows, depending on the tra�c 
ow through each of the links.

When node i selects neighbor k as one of its multiple successors to a destination, it sets the

successor 
ag in the update message (flagijk) to that neighbor to indicate that the neighbor

now belongs to shortest multipath set SM i
j . When node k recognizes this, it includes the

node in its set of active neighbors, sends a �xed minimum amount of credit (CRmin) to

its new neighbor indicating that i can be a possible multipath successor, and redistributes

its credits for that destination. This information is communicated to other nodes in the

next update interval. The total credits sent to the upstream neighbor is limited by the total
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available credits at that node. Credit information at each node is updated periodically. This

is required since we are not using any reliable mechanism for updating credit information.

Each routing node resets its tra�c counters and monitors the incoming and outgoing

tra�c for all its neighbors. Based on this statistics, the routing parameters �ijk are com-

puted. The permit bucket parameters are also initialized for each destination. The token

generation rate �ij is initialized to the sum of the credits available through all the neighbors

of i to a given destination j in the given time period. The bucket size �ij is initialized to

the number of leftover packets since on initialization there is no backlog.

Steady State

Each node monitors the tra�c 
owing through its incoming and outgoing links periodically

and determines the tra�c 
ow on each of its links for all destinations. A periodic update

timer is maintained at each router to exchange credit information periodically. The periodic

update interval �t should be at least longer than the maximum round trip time (RTT) delay

between two nodes in the network. Each time an update is sent, the timer, timerij , is reset

(Figure 6.4).

At each node, credits received from all downstream nodes are aggregated and are redis-

tributed to the upstream neighbors. This can be done because the total bandwidth allocated

at each link at any given time is no more than the capacity of that link. A node can send

data packets to a downstream neighbor only if the credit value through that neighbor is

greater than zero. Also, because at each hop credits are distributed based on the tra�c


ow, the algorithm ensures that information about all active destinations are maintained,

i.e., those for which data tra�c needs to 
ow from or through that node. When a new

destination for which the bandwidth is not reserved becomes active, or when a node be-

comes part of the set of loop-free paths to a destination, credits are redistributed using a

fast reservation mechanism.
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Variables:

pijl: credits occupied by packets in transit
qij: credits due to packets already in queue

Procedure Initialize

when router i initializes itself
begin

CRi
j  MaxBufsj � Reserve;

do for k 2 Ni

begin

WCRi
jk  

CRi
j

jNij
;

flagijk  0;
end

Send credit information to all x 2 Ni at next update interval
Reset timerij

end

Procedure Receive(k)
when periodic update is received (timerij expired)
begin

if ((flagijk = 1) ^ (k 62 SM i
j ))

WCRi
jk  CRmin; SM i

j  SM i
j [ k;

if ((flagijk = 0) ^ (k 2 SM i
j ))

WCRi
jk  0; SM i

j  SM i
j � k;

do for m 2 Ni

begin

if m 2 SM i
j flag

i
jm  1;

else flagijm  0;
end

redistribute credits among shortest path neighbors

CRi
0

j  
P

l2SMi
j
WCRi

jl � p
i
jl;

CRi
j  CRi0

j � q
i
j;

WCRi
jk CRi

j � �ijk j i 2 SM
k
j

Send credit information to all x 2 Ni at next update interval
Reset timerij

end

Figure 6.4: Credit Distribution Mechanism

Explicit Credit Request and Response

When a new source becomes active and the source needs credits to transfer data, an explicit

credit request is sent to all neighbors in the shortest multipath set. This is responded by a

credit response. Also, the initial credit assignment is done using fast-reservation mechanism.



115

Explicit credit response indicates the amount of credits allocated by the destination through

multiple paths for the 
ow requested.

Explicit Teardown

A teardown message reclaims the credits allocated to a 
ow. Each teardown message is

associated with a sequence number representing the 
ow. Although it is not necessary to

explicitly reclaim the credits of a 
ow, it is recommended that all sources send explicit

teardown message as soon as a session is completed.

Teardown message is initiated by a source and is forwarded hop-by-hop all the way to

the destination. The state of a node is updated along the way and the credits are reclaimed.

These messages are not delivered reliably. The loss of a teardown message will not cause a

protocol failure because the unused credits will eventually time out and are reclaimed.

One-Pass Reservation Mechanism

To ensure that there is no starvation in the protocol, a fast reservation mechanism is used.

This enables the downstream nodes to respond immediately without having to wait till the

nodes hear from their destinations about the credit availability. This scheme is similar to

one-pass reservation mechanism of RSVP [ZDE+93].

Sources send explicit credit requests to a destination requesting credits for data trans-

mission. On receiving these requests, credits are allocated for that session; source and all

the nodes along the way are informed about this. Credits indicate the rate at which a source

can send data to respective destinations.

Each node maintains a soft-state information about the network state. The state infor-

mation is periodically refreshed by periodic credit updates. If a credit update is not received

before certain time interval, those credits are reclaimed. At each periodic timeout interval,

the state of the network is updated. The soft-state information has the potential to change

every periodic time interval.
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Periodic Updates

Credit (resource reservation) information is updated periodically. The allocated resources

are reclaimed after a certain time if the state information is not refreshed. The timer value

for updating the state information is set at each hop independently. Floyd and Jacobson

[FJ94] have shown that periodic updates generated by independent network nodes can be-

come synchronized. This can lead to disruption in network services as the periodic messages

contend with other network tra�c for link and forwarding resources. Therefore, periodic

credit update messages must avoid synchronization and ensure that any synchronization

that may occur is not stable.

Because of this, the refresh timer should be randomly set to a value in the range [0.5R,

1.5R] where R is the periodic update timer used to generate updates. The value R is chosen

locally at each node. A smaller R speeds up the adaptation to network state changes but

increases the protocol overhead. A node may therefore adjust the e�ective R dynamically

to control the amount of overhead due to periodic update messages. The default value of

R is set to 30 seconds

The end-to-end delay associated with packets to each destination are also estimated

periodically. If the measured delay does not satisfy the required QoS, that successor will

no longer be selected as a feasible successor to that destination and this information is

communicated to all the neighboring nodes. It then determines the total available credits

for a given destination j and the credits are redistributed among its upstream neighbors

after reserving a fraction of the credits for the initialization phase. The philosophy behind

this fast reservation mechanism is similar to a fast bandwidth reservation scheme in which,

the data transmission begins before a connection has been completely established.

Figure 6.5 shows the distance table at node i for destination j for the con�guration in

Figure 6.3. The 
ag �eld indicates whether the neighbor belongs to the shortest multipath

set or not. The distance gives the sum of the link costs along the path to destination j and

credits gives the number of available credits through that path. A credit of 0 implies that

packets cannot be forwarded through that path.
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Figure 6.5: Distance Table at node i for destination j

The number of credits available at a node is determined by the 
ow on its links and

the total tra�c seen by that node. If fkji is the incoming 
ow on link (k; i) to destination

j as seen by node i, and rij is the tra�c originated at i for destination j, we de�ne the

total input tra�c seen by i for destination j as the sum of all the incoming tra�c at node

i, and denote it by tij . Furthermore, by the conservation of 
ow, the sum of all the tra�c

arriving at a node must be equal to the sum of all the tra�c departing from a node for

each destination j. Therefore, for destination j, the total incoming 
ow is equal to the total

outgoing 
ow at node i, and

tij =
X

k j i2SMk
j

[fkji] + rij =
X

m 2 SM i
j

f ijm (6.5)

For convenience, a routing variable, denoted by �ijk, is de�ned for each link (i; k) as the

ratio of the 
ow on each link with respect to the total 
ow on all outgoing links for a given

destination j. From Eq. 6.5 and with Ni denoting the neighbor set of i, we have:

�ijk =
f ijk

tij
8k 2 Ni (6.6)

Because node i itself can also contribute to the total tra�c, by the conservation of 
ow,

it must be true that
X

k2SM i
j

�ijk � 1 (6.7)
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The distribution of credits to upstream neighbors depends on the tra�c 
ow on that

link, which in turn depends on the routing variable �ij associated with that link. The num-

ber of credits a node sends to an upstream neighbor is called the weighted credit (WCR).

Credits are weighted by the tra�c 
ow on a given link. The token generation rate for a

given update period �t can now be de�ned as

�ij(t) =
Credits available in update period before t

�t

�ij(t) =

PSM i
j

k=1 WCRi
jk(t)

�t
(6.8)

To obtain a correct estimate of the credits available at each node at any given time, we

need to take into account the delay associated with the propagation of credits. This can

be done either by estimating the credits available as in [KTA94] or by explicitly sending a

marker. We opt for the estimation mechanism. Credits are sent to the immediate upstream

neighbor, i.e., they propagate only one hop. The update period used for updating routing

information is considered as one round-trip delay by a data packet. Therefore, to obtain a

correct estimate of the available credits at a node, we have to take into account the data

packets that a sender has already forwarded over the link in the previous round-trip time

(RTT) and the data packets that are already queued from the past RTT. Therefore, the total

available credits at node i for a destination j, denoted by CRi
j, is the di�erence between the

sum of all the weighted credits available from its downstream neighbors di (equivalently,

sum of all the credits on its outgoing links) belonging to the shortest multipath and the

credits which are already being used, i.e.,

CRi
j =

X

l 2 SM i
j

[WCRi
jl � pijl]� qij (6.9)

where WCRi
jl is the weighted credit obtained from the downstream neighbor l over an

update period (which depends on the 
ow on the link (i; l)), pijl is the number of credits
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occupied by the packets that are already in transit on link (i; l), and qij is the number of

credits due to the data packets that are already in the queue at node i for destination j

which were not completely transmitted since the previous update period. If a node does

not have credits for a given destination j, then CRi
j is set to zero.

6.2.5 Correctness of Credit-based Scheme

The correctness of the credit based mechanism (i.e., showing that it has no deadlocks

and that packets are not dropped) can be proven in a similar way as for virtual-circuit

connections [OSV94]. For the purposes of such a proof, we make the following assumptions.

� protocol is initialized properly i.e., all nodes have correct credit and routing informa-

tion

� there are no link errors or link and node failures (steady state)

Lemma 6.1 The congestion-oriented credit mechanism never drops packets accepted into

the network.

Proof: The total credits available at a node is given by:

CRi
j �
X

l2SM i
j

[WCRi
jl � pijl]� qij

Also, the total available credits is less than the maximum bu�er space at a node.

MaxBuffersj � CRi
j

This is true since we reserve some bu�er space (credits) for the fast reservation mecha-

nism.

At any node, the number of credits available for a given destination j is at least equal

to the packets sent downstream for that destination. This is true since a packet can not

be forwarded unless we have a credit to do so. If a packet is in 
ight from a sender to a

receiver, then pijl = 0 and CRi
j < MaxBuffersj . Thus, the received packet will not be

dropped as there is at least one empty bu�er that can be used.
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This proves the Lemma. 2

Lemma 6.2 The credit based mechanism is starvation free.

Proof: To prove this Lemma, we consider three cases { (a) initialization (b) when the

nodes are active and (c) when a explicit credit request is received.

Case (a): On initialization, when a new node comes up, the node distributes its credits

equally among its neighbors and receives a minimum number of non-zero credits from its

neighbors indicating the presence of a possible path to a destination through that neighbor.

Therefore, on startup since always a minimum number of credits are available to the new

node, the credit mechanism is starvation free.

Case (b): When a new node becomes a member of the shortest multipath set (SM i
j), the

successor 
ag will be set in the update message. On receiving this update, the neighbor

sends a minimum number of credits initially using the reserved bandwidth available through

the fast reservation mechanism and later on dynamically updates the credits depending on

the tra�c on the link.

Case (c): An explicit request for credits from a source is received by means of a routing

table update. This update sets the successor 
ag in the update message. Therefore, the

message will be treated as any other routing table update and is processed similar to case

(b) if the router has credits to send to its upstream neighbors. Otherwise, the router

sends routing table updates to its shortest multipath neighbors (downstream neighbors)

requesting for credits to send packets to the destination. In the worst-case, this process

can continue till the routing table update reaches the destination and will terminate at the

destination.

This ensures that a node will always have credits when it requires to forward a packet.

Therefore, the protocol is starvation free. 2

Theorem 7 In the congestion-based credit mechanism, if there is a packet at a node to be

sent, it will be eventually sent.
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Proof: From Lemma 6.1, packets are not dropped. Therefore, packet arriving at a node

will either be queued or is forwarded. From Lemma 6.2, whenever a node needs to forward

a packet, it always has the credits to do so.

Therefore, packets arriving at a node will be always sent eventually. Of course, when

links or nodes fail, packets accepted in the network may have to be dropped. The same

occurs in a connection-oriented architecture when resources fail along a connection already

established. This proves the theorem 2

6.2.6 Maintenance of Loop-Free Multipaths

The primary objective of maintaining multiple loop-free paths is to minimize the end-to-

end path delay by reducing network congestion along the path. The distance reported by

neighbor k to node i for destination j is denoted by Di
jk and node i's distance to its neighbor

k is denoted by dik. The distance to neighbor k is the sum of the propagation delay �ik and

the per hop packet delay through neighbor k, dijk. i.e., dik = dijk + �ik . The path delay at

node i along node k at a given time t, denoted by �Di
jk is

�Di
jk = Di

jk + dik.

The shortest multipath set of i for destination j (SM i
j) is a set of neighbors of i that

provide loop-free paths to j. The delay at node i to destination j at time t is computed as

the weighted average path delay through all the nodes in the shortest multipath at node i;

it is denoted by Di
j(t). This delay is weighted by the fraction of the tra�c going through

that path, i.e.,

Di
j(t) =

X

k2SMi
j
(t)

�ijk(t): �D
i
jk(t) =

X

k2SMi
j
(t)

f ijk(t)

tij(t)
: �Di

jk(t) (6.10)

The 
ow from i to each neighbor in SM i
j depends on the credits available through that

neighbor. Assuming that packets are of �xed size and that each packet corresponds to one

credit, we can say that a packet 
ows on a link if at least one credit is available on that

link. This implies that the number of packets that can 
ow on a link is equal to the number

of credits available through that link; therefore,
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Di
j(t) =

1

tij(t)

X

k2SM i
j(t)

[WCRi
jk(t): �D

i
jk(t)] (6.11)

If the packets are of variable lengths, the packet length is a multiple of credits and for

simplicity we can assume that on an average, each packet requires the same number of

credits C. With this simpli�cation, the total number of packets transmitted along a link

with WCRi
jk credits is a constant K times the total available credits; therefore,

Di
j(t) =

K

tij(t)
:
X

l2SM i
j
(t)

WCRi
jl(t):

�Di
jl(t) (6.12)

Multiple loop-free paths from each node to a destination are maintained by means

of a shortest multipath routing algorithm (SMRA), which is based on LPA [GLAM95].

As explained earlier, LPA belongs to the class of path-�nding algorithms, which achieves

loop-freedom at every instant using single-hop interneighbor coordination mechanism. Any

change in distance is noti�ed by event-driven update messages. An update message from

router i consists of a vector of entries; each entry speci�es a destination j, an update 
ag, a

successor 
ag, the reported distance to that destination and the reported credits available

to destination j through that neighbor. The update 
ag indicates whether the entry is an

update (uij = 0), a query (uij = 1) or a reply to a query (uij = 2).

A detailed speci�cation of SMRA is given in Figures 6.6 and 6.7. Procedures Init1 and

Init2 are used for initialization. Procedure Message is executed when a router processes an

update message, a query or a reply; procedures LinkUp, LinkDown and Change are executed

when a router detects a new link, link failure or a change in the link cost respectively. We

refer to these as the event handling procedures. An update, query or a reply are handled

by procedures Update, Query and Reply respectively. Procedure Update Timer updates

the periodic update timer and updates the credit information. Procedures DT Update and

RT Update updates the distance and the routing tables respectively.

A router i can be active or passive for destination j at any given time. Node i is active

for destination j if it does not have a feasible successor to destination j and is waiting for

at least one reply from a neighbor; node i is passive otherwise. A router i initializes itself
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Procedure Init1
when router i initializes itself
do begin

set a link-state table with
costs of adjacent links;
N  fig;Ni  fx j dix <1g;
for each (x 2 Ni)
do begin

N  N [ x; tagx  null;

six  null; pix  null;

Dix  1; FDix  1
end

si
i
 i; pi

i
 i; tagi

i
 correct;

Di
i
 0; FDi

i
 0;

for each j 2 N call Init2(x, j);
for each (n 2 Ni) do
add (0, i, 0, i) to LISTi(n);
call Send

end

Procedure Init2(x, j)
begin

Di
jx
 1; pi

jx
 null;

si
jx
 null; ri

jx
 0;

end

Procedure Send
begin

for each (n 2 Ni)
do begin

if (LISTi(n) is not empty)
then send message with
LISTi(n) to n

empty LISTi(n)
end

end

Procedure Reply(j, k)
begin

ri
jk
 0;

if (ri
jn

= 0; 8n 2 Ni)

then if ((9x 2 Ni j D
i
jx

<1)

or (Di
j
<1))

then call Passive Update(j)
else call Active Update(j, k)

end

Procedure Message
when router i receives a message
on link (i; k)

begin

for each entry (uk
j
; j;RDk

j
; rpk

j
)

such that j 6= i

do begin
if (j 62 N)
then begin

if (RDk
j
= 1)

then delete entry
else begin

N  N [ fjg; FDi
j
=1;

for each x 2 Ni
call Init2(x, j)

tagi
j
 null;

call DT Update(j; k)
end

end
else

tagi
j
 null; call DT Update(j; k)

end

for each entry (uk
j
; j;RDk

j
; rpk

j
) left

such that j 6= i

do case of value of ui
j

0: [Entry is an update]
call Update(j, k)

1: [Entry is a query]
call Query(j, k)

2: [Entry is a reply]
call Reply(j, k)

end
call Send

end

Procedure Update(j, k)
begin

if (ri
jx

= 0; 8x 2 Ni)

then begin

if ((si
j
= k) or (Di

jk
< Di

j
))

then call Passive Update(j)
end
else call Active Update(j, k)

end

Procedure Passive Update(j)
begin

DTmin  MinfDi
jx
8 x 2 Nig;

FCSET  fn j n 2 Ni; D
i
jn

= DTmin,

Dn
j
< FDi

j
g;

if (FCSET 6= ;) then begin
call RT Update(j, DTmin);

FDi
j
 MinfDi

j
; FDi

j
g

end
else begin

FDi
j
= 1; ri

jx
= 1; 8x 2 Ni ;

Di
j
= Di

j si
j

;

pi
j
= pi

j si
j

;

if (Di
j
=1) then si

j
 null;

8 x 2 Ni do begin
if (query and x = k)

then ri
jk
 0;

else add (1, j, 1, null)
to LISTi(x)

end
end

end

Procedure Query(j, k)
begin

if (ri
jx

= 08x 2 Ni)

then begin

if (Di
j
= 1 and Di

jk
=1)

then add (2, j, Di
j
, pi

j
)

to LISTi(k)
else begin

call Passive Update(j);

add (2, j, Di
j
, pi
j
)

to LISTi(k);
end

else call Active Update(j, k)
end

Figure 6.6: SMRA Speci�cation

in the passive state with an in�nite distance to all its known neighbors and a zero distance

to itself. The maximum allowable distance to reach neighbor, de�ned below, is also set to

1. Routers send updates containing distance and credit information for themselves to all

their neighbors. When the destinations become operational, routers inform their neighbors

about the available credits to all other nodes.

Each routing update updates the cost and the credit information. Cost and credit

information are exchanged among neighbors when the state of the network changes while

credit information is updated periodically also. An update can contain full routing table

or increments of the routing table in di�erent update messages. After initialization, only

incremental updates are sent.
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Procedure Link Up (i; k; dik)
when link (i; k) comes up do begin

dik  cost of new link;
if (k 62 N) then begin

N  N [ fkg; tagi
k
 null;

Di
k
 1; FDi

k
 1;

pi
k
 null; si

k
 null;

for each x 2 Ni do call Init2(x, k)
end
Ni  Ni [ fkg;
for each j 2 N do call Init2(k, j);

for each j 2 N � k j Di
j
<1 do

add (0, j, Di
j
, pi
j
) to LISTi(k);

call Send
end

Procedure Link Down(i; k)
when link (i; k) fails do begin

dik  1;
for each j 2 N do begin

call DT(j, k);

if (k = si
j
) then tagi

j
 null

end

delete column for k in distance table;
Ni  Ni � fkg;

delete ri
jk

;

for each j 2 (N � i) j k = si
j

call Update(j, k)
call Send

end

Procedure DT Update(j; k)
begin

Di
jk
 RDk

j
+ dik ; p

i
jk
 rpk

j
;

for each neighbor b do begin
h  j;

while (h 6= i or k or b) do h pb
h
;

if (h = k) then begin

Di
jb
 Di

kb
+ RDk

j
; pi
jb
 rpk

j
;

end
if (h = i) then begin

Di
jb
 1; pi

jb
 null;

end
end

end

Procedure Update Timer:
when the periodic update timer expires
begin

reset timer;
update credit information;
for all i 2 Ni

send periodic update;
end

Procedure Active Update(j, k)
begin

if (k = si
j
) then begin

Di
j
 Di

jk
; pi
j
 pi

jk
;

end
end
Procedure Link Change (i; k; dik)
when dik changes value do begin

old dik ;
dik  new link cost;
for each j 2 N do begin

call DT Update(j, k);
for each j 2 N

do if (Di
j
> Di

jk
or k = si

j
)

then tagi
j
 null;

end
for each j 2 N do begin

if (dik < old)

then for each j 2 N � i j Di
j
> Di

jk
do call Update(j, k)

else for each j 2 N � i j k = si
j

do call Update(j, k)
end
call Send

end
Procedure RT Update(j, DTmin)
begin

if (Di
j si

j

= DTmin)

then ns si
j
;

else ns b j fb 2 Ni and Di
jb

= DTming;

x  j;

while (Dix ns = MinfDi
xb
8 b 2 Nig

and (Dixns <1) and (tagix = null))

do x pix ns;

if (pix ns = i or tagix = correct)

then tagi
j
 correct;

else tagi
j
 error;

if (tagi
j
= correct)

then begin

if (Di
j
6= DTmin or pi

j
6= pi

j ns
)

then add (0, j, DTmin , p
i
j ns

)

to LISTi(x) 8x 2 Ni;

Di
j
 DTmin; p

i
j
 pi

j ns
;

si
j
 ns;

end
else begin

if (Di
j
<1)

then add (0, j, 1, null)
to LISTi(x) 8x 2 Ni ;

Di
j
 1; pi

j
 null;

si
j
 null;

end
end

Figure 6.7: SMRA Speci�cation (cont...)

For a given destination, a router updates its routing table di�erently depending on

whether it is passive or active for that destination. A router that is passive for a given

destination can update the routing-table entry for that destination independently of any

other routers, and simply chooses as its new distance to the destination to be the shortest

distance to that destination among all neighbors, and as its new feasible successor to that
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destination to be any neighbor through whom the shortest distance is achieved. In contrast,

a router that is or becomes active for a given destination must synchronize the updating of

its routing-table entry with other routers.

When a router is passive and needs to update its routing table for a given destination

j after it processes an update message from a neighbor or detects a change in the cost

or availability of a link or a change in the credit information, it tries to obtain a feasible

successor. From router i's standpoint, a feasible successor toward destination j is a neighbor

router k that satis�es the maximum allowable distance condition (MADC) given by the

following two equations [GLAM95]:

Di
j = Di

jk + dik =MinfDi
jp + dip j p 2 Nig

Di
jk < MADi

j (6.13)

where MADi
j is the maximum allowable distance for destination j, and is equal to the

minimum value obtained for Di
j since the last time router i transitioned from active to

passive state for destination j. Router i adjusts MADi
j depending on the congestion level

of the network.

If router i �nds a feasible successor, it remains passive and updates its routing-table entry

as in the Distributed Bellman-Ford algorithm [BG92]. Alternatively, if router i cannot �nd

a feasible successor, it �rst sets its distance equal to the addition of the distance reported

by its current successor and the cost of the link to that neighbor. The router also sets

its maximum allowable distance equal to its new distance. After updating its tables, a

router becomes active by sending a query in an update message to all its neighbors; such

a query speci�es the router's new distance through its current successor. It then sets the

destination's reply-status table entry for each link to one, indicating that it expects a reply

from each neighbor for that destination.

Once active for destination j, router i cannot change its feasible successor, MADi
j , the

value of the distance it reports to its neighbors, or its entry in the routing table, until it
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receives all the replies to its query. A reply received from a neighbor indicates that such

a neighbor has processed the query and has either obtained a feasible successor to the

destination, or determined that it cannot reach the destination. After node i obtains all

the replies to its query, it computes a new distance and successor to destination j, updates

its feasible distance to equal its new distance, and sends an update to all its neighbors.

Multiple changes in link cost or availability are handled by ensuring that a given node is

waiting to complete the processing of at most one query at any given time. The mechanism

used to accomplish this is speci�ed in [GLAM95], and is such that a node can be either

passive or in active state, and it processes any pending update or distance increases that

occurred while it was active.

Ensuring that updates will not be sent in the network when some destination is unreach-

able is easily done. If node i has set Di
j =1 already and receives an input event (a change

in cost or status of link (i; k), or an update or query from node k) such that Di
jk+dik =1,

then node i simply updates Di
jk or dik, and sends a reply to node k with RDi

j = 1 if

the input event is a query from node k. When an active node i has an in�nite maximum

allowable distance and receives all the replies to its query such that every neighbor o�ers

an in�nite distance to the destination, the node simply becomes passive with an in�nite

distance.

When node i establishes a link with a neighbor k, it updates the value of dik and assumes

that node k has reported in�nite distances to all destinations and has replied to any query

for which node i is active. Furthermore, if node k is a previously unknown destination, node

i sets sik = null, and Di
k = RDi

k = MADi
k = 1. Node i also sends to its new neighbor k

an update for each destination for which it has a �nite distance.

When node i is passive and detects that link (i; k) has failed, it sets dik = 1 and

�Di
jk =1. After that, node i carries out the same steps used for the reception of a link-cost

change in the passive state.

Because a router can become active in only one interneighbor coordination mechanism

per destination at a time, it can expect at most one reply from each neighbor. Accordingly,
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Figure 6.8: Maximum Allowable Distance Condition

when an active node i loses connectivity with a neighbor n, node i can set rijn = 0 and

Di
jn =1, i.e., assume that its neighbor n has sent any required reply reporting an in�nite

distance. When node i becomes passive again, it must �nd a neighbor that satis�es the

MADC using the value of MADi
j set at the time node i became active in the �rst place.

After �nding a new successor, the permit bucket parameters �ij and �ij are also updated.

Figure 6.8 gives a graphical representation of how MAD is updated. The point at which

a new di�using computation starts is a synchronization point. It can be noted that between

two synchronization points the value of MAD can only decrease or remain the same. This

ensures that the algorithm is loop-free.

To route packets to a destination j, each router uses the following rule to select the

neighbor routers that should belong to its shortest multipaths for j:

Shortest Multipath Condition (SMC): At time t, router i can make node k 2 Ni(t) part of

SM i
j if and only if Di

jk(t) < MADi
j(t).

When nodes choose their successors using SMC, the path from source to destination

obtained as a result of this is loop free at every instant. The proof of correctness and

loop-freedom of SMRA is basically the same as that provided in [GLAM95] for LPA.

6.3 Worst-Case Steady-State Delay

In this section, we derive an upper bound on the end-to-end steady-state path delay from

node i to destination j (Di�
j ) as a function of the credits available through each path under

steady state. Steady-state means that all distances and credit information is correct at every
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router. This bound demonstrates that it is possible to provide performance guarantees in

a connectionless routing architecture. The delay experienced by a packet accepted into the

network is the time required by a data packet to reach its destination router from a source.

This includes both the propagation delay and the queueing delay. Path delay can also be

interpreted as the time it would take for a destination j backlog to clear when there are no

more arrivals after time t.

Parekh and Gallager have analyzed worst-case session delay in a connection-oriented

network architecture [PG94]. We adopt a similar approach for each destination in a con-

nectionless architecture. To do this, we assume a stable topology in which all routers have

�nite distances to each other. We also make use of the fact that SMRA enforces loop-

freedom at every instant on all paths in the shortest multipath sets.

In a connectionless network where routes are computed distributedly, the path taken by

a packet can change dynamically depending on the congestion level in the network. Routing

is done on a hop-by-hop basis, independently at each router. Therefore, the total tra�c at

a node will be the sum of the tra�c on all its links connecting to upstream neighbors. To

obtain an expression for the worst-case bound, we make the following assumptions:

1. Each node sends tra�c to destination j as long as credits are available (non-zero) for

that destination along any of its chosen paths.

2. At every node m, tra�c for every destination is treated independently.

3. Tra�c arriving at a node i for destination j in the interval (0; t) (denoted by Ai
j) is

the sum of the tra�c from all its upstream neighbors to destination j and the tra�c

originated at the node i itself, denoted by rij(t), i.e.,

Ai
j(t) = rij(t) +

X

n;i2SMn
j (t)

fnji(t) (6.14)

= rij(t) +
X

lji2SM l
j
(t)

�ijl(t):A
i
jl(t) (6.15)



129

Each router in a connectionless network can itself be a source to any given destination.

At each node, tra�c to destination j is constrained by a permit bucket �lter. The worst-

case delay and backlog is upper bounded by an additive scheme due to Cruz [Cru91]. The

rate at which the packets are serviced at each node depends on the permit bucket or leaky

bucket parameters �ij and �ij for a given destination j. The parameter �ij gives the permit

bucket size and �ij the credit generation rate at node i. Therefore, the number of packets

that are being serviced at a node is a function of �ij and �ij.

The minimum service rate gijm at any node i is the fraction of the input tra�c at node

i for destination j. The fraction of the tra�c is determined by the ratio of the routing

variables of the links, which is a function of the tra�c 
ow; Therefore,

gijm =
�ijm

PSM i
j
(t)

k=1 �ijk

tij (6.16)

The minimum clearing rate of a given path is g
0

l = minm2P (i;j) g
i
jm. When g

0

l > �lj , the

system with respect to destination j is said to be locally stable. The input tra�c rate at

node i to destination j is the sum of all the incoming tra�c destined for j for which i is the

intermediate node and the tra�c originated at i itself (Eq. 6.5). With these constraints,

the bound on the delay for a given destination can be obtained using a similar approach as

in [PG94].

The delay on a link (i; k) (per hop delay) dijk for a given destination j is the sum of the

queueing delay and the propagation delay on that link. The link propagation delay (�ik)

depends on the congestion level of the link as well as the link capacity. Propagation delay is

de�ned as the time taken for a packet to reach a destination from a source. Every packet is

time-stamped when it leaves a node and the time at which the packet reaches the neighbor

is noted. The di�erence between the two gives a one-hop delay. The average of this delay

over a given period of time gives the propagation delay �ik.

The queueing delay is the time a packet has to wait at a node before it is processed. The

waiting time of a packet depends on the number of packets already present in the queue at
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the time a packet arrives. This is referred to as the backlog at node i for destination j and

is denoted by Qi
j . Therefore, the delay on link (i; l) for destination j at time t is

dijl(t) = �il(t) +Qi
jl(t):�

i
l(t) = �ij(t)[1 +Qi

jl(t)] (6.17)

The backlog number of packets for a given destination j at a given time t can be de�ned

as the di�erence in the incoming and the outgoing tra�c at a node, i.e.,

Qi
j(t) = Ai

j(t)� Si
j(t) (6.18)

This takes into account both the processing delay and the queueing delay experienced

at each hop. For every interval (�; t],

Si
j(�; t) � (t� �)g

0

i (6.19)

If the minimum clearing time g
0

i is greater than the token generation rate �ij for a given

destination, we can obtain a bound on the backlog and hence the path delay. Let � < t be

the time at which there are no backlogged packets in the network. Then, because gij � �ij

and all the destinations are permit bucket constrained,

Si
j(�; t) � (t � �)�ij(t � �) (6.20)

6.3.1 Negligible Packet Size

We �rst obtain a bound on end-to-end path delay assuming that the size of the packet may

not contribute signi�cantly to the delay component. The arrivals at each node i is the sum

of the arrivals at all the upstream nodes for destination j and the tra�c originated at node

i itself. For all t � � � 0 we have,

Ai
j(�; t) = rij(�; t) +

X

lji2SM l
j(t)

�ijl(�; t):A
l
j(�; t) (6.21)
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The maximum backlog tra�c Qi�
j for destination j is the di�erence between the arrivals

in the interval (�; t] and the total packets serviced in the same interval at node i. For

�ijl > 0,

Qi�
j (�; t) � Ai

j(�; t)� Si
j(�; t) (6.22)

Qi�
j (�; t) � rij(�; t)� Si

j(�; t)

+
X

lji2SM l
j(t)

[�ijl(�; t):A
l
j(�; t)] (6.23)

Qi�
j (�; t) � [rij(t)� rij(�)]� Si

j(�; t)

+
X

lji2SM l
j
(t)

[�ijl(�; t):A
l
j(�; t)] (6.24)

The di�erence (rij(t)� rij(�)) determines the amount of tra�c arriving at node i in the

interval (t � �); the maximum of which is the sum of the tokens available at node i and

the tokens received in the interval (t � �). At every node, each destination is constrained

independently by a permit bucket scheme. Following Parekh and Gallager's approxima-

tion [PG94], we assume the links to be of in�nite capacity. The results for the in�nite

capacity case upper-bound the �nite capacity case. In other words, the results of in�nite

capacity can be used for any �nite speed link. The arrival and the service functions at each

router can be translated to permit bucket parameters, which in turn depend on the maxi-

mum tolerable path delay and the link 
ows. Substituting for the arrivals and the number

of packets serviced in terms of the permit bucket parameters from the previous section we

have

Qi�
j (�; t) � [�ij(t � �) + �ij(t� �)]� �ij(t� �)

+
X

lji2SM l
j(t)

f ijl

tij
[�ij(t� �) + �ij(t� �)]

Because
f i
jl

ti
j

� 1 for any j and l 2 SM i
j(t),
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Qi�
j (�; t) � �ij(t� �) +

X

l j i2SM l
j
(t)

[�lj(t� �) + �lj(t � �)] (6.25)

Making � = t��t, we can write

Qi�
j (t) � �ij(t) +

X

l j i2SM l
j(t)

[�lj(t) + �lj(t)]

Therefore, the backlog at node i to destination j depends on the leaky bucket parameters

at node i and the permit bucket parameters of all the upstream neighbors of i for which

node i is in the shortest multipath set.

The delay at each node i can be computed as the weighted average path delay through

all its multipath neighbors; therefore,

Di
j(t) =

X

k2SM i
j
(t)

�ijk(t) �D
i
jk(t) (6.26)

The distance from i to j through neighbor k can be expressed as the sum of the distance

from k to j and the link cost from i to k. The link cost is the sum of the distance and the

propagation delay of that link. Therefore,

�Di
jk(t) = Di

jk(t) + dik(t) = Di
jk(t) + [dijk(t) + �ik(t)]

Di
j(t) =

X

k2SM i
j
(t)

�ijk(t)[D
i
jk(t) + (dik(t) + �ik)(t)] (6.27)

From Eq. 6.17, dik(t) = �ik(t)[1 +Qi
j(t)], which implies that

Di
j(t) =

X

k2SM i
j
(t)

�ijk(t)[D
i
jk(t) + �ik(t)(1 + Qi

j(t))] (6.28)

Because SMC must be satis�ed by every k 2 SM i
j(t), D

i
jk(t) < MADi

j(t). Then, if

Di
j(�) is the maximum path delay from i to j at time � and Qi�

j (t) is the maximum backlog

from i to j at time t, we obtain from Eq. 6.28 that

Di�
j (t) <

X

k2SM i
j
(t)

[�ijk(t):�
i
k(t)(1 +Qi�

j )(t)]
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+MADi
j(t)

X

k2SM i
j
(t)

�ijk(t) (6.29)

Let the maximum link propagation delay of all the links from i to a node in SM i
j(t) be

�i
j(t) = max

k2SM i
j
(t)

�ik(t) (6.30)

Therefore, the maximum path delay from i to j becomes

Di�
j (t) < �i

j(t)
X

k2SM i
j
(t)

�ijk(t)[1 + Qi�
j (t)]

+MADi
j(t)

X

k2SM i
j
(t)

�ijk(t) (6.31)

Noticing that Qi�
j (t) is independent of k and substituting Eq. 6.7 in Eq. 6.31 we obtain

Di�
j (t) < �i

j(t)[1 + Qi�
j (t)] +MADi

j(t) (6.32)

The above equation is an upper bound on Di
j(t) that should be expected. It states that

Di
j(t) must be smaller than the sum of the product of the backlog for i at node i times the

maximum link propagation delay in node i's shortest multipath, plus MADi
j(t). The �rst

term of Eq. 6.32 corresponds to the delay incurred by sending all backlogged packets at

time t to a neighbor with the longest link propagation delay. The second term corresponds

to the maximum delay incurred by any neighbor receiving the backlog packets; because any

such neighbor must be on SM i
j(t), that delay can be at most equal to MADi

j(t).

Substituting Eq. 6.25 in Eq. 6.32, we can represent the same bound in terms of permit

bucket parameters as follows:

Di�
j (t) < �i

j(t)f1 + �ij(t)
X

lji2SMl
j
(t)

[�lj(t) + �lj(t � � )]g

+MADi
j(t) (6.33)
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The bound given by Equations. 6.32 and 6.33 for router i is based on a maximum delay

o�ered by the neighbor of i and a maximum backlog allowed at router i. This is possible

because of two main features of SMRA: datagrams are accepted only if routers have enough

credits to ensure their delivery, and datagrams are delivered along loop-free paths. In

contrast, in traditional datagram routing architectures, any datagram presented to a router

is sent towards the destination, and the paths taken by such datagrams can have loops;

therefore, it is not possible to ensure a �nite delay for the entry router or any relay router

servicing a datagram.

6.3.2 Non-negligible Packet Size

In PGPS networks, routing nodes do not transmit packets until a packet has completely

arrived. Therefore, the number of packets which will reach a downstream node is at the

most equal to the number of packets serviced by its upstream neighbors. Let Li be the

maximum packet size at node i. The PGPS server does not begin servicing a packet until

the last bit has arrived.

For a packet-switched network

Ai
j(�; t) = rij(�; t) +

X

m j i2SMm
j (t)

Sm
ji (�; t) (6.34)

Here, Sm
ji (�; t) represents the number of packets serviced by an upstream neighbor m

for which i is in the shortest multipath to j in the interval (t� �). Let K be the number of

hops in a given path from i to j; m and m� 1 be two successive nodes. Then, for a given

path,

X

m�1

Sm�1
jm (�; t) � Am

j (�; t)� rmj (�; t)

�
X

m�1

[Sm�1
jm (�; t)� Lm�1 (6.35)

where, m = 2; ::::; K; � < t and Lm�1 is the maximum length of a packet transmitted by

node m� 1. Here, the nodes m and (m� 1) are such that m 2 SMm�1
j .
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For a PGPS system, the number of packets serviced for t > � is given as

Si
j(�; t) � min

V2[�;t]
f[Ai

j(�; V )� rij(�; V )]

+GK
j (t� V )g+K:Li (6.36)

where V represents the last time in the interval [�; t] at which node i begins a busy period

for destination j and the function GK
j is a convex function which indicates the amount of

service given to destination j under a greedy regime.

Sij(0; t) � min
V2[0;t]

f[Ai
j(0;V)� rij(0;V)]+ GK

j (t� V)g+ K:Li (6.37)

With a greedy regime, the service to destination j is minimized and is delayed by an

appropriate amount, which is given by the minimizing value of V , denoted by Vmin.

Sij(t) � f[Ai
j(Vmin)� rij(Vmin)] + GK

j (t�Vmin)g+ K:Li (6.38)

The backlog tra�c for a destination j from i is the di�erence between the number of

packets that has arrived and the number of packets serviced as in the previous case.

Qi
j(0; t) = Ai

j(0; t)� Si
j(0; t) (6.39)

Applying similar argument as in the previous section, we have

Qi
j(t) = �ij(t) + �ij(t) +

X

ljSM i
j(t)2l

[�lj(t) + �lj(t)]� Si
j(t) (6.40)

Substituting for Si
j(t) we have,

Qi
j(t) = �ij(t) � �

i
j(Vmin) �G

m
j (t� Vmin) +m:Li

+
X

ljSMi
j
(t)2l

[�lj(t) + �lj(t)] (6.41)

Thus, the maximum backlog is given by
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Qi�
j (t) = �ij(t)� �ij(Vmin) +m:Lmax �G

m
j (t � Vmin)

+
X

ljSMi
j
(t)2l

[�lj(t) + �lj(t)] (6.42)

Having bound the worst-case backlog, we can use a similar approach as in Eq. 6.31 to

obtain bounds for the maximum path delay. Since we are considering a PGPS system, the

expression for maximum path delay becomes

Di�
j (t) �MADi

j(t) + �i
j(t)

X

lji2SM l
j
(t)

[1 + Qi�
j (t)] (6.43)

Substituting for the maximum backlog from Eq. 6.42 we obtain,

Di�
j (t) � MADi

j(t) + �i
j(t)

X

lji2SMl
j
(t)

f1 + �ij(t)� �ij(Vmin)

+m:Lmax � Gm
j (t� Vmin)

+
X

[�lj(t) + �lj(t)]g (6.44)

Di�
j � MADi

j(t) + �i
j(t)f1 + �ij(t) � �

i
j(Vmin)

+m:Lmax � Gm
j (t� Vmin)

+
X

lji2SMl
j
(t)

[�lj(t) + �lj(t)]g (6.45)

Here again, the excess delay experienced by a packet depends on the network tra�c as

earlier. In addition, it also is a function of the packet size and depends on the entire path

from source to a given destination node.

6.4 Two-Tier Architecture

To support end-to-end connections and thereby to guarantee QoS on top of a connectionless

architecture, we model the network as a two-tier architecture. To the end user, the network
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Figure 6.9: Source Model

looks like a connection oriented network through which the user can request for several

levels of QoS as in any connection-oriented scheme. Within the network packets are routed

on a hop-by-hop basis. Routing decisions are made independently at each hop.

6.4.1 End-to-End Model

Each source supports connection-oriented sessions. These sessions exist on top of a con-

nectionless (destination oriented) 
ow. To the end user, these 
ows appear as connection-

oriented sessions through which they can reserve resources and can have all the 
exibility of

a connection oriented architecture. These session based 
ows are mapped on to destination-

based 
ows. Each router has the capability to di�erentiate one 
ow from another.

Figure 6.9 shows the model at a source. Connection-oriented sessions are regulated

by leaky-bucket �lters, which we refer to as connection-oriented leaky buckets (COLB). A

connection oriented session generates tra�c at a rate ri, where i = 1,...N is the number of

sessions that can exist at any time. Each session is identi�ed by a source-destination pair

and the type of service requested by that 
ow.

6.4.2 Connectionless Model

Connection-oriented sessions for the same destination belonging to the same tra�c class

(QoS type) are grouped together and are mapped into a connectionless 
ow. The con-

nectionless 
ows are serviced on a per-destination basis instead of per-session basis as in

connection-oriented architecture. For each set of COLB sessions, a destination-oriented
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leaky bucket (DOLB) is maintained. This depends on the tra�c class and the destination

of COLB sessions. The way in which COLB 
ows are fed to DOLB depends on the relative

rates of the associated COLB 
ows.

To ensure fairness among di�erent connections, a weighted round robin scheduling mech-

anism among all COLB 
ows belonging to the same group is used at each of DOLB inputs.

Our protocol guarantees that all packets which enter the connectionless network source will

be delivered to their respective destinations, unless a resource failure prevents it. Depending

on the available resources (credits) at each hop, the tra�c entering the network is regulated

at the COLB stage itself, before the packets actually enter the network. This ensures no

packets are dropped once they enter the network. In order to regulate the tra�c 
ow from

COLBs to DOLB, a feedback mechanism is required from DOLB to COLB, so that the

leaky bucket parameters of COLB can be regulated.

Let there be N connection-oriented sessions associated with each DOLB with tra�c

generation rates of r1, r2,..., rN respectively. Each of these sessions is controlled by leaky-

bucket parameters (�i; �i), where � is the bu�er size and � is the tra�c generation rate.

(�S ; �S) are the leaky-bucket parameters for the corresponding DOLB.

Let CRS
j be the total available credits (or tokens) at source S for destination j. The

token generation at each of the COLBs is a function of the available credits. When there

are N active sources the token generation at each DOLB is given by

�i =
riPN
k=1 rk

CRS
j (6.46)

This mechanism ensures that sources are well behaved and DOLB does not accept more

data than it can handle and thus can ensure guaranteed delivery of packets once the packets

enter the network.

6.4.3 Node Model

Figure 6.10 shows the model of a path. Since routing decisions are made at each hop, all

nodes along the path from a source to a destination can be a potential source, contributing
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Figure 6.10: Node Model

to the tra�c 
ow towards the destination. Therefore, the tra�c at a node corresponds to

the tra�c arriving at a node from its upstream neighbors and the tra�c originated at the

node itself. Scheduling at a node is done by maintaining permit bucket �lters at each node

for all active destinations.

6.4.4 Flow Multiplexing

A 
ow is identi�ed by a source-destination pair and a type of 
ow that speci�es the quality

of service requested. Flows having the same 
ow speci�cation are grouped together and are

associated with a separate set of destination-based credits. This ensures that 
ows with the

same characteristics are guaranteed similar service.

At the source, COLB sources having the same 
ow speci�cations are multiplexed into

a DOLB source. Packets from DOLB source to the destination are routed using credit-

based shortest multipath routing algorithm as explained in the earlier sections. At each

destination, packets are demultiplexed into respective 
ows and then again demultiplexed

on to the COLB destinations from DOLB destinations.

The QoS required by the application can be divided into di�erent classes and each class

is serviced separately, independent of other 
ows. This ensures that if one service class

misbehaves, it will not a�ect other classes or 
ows (
ow isolation). Flow isolation is made

possible because of the PGPS servers used at each node.

Figure 6.11 gives the pseudocode for credit distribution at the source. The procedure

Credit Request sends the explicit credit requests and the procedure Credit Response demul-

tiplexes the available credits among COLBs on receipt of the response.
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Procedure Credit Request

when a new COLB source becomes active
begin

save state information at source
send request (credit, seq. no)

end

Procedure Credit Response

when a credit response is received
begin

match the seq. no. with credit request
distribute credits proportionally among
requested sources

end

Figure 6.11: Credit Distribution at Source

6.5 Correctness of Scheduling Mechanism

In this section we prove that the scheduling policy which we have used to map connection-

oriented sessions to destination-based 
ows is correct and live. For this purpose, we assume

that all sources are well-behaved.

Lemma 6.3 The destination-oriented leaky-bucket always demultiplexes the credits fairly

among the connection-oriented sessions.

Proof: Each DOLB is fed by a series of COLBs. Let N be the number of COLBs associated

with each DOLB at any given time. When a new COLB source becomes active, DOLB

sends an explicit request for credits towards destination j. Each of these explicit requests

is associated with a sequence number.

When such a request is sent to the shortest multipath neighbors, the state of the source

along with the sequence number is saved i.e., the COLB sources due to which an explicit

request was initiated. When a credit response (analogous to an acknowledgment) for that

sequence number is received, the credits are fairly distributed among sources due to which

request was sent. i.e.,

CRi
j =

riP
a ra

CRS
j

where a is the set of active sources. Therefore, credit demultiplexing at DOLB is fair.

This proves Lemma 6.3. 2

Lemma 6.4 The scheduling mechanism is live.

Proof: Whenever a new source becomes active, credits are explicitly requested by that

source for a speci�ed destination through a explicit credit request message. Since each
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of these messages are associated with a sequence number, according to Lemma 6.3, when

the source receives a credit response, credits are assigned proportionally to all requested

sources. In the worst case, a credit request might have to go all the way up to the destination

before it gets desired allocation. Since in steady state, we maintain loop-free paths to all

destinations, the hop-count from source to a destination is �nite.

Therefore, the scheduling mechanism is live. This proves Lemma 6.4. 2

Theorem 8 The scheduling mechanism is correct.

Proof: Lemma 6.3 and 6.4 ensure that the scheduling mechanism will not have any dead-

locks and all the active sources have a fair share of the available credits at all times. This

proves theorem 8. 2

6.6 Supporting Subnets

Having de�ned the basic protocol to support several QoS types in a packet-switched network,

we extend it to larger networks with hierarchical topologies in order to make the protocol

scalable.

6.6.1 Credit Aggregation

Destination-oriented credits are aggregated at all intermediate nodes from destination to-

wards source. Therefore, a credit value at each hop gives the total credits available to a

speci�ed destination through all the feasible paths through its downstream nodes.

For the purpose of credit aggregation, we assume that the sources are well-behaved. Let

us assume that the network is divided into clusters. Each cluster is viewed as a single entity

from any node outside the cluster. All the information (distribution of credits) within the

cluster is transparent to the nodes outside the cluster. The border node at each cluster is

responsible for sending aggregated credit information to all the nodes/clusters outside its

own cluster and then to distribute the credits fairly among the routers within the cluster.

Available credits are aggregated for each destination (cluster) at all routers (boundary

nodes) along the path from a destination to a source. When a source becomes active, it sends
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an explicit credit request towards the desired destination. Destination in turn redistributes

credits (reserving resources along the way). The number of packets entering the network is

controlled at the COLB sources itself. Because of this, the sources cannot misbehave and

hog the resources allocated for other sources. The COLB sources are not allowed to send

data unless we have credits to do so. This ensures that the sources will not misbehave.

Because of the well-behavior of the sources, we can aggregate the available credits for

destinations. This can be done without maintaining any additional information about the

subnetworks. i.e., the topology of the subnetwork is transparent to the routers outside the

subnetwork. Therefore, the credit-based approach is scalable.

Figure 6.12 shows an example of how the credits are aggregated in a subnet. S1 and

S2 are the two sources and D1 and D2 are the two destination for which the sources are

sending data. The solid line indicates the direction of the data 
ow and the dashed line

indicates the direction of the credit 
ow. But, from the point of view of the two sources, the

information about both the destination have been integrated into a single destination D,

which is the boundary node of the destination cluster. D aggregates the credits available

for the two destinations within its cluster and passes on that information towards sources

S1 and S2.
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Because the sources are well behaved and cannot send data to the destination unless

they have credits to do so, the credits obtained are distributed between the two sources in

proportion to their tra�c arrival rate.

6.6.2 Fairness

Fairness can be de�ned as two sources of the same capacity (arrival rate), destined for

the same destination and having the same QoS requirement get an equal share of the

bandwidth. Fairness can be ensured in the proposed destination oriented credit mechanism

among all active destinations as all destinations are served according to the tra�c rate

using a weighted fair queueing scheme at all nodes. The available credit is distributed

among active destinations in proportions relative to their tra�c arrival rate. Furthermore,

the congestion control scheme is exercised hop-by-hop on a per destination basis, so that

the congestion 
ow for one destination do not block the 
ows for other destinations.

At each hop, credits are allocated to 
ows depending on its relative input tra�c rate

into that node. Because the sources can not pump packets into the network unless they

have credits to do so (sources are well behaved), all sources get a fair share of the available

bandwidth.

6.7 Summary

In this chapter, we have proposed a new approach for combining routing and congestion

control in a packet-switched network. Our protocol is based on hop-by-hop credit distri-

bution and a loop-free multipath routing algorithm based on LPA. The new framework

dynamically adapts to congestion so that the entries in the routing tables re
ect the state

of the network at any given time. We have demonstrated that it is possible to provide some

performance bounds for the delivery of packets in such networks. A two-tier architecture

to support end-to-end connections on top of a connectionless architecture is also presented

to support several levels of quality of service. We have also showed that it is possible to

extend this solution to a large networks. Our protocol guarantees that in the proposed
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two-tier architecture, all packets that enter the connectionless network will be delivered to

their respective destinations unless a resource failure prevents it.
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Chapter 7

Summary and Future Work

This dissertation addresses the design and analysis of routing algorithms and protocols

for packet-switched networks. We identi�ed the basic drawbacks of the existing routing

techniques and also identi�ed the requirements for new applications, which include wire-

less communication as well as wired applications. Di�erent types of routing protocols are

required in the network in order to support these diverse requirements. Low protocol over-

head, scalability and ability to quickly adapt to the dynamic state of the network are some

of the issues to be concerned about. In some cases, data tra�c or best-e�ort tra�c, does

not su�ce the application requirements. The main objective of this dissertation has been

to take advantage of the application requirements and to propose an appropriate loop-free

routing protocol.

The performance of an application can be improved by correctly designing a routing

algorithm and thereby minimizing the protocol overhead. It is thus necessary to identify

the application requirements for a correct design of the routing algorithm. It is also a fact

that the performance of routing algorithms is greatly a�ected by the congestion control

and the feedback mechanism of the system. For this reason, we integrate both congestion

control and routing functions in one of our proposals.

We have formally veri�ed our proposals, proving the algorithms to be correct and loop-

free when applicable and have analyzed the complexity of the algorithms. We have also

obtained a worst-case delay bound on the congestion oriented protocol using analytical

techniques. For most of our proposals, the performance of the routing algorithms has been
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evaluated by means of simulations. Simulations were performed using a C-based routing

simulator called Drama. Well known topologies such as Los-Nettos, Nsfnet and Arpanet

were used in most of the simulations. To simulate our hierarchical routing algorithm, we

have used the modi�ed Doe-Esnet topology and a randomly generated topology with more

then 100 nodes.

7.1 New Path-Finding Algorithms

Two new routing algorithms, PFA and LPA, which belong to the class of path-�nding

algorithms have been proposed. These algorithms reduce the possibility of formation of

temporary routing loops. This is due to an e�cient updating mechanism and the usage of

implicit path information which can be extracted from the router's database maintained at

each node. LPA achieves loop-freedom at every instant using a single-hop inter-neighbor

coordination mechanism.

7.2 Hierarchical Routing Algorithm

The basic path-�nding algorithms for 
at networks have been extended to large, hierarchi-

cal networks to make the algorithms scalable. Here, the concept of maintaining predecessor

information for the paths to achieve loop-free paths has been extended across the global net-

work. This scheme ensures that the topological details within each subnet are transparent

to all nodes outside the subnetwork and we achieve loop free paths across the subnetworks.

This property makes the hierarchical routing algorithm scalable. Only one entry per sub-

network and the detailed information about all the nodes within the local subnet needs to

be maintained at each node. This technique can be used in the Internet to increase the

scalability of routing algorithms.

7.3 Wireless Routing Protocol

The requirements of a wireless network are very di�erent from a wireline network mainly due

to the limitation in the available bandwidth. WRP is a routing protocol that is suitable in a



147

wireless environment and which takes into account the constraints of a wireless environment.

This is a simple protocol which does not need any elaborate synchronization mechanism and

has fast convergence properties. To limit the number of routing control messages exchanged

between nodes, we suggest some optimization techniques. WRP is shown to perform better

than state of the art routing protocols in wireless networks through simulations.

7.4 Congestion-Oriented Routing

Providing Quality-of-Service (QoS) guarantees in packet-switched networks places stringent

demands on the underlying system. It is a well known that congestion control and routing

are interrelated problems. We propose a technique to combine routing and congestion

control functions and provide a multipath solution to the above problem. Worst-case delay

bounds have been provided using analytical techniques. This model provides 
ow isolation

because of the PGPS scheduling scheme used at each node. To support the quality of service

required by the applications in a packet-switched environment, a two-tier architecture has

been de�ned wherein a connection-oriented session sits on top of a packet-switched 
ow. A

credit based protocol is used to ensure guaranteed 
ows within the packet-switched network

and a scheduling mechanism is used to map connection-oriented sessions to packet-switched


ows. The correctness of both the credit-based mechanism and the scheduling scheme have

been proved analytically.

7.5 Future Work

Routing Information Protocol (RIP) [Hed88] is still the most widely used intra-domain

routing protocol. Like many other protocols, RIP is also based on Distributed Bellman-

Ford algorithm (DBF) for shortest path computations. To cope with the counting-to-in�nity

problems of DBF, the longest path in RIP is limited to 15 hops. Recently, RIP version

2 [Mal94] has been proposed, which adds more information to RIP and reports the next

hop information in the routing updates. However, this still does not prevent the counting-to-

in�nity problem. However, the format of RIP version 2 permits the speci�cation of limited
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path information. Our work can be extended to propose a new Internet routing protocol,

which overcomes the drawbacks of RIP using the same packet format at RIP version 2.

The integration of congestion control and routing is an important result since the routing

tables entries can be used to de�ne long term connections along the non-congested paths.

This proposal uses a multipath routing algorithm. An immediate extension of this work

will be to study the behavior of multicast connections and combining it with congestion

control issues to de�ne long-term multicast sessions.

Another extension is to study the mobility issues in conjunction with wireless routing.

Issues such as hierarchical clustering and hand-o�s needs to be addressed. In addition to

this, we can introduce another level of complexity in the study by providing guaranteed


ows based on application requirements (issue of QoS).

Finally, the scheduling mechanism that is used to map connection-oriented sessions to

packet-switched 
ows can be a topic of further research.

Some work is also being done in securing distance-vector routing protocols. [SMGLA96]

gives the details of this protocol.
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