1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE:	3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Modeling Complex Nonlinear Optical Systems

5. FUNDING NUMBERS
DAAD190310209

6. AUTHORS
Alejandro Aceves, Todd Kapitula

8. PERFORMING ORGANIZATION REPORT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES
University of New Mexico
Contracts & Grants, Office Of Research Services
1 University of New Mexico
Albuquerque, NM 87131-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING AGENCY REPORT NUMBER
45248-PH-HSI.1

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The abstract is below since many authors do not follow the 200 word limit

14. SUBJECT TERMS
Nonlinear Optics, Photonics, Bose Einstein Condensates, Applied Mathematics

15. NUMBER OF PAGES
Unknown due to possible attachments

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION ON THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (Rev .2-89)
Prescribed by ANSI Std.
239-18 298-102
Modeling Complex Nonlinear Optical Systems

ABSTRACT

This research dealt with the modeling of light propagation in nonlinear periodic media including bragg grating fiber arrays and periodic nonlinear 2-dimensional waveguides. The goals set were to find conditions for stable pulse propagation in the arrays and for the search of light bullets, their stability and propagation characteristics in the two dimensional waveguide. We also established conditions for optical trapping in a defect. This is a topic of great interest in the search of all optical logic systems and buffers. A second component of the project dealt with existence and stability of Bose Einstein condensates in periodic magnetic traps. There has been an extensive experimental effort on BEC trapping and our work developed a solid theoretical framework to explore such trapping mechanisms. Tools used in this research include: Dynamical systems, numerical methods for nonlinear partial differential equations, asymptotic analysis. The project had also an important educational component as it served to train 3 graduate students in Applied Mathematics and provided a seed for a new crop of students working in this field.

List of papers submitted or published that acknowledge ARO support during this reporting period. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

T. Kapitula and P. Kevrekidis (2005), "Bose-Einstein condensates in the presence of a magnetic trap and optical lattice: two-mode approximation", Nonlinearity, Vol. 18, No. 6, 2491-2512.

T. Kapitula and P. Kevrekidis (2005), "Bose-Einstein condensates in the presence of a magnetic trap and optical lattice", Chaos Vol. 15, No. 3, 037114.

Number of Papers published in peer-reviewed journals: 10.00

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

Number of Papers published in non peer-reviewed journals: 2.00

(c) Presentations

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

(d) Manuscripts

Number of Manuscripts: 0.00

Number of Inventions:

Graduate Students

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomas Dohnal</td>
<td>1.00</td>
<td>No</td>
</tr>
<tr>
<td>Karl Frinkle</td>
<td>0.75</td>
<td>No</td>
</tr>
<tr>
<td>Bobbi Page</td>
<td>0.25</td>
<td>No</td>
</tr>
<tr>
<td>FTE Equivalent:</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Names of Post Doctorates

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE Equivalent:</td>
<td>Total Number:</td>
<td></td>
</tr>
</tbody>
</table>

Names of Faculty Supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>National Academy Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alejandro Aceves</td>
<td>0.50</td>
<td>No</td>
</tr>
<tr>
<td>Todd Kapitula</td>
<td>0.50</td>
<td>No</td>
</tr>
<tr>
<td>FTE Equivalent:</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Names of Under Graduate students supported
<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobbi Page</td>
<td>No</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Names of personnel receiving PHDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomas Dohnal</td>
<td>No</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Karl Frinkle</td>
<td>No</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Names of other research staff

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub Contractors (DD882)

Inventions (DD882)
Modeling Complex Nonlinear Optical Systems

Alejandro Aceves
Department of Mathematics and Statistics
The University of New Mexico
Statement of the problem: Study the dynamics of pulses in photonic structures.

What is a photonic structure?

- It is an “engineered” optical medium with periodic properties.
- Photonic structures are built to manipulate light (slow light, light localization, trap light)
- I’ll show some examples, but this talk will concentrate on 2-dim periodic waveguides
Motivation of study

We take advantage of periodic structures and nonlinear effects to propose new stable and robust systems relevant to optical systems.

- Periodic structure - material with a periodically varying index of refraction (“grating”)
- Nonlinearity - dependence of the refractive index on the intensity of the electric field (Kerr nonlinearity)

The effects we seek:
- existence of stable localized solutions – solitary waves, solitons
- short formation lengths of these stable pulses
- possibility to control the pulses – speed, direction (2D, 3D)

Prospective applications:
- rerouting of pulses
- optical memory
- low-loss bending of light
1d structures: Optical fiber gratings

\[E_f(Z,T) \quad \text{(forward moving envelope)} \]

\[E_b(Z,T) \quad \text{(backward moving envelope)} \]
Equations studied

1-dim Coupled Mode Equations

$$\partial_t E_+ = -c_g \partial_z E_+ + i \kappa E_- + i \Gamma (|E_+|^2 + 2 |E_-|^2) E_+$$

$$\partial_t E_- = c_g \partial_z E_- + i \kappa E_+ + i \Gamma (|E_-|^2 + 2 |E_+|^2) E_-$$

Gap solitons exist. Velocity proportional to amplitude mismatch between forward and backward envelopes.
II. 2D structures: Waveguide gratings

Assumptions:
- dynamics in y arrested by a fixed $n(y)$ profile
- xy-normal incidence of pulses
- characteristic length scales of coupling, nonlinearity and diffraction are in balance

BARE 2D WAVEGUIDE
- 2D NL Schrödinger equation
- collapse phenomena: point blow-up

WAVEGUIDE GRATING
- 2D CME
- no collapse
- possibility of localization
Dispersion relation for coupled mode equations

Close, but outside the gap
Well approximated by the 2D NLSE + higher order corrections.
Collapse arrest shown by Fibich, Ilan, A.A (2002).
But dynamics is unstable

Frequency gap region.
We will study dynamics in this regime.
Governing equations: 2D Coupled Mode Equations

\[
\begin{align*}
\partial_t E_+ &= -c_g \partial_z E_+ + id \partial_{x^2} E_+ + i \kappa E_- + i \Gamma (|E_+|^2 + 2|E_-|^2) E_+ \\
\partial_t E_- &= c_g \partial_z E_- + id \partial_{x^2} E_- + i \kappa E_+ + i \Gamma (|E_-|^2 + 2|E_+|^2) E_-
\end{align*}
\]

\[c_g, d, \kappa, \Gamma \geq 0, \quad E_\pm : [-L_x, L_x] \times [-L_z, L_z] \times [0, \infty) \rightarrow C.\]
Summary of results (details to follow on next slides)

- Found stationary solutions of the governing equations of the 2d structure (see next slide)
- Obtained conditions for bullet propagation in such structures
- Obtained conditions for light trapping at a defect by a resonance mechanism between the incident optical bullets and defect modes
- Derived a finite dimensional dynamical system to study the dynamics inside the trap
Stationary solutions via Newton’s iteration

If \(E_\pm(x, z, t) = \mathcal{E}_\pm(x, z) e^{-i\omega t} \) then

\[
\begin{align*}
\omega \mathcal{E}_+ + ic \partial_z \mathcal{E}_+ + \partial_x^2 \mathcal{E}_+ + \kappa \mathcal{E}_- + \Gamma(|\mathcal{E}_+|^2 + 2|\mathcal{E}_-|^2) \mathcal{E}_+ &= 0, \\
\omega \mathcal{E}_- - ic \partial_z \mathcal{E}_- + \partial_x^2 \mathcal{E}_- + \kappa \mathcal{E}_+ + \Gamma(|\mathcal{E}_-|^2 + 2|\mathcal{E}_+|^2) \mathcal{E}_- &= 0.
\end{align*}
\]

(1)

Solve (1) as a \textbf{NL eigenvalue problem} for \(\left(\omega, \begin{pmatrix} \mathcal{E}_+ \\ \mathcal{E}_- \end{pmatrix} \right) \) via Newton’s iteration.

Need one more equation:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\mathcal{E}_+|^2 + |\mathcal{E}_-|^2 dzdx = N.
\]

Initial guess: \(\left(\omega^{(0)}, \mathcal{E}^{(0)}_\pm(x, z) \right) \)

separable waveform \(\mathcal{E}^{(0)}_\pm(x, z) = \mathcal{F}_\pm(z) G(x) \), \(\omega^{(0)} = \kappa \cos(\delta) \)

where \(\mathcal{F}_\pm(z) e^{-i\omega^{(0)} t} \) is the 1D gap soliton with \(v = 0 \) (free parameter \(\delta \in (0, \pi) \))

Substitute and integrate in \(z \):

\[
G'''' + b(G^3 - G) = 0, \quad b = 2\frac{\kappa}{\delta}(\sin(\delta) - \delta \cos(\delta)), \quad \delta \in (0, \pi/2)
\]

\(\Rightarrow G(x) = \sqrt{2} \text{sech}(\sqrt{b} x) \)
Stationary case I

Peak amplitude evolution

max_{(x,y)} E_x(t)
max_{(x,y)} E_y(t)

FWHM (area) evolution

FWHM_x(t)
FWHM_y(t)

Frequency evolution (prediction: \(\omega_+ = \omega_- = 0.959517 \))

\(\omega_x(t) \)
\(\omega_y(t) \)
Nonexistence of minima of the Hamiltonian

Theorem 1. The Hamiltonian functional of 2D CME has no minima constrained to a fixed total power.

Proof: Suppose $\exists (\mathcal{E}_+(x,z), \mathcal{E}_-(x,z))$ s.t. $H(\mathcal{E}_+, \mathcal{E}_-) = \min_S H$, where

$$S = \{(f_1(x,z), f_2(x,z)) \text{ s.t. } f_{1,2} : \mathbb{R}^2 \to \mathbb{C}, \sum_{k=1}^2 \|f_k\|_2^2 = \|\mathcal{E}_+\|_2^2 + \|\mathcal{E}_-\|_2^2\}$$

Consider

$$S_1 = \{ (\mathcal{E}_+, \mathcal{E}_-) : \mathcal{E}_\pm = \alpha \mathcal{E}_\pm (x/\mu, z/\nu) \text{ and } \alpha, \mu, \nu > 0, \alpha^2 \mu \nu = 1 \}.$$

Clearly $S_1 \subset S$ and $(\mathcal{E}_+, \mathcal{E}_-) \in S_1$.

Within S_1 the Hamiltonian $H = H_r = A_1 \frac{1}{\nu} + A_3 \alpha^4 \nu^2 - A_4 \alpha^2 - A_2$ with

$$A_1 = i c \gamma \int_{\mathbb{R}^2} \mathcal{E}_-^* \partial_x \mathcal{E}_- - \mathcal{E}_+^* \partial_x \mathcal{E}_+ dxdz, \quad A_2 = \kappa \int_{\mathbb{R}^2} \mathcal{E}_- \mathcal{E}_+^* + \mathcal{E}_+ \mathcal{E}_-^* dxdz,$$

$$A_3 = \int_{\mathbb{R}^2} |\partial_x \mathcal{E}_+|^2 + |\partial_x \mathcal{E}_-|^2 dxdz, \quad A_4 = \frac{1}{2} \int_{\mathbb{R}^2} |\mathcal{E}_+|^4 + 4|\mathcal{E}_+|^2|\mathcal{E}_-|^2 + |\mathcal{E}_-|^4 dxdz$$

$A_1, A_2 \in \mathbb{R}$ and $A_3, A_4 > 0$. The only C.P. of H_r is

$$(\alpha^*, \nu^*) = \left(\frac{A_1 \sqrt{2A_3}}{A_4^{3/2}}, \frac{A_4^2}{2A_1A_3} \right)$$

and by the 2nd derivative test (α^*, ν^*) is a saddle!

\square
Defects in 1d gratings

- Trapping of a gap soliton bullet in a defect. (this concept has been theoretically demonstrated by Goodman, Weinstein, Slusher for the 1-dim (fiber Bragg grating with a defect) case).

Ref: R. Goodman et.al., JOSA B 19, 1635 (July 2002)
Governing equations: 2D CME

\[
\begin{align*}
\partial_t E_+ &= -\partial_z E_+ + i\partial_x E_+ + i\kappa(x, z) E_- + V(x, z) E_+ + i\Gamma(\|E_+\|^2 + 2\|E_-\|^2) E_+ \\
\partial_t E_- &= \partial_z E_- + i\partial_x E_- + i\kappa(x, z) E_+ + V(x, z) E_- + i\Gamma(\|E_-\|^2 + 2\|E_+\|^2) E_-
\end{align*}
\]

- advection
- diffraction
- coupling
- defect
- non-linearity

\[\kappa, \Gamma \geq 0, \quad E_\pm : [-L_x, L_x] \times [-L_z, L_z] \times [0, \infty) \rightarrow C.\]
2-D version of resonant trapping

left: GS modulus
right: defect potential $V(x, z)$

(-) Bifurcation curves for the NL defect mod
(*) stationary GS with $\omega_0 \approx 0.96$
3 trapping cases (GS: $\omega(\nu=0) \approx 0.96$)

1. Trapping into two defect modes

$$V = V_1(x)T(z;9) + V_2(z)T(x;7), \quad \kappa = \sqrt{1 + k^2(tanh^2(kz) - 1)},$$

where $V_1 = 2\beta^2 \text{sech}^2(\beta x)$, $V_2 = \frac{1}{2} \frac{k^2 \sqrt{1 - k^2 \text{sech}^2(kz)}}{1 + k^2(tanh^2(kz) - 1)}$ and $T(y; c) = \frac{1}{2} (\tanh(y + c) - \tanh(y - c))$

with $k = 0.18$ and $\beta = 0.16$

\Rightarrow 2 linear defect modes: $\omega_L \approx 0.963, 0.992$

$$| E_+(x = 0, z, t) |$$

$$| a_k(t) |$$
3 trapping cases \((\text{GS: } \omega(v=0) \approx 0.96)\)

2. Trapping into one defect mode

\[V = 0.3 e^{-(ax^2 + b z^2)}, \quad \kappa = 1 + 0.1 e^{-(ax^2 + b z^2)}, \quad a = 0.25, \quad b = 0.3 \]

\[\Rightarrow \quad 1 \text{ linear defect mode: } \omega_L \approx 0.995 \]
3 trapping cases (GS: $\omega(v=0) \approx 0.96$)

3. No trapping

$$V = V_1(x)T(z;5) + V_2(z)T(x;5), \quad \kappa = \sqrt{1 + k^2(tanh^2(kz) - 1)},$$

where $V_1 = 2\beta^2sech^2(\beta x)$, $V_2 = \frac{k^2\sqrt{1-k^2sech^2(kz)}}{2 (1+k^2(tanh^2(kz) - 1))}$ and $T(y; c) = \frac{1}{2}(tanh(y + c) - tanh(y - c))$

with $k = 0.85$ and $\beta = 1$

\Rightarrow 5 linear defect modes: $\omega_k \approx -0.47, 0.26, 0.47, 0.68$ and $0.87 \quad \leftarrow$ ALL FAR FROM RESONANCE
Finite dimensional approximation of the trapped dynamics

For trapped solutions with small amplitude:

\[
\begin{pmatrix}
E_+(x, z, t) \\
E_-(x, z, t)
\end{pmatrix}
\approx
\sum_{k=1}^{N} a_k(t) e^{-i\omega_k t}
\begin{pmatrix}
\psi_{+k}(x, z) \\
\psi_{-k}(x, z)
\end{pmatrix},
\]

where \((\psi_{+k}, \psi_{-k})^T, k = 1, \ldots N\) are the defect modes.

Substituting into 2D CME with the defect potentials

\[
i \sum_{k=1}^{N} a'_k \begin{pmatrix}
\psi_{+k} \\
\psi_{-k}
\end{pmatrix} + \Gamma \begin{pmatrix}
(NL)_+ \\
(NL)_-
\end{pmatrix} = 0,
\]

where \((NL)_\pm = (|E_\pm|^2 + 2|E_\mp|^2)E_\pm\).

Due to orthogonality

\[
i a'_k(t) + \Gamma \int (NL)_+ \psi^*_{+k} + (NL)_- \psi^*_{-k} \, dx \, dz = 0 , \quad k = 1, \ldots, N.
\]
Finite dimensional approximation of the trapped dynamics

For $N = 2$:

After transformation $\tilde{a}_{1,2}(t) = a_{1,2}(t)e^{\pm \frac{i\Delta \omega}{2}t}$, where $\Delta \omega = \omega_{L1} - \omega_{L2}$

\[
\begin{align*}
 i\tilde{a}_1' &= -\frac{\Delta \omega}{2}\tilde{a}_1 + \alpha_1|\tilde{a}_1|^2\tilde{a}_1 + \beta|\tilde{a}_2|^2\tilde{a}_1 + \frac{\beta}{2}\tilde{a}_2\tilde{a}_1^* = 0 \\
 i\tilde{a}_2' &= \frac{\Delta \omega}{2}\tilde{a}_2 + \alpha_2|\tilde{a}_2|^2\tilde{a}_2 + \beta|\tilde{a}_1|^2\tilde{a}_2 + \frac{\beta}{2}\tilde{a}_1\tilde{a}_2^* = 0.
\end{align*}
\]
Conclusions (Part I)

- 2d nonlinear photonic structures show promising properties for quasi-stable propagation of “slow” light-bullets.
- With the addition of defects, we presented examples of resonant trapping.
- Research in line with other interesting schemes to slow down light for eventually having all optical logic devices (eg. buffers).
Part II: Dynamics in Bose-Einstein Condensates

Statement of the problem:

In the study of the dynamics of matter waves for Bose-Einstein condensates, it is of great importance to understand the scenarios under which solutions such as necklaces, multi-poles, and vortices will exist and persist.
Part 2: Bose Einstein Condensates
(summary of most important results)

- Shown that, under suitable assumptions, that N-solitons are stable for a large class of integrable partial differential equations including the equation that govern BEC.
- Shown how the presence of an optical lattice along with the magnetic trap can influence the dynamics of matter waves in Bose-Einstein condensates.
- Illustrated the manner in which increasing the number of potential wells in photorefractive media effects the dynamics associated with solitary waves.
- Begun to develop some "rules-of-thumb" regarding the existence and stability of waves in two-dimensional Bose-Einstein condensates.
Bibliography